JP2006211218A - Apparatus and method for image processing - Google Patents

Apparatus and method for image processing Download PDF

Info

Publication number
JP2006211218A
JP2006211218A JP2005019733A JP2005019733A JP2006211218A JP 2006211218 A JP2006211218 A JP 2006211218A JP 2005019733 A JP2005019733 A JP 2005019733A JP 2005019733 A JP2005019733 A JP 2005019733A JP 2006211218 A JP2006211218 A JP 2006211218A
Authority
JP
Japan
Prior art keywords
image processing
edge
edge enhancement
coordinates
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005019733A
Other languages
Japanese (ja)
Inventor
Akihiko Shiraishi
昭彦 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005019733A priority Critical patent/JP2006211218A/en
Publication of JP2006211218A publication Critical patent/JP2006211218A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for image processing changing the direction and magnitude of edge enhancement according to the radial direction or the azimuth angle direction from the center of the screen, and correcting image deterioration produced in the meridional direction and the sagittal direction caused by the design and manufacturing reasons of an optical imaging system. <P>SOLUTION: The image processing apparatus for processing signals from an imaging apparatus having an axisymmetric optical imaging system includes a means for obtaining a coordinate on an imaging plane having a cross point of the optical axis of the above optical imaging system and an imaging plane of the above imaging apparatus as an origin. Also, the image processing apparatus includes an edge enhancement means for performing edge enhancement of an edge perpendicular to the radius direction of the above coordinate, and an edge enhancement means for performing edge enhancement of an edge perpendicular to the azimuth angle direction of the above coordinate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,画像処理装置および画像処理方法に関し,特に,カメラ,内視鏡等軸対称な撮像光学系を有する撮像装置からの信号を処理する画像処理装置および画像処理方法に関する。   The present invention relates to an image processing apparatus and an image processing method, and more particularly to an image processing apparatus and an image processing method for processing a signal from an imaging apparatus having an axially symmetric imaging optical system such as a camera and an endoscope.

カメラ,内視鏡等の撮像装置では,一般に一つの光軸に対し,軸対称な形状を持つレンズ等の撮像光学系が用いられている。このような撮像光学系の結像特性は,撮像面上では画面の中心から動径方向への距離のみに関係し,変化するものとなり,具体的にはこれが,球面収差,非点収差,コマ収差,像面歪曲,色収差などになって画像の劣化として現れる。従来これらの収差による画像の劣化を補正するためには,レンズ等の撮像光学系を最適化し,これらの収差が最小となるように構成することが行われている。また,画像処理においては,エッジ強調などの処理を行うことにより,画像のコントラストの劣化を防ぐ等の方法がとられてきた。   In an imaging apparatus such as a camera or an endoscope, an imaging optical system such as a lens having an axially symmetric shape with respect to one optical axis is generally used. The imaging characteristics of such an imaging optical system change on the imaging surface only in relation to the distance from the center of the screen in the radial direction, and specifically, this is spherical aberration, astigmatism, coma. Aberration, image surface distortion, chromatic aberration, etc. appear as image degradation. Conventionally, in order to correct image deterioration due to these aberrations, an imaging optical system such as a lens is optimized and configured to minimize these aberrations. In image processing, methods such as edge enhancement are used to prevent image contrast deterioration.

しかしながら,撮像素子の小型化・高画素化に伴い,1画素当りのピッチが小さくなりつつあり,レンズの収差補正も困難なものになりつつある。特に撮像光学系のFナンバーが小さくなると,光の回折の影響で,画像の劣化が目立つようになる。このことは,画面の周辺付近で特に顕著に現れる。図5にこの様子を説明する。51に示す撮像光学系が画面52に結像する時,画面の中央,いわゆる軸上に収光される光束は,鏡筒を構成するレンズや絞り等の断面が円形で出来ていれば,53に示すような円形に均等に広がった瞳形状となる。一方,画面の周辺,いわゆる軸外に収光される光束は,口径食の影響により,瞳の大きさが一般に軸上のものより小さいものとなり,形状も54に示すように画面の動径方向,いわゆるメリジオナル方向と,方位角方向,いわゆるサジタル方向とで異なるものとなる。一般の撮像光学系の場合,メリジオナル方向の方が口径食の影響を受けやすく,メリジオナル方向に収光される光束の立体角の方が,サジタル方向に収光される光束の立体角に比べ,小さくなりやすい。   However, with the downsizing and increase in the number of pixels of the image sensor, the pitch per pixel is becoming smaller and it is becoming difficult to correct aberrations of the lens. In particular, when the F number of the imaging optical system is reduced, image degradation becomes conspicuous due to light diffraction. This is particularly noticeable near the periphery of the screen. FIG. 5 illustrates this state. When the imaging optical system shown in FIG. 51 forms an image on the screen 52, the light beam collected on the center of the screen, the so-called axis, is 53 if the cross section of the lens, the diaphragm, etc. constituting the lens barrel is circular. The pupil shape spreads out evenly in a circle as shown in FIG. On the other hand, the light beam collected off the periphery of the screen, that is, off-axis, has a pupil size that is generally smaller than that on the axis due to the effects of vignetting, and the shape is shown in the radial direction of the screen as shown in FIG. The so-called meridional direction is different from the azimuthal direction, so-called sagittal direction. In the case of a general imaging optical system, the meridional direction is more susceptible to vignetting, and the solid angle of the light beam collected in the meridional direction is larger than the solid angle of the light beam collected in the sagittal direction. It tends to be small.

このことは,軸外では,メリジオナル方向にFナンバーが暗くなりやすく,メリジオナル方向,すなわち画面の方向に回折による画像の劣化が起こりやすいことを意味する。さらに,撮像素子の小型化・高画素化は,撮像光学系の製造精度をより厳しいものとし,撮像光学系の製造誤差による画像の劣化を引き起こしやすくなる。これは例えば,画面のメリジオナル方向で得られる最良ピント面,いわゆるメリジオナル像面55および,画面のサジタル方向で得られる最良ピント面,いわゆるサジタル像面56が,設計上の理想像面52から外れる現象として現れる。一般に製造誤差による影響は,メリジオナル面の方がサジタル面より受けやすく,このため画像もメリジオナル方向の方が劣化が起こりやすいが,製造状態によっては,メリジオナル面55の方がサジタル面56より理想像面52に近いものとなり,サジタル方向の画像劣化が起こる場合もある。さらに,撮像光学系の製造誤差による影響は,画面の方位角方向に均等に起こるものではなく,画面の方位角によって画像の劣化の度合が異なる,いわゆる片ボケと呼ばれる現象が起こる。この様な場合,画像の方位角方向によって,メリジオナル方向とサジタル方向とで画像の劣化の度合が変化することとなる。撮像光学系における画像の劣化を補正するための技術として,特開2003-172873に開示されたものがある。この構成においては,劣化した画像を修復するフィルタとして,回転対称なものが提案されており,上記したようなメリジオナル方向とサジタル方向での劣化の修復の度合を変えることは出来ない。また,同提案には,画像修復を回転対称に行えるようにするため,メリジオナル方向とサジタル方向の画像の劣化を同程度とするよう,撮像光学系のピント位置を理想像面からデフォーカスさせる方法も提案されている。
特開2003−172873号公報
This means that, off-axis, the F-number tends to darken in the meridional direction, and image degradation due to diffraction tends to occur in the meridional direction, that is, the screen direction. Furthermore, the downsizing and the increase in the number of pixels of the image pickup element make the manufacturing accuracy of the image pickup optical system more severe, and easily cause image degradation due to the manufacturing error of the image pickup optical system. This is because, for example, the best focus plane obtained in the meridional direction of the screen, the so-called meridional image plane 55, and the best focus plane obtained in the sagittal direction of the screen, the so-called sagittal image plane 56 deviate from the designed ideal image plane 52. Appears as In general, the influence of the manufacturing error is more easily received on the meridional surface than on the sagittal surface. Therefore, the image is more likely to deteriorate in the meridional direction. However, depending on the manufacturing state, the meridional surface 55 is more ideal than the sagittal surface 56. The image may be close to the surface 52 and image degradation in the sagittal direction may occur. Furthermore, the influence of the manufacturing error of the imaging optical system does not occur evenly in the azimuth direction of the screen, but a phenomenon called “single blurring” occurs in which the degree of image deterioration differs depending on the azimuth angle of the screen. In such a case, the degree of degradation of the image varies between the meridional direction and the sagittal direction depending on the azimuth direction of the image. Japanese Patent Application Laid-Open No. 2003-172873 discloses a technique for correcting image degradation in an imaging optical system. In this configuration, a rotationally symmetric filter has been proposed as a filter for repairing a deteriorated image, and the degree of repair of deterioration in the meridional direction and the sagittal direction cannot be changed. In addition, the proposal proposes a method for defocusing the focus position of the imaging optical system from the ideal image plane so that the image degradation in the meridional direction and the sagittal direction can be made comparable to enable image restoration to be rotationally symmetric. Has also been proposed.
JP 2003-172873 A

しかしながらこの方法では,画面の中央付近の画像の劣化を招いてしまうという不具合がある。   However, this method has a problem that the image near the center of the screen is deteriorated.

上記目的を達成するため,本発明の画像処理装置および画像処理方法は以下のような構成からなる。   In order to achieve the above object, an image processing apparatus and an image processing method of the present invention have the following configurations.

すなわち,軸対称な撮像光学系を有する撮像装置からの信号を処理する画像処理装置であって,該撮像光学系の光軸と該撮像装置の撮像面との交点を原点とする撮像面上の座標を得る手段を有し,該座標の動径方向に垂直なエッジを強調するエッジ強調手段と,該座標の方位角方向に垂直なエッジを強調するエッジ強調手段の2つのエッジ強調手段を有することを特徴とする画像処理装置および画像処理方法を備える。   That is, an image processing device that processes a signal from an imaging device having an axially symmetric imaging optical system, on the imaging surface with the intersection point between the optical axis of the imaging optical system and the imaging surface of the imaging device as an origin It has means for obtaining coordinates, and has two edge enhancement means: edge enhancement means for enhancing edges perpendicular to the radial direction of the coordinates, and edge enhancement means for enhancing edges perpendicular to the azimuth direction of the coordinates An image processing apparatus and an image processing method are provided.

以上説明したように,本発明の実施形態に従えば,画面の中央から動径方向あるいは方位角方向によってエッジ強調の方向と大きさを変えることができ,撮像光学系の設計上および製造上の理由から発生するメリジオナル方向およびサジタル方向でおこる画像の劣化を修復することが可能となる。   As described above, according to the embodiment of the present invention, the direction and size of edge enhancement can be changed from the center of the screen according to the radial direction or the azimuth angle direction. It is possible to repair the deterioration of the image that occurs in the meridional direction and the sagittal direction.

以下添付図面を参照して本発明の好適な実施形態について詳細に説明する。   Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は,本発明の構成を表すブロック図である。   FIG. 1 is a block diagram showing the configuration of the present invention.

図1に示す画像処理装置および画像処理方法は,被写体を光軸に対称な撮像光学系1により撮像部2内にある撮像素子に結像させる。撮像部2には,撮像素子からの信号を画像に出力するための様々なパラメータが記憶されているパラメータ記憶部3が設けられており,撮像光学系1のメリジオナル方向およびサジタル方向の結像性能や,撮像面上の中心位置(x0,y0)を表す情報もこの中に含まれている。(x0,y0)は,撮像光学系の光軸と,撮像素子の撮像面との交点である。撮像部2より得られた信号は座標検出部4で,中心位置(x0,y0)と画像信号のアドレスから,(x0,y0)の位置を原点とする撮像面上の座標(x,y)が算出される。座標(x,y)は,動径方位角算出部5により,動径と方位角の大きさが判定され,これらの大きさから撮像光学系1のメリジオナル方向とサジタル方向の結像性能のデータを得ることができる。ここで,動径と方位角は次の式により求められるものである。   In the image processing apparatus and the image processing method shown in FIG. 1, a subject is imaged on an imaging element in an imaging unit 2 by an imaging optical system 1 that is symmetric with respect to the optical axis. The imaging unit 2 is provided with a parameter storage unit 3 in which various parameters for outputting signals from the image sensor to the image are stored. The imaging performance of the imaging optical system 1 in the meridional direction and the sagittal direction is provided. In addition, information indicating the center position (x0, y0) on the imaging surface is also included in this. (X0, y0) is the intersection of the optical axis of the imaging optical system and the imaging surface of the imaging device. The signal obtained from the imaging unit 2 is the coordinate detection unit 4, and the coordinates (x, y) on the imaging surface with the position of (x0, y0) as the origin from the center position (x0, y0) and the address of the image signal Is calculated. The coordinates (x, y) are determined by the radial azimuth calculating unit 5 based on the radius and the azimuth, and based on these sizes, the imaging performance data of the imaging optical system 1 in the meridional direction and the sagittal direction. Can be obtained. Here, the radius and the azimuth are obtained by the following equations.

動径:r=SQRT(x2+y2
方位角:φ=arctan(y/x)
これを動径の長さの2乗r2および方位角の正接値tanφとすれば,
r2=x2+y2
tanφ=y/x
となり,動径方位角算出部5でこの値を求め,動径および方位角の大きさを判定することにすれば,演算量を低減することができる。動径方位角算出部5で求められた動径および方位角の大きさは,BPF作成部6に入力され,これらの値から画像の座標(x,y)におけるエッジ強調に用いられるバンドパスフィルターが作成される。図2に本実施例で用いられるエッジ強調用バンドパスフィルターの特性の例を示す。図2(A),(B)は,座標(x,y)が撮像面の中心から右上に離れていった時のバンドパスフィルターの特性を示したものである。同図(A),(B)では,メリジオナル方向の方がサジタル方向に比べ,画像の劣化の影響が大きい場合に好適なバンドパスフィルターの特性を示している。座標(x,y)が撮像面の中心から右上周辺に離れていくに従い,メリジオナル方向,すなわち動径方向の画像の劣化が大きくなるような場合,同図(A)から(B)に示すように,方向に均等な特性から徐々に動径方向と同じ方向の周波数成分をより強調するバンドパスフィルターに切り替わるよう,BPF作成部6ではエッジ検出用バンドパスフィルターが作成される。図2(C),(D)は,座標(x,y)が撮像面の中心から右上に離れていった時のバンドパスフィルターの特性を示したものである。同図(C),(D)では,サジタル方向の方がメリジオナル方向に比べ,画像の劣化の影響が大きい場合に好適なバンドパスフィルターの特性を示している。座標(x,y)が撮像面の中心から右上周辺に離れていくに従い,サジタル方向,すなわち方位角方向の画像の劣化が大きくなるような場合,同図(C)から(D)に示すように,方向に均等な特性から徐々に方位角方向と同じ方向の周波数成分をより強調するバンドパスフィルターに切り替わるよう,BPF作成部6ではエッジ強調用バンドパスフィルターが作成される。以上図2で説明したように,ある方向のエッジ強調を動径の大きさに応じて変化させるようなバンドパスフィルターは,動径方位角算出部5により座標(x,y)の動径および方位角を求め,動径方向BPF作成部8により動径方向にエッジ強調するバンドパスフィルターを作成し,方位角方向BPF作成部9により方位角方向にエッジ強調するバンドパスフィルターを作成し,これらを混合部10により適切な混合比で足し合わせることにより作成することができる。この混合比は,パラメータ記憶部3に記憶された撮像光学系1の,画面の動径の大きさすなわち像高による,動径方向すなわちメリジオナル方向および方位角方向すなわちサジタル方向の結像性能により決定され,図2(A),(B),(C),(D)に示すような特性を持つバンドパスフィルターが作成される。なお,製造誤差などの影響により,動径のみならず方位角の大きさによっても画像の劣化の度合が異なるような場合は,パラメータ記憶部3に動径に加えて方位角の大きさによって変化する結像特性の情報を保持し,混合部10で与える混合比を動径と方位角の組合せで決定しても良い。図6(A)にある座標の動径方向にエッジ強調を行うバンドパスフィルターを,図6(B)に同じ座標の方位角方向にエッジ強調するバンドパスフィルターとの例を示す。同図(A),(B)に示すバンドパスフィルターを,方位角θ=0°すなわち画面の水平方向で,5×5タップのデジタルフィルターで構成する場合,以下のような係数を取ることにより実現することができる。
Radial radius: r = SQRT (x 2 + y 2 )
Azimuth: φ = arctan (y / x)
Let this be the square of the radial length r 2 and the tangent value tanφ of the azimuth,
r 2 = x 2 + y 2
tanφ = y / x
Thus, if this value is obtained by the radial azimuth calculating unit 5 and the magnitude of the radial and azimuth is determined, the amount of calculation can be reduced. The radial and azimuth angles obtained by the radial azimuth calculation unit 5 are input to the BPF creation unit 6, and a bandpass filter used for edge enhancement at image coordinates (x, y) from these values. Is created. FIG. 2 shows an example of the characteristics of the bandpass filter for edge enhancement used in this embodiment. 2A and 2B show the characteristics of the bandpass filter when the coordinates (x, y) are away from the center of the imaging surface to the upper right. FIGS. 9A and 9B show the characteristics of a band pass filter that is suitable when the influence of image degradation is greater in the meridional direction than in the sagittal direction. When the coordinates (x, y) move away from the center of the imaging surface to the upper right, the deterioration of the image in the meridional direction, that is, in the radial direction increases as shown in (A) to (B) of the figure. In addition, the bandpass filter for edge detection is created in the BPF creation unit 6 so that the bandpass filter for further emphasizing the frequency component in the same direction as the radial direction is gradually switched from the characteristic uniform to the direction. FIGS. 2C and 2D show the characteristics of the bandpass filter when the coordinates (x, y) are separated from the center of the imaging surface to the upper right. FIGS. 3C and 3D show the characteristics of a band pass filter that is suitable when the influence of image degradation is greater in the sagittal direction than in the meridional direction. As the coordinates (x, y) move away from the center of the imaging surface to the upper right corner, when the sagittal direction, that is, the azimuth direction of the image deteriorates greatly, as shown in (C) to (D) of the figure In addition, the edge enhancement band-pass filter is created in the BPF creation unit 6 so that the band-pass filter gradually emphasizes the frequency component in the same direction as the azimuth direction from the characteristic uniform to the direction. As described above with reference to FIG. 2, a bandpass filter that changes edge enhancement in a certain direction in accordance with the size of the radius is calculated by the radius azimuth calculation unit 5 and the radius of the coordinates (x, y) and An azimuth angle is obtained, a bandpass filter for edge enhancement in the radial direction is created by the radial direction BPF creation unit 8, and a bandpass filter for edge enhancement in the azimuth direction is created by the azimuth direction BPF creation unit 9. Can be created by adding them together at an appropriate mixing ratio in the mixing unit 10. This mixing ratio is determined by the imaging performance of the imaging optical system 1 stored in the parameter storage unit 3 in the radial direction, that is, the meridional direction and the azimuth direction, that is, the sagittal direction, depending on the size of the moving radius of the screen, that is, the image height. Thus, a bandpass filter having the characteristics shown in FIGS. 2A, 2B, 2C, and 2D is created. If the degree of image degradation differs depending not only on the radius but also on the azimuth angle due to the effects of manufacturing errors, etc., the parameter storage unit 3 changes depending on the azimuth angle in addition to the radius. Information on the imaging characteristics to be held may be held, and the mixing ratio given by the mixing unit 10 may be determined by a combination of the radius vector and the azimuth angle. FIG. 6A shows an example of a bandpass filter that performs edge enhancement in the radial direction of coordinates, and FIG. 6B shows an example of a bandpass filter that performs edge enhancement in the azimuth direction of the same coordinates. When the bandpass filter shown in (A) and (B) of the figure is configured with a 5 × 5 tap digital filter in the azimuth angle θ = 0 °, that is, in the horizontal direction of the screen, the following coefficients are taken. Can be realized.

Figure 2006211218
Figure 2006211218

任意の方位角θにおける動径方向と方位角方向へのエッジ強調フィルタは,以下のように,元となるバンドパスフィルターを,任意の角度θ回転させることにより得ることができる。ここで,元となるバンドパスフィルターが,M×Nタップのものであり,水平方向にi番目,垂直方向にj番目の係数をa[i,j]とする。すなわち,
BPF = ( a[i,j] )
(i=1,…,M,j=1,…,N)
である。このとき,以下の関数を定義する。
The radial enhancement direction and the edge enhancement filter in the azimuth direction at an arbitrary azimuth angle θ can be obtained by rotating the original bandpass filter at an arbitrary angle θ as follows. Here, the original band-pass filter is an M × N tap, and the i-th coefficient in the horizontal direction and the j-th coefficient in the vertical direction are a [i, j]. That is,
BPF = (a [i, j])
(I = 1, ..., M, j = 1, ..., N)
It is. At this time, the following functions are defined.

h(x,y) = Σ(i=1,M)Σ(j-1,N)
{ a[i,j]・sinc(x+i-(M+1)/2)・sinc(y+j-(N+1)/2)}
(ただし,sinc(x) = sin(πx)/(πx) )
これを時計周りにθ回転させた座標でサンプリングすれば,方位角の方向にθだけ回転したエッジ強調バンドパスフィルターBPF(rot=θ)を作成することができる。すなわち,
BPF(rot=θ) = ( h(i・cosθ + j・sinθ, -i・sinθ + j・cosθ )
(i=1,…,M,j=1,…,N)
とすればよい。図6(C),(D)に同図(A),(B)のバンドパスフィルターを60°回転させた例を示す。例えば,元となるバンドパスフィルターが5×5タップの前記した方位角θ=0°のバンドパスフィルターの場合,上記方法を用いて60°回転したエッジ強調フィルタは,以下のようなものとなる。
h (x, y) = Σ (i = 1, M) Σ (j-1, N)
{a [i, j] · sinc (x + i- (M + 1) / 2) · sinc (y + j- (N + 1) / 2)}
(However, sinc (x) = sin (πx) / (πx))
If this is sampled at coordinates rotated clockwise by θ, an edge-enhanced bandpass filter BPF (rot = θ) rotated by θ in the direction of the azimuth angle can be created. That is,
BPF (rot = θ) = (h (i · cosθ + j · sinθ, -i · sinθ + j · cosθ)
(I = 1, ..., M, j = 1, ..., N)
And it is sufficient. FIGS. 6C and 6D show examples in which the bandpass filters of FIGS. 6A and 6B are rotated by 60 °. For example, when the original bandpass filter is a 5 × 5 tap bandpass filter with the azimuth angle θ = 0 °, the edge enhancement filter rotated by 60 ° using the above method is as follows: .

Figure 2006211218
Figure 2006211218

以上のように,図6(B)に示すバンドパスフィルターは,座標の方位角から,その強調すべき周波数の方向を持つデジタルフィルターの係数をその都度計算させても良く,方位角の範囲に応じて有限個数予め用意しておいても良い。また,そのように有限個数用意しておいたデジタルフィルターから,ピークの位置が所望の方向に移動するよう,2つないしはそれ以上の複数のデジタルフィルターの混合比を変化させるようにしても良い。BPF作成部6で作成されたエッジ強調用バンドパスフィルターはエッジ強調処理部7により,撮像面の中心から離れた座標位置ではその座標の動径と方位角の大きさに従って中心からの動径方向もしくは方位角方向に垂直な構造を持つエッジを,所望の量だけ強調することにより,メリジオナル方向もしくはサジタル方向への画像の劣化を補正することができる。   As described above, the bandpass filter shown in FIG. 6 (B) may calculate the coefficient of the digital filter having the direction of the frequency to be emphasized from the azimuth angle of the coordinate each time. Accordingly, a finite number may be prepared in advance. In addition, the mixing ratio of two or more digital filters may be changed so that the peak position moves in a desired direction from such a limited number of digital filters. . The edge enhancement bandpass filter created by the BPF creation unit 6 is sent from the center according to the radius and azimuth of the coordinate at the coordinate position away from the center of the imaging surface by the edge enhancement processing unit 7. Alternatively, the deterioration of the image in the meridional direction or the sagittal direction can be corrected by enhancing the edge having a structure perpendicular to the azimuth direction by a desired amount.

図3は本発明の第2の実施例を示したものである。   FIG. 3 shows a second embodiment of the present invention.

同図では,撮像面を中心付近Aと中心からの方位角の範囲によりB〜Qの16の領域に分割し,動径方位角算出部5で算出された動径の値がある値以下である場合はA領域であるとみなし,また方位角の値により,座標がB〜Qのどの範囲に入るかを判定する。方位角の判定には,方位角の値そのものではなく,方位角の正接値を用いることにすれば,演算量を低減することができる。座標が同図A領域にあると判定された場合には,画面の中央付近であり,動径および方位角方向によらず画像の劣化は小さく,この方向へのエッジ強調処理は行わない。B〜Q領域であると判定された場合には,図2(A)の形状でB〜Q領域動径の方向にピークを持つように回転したバンドパスフィルターもしくは,図2(C)の形状でB〜Q領域方位角の方向にピークを持つように回転したバンドパスフィルターが採用され,エッジ強調処理部7で用いられる。このような構成をとることにより,BPF作成部の演算量・記憶量とも大幅に低減することができる。   In this figure, the imaging surface is divided into 16 areas B to Q according to the vicinity of the center A and the range of the azimuth angle from the center, and the radial value calculated by the radial azimuth calculation unit 5 is less than a certain value. In some cases, the region is considered to be the A region, and the range of coordinates B to Q is determined by the azimuth value. In determining the azimuth angle, if the tangent value of the azimuth angle is used instead of the azimuth angle value itself, the amount of calculation can be reduced. If it is determined that the coordinates are in the area A in the figure, the image is near the center of the screen, and the deterioration of the image is small regardless of the radial and azimuth directions, and edge enhancement processing in this direction is not performed. If it is determined that the region is in the B to Q region, the bandpass filter rotated to have a peak in the direction of the radius of the B to Q region in the shape of FIG. 2A or the shape of FIG. A band pass filter rotated so as to have a peak in the direction of the azimuth angle of the B to Q region is adopted and used in the edge enhancement processing unit 7. By adopting such a configuration, it is possible to significantly reduce the amount of computation and storage of the BPF creation unit.

また,座標の方位角の正接値を用いると,B〜Q領域のうち中心に対称な領域,たとえばBとJ,FとN等は同じ正接値として判定されるが,これらの領域に用いるバンドパスフィルターは同じ特性で良いため,演算量を少なくして良好な判定を行うことができる。   If the tangent value of the azimuth angle of coordinates is used, the regions symmetric to the center of the B to Q regions, such as B and J, F and N, etc., are determined as the same tangent value. Since the pass filter may have the same characteristics, a good determination can be made with a small amount of calculation.

図4は本発明の第3の実施例を示したものである。   FIG. 4 shows a third embodiment of the present invention.

同図ではBPF作成部6の構成を簡素化するため,これを水平バンドパスフィルター(H-BPF)41,垂直バンドパスフィルター(V-BPF)42,斜め右バンドパスフィルター(DR-BPF)43,斜め左バンドパスフィルター(DL-BPF)44および4つの乗算器45,46,47,48加算器49より構成している。水平バンドパスフィルター(H-BPF)41は,画像のエッジの水平方向の成分を強調するためのものであり,例えば[-1/2,0,1,0,-1/2]という係数を持つデジタルフィルターが用いられる。同様に垂直バンドパスフィルター(V-BPF)42は,画像のエッジの垂直方向の成分を強調するためのものであり,水平バンドパスフィルター(H-BPF)41と同様の係数を持つデジタルフィルターが用いられる。斜め右バンドパスフィルター(DR-BPF)43は,たとえば以下のような係数を持つデジタルフィルターであり,   In the figure, in order to simplify the configuration of the BPF creation unit 6, the horizontal bandpass filter (H-BPF) 41, the vertical bandpass filter (V-BPF) 42, and the diagonal right bandpass filter (DR-BPF) 43 are used. , An oblique left band pass filter (DL-BPF) 44 and four multipliers 45, 46, 47 and 48 adders 49. The horizontal bandpass filter (H-BPF) 41 is for enhancing the horizontal component of the edge of the image. For example, the coefficient [-1/2, 0, 1, 0, -1/2] is used. A digital filter is used. Similarly, the vertical bandpass filter (V-BPF) 42 is used to emphasize the vertical component of the image edge, and a digital filter having the same coefficient as the horizontal bandpass filter (H-BPF) 41 is used. Used. The diagonal right band pass filter (DR-BPF) 43 is a digital filter having the following coefficients, for example:

Figure 2006211218
Figure 2006211218

画像の斜め右上へのエッジを強調するものである。同様に斜め左バンドパスフィルター(DL-BPF)44は,たとえば以下のような係数を持つデジタルフィルターであり, The edge to the upper right of the image is emphasized. Similarly, the diagonal left bandpass filter (DL-BPF) 44 is a digital filter having the following coefficients, for example.

Figure 2006211218
Figure 2006211218

画像の斜め左上へのエッジを強調するものである。斜め右バンドパスフィルター(DR-BPF)43および斜め左バンドパスフィルター(DL-BPF)44は,画像のメリジオナル方向およびサジタル方向へのエッジ強調を行うためのものであるが,どちらの方向へのエッジ強調の役割をはたすかは,座標の方位角によって変化するものである。乗算器45,46,47,48では,図1に示された動径方位角算出部5により算出された,座標の動径と方位角の値に応じて,水平バンドパスフィルター(H-BPF)41,垂直バンドパスフィルター(V-BPF)42,斜め右バンドパスフィルター(DR-BPF)43,斜め左バンドパスフィルター(DL-BPF)44の出力に掛け算する係数KH,KV,KDR,KDLが決定される。方位角が水平に近い場合は,水平方向がメリジオナル方向,垂直方向がサジタル方向となるため,メリジオナル方向のエッジをより強調したい場合は,KHの値が他に比べて大きくなり,サジタル方向のエッジをより強調したい場合は,KVの値が他に比べて大きくなる。方位角が垂直に近い場合は,垂直方向がメリジオナル方向,水平方向がサジタル方向となるため,メリジオナル方向のエッジをより強調したい場合は,KVの値が他に比べて大きくなり,サジタル方向のエッジをより強調したい場合は,KHの値が他に比べて大きくなる。方位角が45°方向に近い場合は,斜め右方向がメリジオナル方向,斜め左方向がサジタル方向となるため,メリジオナル方向のエッジをより強調したい場合は,KDRの値が他に比べて大きくなり,サジタル方向のエッジをより強調したい場合は,KDLの値が他に比べて大きくなる。方位角が135°方向に近い場合は,斜め左方向がメリジオナル方向,斜め右方向がサジタル方向となるため,メリジオナル方向のエッジをより強調したい場合は,KDLの値が他に比べて大きくなり,サジタル方向のエッジをより強調したい場合は,KDRの値が他に比べて大きくなる。方位角がこれらの間にある場合,例えば水平方向と45°方向の間にある場合で,メリジオナル方向のエッジをより強調したい場合は,KHとKDRを他に比べて大きくし,両者の比率は方位角によって決定する。他の場合も同様に,その方位角の近傍の方向のエッジを強調する2つのバンドパスフィルターの比率を方位角によって変えてゆけばよい。また,KH,KV,KDR,KDLの大きさの比率は,動径の大きさに応じて変化させることができ,画面の中心から周辺にいくに従って画像の劣化が大きくなるような場合は,動径が大きい程KH,KV,KDR,KDLの大きさの比率を大きくし,動径が小さい程均等なものとする。 This emphasizes the diagonally upper left edge of the image. The diagonal right bandpass filter (DR-BPF) 43 and the diagonal left bandpass filter (DL-BPF) 44 are used to perform edge enhancement in the meridional and sagittal directions of an image. The role of edge enhancement varies depending on the azimuth angle of coordinates. In the multipliers 45, 46, 47, and 48, a horizontal bandpass filter (H-BPF) is selected in accordance with the radial and azimuth values of the coordinates calculated by the radial azimuth calculating unit 5 shown in FIG. ) 41, vertical bandpass filter (V-BPF) 42, diagonal right bandpass filter (DR-BPF) 43, diagonal left bandpass filter (DL-BPF) 44 coefficients to be multiplied by KH, KV, KDR, KDL Is determined. When the azimuth is nearly horizontal, the horizontal direction is the meridional direction and the vertical direction is the sagittal direction. If you want to emphasize the edge in the meridional direction more, the KH value will be larger than the others, and the edge in the sagittal direction If you want to emphasize more, the value of KV will be larger than the others. When the azimuth is close to vertical, the vertical direction is the meridional direction, and the horizontal direction is the sagittal direction. If you want to emphasize the edge in the meridional direction, the KV value is larger than the others, and the edge in the sagittal direction If you want to emphasize more, the value of KH will be larger than the others. When the azimuth angle is close to 45 °, the diagonal right direction is the meridional direction and the diagonal left direction is the sagittal direction, so if you want to emphasize the edge in the meridional direction, the KDR value will be larger than the others. If you want to emphasize more sagittal edges, the KDL value will be larger than the others. When the azimuth angle is close to 135 °, the diagonal left direction is the meridional direction and the diagonal right direction is the sagittal direction. Therefore, if you want to emphasize the edge in the meridional direction, the KDL value is larger than the others. If you want to emphasize more sagittal edges, the KDR value will be larger than the others. If the azimuth angle is between these, for example, between the horizontal direction and 45 ° direction, and you want to emphasize the edge in the meridional direction, KH and KDR should be larger than the others, and the ratio of both Determined by azimuth. Similarly, in other cases, the ratio of two bandpass filters that emphasize edges in the direction near the azimuth may be changed according to the azimuth. The ratio of the size of KH, KV, KDR, and KDL can be changed according to the size of the radius, and if the degradation of the image increases from the center to the periphery of the screen, The larger the diameter, the larger the ratio of KH, KV, KDR, and KDL, and the smaller the radius, the more uniform.

動径の大きさの大小は,前述したように動径の長さrではなく,動径の長さの2乗r2で判定し,方位角の大きさは方位角φの正接値tanφで判定することにすれば,演算量を低減することができる。本実施例の構成は,前述した2つの実施例に比べ簡素であり,エッジを強調すべき方向の判別精度に比しハードウェア構成の簡略化が優先される場合に良好な構成である。 As described above, the magnitude of the radius is determined not by the radius r of the radius but by the square of the radius r 2 , and the magnitude of the azimuth is determined by the tangent value tanφ of the azimuth φ. If it is determined, the amount of calculation can be reduced. The configuration of this embodiment is simpler than the above-described two embodiments, and is a good configuration when simplification of the hardware configuration is prioritized over the discrimination accuracy of the direction in which the edge should be emphasized.

本発明の実施形態に従う画像処理装置および画像処理方法の構成を示すブロック図The block diagram which shows the structure of the image processing apparatus and image processing method according to embodiment of this invention 本発明で用いられるエッジ強調用バンドパスフィルターの特性を表す図The figure showing the characteristic of the band pass filter for edge emphasis used by the present invention 本発明の第2の実施例のエッジ強調方法を説明する図The figure explaining the edge emphasis method of 2nd Example of this invention. 本発明の第3の実施例の構成を説明する図The figure explaining the structure of the 3rd Example of this invention 撮像光学系の軸外特性を説明する図Diagram explaining off-axis characteristics of imaging optical system 図2に示すバンドパスフィルターの構成を説明する図The figure explaining the structure of the band pass filter shown in FIG.

Claims (16)

軸対称な撮像光学系を有する撮像装置からの信号を処理する画像処理装置であって,該撮像光学系の光軸と該撮像装置の撮像面との交点を原点とする撮像面上の座標を得る手段を有し,該座標の動径方向に垂直なエッジを強調するエッジ強調手段と,該座標の方位角方向に垂直なエッジを強調するエッジ強調手段の2つのエッジ強調手段を有することを特徴とする画像処理装置。   An image processing device for processing a signal from an imaging device having an axially symmetric imaging optical system, wherein coordinates on the imaging surface with an intersection point between an optical axis of the imaging optical system and an imaging surface of the imaging device as an origin Two edge emphasizing means including an edge emphasizing means for emphasizing an edge perpendicular to the radial direction of the coordinates, and an edge emphasizing means for emphasizing an edge perpendicular to the azimuth direction of the coordinates. A featured image processing apparatus. 前記2つのエッジ強調手段は,該座標の動径の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the two edge enhancement units change the ratio of edge enhancement according to the radius of the coordinate. 前記2つのエッジ強調手段は,該座標の方位角の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the two edge enhancement units change the ratio of edge enhancement according to the magnitude of the azimuth angle of the coordinates. 前記画像処理装置は,前記座標の動径の情報を,該座標の動径の2乗を求めることにより得ることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the image processing apparatus obtains information on a moving radius of the coordinates by obtaining a square of the moving radius of the coordinates. 前記画像処理装置は,前記座標の方位角の情報を,該座標の方位角の正接値を求めることにより得ることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the image processing apparatus obtains information on the azimuth angle of the coordinates by obtaining a tangent value of the azimuth angle of the coordinates. 前記2つのエッジ強調手段は,撮像光学系の画角の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the two edge enhancement units change an edge enhancement ratio according to a field angle of an imaging optical system. 前記2つのエッジ強調手段は,撮像光学系の絞りの大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the two edge enhancement units change an edge enhancement ratio according to a size of a stop of the imaging optical system. 前記2つのエッジ強調手段は,被写体距離の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the two edge enhancement units change an edge enhancement ratio according to a subject distance. 軸対称な撮像光学系を有する撮像装置からの信号を処理する画像処理方法であって,該撮像光学系の光軸と該撮像装置の撮像面との交点を原点とする撮像面上の座標を得る手段を有し,該座標の動径方向に垂直なエッジを強調するエッジ強調手段と,該座標の方位角方向に垂直なエッジを強調するエッジ強調手段の2つのエッジ強調手段を有することを特徴とする画像処理方法。   An image processing method for processing a signal from an imaging device having an axially symmetric imaging optical system, wherein coordinates on the imaging surface with an intersection point between an optical axis of the imaging optical system and an imaging surface of the imaging device as an origin Two edge emphasizing means including an edge emphasizing means for emphasizing an edge perpendicular to the radial direction of the coordinates, and an edge emphasizing means for emphasizing an edge perpendicular to the azimuth direction of the coordinates. A featured image processing method. 前記2つのエッジ強調手段は,該座標の動径の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項9に記載の画像処理方法。   The image processing method according to claim 9, wherein the two edge enhancement means change the ratio of edge enhancement according to the radius of the coordinate. 前記2つのエッジ強調手段は,該座標の方位角の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項9に記載の画像処理方法。   The image processing method according to claim 9, wherein the two edge enhancement means change an edge enhancement ratio according to the magnitude of the azimuth angle of the coordinates. 前記画像処理方法は,前記座標の動径の情報を,該座標の動径の2乗を求めることにより得ることを特徴とする請求項9に記載の画像処理方法。   The image processing method according to claim 9, wherein the image processing method obtains information on a moving radius of the coordinates by obtaining a square of the moving radius of the coordinates. 前記画像処理方法は,前記座標の方位角の情報を,該座標の方位角の正接値を求めることにより得ることを特徴とする請求項9に記載の画像処理方法。   The image processing method according to claim 9, wherein the image processing method obtains information on the azimuth angle of the coordinates by obtaining a tangent value of the azimuth angle of the coordinates. 前記2つのエッジ強調手段は,撮像光学系の画角の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項9に記載の画像処理方法。   The image processing method according to claim 9, wherein the two edge enhancement means change an edge enhancement ratio in accordance with a field angle of an imaging optical system. 前記2つのエッジ強調手段は,撮像光学系の絞りの大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項9に記載の画像処理方法。   The image processing method according to claim 9, wherein the two edge enhancement means change an edge enhancement ratio according to a size of a stop of the imaging optical system. 前記2つのエッジ強調手段は,被写体距離の大きさに従ってエッジ強調の比率を変化させることを特徴とする請求項9に記載の画像処理方法。   The image processing method according to claim 9, wherein the two edge emphasizing units change the ratio of edge emphasis according to the size of the subject distance.
JP2005019733A 2005-01-27 2005-01-27 Apparatus and method for image processing Withdrawn JP2006211218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019733A JP2006211218A (en) 2005-01-27 2005-01-27 Apparatus and method for image processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019733A JP2006211218A (en) 2005-01-27 2005-01-27 Apparatus and method for image processing

Publications (1)

Publication Number Publication Date
JP2006211218A true JP2006211218A (en) 2006-08-10

Family

ID=36967592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019733A Withdrawn JP2006211218A (en) 2005-01-27 2005-01-27 Apparatus and method for image processing

Country Status (1)

Country Link
JP (1) JP2006211218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067154A (en) * 2006-09-08 2008-03-21 Micronics Japan Co Ltd Method and device for inspecting image quality for color display board
WO2010073953A1 (en) 2008-12-24 2010-07-01 Ricoh Company, Limited Method and apparatus for image processing and on-vehicle camera apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067154A (en) * 2006-09-08 2008-03-21 Micronics Japan Co Ltd Method and device for inspecting image quality for color display board
JP4652301B2 (en) * 2006-09-08 2011-03-16 株式会社日本マイクロニクス Color display board image quality inspection method and image quality inspection apparatus
WO2010073953A1 (en) 2008-12-24 2010-07-01 Ricoh Company, Limited Method and apparatus for image processing and on-vehicle camera apparatus
JP2010154050A (en) * 2008-12-24 2010-07-08 Ricoh Co Ltd Image processing apparatus and method, and on-vehicle camera device
EP2368359A1 (en) * 2008-12-24 2011-09-28 Ricoh Company, Limited Method and apparatus for image processing and on-vehicle camera apparatus
KR101265000B1 (en) 2008-12-24 2013-05-15 가부시키가이샤 리코 Method and apparatus for image processing and on-vehicle camera apparatus
EP2368359A4 (en) * 2008-12-24 2013-11-06 Ricoh Co Ltd Method and apparatus for image processing and on-vehicle camera apparatus
US8681214B2 (en) 2008-12-24 2014-03-25 Ricoh Company, Limited Method and apparatus for image processing and on-vehicle camera apparatus

Similar Documents

Publication Publication Date Title
US8537225B2 (en) Image pickup apparatus and image conversion method
US8792014B2 (en) Image processing apparatus and image pickup apparatus
JP2008245157A (en) Imaging device and method therefor
JP2004328506A (en) Imaging apparatus and image recovery method
CN102957845B (en) Image processing program, method, device and image pick-up device
JP2003172873A (en) Data correcting method and imaging unit
JP2012073691A (en) Image processing system, imaging apparatus, image processing method, and program
US10062153B2 (en) Image processing apparatus, image pickup apparatus, image processing method, and storage medium
JP2008211679A (en) Imaging apparatus and method thereof
US20110242373A1 (en) Image processing apparatus, image pickup apparatus, image processing method, and program for performing image restoration
JP2009017419A (en) Imaging apparatus and interchangeable lens device
WO2011121763A1 (en) Image processing apparatus and image capturing apparatus using same
JP2015004883A (en) Image forming optical system, imaging system, and imaging method
US8634001B2 (en) Image processing apparatus, image processing program, image processing method, and image-pickup apparatus
US8750641B2 (en) Apparatus and method for correcting distortion of image
US20100295973A1 (en) Determinate and indeterminate optical systems
US10304172B2 (en) Optical center detection in plenoptic imaging systems
JP5541750B2 (en) Image processing apparatus, imaging apparatus, image processing method, and program
JP2006211218A (en) Apparatus and method for image processing
JP2006094468A (en) Imaging device and imaging method
JP4818956B2 (en) Imaging apparatus and method thereof
JP2006094469A (en) Imaging device and imaging method
JP2008245265A (en) Imaging apparatus and its manufacturing apparatus and method
JP5344647B2 (en) Image processing method, image processing apparatus, and image processing program
JP2005151122A (en) Equipment and method for processing image

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401