JP2006210035A - Electron lens and charged particle beam device using it - Google Patents

Electron lens and charged particle beam device using it Download PDF

Info

Publication number
JP2006210035A
JP2006210035A JP2005017781A JP2005017781A JP2006210035A JP 2006210035 A JP2006210035 A JP 2006210035A JP 2005017781 A JP2005017781 A JP 2005017781A JP 2005017781 A JP2005017781 A JP 2005017781A JP 2006210035 A JP2006210035 A JP 2006210035A
Authority
JP
Japan
Prior art keywords
excitation
electron lens
lens
exciting
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005017781A
Other languages
Japanese (ja)
Other versions
JP4676209B2 (en
Inventor
Daisuke Terauchi
大輔 寺内
Yoshifumi Taniguchi
佳史 谷口
Tomoharu Obuki
友晴 尾吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005017781A priority Critical patent/JP4676209B2/en
Publication of JP2006210035A publication Critical patent/JP2006210035A/en
Application granted granted Critical
Publication of JP4676209B2 publication Critical patent/JP4676209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron lens capable of obtaining any lens strength without giving influence of a temperature change to the magnetic path of the electron lens, that is, without deforming the outer shape of the magnetic path and to provide a charged particle beam device using the lens. <P>SOLUTION: This electron lens has a plurality of exciting coils wound in the form of a solenoid in the magnetic path with a charged particle beam passage as a center, an exciting coil driving power supply to supply an exciting current to a plurality of the exciting coils, a switching means to switch the direction of the exciting current passed in a plurality of the exciting coils, and the exciting current has the same current value even if the direction of the current flow is switched. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電子レンズおよび、この電子レンズを用いた荷電粒子線装置に関し、特に電子レンズの磁路の温度を変えることなく、即ち磁路を変形することなく、レンズ強度を制御できる電子レンズおよび、この電子レンズを用いた荷電粒子線装置に関する。   The present invention relates to an electron lens and a charged particle beam device using the electron lens, and in particular, an electron lens capable of controlling the lens strength without changing the temperature of the magnetic path of the electron lens, that is, without deforming the magnetic path, and The present invention relates to a charged particle beam apparatus using this electron lens.

電子レンズは、電子線やイオンビーム等の荷電粒子線(以下、電子線で代表する)を集束または発散する機能を持つ。その中において、磁界形の電子レンズは、電子線と磁気との相互作用を利用し、電子線を集束または発散するもので、電子顕微鏡やイオンビーム装置、電子線描画装置等に広く使用されている。   The electron lens has a function of focusing or diverging a charged particle beam (hereinafter represented by an electron beam) such as an electron beam or an ion beam. Among them, the magnetic field type electron lens uses the interaction between the electron beam and magnetism to focus or diverge the electron beam, and is widely used in electron microscopes, ion beam devices, electron beam drawing devices, and the like. Yes.

一般的に磁界形の電子レンズは、磁路内に励磁コイルを備えており、この励磁コイルに励磁電流を流すことで発生する磁界を利用して、その機能を実現している。   Generally, a magnetic field type electron lens has an exciting coil in a magnetic path, and realizes its function by using a magnetic field generated by passing an exciting current through the exciting coil.

ここで、磁界形の電子レンズのレンズ強度を変化させるには、励磁コイルに流す励磁電流の大きさを変えるか、励磁コイルの巻数を変える必要がある。ところが、励磁コイルに流す励磁電流の大きさを変えると、たとえ励磁コイルの抵抗値が一定だとしても、励磁コイルで消費される電力は励磁電流の2乗に比例し変化する。   Here, in order to change the lens strength of the magnetic type electron lens, it is necessary to change the magnitude of the excitation current flowing through the excitation coil or to change the number of turns of the excitation coil. However, if the magnitude of the exciting current flowing through the exciting coil is changed, even if the resistance value of the exciting coil is constant, the power consumed by the exciting coil changes in proportion to the square of the exciting current.

また、励磁コイルの巻数を変えると励磁コイルの抵抗値が変わるため、励磁電流を一定としても、励磁コイルで消費される電力は変化する。そのため、励磁コイルで消費される電力に応じて、発生する熱が変化し、電子レンズの磁路の温度が変わることで、磁路の変形、即ち、ケーシングの変形が発生する。   Further, since the resistance value of the exciting coil changes when the number of turns of the exciting coil is changed, the power consumed by the exciting coil changes even if the exciting current is constant. Therefore, the generated heat changes according to the power consumed by the exciting coil, and the temperature of the magnetic path of the electron lens changes, so that the magnetic path is deformed, that is, the casing is deformed.

ケーシングの変形は、電子レンズの磁界強度の及びその分布に悪影響を及ぼし、電子線スポットが不規則にドリフトするなどの問題を生じさせる。   The deformation of the casing adversely affects the magnetic field strength of the electron lens and its distribution, and causes problems such as an irregular drift of the electron beam spot.

この問題点を改善する方法としては、特許文献1(特開平6−208838号公報)に示されているように、磁路内に2個の励磁コイルを設けて、それぞれの励磁コイルに流す励磁電流の絶対値の総和を一定に保ち、電子レンズの磁路の温度変化をなくそうとする方法が知られている。   As a method for improving this problem, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 6-2088838), two excitation coils are provided in a magnetic path, and excitation flows through the respective excitation coils. There is known a method for keeping the sum of absolute values of current constant and eliminating a temperature change of the magnetic path of the electron lens.

特開平6−208838号公報Japanese Patent Laid-Open No. 6-208838

しかし、この方法では各励磁コイルに流す励磁電流の比率を変化させるため、たとえ励磁電流の絶対値の総和を一定に保ったとしても、各励磁コイルで発生する熱量の総和は一定とならない。これは、前述したように、励磁コイルで発生する熱量は励磁電流の2乗に関係しているためで、結局、電子レンズの磁路の温度を変化させてしまい、電子レンズに悪影響を及ぼす恐れがあった。   However, in this method, since the ratio of the excitation current flowing through each excitation coil is changed, even if the total sum of the absolute values of the excitation current is kept constant, the total amount of heat generated in each excitation coil is not constant. This is because, as described above, the amount of heat generated in the exciting coil is related to the square of the exciting current, which eventually changes the temperature of the magnetic path of the electron lens and may adversely affect the electron lens. was there.

本発明の目的は、電子レンズの磁路の温度を変えることなく、即ち、磁路を変形することなく、任意のレンズ強度を制御できる電子レンズおよび、この電子レンズを用いた荷電粒子線装置を提供することにある。   An object of the present invention is to provide an electron lens capable of controlling an arbitrary lens intensity without changing the temperature of the magnetic path of the electron lens, that is, without changing the magnetic path, and a charged particle beam apparatus using the electron lens. It is to provide.

本発明は、磁路内で荷電粒子線通路を中心にソレノイド状に巻かれた複数個の励磁コイルと、前記複数個の励磁コイルに励磁電流を供給する励磁コイル駆動電源と、前記複数個の励磁コイルに流す励磁電流の方向を切り替える切り替え手段を有し、前記励磁電流は流れの方向を切り替えても電流値が同じであることを特徴とする。   The present invention includes a plurality of excitation coils wound in a solenoid shape around a charged particle beam path in a magnetic path, an excitation coil drive power source for supplying an excitation current to the plurality of excitation coils, and the plurality of the plurality of excitation coils. It has switching means for switching the direction of the exciting current flowing through the exciting coil, and the exciting current has the same current value even when the direction of the flow is switched.

本発明によれば、励磁電流は流れの方向を切り替えても電流値が同じように保たれるので、励磁コイルの発熱に非常に安定した電子レンズ、および荷電粒子線装置を提供することができる。   According to the present invention, since the current value of the exciting current is kept the same even when the flow direction is switched, it is possible to provide an electron lens and a charged particle beam apparatus that are extremely stable against the heat generation of the exciting coil. .

以下、本発明の実施形態について、実施例の図面を引用して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings of the examples.

図3は、本発明の電子レンズを備えた透過電子顕微鏡の概略構成を示したブロック図である。透過電子顕微鏡は、荷電粒子線装置の一つで、荷電粒子線装置には、イオンビーム装置、電子線描画装置、電子線検査装置、イオンビーム検査装置等が含まれる。   FIG. 3 is a block diagram showing a schematic configuration of a transmission electron microscope provided with the electron lens of the present invention. The transmission electron microscope is one of charged particle beam apparatuses, and the charged particle beam apparatus includes an ion beam apparatus, an electron beam drawing apparatus, an electron beam inspection apparatus, an ion beam inspection apparatus, and the like.

さて、荷電粒子の発生手段である電子銃42より放出された電子線47は、照射レンズ系44、45により収束されて試料46に照射される。試料46を透過した電子線は、結像レンズ系64によって拡大され、像観察用の蛍光板65上に結像する。蛍光板65は、写真撮影時や撮像装置(TVカメラ)66での画像観察時には持ち上げられて収納される。写真撮影時は、フィルム79を光軸上に設置してこれを露光する。   Now, the electron beam 47 emitted from the electron gun 42 which is a means for generating charged particles is converged by the irradiation lens systems 44 and 45 and irradiated onto the sample 46. The electron beam transmitted through the sample 46 is magnified by the imaging lens system 64 and forms an image on the fluorescent plate 65 for image observation. The fluorescent plate 65 is lifted and stored when taking a picture or observing an image with the imaging device (TV camera) 66. At the time of taking a picture, the film 79 is placed on the optical axis and exposed.

各照射レンズ系44、45および結像レンズ系64へ供給される励磁電流は、各々D/A変換器70a〜70f、電源37a〜37f、およびデータバス73を介して接続されたマイクロプロセッサ74によって制御される。メモリ75には制御プログラムが格納されており、演算ユニット76は、電子顕微鏡本体の制御に必要な演算等を行う。表示装置(CRT等)77は、撮像装置66で取り込まれた画像を表示する。   Excitation currents supplied to the irradiation lens systems 44 and 45 and the imaging lens system 64 are respectively supplied by D / A converters 70a to 70f, power supplies 37a to 37f, and a microprocessor 74 connected via a data bus 73. Be controlled. A control program is stored in the memory 75, and the arithmetic unit 76 performs calculations necessary for controlling the electron microscope main body. A display device (CRT or the like) 77 displays an image captured by the imaging device 66.

撮像装置66で検出された透過像は制御装置37から画像信号として出力され、記憶装置68(フレームメモリ等)へ取り込まれる。フレームメモリ68に記憶された画像データは表示装置77によって観察することができる。入力装置(I/O)78は、表示装置78上に表示された透過像を観察しながら任意の領域を指定するためのパラメータ(座標位置、形状等)を入力するもので、例えばキーボードやマウス等である。   The transmission image detected by the imaging device 66 is output as an image signal from the control device 37 and taken into the storage device 68 (frame memory or the like). The image data stored in the frame memory 68 can be observed by the display device 77. An input device (I / O) 78 inputs parameters (coordinate position, shape, etc.) for designating an arbitrary region while observing a transmission image displayed on the display device 78. For example, a keyboard or a mouse is used. Etc.

図1、図2は、前記結像レンズ系34に適用される本発明の主要部の実施例である磁界形の電子レンズの構造を示した詳細図である。   FIG. 1 and FIG. 2 are detailed views showing the structure of a magnetic field type electron lens which is an embodiment of the main part of the present invention applied to the imaging lens system 34.

電子レンズ用の継鉄(磁路)9内には、巻数が4巻きの励磁コイル1a、同じく4巻の励磁コイル1b、8巻の励磁コイル2、16巻の励磁コイル3、32巻の励磁コイル4、64巻の励磁コイル5、128巻の励磁コイル6、256巻の励磁コイル7、512巻の励磁コイル8を備えている。   In the yoke (magnetic path) 9 for the electronic lens, the excitation coil 1a having 4 turns, the 4 excitation coil 1b, the 8 excitation coil 2, the 16 excitation coil 3, and the 32 excitation coil are provided. Coil 4, 64 winding excitation coil 5, 128 winding excitation coil 6, 256 winding excitation coil 7, 512 winding excitation coil 8 are provided.

それぞれの励磁コイルは、荷電粒子線通路10を中心軸としてソレノイド状に同じ方向で巻回されている。励磁コイル1aは、図2に示すように励磁コイル駆動電源21aに直接接続されており、励磁コイル1bは励磁コイル1bの極性切り替え器11b(切り替え手段)を介し、励磁コイル1b駆動電源21bに接続されている。   Each exciting coil is wound in the same direction like a solenoid with the charged particle beam passage 10 as a central axis. The excitation coil 1a is directly connected to the excitation coil drive power supply 21a as shown in FIG. 2, and the excitation coil 1b is connected to the excitation coil 1b drive power supply 21b via the polarity switch 11b (switching means) of the excitation coil 1b. Has been.

以下、同様に励磁コイル2、3、4、5、6、7、8も、それぞれ励磁コイルの極性切り替え器12、13、14、15、16、17、18(切り替え手段)を介し、それぞれ励磁コイル駆動電源22、23、24、25、26、27、28に接続されている。   Hereinafter, similarly, the excitation coils 2, 3, 4, 5, 6, 7, and 8 are respectively excited through the excitation coil polarity switches 12, 13, 14, 15, 16, 17, and 18 (switching means). The coil drive power supplies 22, 23, 24, 25, 26, 27 and 28 are connected.

励磁コイルの極性切り替え器11b、12、13、14、15、16、17、18は制御装置19によって制御され、それぞれの励磁コイルへ流す励磁電流の向きを変えることができる。   The excitation coil polarity switchers 11b, 12, 13, 14, 15, 16, 17, and 18 are controlled by the control device 19 and can change the direction of the excitation current flowing through each excitation coil.

制御装置19は、主にマイクロプロセッサ74により構成される。切り替え手段は、励磁コイル駆動電源に内蔵されている。   The control device 19 is mainly composed of a microprocessor 74. The switching means is built in the exciting coil driving power source.

ここで、図5に示すように、それぞれの励磁コイル駆動電源から、各励磁コイルに次のような励磁電流を流す。   Here, as shown in FIG. 5, the following exciting currents are passed from the respective exciting coil driving power sources to the respective exciting coils.

(1)大きさがほぼ等しく一定方向である励磁電流:I
(2)各励磁コイルの極性切り替え器により、(1)とは方向のみ逆の励磁電流:−I この時、各励磁コイルで得られるレンズ強度M1a〜Mは、表1のようになる。
(1) Excitation current whose magnitude is substantially equal and in a constant direction: I
(2) With the polarity switch of each excitation coil, the excitation current only in the direction opposite to that of (1): -I At this time, the lens strengths M 1a to M 8 obtained by each excitation coil are as shown in Table 1. .

ただし、励磁コイル1a(巻数:4巻)に励磁電流Iを流した場合を正の方向とし、その時の大きさをmとした。   However, the case where the exciting current I was passed through the exciting coil 1a (the number of turns: 4 turns) was defined as a positive direction, and the magnitude at that time was defined as m.

この電子顕微鏡に備える電子レンズの実効強度は、磁界重畳の法則より、各励磁コイルのレンズ強度の和(M1a+M1b+M+M+M+M+M+M+M)となる。そのため、各励磁コイルの極性切り替え器により、各励磁電流の方向のみを任意にかつ独立して切り替えることにより得られる、実効レンズ強度を図4に示す。 The effective intensity of the electron lens provided in the electron microscope is the sum of the lens intensity of each exciting coil (M 1a + M 1b + M 2 + M 3 + M 4 + M 5 + M 6 + M 7 + M 8 ) based on the law of magnetic field superposition. Therefore, FIG. 4 shows the effective lens strength obtained by arbitrarily and independently switching only the direction of each excitation current by the polarity switch of each excitation coil.

この図4において、横軸は制御装置19へ制御信号(デジタル信号)入力値であり、縦軸は電子レンズの実効レンズ強度である。   In FIG. 4, the horizontal axis represents a control signal (digital signal) input value to the control device 19, and the vertical axis represents the effective lens strength of the electronic lens.

制御信号は、224の切換ステップ数を有する。つまり、各励磁コイルの切り替え組み合わせを224通り選択できる。   The control signal has 224 switching steps. That is, 224 different combinations of excitation coils can be selected.

ここでは、励磁コイルの個数や巻数等の条件から、電子レンズの実効的な強度を256mから0を通り−254mまで2m刻みで、すなわち、電子レンズの実効的な巻数を1024巻きから0を通り−1016巻まで8巻き刻みで任意に得ることが可能である。   Here, from the conditions such as the number of excitation coils and the number of turns, the effective strength of the electron lens is from 2 m to 2 m from 256 m to 0, that is, the effective number of turns of the electron lens is from 1024 to 0. It can be arbitrarily obtained in increments of 8 up to -1016.

これは、あたかも従来方式の電子レンズ電源に接続されたD/Aコンバータを操作するような感覚であり、従来の制御方式の操作性を損なわない。本実施例では、制御のしやすさや制御のきめ細かさ等を考慮した構成とした。極性切り替えのできる励磁コイルの個数を8個、その巻数をそれぞれ4、8、16、32、64、128、256、512としたのは、これらの理由からである。また、この他に極性の切り替え手段を備えない巻数が4巻の励磁コイルを備えることで、レンズ強度をゼロとすることも可能にした。   This is as if the D / A converter connected to the conventional electronic lens power supply is operated, and does not impair the operability of the conventional control system. In the present embodiment, the configuration is made in consideration of ease of control, fineness of control, and the like. For these reasons, the number of exciting coils whose polarity can be switched is set to 8, and the number of turns is set to 4, 8, 16, 32, 64, 128, 256, and 512, respectively. In addition to this, by providing an exciting coil having four turns without polarity switching means, the lens strength can be made zero.

なお、図4における負のレンズ強度とは、界磁レンズの場合に屈折力と同時に発生する、像の回転方向が逆向きになる状態を意味している。また、負の巻数とは励磁コイルの巻方向を逆向きにしたことに相当する。   Note that the negative lens strength in FIG. 4 means a state in which the rotational direction of the image is generated in the opposite direction, which occurs simultaneously with the refractive power in the case of the field lens. Moreover, the negative number of turns corresponds to the winding direction of the exciting coil being reversed.

本実施例によれば、同一磁路内のそれぞれの励磁コイルに流れる電流の絶対値を一定に保ちつつ、電子レンズの強度を変化させることが可能になることから、この電子レンズを結像レンズ系に備える電子顕微鏡を初めとする各種の電子線装置は、コイルの発熱による熱膨張、温度ドリフ等が防止されて分解能の高い観察・分析が可能になる。   According to the present embodiment, since it is possible to change the intensity of the electron lens while keeping the absolute value of the current flowing through each exciting coil in the same magnetic path constant, this electron lens is used as an imaging lens. Various electron beam apparatuses such as an electron microscope provided in the system can observe and analyze with high resolution by preventing thermal expansion, temperature drift, and the like due to heat generation of the coil.

また、本実施例では本発明を結像レンズ系に備える透過電子顕微鏡について説明したが、それだけには留まらず、照射系レンズにも適用することができる。   In this embodiment, the transmission electron microscope provided with the imaging lens system according to the present invention has been described. However, the present invention can be applied to an irradiation system lens as well.

さらに、本発明は透過電子顕微鏡のみならず、走査電子顕微鏡やイオンビーム装置、電子線描画装置等の他の電子線装置にも適用することが可能である。   Furthermore, the present invention can be applied not only to a transmission electron microscope but also to other electron beam apparatuses such as a scanning electron microscope, an ion beam apparatus, and an electron beam drawing apparatus.

本発明の実施例に係わる磁界形の電子コイルの断面図である。It is sectional drawing of the magnetic field type electronic coil concerning the Example of this invention. 本発明の実施例に係わる磁界形の電子コイルのブロック図である。It is a block diagram of the magnetic field type electronic coil concerning the Example of this invention. 本発明の実施例に係わる透過電子顕微鏡の概略構成図である。It is a schematic block diagram of the transmission electron microscope concerning the Example of this invention. 本発明の実施例に係わる電子レンズ強度の制御方法を示した図である。It is the figure which showed the control method of the electron lens intensity | strength concerning the Example of this invention. 本発明の実施例に係わるもので、各励磁コイルと励磁電流との関係を示した図。The figure which concerns on the Example of this invention and showed the relationship between each exciting coil and exciting current.

符号の説明Explanation of symbols

1a〜8…励磁コイル、9…継鉄、10…荷電粒子線通路、11b〜18…励磁コイル1b〜8の極性切り替え器、19…制御装置、21a〜28…励磁コイル1a〜8駆動電源、42…電子源、44…第2集束レンズ、45…第1集束レンズ、46…試料、47…電子線。   DESCRIPTION OF SYMBOLS 1a-8 ... Excitation coil, 9 ... Relay, 10 ... Charged particle beam path, 11b-18 ... Polarity switch of excitation coil 1b-8, 19 ... Control apparatus, 21a-28 ... Excitation coil 1a-8 drive power supply, 42 ... electron source, 44 ... second focusing lens, 45 ... first focusing lens, 46 ... sample, 47 ... electron beam.

Claims (8)

磁路内で荷電粒子線通路を中心にソレノイド状に巻かれた複数個の励磁コイルと、前記複数個の励磁コイルに励磁電流を供給する励磁コイル駆動電源と、前記複数個の励磁コイルに流す励磁電流の方向を切り替える切り替え手段を有し、前記励磁電流は流れの方向を切り替えても電流値が同じであることを特徴とする電子レンズ。   A plurality of excitation coils wound in a solenoid shape around a charged particle beam path in a magnetic path, an excitation coil drive power supply for supplying an excitation current to the plurality of excitation coils, and a flow through the plurality of excitation coils An electronic lens comprising switching means for switching the direction of excitation current, wherein the excitation current has the same current value even when the direction of flow is switched. 請求項1記載の電子レンズにおいて、
前記励磁コイルの個数が3個または8個以上であることを特徴とする電子レンズ。
The electron lens according to claim 1,
The number of said exciting coils is 3 or 8 or more, The electron lens characterized by the above-mentioned.
請求項1記載の電子レンズにおいて、
前記励磁コイルの巻数比がt,t,2t,…,2(n−2)・t巻回であることを特徴とする電子レンズ。
The electron lens according to claim 1,
2. An electron lens characterized in that the turns ratio of the exciting coil is t, t, 2t,..., 2 (n−2) · t turns.
請求項1記載の電子レンズにおいて、
前記励磁コイル駆動電源は、前記励磁コイルに対して個々に設けたことを特徴とする電子レンズ。
The electron lens according to claim 1,
The excitation lens driving power source is provided for each of the excitation coils.
請求項1記載の電子レンズにおいて、
前記切り替え手段は、前記励磁コイルとに対して個々に設けたことを特徴とする電子レンズ。
The electron lens according to claim 1,
The electronic lens according to claim 1, wherein the switching means is provided individually for the exciting coil.
請求項1記載の電子レンズにおいて、
前記複数個の励磁コイル内に前記切り替え手段による切り替えが行われない励磁コイルを備えたことを特徴とする電子レンズ。
The electron lens according to claim 1,
An electronic lens comprising an excitation coil that is not switched by the switching means in the plurality of excitation coils.
請求項1記載の電子レンズにおいて、
前記切り替え手段による切り替えを制御する制御装置を設けたことを特徴とする電子レンズ。
The electron lens according to claim 1,
An electronic lens comprising a control device for controlling switching by the switching means.
磁路内で荷電粒子線通路を中心にソレノイド状に巻かれた複数個の励磁コイルと、前記複数個の励磁コイルに励磁電流を供給する励磁コイル駆動電源と、前記複数個の励磁コイルに流す励磁電流の方向を切り替える切り替え手段と、荷電粒子を発生させる荷電粒子の発生手段とを有し、前記励磁電流は流れの方向を切り替えても電流値が同じであることを特徴とする荷電粒子線装置。   A plurality of excitation coils wound in a solenoid shape around a charged particle beam path in a magnetic path, an excitation coil drive power supply for supplying an excitation current to the plurality of excitation coils, and a flow through the plurality of excitation coils A charged particle beam comprising switching means for switching the direction of the excitation current and charged particle generation means for generating charged particles, wherein the excitation current has the same current value even when the flow direction is switched apparatus.
JP2005017781A 2005-01-26 2005-01-26 Electron lens and charged particle beam apparatus using the same Expired - Fee Related JP4676209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017781A JP4676209B2 (en) 2005-01-26 2005-01-26 Electron lens and charged particle beam apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017781A JP4676209B2 (en) 2005-01-26 2005-01-26 Electron lens and charged particle beam apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006210035A true JP2006210035A (en) 2006-08-10
JP4676209B2 JP4676209B2 (en) 2011-04-27

Family

ID=36966650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017781A Expired - Fee Related JP4676209B2 (en) 2005-01-26 2005-01-26 Electron lens and charged particle beam apparatus using the same

Country Status (1)

Country Link
JP (1) JP4676209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170126393A (en) * 2016-05-09 2017-11-17 인텔 코포레이션 Multicolumn charged particle beam exposure apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847265A (en) * 1971-10-15 1973-07-05
JPS5014439Y1 (en) * 1972-11-02 1975-05-06
JPS5941853U (en) * 1982-09-01 1984-03-17 日本電子株式会社 electronic lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847265A (en) * 1971-10-15 1973-07-05
JPS5014439Y1 (en) * 1972-11-02 1975-05-06
JPS5941853U (en) * 1982-09-01 1984-03-17 日本電子株式会社 electronic lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170126393A (en) * 2016-05-09 2017-11-17 인텔 코포레이션 Multicolumn charged particle beam exposure apparatus
KR102350429B1 (en) 2016-05-09 2022-01-11 주식회사 아도반테스토 Multicolumn charged particle beam exposure apparatus

Also Published As

Publication number Publication date
JP4676209B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2015045476A1 (en) Electron microscope
GB1564628A (en) Methods of providing a pictorial representaion of information obtained by a device and relating to an irradiated or radiant object
JP4533441B2 (en) Aberration correction device for correcting spherical aberration of charged particle device
JP6326380B2 (en) Multipole lens and charged particle beam device
JP5134826B2 (en) Charged particle beam equipment
JP4676209B2 (en) Electron lens and charged particle beam apparatus using the same
WO2019043946A1 (en) Charged particle beam device
US6720558B2 (en) Transmission electron microscope equipped with energy filter
JP6285753B2 (en) Transmission electron microscope
WO2013015311A1 (en) Electromagnetic lens and charged particle device
JP2005032588A (en) Magnetic field objective lens for electron microscope
JP3234373B2 (en) Magnetic field type electron lens and electron beam device using the same
JPH03134944A (en) Electron beam device
JP2006318651A (en) Transmission electron microscope
JP2011003533A (en) Magnetic domain imaging system
JP3117745B2 (en) Objective lens in transmission electron microscope
US4775790A (en) Transmission electron microscope
JP6473015B2 (en) Electron microscope and sample observation method using the same
JP2003338259A (en) Electron beam device provided with electromagnetic lens having no remnant magnetizm
JP6954704B1 (en) Photoemission electron microscope
JP2005302468A (en) Method and apparatus for displaying simulation image of charged particle beam device
JP2006196195A (en) Magnetic circuit for magnetic field lens
JPS6324618Y2 (en)
JPH05128986A (en) Magnetic field type lens
JP2000077018A (en) Focusing device of scanning electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees