JP2006208126A - Battery current detector for vehicle - Google Patents

Battery current detector for vehicle Download PDF

Info

Publication number
JP2006208126A
JP2006208126A JP2005019166A JP2005019166A JP2006208126A JP 2006208126 A JP2006208126 A JP 2006208126A JP 2005019166 A JP2005019166 A JP 2005019166A JP 2005019166 A JP2005019166 A JP 2005019166A JP 2006208126 A JP2006208126 A JP 2006208126A
Authority
JP
Japan
Prior art keywords
current detection
battery
current
heater
tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005019166A
Other languages
Japanese (ja)
Other versions
JP4518261B2 (en
Inventor
Yukihiro Yamashita
山下  幸宏
Yoshihiro Majima
摩島  嘉裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005019166A priority Critical patent/JP4518261B2/en
Publication of JP2006208126A publication Critical patent/JP2006208126A/en
Application granted granted Critical
Publication of JP4518261B2 publication Critical patent/JP4518261B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the detection accuracy of a current sensor for detecting charge/discharge current of a battery. <P>SOLUTION: A battery current is detected by a current sensor 17 while detecting a heater current by a heater current detection circuit 21 in synchronization with times at which a heater 20 of an air-fuel ratio sensor 18 switches itself from ON to OFF (or from OFF to ON). An amount ΔIbat of change in the battery current and an amount ΔIsen of change in the heater current are calculated to calculate a tolerance K (=ΔIbat/ΔIsen-1) with respect to a battery current detection value of this time from a ratio between the two. The tolerance K is stored in a backup RAM 22 to create a learning map on the tolerance K with battery current detection values used as a parameter. In integrating the detection values to presume the charged state of the battery 12, the learning map on the tolerance K previously stored in the backup RAM 22 is used to interpolate/correct the detection values. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両に搭載されたバッテリの充放電電流を検出する機能を備えた車両のバッテリ電流検出装置に関する発明である。   The present invention relates to a battery current detecting device for a vehicle having a function of detecting a charging / discharging current of a battery mounted on the vehicle.

近年、特許文献1(特開平5−322998号公報)、特許文献2(特開2001−78365号公報)に示すように、車両に搭載されたバッテリの充放電電流を電流センサで検出し、その検出電流値を積算して、その電流積算値に基づいてバッテリ容量を算出するようにしたものがある。このようなバッテリ容量監視システムでは、電流センサの検出誤差がそのままバッテリ容量の検出誤差につながるため、バッテリ容量の検出精度を高めるには、電流センサの検出精度を高める必要がある。   In recent years, as shown in Patent Document 1 (JP-A-5-322998) and Patent Document 2 (JP-A-2001-78365), a charge / discharge current of a battery mounted on a vehicle is detected by a current sensor, There is one in which the detected current value is integrated and the battery capacity is calculated based on the integrated current value. In such a battery capacity monitoring system, since the detection error of the current sensor directly leads to the detection error of the battery capacity, it is necessary to increase the detection accuracy of the current sensor in order to increase the detection accuracy of the battery capacity.

そこで、特許文献1では、電流センサの誤差電流値(初期特性の公差)を予めメモリに記憶しておき、電流センサの検出電流値を誤差電流値で補正するようにしている。   Therefore, in Patent Document 1, the error current value (tolerance of the initial characteristics) of the current sensor is stored in advance in the memory, and the detected current value of the current sensor is corrected with the error current value.

しかし、電流センサの検出誤差の原因は、初期特性の公差のみではなく、経時劣化による公差もあるため、特許文献1のように、予め記憶した初期特性の公差のみでは、電流センサの検出電流値を精度良く補正できない。   However, since the cause of the detection error of the current sensor is not only the tolerance of the initial characteristic but also the tolerance due to deterioration with time, the detected current value of the current sensor can be obtained only by the tolerance of the initial characteristic stored in advance as in Patent Document 1. Cannot be corrected accurately.

そこで、特許文献2では、前回の満充電時から今回の満充電時までの電流積算値とその積算期間とに基づいて電流センサのオフセット公差を算出して電流センサの検出電流値をオフセット補正するようにしている。
特開平5−322998号公報(第1頁等) 特開2001−78365号公報(第1頁等)
Therefore, in Patent Document 2, the offset tolerance of the current sensor is calculated based on the current integrated value from the previous full charge to the current full charge and the integration period, and the detected current value of the current sensor is offset corrected. Like that.
JP-A-5-322998 (first page, etc.) JP 2001-78365 A (first page, etc.)

電流センサの検出誤差の原因は、上述した初期特性の公差、経時劣化による公差、オフセット公差の他に、線形性の公差(電流センサの検出特性線の傾きの公差)も存在するが、特許文献1と特許文献2の補正方法を組み合わせても、線形性の公差までは補正することができず、電流センサの電流値の補正精度を十分に高めることができない。   In addition to the above-mentioned initial characteristic tolerance, tolerance due to deterioration over time, and offset tolerance, there are linearity tolerances (tolerances of slopes of detection characteristic lines of current sensors). Even if the correction method of No. 1 and Patent Document 2 are combined, the tolerance of linearity cannot be corrected, and the correction accuracy of the current value of the current sensor cannot be sufficiently increased.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、バッテリ電流検出手段の検出値の補正精度を高めることができる車両のバッテリ電流検出装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, an object of the present invention is to provide a vehicle battery current detection device that can improve the accuracy of correction of the detection value of the battery current detection means.

上記目的を達成するために、請求項1に係る発明は、車両に搭載されたバッテリの充放電電流を検出するバッテリ電流検出手段と、車両に搭載されたいずれかの電気負荷に流れる電流を検出する負荷電流検出手段とを備えた車両において、前記バッテリ電流検出手段の検出値と前記負荷電流検出手段の検出値との関係に基づいて前記バッテリ電流検出手段の検出値を補正手段により補正するようにしたものである。車両に搭載された電気負荷ににはバッテリから電流が供給されるため、電気負荷に流れる電流が増加すれば、その分、バッテリの放電電流が増加するという関係がある。従って、バッテリ電流検出手段の検出値と負荷電流検出手段の検出値との関係(例えばバッテリ電流検出手段の検出値の変化分と負荷電流検出手段の検出値の変化分との関係)には関連性があるため、この関係を判定すれば、その判定結果に基づいてバッテリ電流検出手段の検出値を精度良く補正することができる。   In order to achieve the above object, the invention according to claim 1 detects a battery current detecting means for detecting a charge / discharge current of a battery mounted on the vehicle, and a current flowing through any one of the electric loads mounted on the vehicle. In a vehicle having a load current detection means for performing correction, the correction means corrects the detection value of the battery current detection means based on the relationship between the detection value of the battery current detection means and the detection value of the load current detection means. It is a thing. Since electric current is supplied from the battery to the electric load mounted on the vehicle, there is a relationship that if the current flowing through the electric load increases, the discharge current of the battery increases correspondingly. Therefore, it is related to the relationship between the detection value of the battery current detection means and the detection value of the load current detection means (for example, the relationship between the change in the detection value of the battery current detection means and the change in the detection value of the load current detection means). Therefore, if this relationship is determined, the detection value of the battery current detection means can be accurately corrected based on the determination result.

この場合、請求項2のように、大きさの異なる複数のバッテリ電流についてバッテリ電流検出手段の検出値と負荷電流検出手段の検出値との関係を判定して該バッテリ電流検出手段の検出値を補正するようにすると良い。このように、大きさの異なる複数のバッテリ電流についてバッテリ電流検出手段の検出値と負荷電流検出手段の検出値との関係を判定すれば、バッテリ電流検出手段の線形性の公差(検出特性線の傾きの公差)を精度良く判定することが可能となり、バッテリ電流検出手段の検出値の補正精度を更に高めることができる。   In this case, as in claim 2, the relationship between the detected value of the battery current detecting means and the detected value of the load current detecting means is determined for a plurality of battery currents having different magnitudes, and the detected value of the battery current detecting means is determined. It is better to correct it. Thus, if the relationship between the detection value of the battery current detection means and the detection value of the load current detection means is determined for a plurality of battery currents of different sizes, the linearity tolerance (detection characteristic line of the detection characteristic line) of the battery current detection means is determined. (Tolerance of inclination) can be determined with high accuracy, and the correction accuracy of the detection value of the battery current detection means can be further increased.

また、請求項3のように、内燃機関の運転停止中に負荷電流の検出対象となる電気負荷に通電してバッテリ電流検出手段の検出値と負荷電流検出手段の検出値との関係を判定するようにしても良い。つまり、内燃機関の運転停止中は、車両のほぼ全ての電気負荷への通電がオフされるため、内燃機関の運転停止中に負荷電流の検出対象となる電気負荷のみに通電してバッテリ電流検出手段の検出値と負荷電流検出手段の検出値との関係を判定すれば、他の電気負荷の影響を受けずに、バッテリ電流検出手段の検出値と負荷電流検出手段の検出値との関係を更に精度良く判定することができ、バッテリ電流検出手段の検出値の補正精度を更に高めることができる。   According to a third aspect of the present invention, the relationship between the detection value of the battery current detection means and the detection value of the load current detection means is determined by energizing the electric load that is the detection target of the load current while the operation of the internal combustion engine is stopped. You may do it. In other words, since the energization to almost all electric loads of the vehicle is turned off while the operation of the internal combustion engine is stopped, the battery current is detected by energizing only the electric load that is the load current detection target during the operation stop of the internal combustion engine. If the relationship between the detected value of the means and the detected value of the load current detecting means is determined, the relationship between the detected value of the battery current detecting means and the detected value of the load current detecting means can be obtained without being affected by other electric loads. Further, the determination can be made with high accuracy, and the correction accuracy of the detection value of the battery current detection means can be further increased.

また、請求項4のように、補正手段による補正量が所定範囲を越えたときに、バッテリ電流検出手段と負荷電流検出手段のどちらかが異常であると判定する異常判定手段を設けるようにしても良い。要するに、バッテリ電流検出手段と負荷電流検出手段のどちらかが異常になれば、補正手段による補正量が異常に大きくなるため、補正手段による補正量が異常な値になれば、バッテリ電流検出手段と負荷電流検出手段のどちらかが異常であると判定することが可能となる。   According to a fourth aspect of the present invention, there is provided an abnormality determination means for determining that either the battery current detection means or the load current detection means is abnormal when the correction amount by the correction means exceeds a predetermined range. Also good. In short, if either the battery current detection means or the load current detection means becomes abnormal, the correction amount by the correction means becomes abnormally large. Therefore, if the correction amount by the correction means becomes an abnormal value, the battery current detection means It becomes possible to determine that either of the load current detection means is abnormal.

また、請求項5のように、バッテリ電流検出手段の検出値と負荷電流検出手段の検出値との関係に基づいてバッテリ電流検出手段と負荷電流検出手段のどちらかが異常であるか否かを判定するようにしても良い。例えば、バッテリ電流検出手段の検出値の挙動と負荷電流検出手段の検出値の挙動との間に全く関連性が認められないような場合等には、バッテリ電流検出手段と負荷電流検出手段のどちらかが異常であると判定することが可能となる。   Further, as in claim 5, based on the relationship between the detected value of the battery current detecting means and the detected value of the load current detecting means, it is determined whether either the battery current detecting means or the load current detecting means is abnormal. It may be determined. For example, in the case where no relationship is recognized between the behavior of the detection value of the battery current detection means and the behavior of the detection value of the load current detection means, either the battery current detection means or the load current detection means Can be determined to be abnormal.

以下、本発明を実施するための最良の形態を具体化した3つの実施例1〜3を説明する。   Hereinafter, three Examples 1 to 3 embodying the best mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図3に基づいて説明する。まず、図1に基づいてシステム全体の構成を説明する。   A first embodiment of the present invention will be described with reference to FIGS. First, the configuration of the entire system will be described with reference to FIG.

制御装置11は、バッテリ12からキースイッチ13を介して電源が供給され、エンジン運転中に点火装置14と噴射装置15の動作を制御すると共に、バッテリ12の充放電電流の積算値に基づいてバッテリ12の充電状態(バッテリ容量)を推定して、発電機16の制御電流を制御することで、バッテリ12の充電状態を目標値付近に制御する。   The control device 11 is supplied with power from the battery 12 via the key switch 13, controls the operation of the ignition device 14 and the injection device 15 during engine operation, and based on the integrated value of the charge / discharge current of the battery 12. The charging state of the battery 12 is estimated and the control current of the generator 16 is controlled to control the charging state of the battery 12 near the target value.

この制御装置11には、バッテリ12の充放電電流(以下「バッテリ電流」という)を検出する電流センサ17(バッテリ電流検出手段)と、排出ガスの空燃比を検出する空燃比センサ18等の各種のセンサ類が接続されている。空燃比センサ18は、排出ガスの空燃比にほぼ比例する限界電流を発生するセンサ素子19と、このセンサ素子19を加熱して活性化させるヒータ20(電気負荷)とを内蔵し、このヒータ20に流れる電流(以下「ヒータ電流」という)が制御装置11内に設けられたヒータ電流検出回路21(負荷電流検出手段)によって検出される。ヒータ電流検出回路21は、バッテリ電流を検出する電流センサ17よりも精度良く電流値を検出することが可能である。   The control device 11 includes various sensors such as a current sensor 17 (battery current detection means) for detecting a charge / discharge current (hereinafter referred to as “battery current”) of the battery 12 and an air-fuel ratio sensor 18 for detecting an air-fuel ratio of exhaust gas. Sensors are connected. The air-fuel ratio sensor 18 includes a sensor element 19 that generates a limit current that is substantially proportional to the air-fuel ratio of the exhaust gas, and a heater 20 (electric load) that heats and activates the sensor element 19. Is detected by a heater current detection circuit 21 (load current detection means) provided in the control device 11. The heater current detection circuit 21 can detect the current value with higher accuracy than the current sensor 17 that detects the battery current.

また、制御装置11には、各種のプログラムやマップ等のデータを格納するROMや、演算データやセンサデータ等を一時的に記憶するRAMの他に、書き換え可能な不揮発性メモリとしてバックアップRAM22が設けられている。このバックアップRAM22には、キースイッチ13のオフ期間中に保持し続ける必要のあるデータ(例えば後述する公差Kの学習マップ、エンジン制御学習値、異常診断情報等)が記憶される。その他、各種の車載電気機器(電気負荷)にも、バッテリ12から電源が供給される。   The control device 11 is provided with a backup RAM 22 as a rewritable nonvolatile memory in addition to a ROM for storing various programs and data such as maps, and a RAM for temporarily storing calculation data, sensor data, and the like. It has been. The backup RAM 22 stores data (for example, a tolerance K learning map, an engine control learning value, abnormality diagnosis information, etc., which will be described later) that needs to be retained during the OFF period of the key switch 13. In addition, power is supplied from the battery 12 to various on-vehicle electric devices (electric loads).

更に、制御装置11は、電流センサ17の検出値(バッテリ電流検出値)とヒータ電流検出回路21の検出値(ヒータ電流検出値)との関係に基づいて公差K(補正量)を算出して電流センサ17の検出値を補正する補正手段として機能する。以下、電流センサ17の検出値の補正方法を図2のタイムチャートを用いて説明する。   Further, the control device 11 calculates the tolerance K (correction amount) based on the relationship between the detection value of the current sensor 17 (battery current detection value) and the detection value of the heater current detection circuit 21 (heater current detection value). It functions as correction means for correcting the detection value of the current sensor 17. Hereinafter, a method of correcting the detection value of the current sensor 17 will be described with reference to the time chart of FIG.

エンジン始動時に空燃比センサ18のヒータ20への通電を開始して、空燃比センサ18のセンサ素子19の加熱を開始する。この後は、電流センサ17によってバッテリ電流を所定のサンプリング周期で検出すると共に、ヒータ電流検出回路21によってヒータ電流を所定のサンプリング周期で検出する。そして、空燃比センサ18のセンサ素子19の温度が活性温度に達した後は、センサ素子19の温度に応じてヒータ20のON(オン)/OFF(オフ)を交互に切り換えることで、センサ素子19の温度を活性温度範囲に制御する。   When the engine is started, energization of the heater 20 of the air-fuel ratio sensor 18 is started, and heating of the sensor element 19 of the air-fuel ratio sensor 18 is started. Thereafter, the battery current is detected by the current sensor 17 at a predetermined sampling period, and the heater current is detected by the heater current detection circuit 21 at a predetermined sampling period. Then, after the temperature of the sensor element 19 of the air-fuel ratio sensor 18 reaches the activation temperature, the sensor element 19 is alternately switched on (on) / off (off) according to the temperature of the sensor element 19, thereby The temperature of 19 is controlled to the active temperature range.

そして、ヒータ20をONからOFFに切り換える直前と直後のタイミング(i−1)、(i1)でそれぞれ検出したバッテリ電流検出値Ibat(i),Ibat(i-1)とヒータ電流検出値Isen(i-1),Isen(i)に基づいて、ヒータ20のOFF切換時のバッテリ電流変化量ΔIbat(i)とヒータ電流変化量ΔIsen(i)を算出する。
ΔIbat(i)=Ibat(i-1)−Ibat(i)
ΔIsen(i)=Isen(i-1)−Isen(i)
Then, the battery current detection values Ibat (i), Ibat (i-1) and the heater current detection value Isen () detected at timings (i−1) and (i1) immediately before and after switching the heater 20 from ON to OFF, respectively. Based on i-1) and Isen (i), the battery current change amount ΔIbat (i) and the heater current change amount ΔIsen (i) when the heater 20 is switched off are calculated.
ΔIbat (i) = Ibat (i−1) −Ibat (i)
ΔIsen (i) = Isen (i−1) −Isen (i)

この後、バッテリ電流変化量ΔIbat(i)とヒータ電流変化量ΔIsen(i)との比から、今回のバッテリ電流検出値Ibat(i)における公差K(i) (補正量)を次式により算出する。
K(i) =ΔIbat(i)/ΔIsen(i)−1
ここで、ΔIbat(i)=ΔIsen(i)となる場合は、公差=0となる。
After that, from the ratio of the battery current change amount ΔIbat (i) and the heater current change amount ΔIsen (i), the tolerance K (i) (correction amount) of the current battery current detection value Ibat (i) is calculated by the following equation. To do.
K (i) = ΔIbat (i) / ΔIsen (i) −1
Here, when ΔIbat (i) = ΔIsen (i), the tolerance = 0.

本実施例1では、ヒータ20がOFFするタイミング(i) に同期して、その時点(i) のバッテリ電流検出値Ibat(i)における公差K(i) を上式により算出することで、大きさの異なる複数のバッテリ電流検出値Ibat についてそれぞれ公差Kを算出して、それを公差Kの学習値としてバックアップRAM22に記憶する。これにより、バッテリ電流検出値Ibat をパラメータとする公差Kの学習マップ(Ibat ,K)を作成して、この公差Kの学習値を逐次更新することで、公差Kの経時変化にも対応する。   In the first embodiment, in synchronism with the timing (i) at which the heater 20 is turned off, the tolerance K (i) in the battery current detection value Ibat (i) at that time (i) is calculated by the above equation. A tolerance K is calculated for each of a plurality of detected battery current values Ibat of different sizes, and is stored in the backup RAM 22 as a learned value of the tolerance K. Thereby, a learning map (Ibat, K) of tolerance K using the battery current detection value Ibat as a parameter is created, and the learning value of the tolerance K is sequentially updated, so that the tolerance K can be changed over time.

そして、バッテリ電流検出値Ibat を積算してバッテリ12の充電状態(バッテリ容量)を推定する際に、バックアップRAM22に記憶されている公差Kの学習マップを用いて、バッテリ電流検出値Ibat を次のようにして補間補正し、補正後のバッテリ電流検出値Ibat を積算する。   When the battery current detection value Ibat is integrated to estimate the state of charge (battery capacity) of the battery 12, the battery current detection value Ibat is calculated using the learning map of the tolerance K stored in the backup RAM 22. Thus, the interpolation correction is performed, and the corrected battery current detection value Ibat is integrated.

例えば、今回のバッテリ電流検出値Ibat がIa の場合、公差Kの学習マップの中から今回のバッテリ電流検出値Ia に最も近い2点(Ib とIc )の公差K(Ib)とK(Ic)を読み出し、今回のバッテリ電流検出値Ia における公差K(Ia)を次式により算出する。
K(Ia)={K(Ib)−K(Ic)}×(Ia−Ic )/(Ib−Ic )
For example, when the current battery current detection value Ibat is Ia, the tolerances K (Ib) and K (Ic) of the two points (Ib and Ic) closest to the current battery current detection value Ia from the learning map of the tolerance K are shown. And a tolerance K (Ia) in the current battery current detection value Ia is calculated by the following equation.
K (Ia) = {K (Ib) -K (Ic)} * (Ia-Ic) / (Ib-Ic)

この後、この公差K(Ia)を用いて、次式により今回のバッテリ電流検出値Ia を補正する。
補正後バッテリ電流検出値=Ia +(Ia−Ic )×K(Ia)
これにより、バッテリ電流検出値Ia の線形性の公差を含む様々な公差(初期特性の公差、経時劣化による公差、オフセット公差)がまとめて補正される。
Thereafter, using this tolerance K (Ia), the current battery current detection value Ia is corrected by the following equation.
Battery current detection value after correction = Ia + (Ia−Ic) × K (Ia)
As a result, various tolerances including the linearity tolerance of the battery current detection value Ia (tolerance of initial characteristics, tolerance due to deterioration with time, offset tolerance) are collectively corrected.

前述した公差K(i) の算出は、制御装置11によって図3の公差算出ルーチンによって所定周期(例えば5ms周期)で実行される。本ルーチンが起動されると、まずステップ101で、電流センサ17で検出した今回のバッテリ電流検出値Ibat(i)を読み込み、次のステップ102で、ヒータ電流検出回路21で検出した今回のヒータ電流検出値Isen(i)を読み込む。   The above-described calculation of the tolerance K (i) is executed by the control device 11 at a predetermined cycle (for example, 5 ms cycle) by the tolerance calculation routine of FIG. When this routine is started, first, in step 101, the current battery current detection value Ibat (i) detected by the current sensor 17 is read. In the next step 102, the current heater current detected by the heater current detection circuit 21 is read. The detection value Isen (i) is read.

この後、ステップ103とステップ104の処理によって空燃比センサ18のヒータ20がONからOFFに切り換わるタイミングを検出して、そのタイミングでステップ105〜107の処理によって今回のバッテリ電流検出値Ibat(i)における公差K(i) を算出する。   Thereafter, the timing at which the heater 20 of the air-fuel ratio sensor 18 switches from ON to OFF is detected by the processing of Step 103 and Step 104, and the current battery current detection value Ibat (i) is processed by the processing of Steps 105 to 107 at that timing. ) To calculate the tolerance K (i).

この処理を詳しく説明すると、まず、ステップ103で、空燃比センサ18のヒータ20がONであるか否かを判定し、ヒータ20がONであれば、以降の処理を行うことなく、本ルーチンを終了し、ヒータ20がOFFであれば、ステップ104に進み、前回の本ルーチン起動時にヒータ20がONであった否かを判定する。このステップ104で「No」と判定された場合、つまりヒータ20が前回も今回もOFFと判定された場合は、公差K(i) の算出タイミング(ヒータ20のOFF切換タイミング)ではないと判断して、以降の処理を行うことなく、本ルーチンを終了する。   This process will be described in detail. First, in step 103, it is determined whether or not the heater 20 of the air-fuel ratio sensor 18 is ON. If the heater 20 is ON, this routine is performed without performing the subsequent processes. When the heater 20 is turned off, the process proceeds to step 104 to determine whether the heater 20 was turned on at the previous activation of this routine. If “No” is determined in step 104, that is, if the heater 20 is determined to be OFF both in the previous time and this time, it is determined that it is not the calculation timing of the tolerance K (i) (OFF switching timing of the heater 20). Thus, this routine is terminated without performing the subsequent processing.

そして、ステップ104で「Yes」と判定された場合、つまりヒータ20が前回ONで今回OFFと判定された場合は、公差K(i) の算出タイミング(ヒータ20のOFF切換タイミング)であると判断して、ステップ105に進み、前回のヒータ電流検出値Isen(i-1)と今回のヒータ電流検出値Isen(i)との差分であるヒータ電流変化量ΔIsen(i)を算出する。
ΔIsen(i)=Isen(i-1)−Isen(i)
If “Yes” is determined in step 104, that is, if the heater 20 is previously turned on and is currently turned off, it is determined that the calculation timing of the tolerance K (i) (the heater 20 OFF switching timing) is reached. Then, the process proceeds to step 105, where the heater current change amount ΔIsen (i), which is the difference between the previous heater current detection value Isen (i-1) and the current heater current detection value Isen (i), is calculated.
ΔIsen (i) = Isen (i−1) −Isen (i)

この後、ステップ106に進み、前回のバッテリ電流検出値Ibat(i-1)と今回のバッテリ電流検出値Ibat(i)との差分であるバッテリ電流変化量ΔIbat(i)を算出する。
ΔIbat(i)=Ibat(i-1)−Ibat(i)
Thereafter, the process proceeds to step 106, where a battery current change amount ΔIbat (i) that is a difference between the previous battery current detection value Ibat (i−1) and the current battery current detection value Ibat (i) is calculated.
ΔIbat (i) = Ibat (i−1) −Ibat (i)

この後、ステップ107に進み、バッテリ電流変化量ΔIbat(i)とヒータ電流変化量ΔIsen(i)との比から、今回のバッテリ電流検出値Ibat(i)における公差K(i) を次式により算出する。
K(i) =ΔIbat(i)/ΔIsen(i)−1
Thereafter, the routine proceeds to step 107, and the tolerance K (i) in the current battery current detection value Ibat (i) is calculated from the ratio of the battery current change amount ΔIbat (i) and the heater current change amount ΔIsen (i) by the following equation. calculate.
K (i) = ΔIbat (i) / ΔIsen (i) −1

以上のようにして算出された公差K(i) は、バックアップRAM22に記憶され、バッテリ電流検出値Ibat をパラメータとする公差Kの学習マップ(Ibat ,K)が作成される。   The tolerance K (i) calculated as described above is stored in the backup RAM 22, and a learning map (Ibat, K) of the tolerance K using the battery current detection value Ibat as a parameter is created.

以上説明した本実施例1では、バッテリ電流変化量ΔIbat(i)とヒータ電流変化量ΔIsen(i)との比から、今回のバッテリ電流検出値Ibat(i)における公差K(i) を算出して、バッテリ電流検出値Ibat をパラメータとする公差Kの学習マップを作成するようにしたので、この公差Kの学習マップを用いてバッテリ電流検出値Ibat の線形性の公差を含む様々な公差(初期特性の公差、経時劣化による公差、オフセット公差)をまとめて補正することができて、バッテリ電流検出値Ibat の補正精度を高めることができる。これにより、補正後のバッテリ電流検出値Ibat の積算値からバッテリ12の充電状態(バッテリ容量)を精度良く推定することができる。   In the first embodiment described above, the tolerance K (i) in the current battery current detection value Ibat (i) is calculated from the ratio between the battery current change amount ΔIbat (i) and the heater current change amount ΔIsen (i). Thus, the learning map of the tolerance K using the battery current detection value Ibat as a parameter is created. Therefore, various tolerances (initial values including the linearity tolerance of the battery current detection value Ibat are used by using the learning map of the tolerance K. (Characteristic tolerance, tolerance due to deterioration with time, offset tolerance) can be collectively corrected, and the correction accuracy of the battery current detection value Ibat can be improved. Thereby, the charge state (battery capacity) of the battery 12 can be accurately estimated from the integrated value of the corrected battery current detection value Ibat.

尚、本実施例1では、空燃比センサ18のヒータ20がONからOFFに切り換わるタイミングに同期して公差Kを算出するようにしたが、これとは反対に、空燃比センサ18のヒータ20がOFFからONに切り換わるタイミングに同期して公差Kを算出するようにしても良い。   In the first embodiment, the tolerance K is calculated in synchronization with the timing at which the heater 20 of the air-fuel ratio sensor 18 switches from ON to OFF. On the contrary, the heater 20 of the air-fuel ratio sensor 18 is calculated. The tolerance K may be calculated in synchronism with the timing when is switched from OFF to ON.

上記実施例1では、エンジン運転中(キースイッチ13のON期間中)に公差Kを算出するようにしたが、エンジン運転中には、バッテリ12からヒータ20の他にも多くの車載電気機器に通電されるため、バッテリ電流変化量ΔIbat(i)には、ヒータ20以外の車載電気機器の電流変化の影響が含まれる可能性があり、これが公差Kの算出精度を低下させる原因となる。   In the first embodiment, the tolerance K is calculated while the engine is operating (while the key switch 13 is ON). However, during the engine operation, many other in-vehicle electric devices other than the heater 20 are used. Since the battery is energized, the battery current change amount ΔIbat (i) may include the influence of the current change of the in-vehicle electrical device other than the heater 20, which causes the accuracy of calculation of the tolerance K to be reduced.

そこで、図4及び図5に示す本発明の実施例2では、エンジン停止中(キースイッチ13のOFF期間中)にほぼ全ての車載電気機器への通電がOFFされることを考慮して、エンジン停止中に空燃比センサ18のヒータ20に通電して公差Kを算出するようにしている。   Therefore, in the second embodiment of the present invention shown in FIGS. 4 and 5, the engine is considered in consideration that the power supply to almost all on-vehicle electric devices is turned off while the engine is stopped (while the key switch 13 is OFF). During the stop, the heater 20 of the air-fuel ratio sensor 18 is energized to calculate the tolerance K.

本実施例2では、図4に示すように、エンジン停止後(キースイッチ13のOFF切換後)からほぼ全ての車載電気機器への通電がOFFされるまでの所定時間が経過した後に空燃比センサ18のヒータ20を一時的にON/OFFして、ヒータ20がONからOFF(又はOFFからON)に切り換わるタイミングに同期して、バッテリ電流変化量ΔIbat(i)とヒータ電流変化量ΔIsen(i)を算出して公差Kを算出するようにしている。   In the second embodiment, as shown in FIG. 4, the air-fuel ratio sensor after a predetermined time elapses after the engine is stopped (after the key switch 13 is turned off) until almost all the on-vehicle electric devices are turned off. 18 heaters 20 are temporarily turned ON / OFF, and the battery current change amount ΔIbat (i) and the heater current change amount ΔIsen () are synchronized with the timing at which the heater 20 switches from ON to OFF (or from OFF to ON). The tolerance K is calculated by calculating i).

本実施例2では、エンジン停止中(キースイッチ13のOFF期間中)に制御装置11が図5のエンジン停止中ヒータ通電制御ルーチンを所定周期(例えば5ms周期)で実行して空燃比センサ18のヒータ20のON/OFFを次のように制御する。まず、ステップ201で、キースイッチ13がOFFされているか否かを判定し、OFFされていなければ、以降の処理を行うことなく、本ルーチンを終了する。   In the second embodiment, the control device 11 executes the heater energization control routine during engine stop in FIG. 5 at a predetermined cycle (for example, 5 ms cycle) while the engine is stopped (while the key switch 13 is OFF). ON / OFF of the heater 20 is controlled as follows. First, in step 201, it is determined whether or not the key switch 13 is turned off. If it is not turned off, this routine is terminated without performing the subsequent processing.

これに対して、キースイッチ13がOFFされていれば、上記ステップ201で「Yes」と判定されてステップ202に進み、今回のエンジン停止中に公差Kを算出済みであるか否かを判定し、算出済みであれば、以降の処理を行うことなく、本ルーチンを終了する。   On the other hand, if the key switch 13 is turned off, “Yes” is determined in the above step 201 and the process proceeds to step 202 to determine whether or not the tolerance K has been calculated during the current engine stop. If the calculation has been completed, this routine is terminated without performing the subsequent processing.

上記ステップ202で、公差Kを未算出と判定されれば、ステップ203に進み、ソークタイマの前回のカウント値Tcnt(I-1) に本ルーチンの起動周期(5ms)を加算することで、エンジン停止後の経過時間Tcnt(I) を計測する。この後、ステップ204に進み、エンジン停止後の経過時間Tcntが所定のヒータON切換タイミングKONからヒータOFF切換タイミングKOFFまでの範囲内(KON≦Tcnt<KOFF)であるか否かを判定し、「Yes」と判定されれば、ステップ208に進み、ヒータONフラグxoxhtを1にセットして、ヒータ20をONする(又はON状態を維持する)。   If it is determined in step 202 that the tolerance K has not been calculated, the process proceeds to step 203, where the engine stop is performed by adding the start cycle (5 ms) of this routine to the previous count value Tcnt (I-1) of the soak timer. The subsequent elapsed time Tcnt (I) is measured. Thereafter, the routine proceeds to step 204, where it is determined whether or not the elapsed time Tcnt after the engine is stopped is within a range from a predetermined heater ON switching timing KON to a heater OFF switching timing KOFF (KON ≦ Tcnt <KOFF). If "Yes" is determined, the process proceeds to step 208, the heater ON flag xoxht is set to 1, and the heater 20 is turned on (or maintained in the ON state).

これに対して、エンジン停止後の経過時間Tcntが所定のヒータON切換タイミングKONからヒータOFF切換タイミングKOFFまでの範囲内でない場合(Tcnt<KON又はTcnt≧KOFFの場合)は、ステップ204からステップ205に進み、ヒータONフラグxoxhtを0にリセットして、ヒータ20をOFFする(又はOFF状態を維持する)。この後、ステップ206に進み、Tcnt≧KOFFであるか否かを判定し、「No」と判定されれば、本ルーチンを終了するが、「Yes」と判定されれば、ステップ207に進み、ソークタイマのカウント値Tcntを初期値(0)にリセットする。   On the other hand, when the elapsed time Tcnt after engine stop is not within the range from the predetermined heater ON switching timing KON to the heater OFF switching timing KOFF (when Tcnt <KON or Tcnt ≧ KOFF), step 204 to step 205 Then, the heater ON flag xoxht is reset to 0 and the heater 20 is turned OFF (or the OFF state is maintained). Thereafter, the process proceeds to step 206, where it is determined whether or not Tcnt ≧ KOFF. If it is determined as “No”, this routine is terminated. If it is determined as “Yes”, the process proceeds to step 207. The count value Tcnt of the soak timer is reset to the initial value (0).

以上のような処理を行うことで、エンジン停止後の経過時間Tcntが所定のヒータON切換タイミングKONからヒータOFF切換タイミングKOFFまでの範囲内でヒータ20をONする。そして、エンジン停止中にヒータ20がONからOFF(又はOFFからON)に切り換わるタイミングに同期して、バッテリ電流変化量ΔIbat(i)とヒータ電流変化量ΔIsen(i)を算出して公差Kを算出する。その他の事項は、前記実施例1と同じである。   By performing the processing as described above, the heater 20 is turned on when the elapsed time Tcnt after the engine is stopped is within a predetermined range from the heater ON switching timing KON to the heater OFF switching timing KOFF. The battery current change amount ΔIbat (i) and the heater current change amount ΔIsen (i) are calculated in synchronization with the timing when the heater 20 is switched from ON to OFF (or from OFF to ON) while the engine is stopped, and the tolerance K is calculated. Is calculated. Other matters are the same as those in the first embodiment.

以上説明した本実施例2では、エンジン停止中に空燃比センサ18のヒータ20を一時的にON/OFFして、ヒータ20がONからOFF(又はOFFからON)に切り換わるタイミングに同期して、バッテリ電流変化量ΔIbat(i)とヒータ電流変化量ΔIsen(i)を算出して公差Kを算出するようにしたので、ヒータ20以外の車載電気機器の影響を受けずに、公差Kを精度良く算出することができ、バッテリ電流検出値Ibat の補正精度を高めることができる。   In the second embodiment described above, the heater 20 of the air-fuel ratio sensor 18 is temporarily turned ON / OFF while the engine is stopped, and is synchronized with the timing when the heater 20 is switched from ON to OFF (or from OFF to ON). Since the tolerance K is calculated by calculating the battery current change amount ΔIbat (i) and the heater current change amount ΔIsen (i), the tolerance K can be accurately determined without being affected by the on-vehicle electrical equipment other than the heater 20. It can be calculated well, and the correction accuracy of the battery current detection value Ibat can be improved.

尚、公差Kの算出方法は上記各実施例に限定されず、例えば、エンジン停止中に一時的にヒータ20をONさせる期間中に、ヒータ電流を増減させて、複数の異なるヒータ電流について、バッテリ電流検出値Ibat とヒータ電流検出値Isen との関係を求めて、公差Kを算出するようにしても良い。勿論、ヒータ20のON期間中のヒータ電流を一定値に固定して、バッテリ電流検出値Ibat とヒータ電流検出値Isen との関係から公差Kを算出するようにしても良い。この際、バッテリ電流検出値Ibat から、ヒータ20以外の電気負荷(例えば制御装置11等)の消費電流分を差し引くようにすると良い。   Note that the method for calculating the tolerance K is not limited to the above-described embodiments. For example, during a period in which the heater 20 is temporarily turned on while the engine is stopped, the heater current is increased or decreased, and a plurality of different heater currents are determined for the battery. The tolerance K may be calculated by obtaining the relationship between the detected current value Ibat and the detected heater current value Isen. Of course, the heater current during the ON period of the heater 20 may be fixed to a constant value, and the tolerance K may be calculated from the relationship between the battery current detection value Ibat and the heater current detection value Isen. At this time, it is preferable to subtract the current consumption of the electric load (for example, the control device 11) other than the heater 20 from the battery current detection value Ibat.

また、空燃比センサ18のヒータ20以外であっても、電流検出機能付きの電気負荷が存在すれば、その電気負荷の電流検出値とバッテリ電流検出値との関係から公差Kを算出するようにしても良い。   In addition, if there is an electric load with a current detection function other than the heater 20 of the air-fuel ratio sensor 18, the tolerance K is calculated from the relationship between the current detection value of the electric load and the battery current detection value. May be.

図6に示す本発明の実施例3では、前記実施例1又は実施例2と同様の方法で算出した公差K(補正量)を用いて、図6の異常診断ルーチンを所定周期で実行することで、特許請求の範囲でいう異常判定手段としての機能を実現するようにしている。本ルーチンが起動されると、まずステップ301で、公差Kを算出済みであるか否かを判定し、算出済みでなければ、本ルーチンを終了するが、算出済みであれば、ステップ302に進み、公差Kが所定範囲内であるか否かを判定する。その結果、公差Kが所定範囲内であれば、電流センサ17とヒータ電流検出回路21が両方とも正常に機能していると判断するが、公差Kが所定範囲内になければ、電流センサ17とヒータ電流検出回路21のどちらかが異常であると判定する(ステップ303)。   In the third embodiment of the present invention shown in FIG. 6, the abnormality diagnosis routine of FIG. 6 is executed at a predetermined cycle using the tolerance K (correction amount) calculated by the same method as in the first or second embodiment. Thus, the function as the abnormality determination means in the claims is realized. When this routine is started, first, at step 301, it is determined whether or not the tolerance K has been calculated. If it has not been calculated, this routine ends. If it has been calculated, the routine proceeds to step 302. Then, it is determined whether or not the tolerance K is within a predetermined range. As a result, if the tolerance K is within the predetermined range, it is determined that both the current sensor 17 and the heater current detection circuit 21 are functioning normally. If the tolerance K is not within the predetermined range, It is determined that one of the heater current detection circuits 21 is abnormal (step 303).

要するに、電流センサ17とヒータ電流検出回路21のどちらかが異常になれば、公差Kが異常に大きくなるため、公差Kが異常な値になれば、電流センサ17とヒータ電流検出回路21のどちらかが異常であると判定することが可能となる。   In short, if either the current sensor 17 or the heater current detection circuit 21 becomes abnormal, the tolerance K becomes abnormally large. If the tolerance K becomes an abnormal value, whichever of the current sensor 17 or the heater current detection circuit 21 is used? Can be determined to be abnormal.

尚、電流センサ17の検出値とヒータ電流検出回路21の検出値との関係に基づいて電流センサ17とヒータ電流検出回路21のどちらかが異常であるか否かを判定するようにしても良い。例えば、電流センサ17の検出値の挙動とヒータ電流検出回路21の検出値の挙動との間に全く関連性が認められないような場合等には、電流センサ17とヒータ電流検出回路21のどちらかが異常であると判定することが可能となる。   Note that it may be determined whether either the current sensor 17 or the heater current detection circuit 21 is abnormal based on the relationship between the detection value of the current sensor 17 and the detection value of the heater current detection circuit 21. . For example, when there is no relationship between the behavior of the detection value of the current sensor 17 and the behavior of the detection value of the heater current detection circuit 21, whichever of the current sensor 17 and the heater current detection circuit 21 is used. Can be determined to be abnormal.

本発明の実施例1のシステム全体の構成を概略的に示すブロック図である。1 is a block diagram schematically showing the overall configuration of a system according to a first embodiment of the present invention. 実施例1の制御例を説明するタイムチャートである。3 is a time chart for explaining a control example of the first embodiment. 実施例1の公差算出ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a process flow of a tolerance calculation routine according to the first embodiment. 実施例2の制御例を説明するタイムチャートである。6 is a time chart for explaining a control example of the second embodiment. 実施例2のエンジン停止中ヒータ通電制御ルーチンの処理の流れを示すフローチャートである。7 is a flowchart illustrating a process flow of a heater energization control routine during engine stop according to a second embodiment. 実施例3の異常診断ルーチンの処理の流れを示すフローチャートである。10 is a flowchart showing a flow of processing of an abnormality diagnosis routine of Example 3.

符号の説明Explanation of symbols

11…制御装置(補正手段,異常判定手段)、12…バッテリ、13…キースイッチ、17…電流センサ(バッテリ電流検出手段)、18…空燃比センサ、19…センサ素子、20…ヒータ(電気負荷)、21…ヒータ電流検出回路(負荷電流検出手段)、22…バックアップRAM   DESCRIPTION OF SYMBOLS 11 ... Control apparatus (correction means, abnormality determination means), 12 ... Battery, 13 ... Key switch, 17 ... Current sensor (battery current detection means), 18 ... Air-fuel ratio sensor, 19 ... Sensor element, 20 ... Heater (electric load) ), 21 ... heater current detection circuit (load current detection means), 22 ... backup RAM

Claims (5)

車両に搭載されたバッテリの充放電電流(以下「バッテリ電流」という)を検出するバッテリ電流検出手段と、車両に搭載されたいずれかの電気負荷に流れる電流を検出する負荷電流検出手段とを備えた車両において、
前記バッテリ電流検出手段の検出値と前記負荷電流検出手段の検出値との関係に基づいて前記バッテリ電流検出手段の検出値を補正する補正手段を備えていることを特徴とする車両のバッテリ電流検出装置。
Battery current detection means for detecting a charge / discharge current (hereinafter referred to as “battery current”) of a battery mounted on the vehicle, and load current detection means for detecting a current flowing in any of the electric loads mounted on the vehicle. In the vehicle
A battery current detection for a vehicle, comprising: a correction means for correcting the detection value of the battery current detection means based on a relationship between a detection value of the battery current detection means and a detection value of the load current detection means. apparatus.
前記補正手段は、大きさの異なる複数のバッテリ電流について前記バッテリ電流検出手段の検出値と前記負荷電流検出手段の検出値との関係を判定して該バッテリ電流検出手段の検出値を補正することを特徴とする請求項1に記載の車両のバッテリ電流検出装置。   The correction means determines the relationship between the detection value of the battery current detection means and the detection value of the load current detection means for a plurality of battery currents having different sizes, and corrects the detection value of the battery current detection means. The battery current detection device for a vehicle according to claim 1. 前記補正手段は、内燃機関の運転停止中に前記電気負荷に通電して前記バッテリ電流検出手段の検出値と前記負荷電流検出手段の検出値との関係を判定することを特徴とする請求項1又は2に記載の車両のバッテリ電流検出装置。   The correction means determines the relationship between the detection value of the battery current detection means and the detection value of the load current detection means by energizing the electric load while the operation of the internal combustion engine is stopped. Or the battery current detection apparatus of the vehicle of 2. 前記補正手段による補正量が所定範囲を越えたときに前記バッテリ電流検出手段と前記負荷電流検出手段のどちらかが異常であると判定する異常判定手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の車両のバッテリ電流検出装置。   2. The apparatus according to claim 1, further comprising an abnormality determination unit that determines that either the battery current detection unit or the load current detection unit is abnormal when a correction amount by the correction unit exceeds a predetermined range. The battery current detection device for a vehicle according to any one of claims 1 to 3. 車両に搭載されたバッテリの充放電電流を検出するバッテリ電流検出手段と、車両に搭載されたいずれかの電気負荷に流れる電流を検出する負荷電流検出手段とを備えた車両において、
前記バッテリ電流検出手段の検出値と前記負荷電流検出手段の検出値との関係に基づいて前記バッテリ電流検出手段と前記負荷電流検出手段のどちらかが異常であるか否かを判定する異常判定手段を備えていることを特徴とする車両のバッテリ電流検出装置。
In a vehicle comprising battery current detection means for detecting a charge / discharge current of a battery mounted on the vehicle, and load current detection means for detecting a current flowing through any of the electric loads mounted on the vehicle,
An abnormality determination unit that determines whether one of the battery current detection unit or the load current detection unit is abnormal based on a relationship between a detection value of the battery current detection unit and a detection value of the load current detection unit. A battery current detection device for a vehicle, comprising:
JP2005019166A 2005-01-27 2005-01-27 Vehicle battery current detection device Expired - Fee Related JP4518261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019166A JP4518261B2 (en) 2005-01-27 2005-01-27 Vehicle battery current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019166A JP4518261B2 (en) 2005-01-27 2005-01-27 Vehicle battery current detection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010093562A Division JP2010204108A (en) 2010-04-14 2010-04-14 Battery current detector for vehicle

Publications (2)

Publication Number Publication Date
JP2006208126A true JP2006208126A (en) 2006-08-10
JP4518261B2 JP4518261B2 (en) 2010-08-04

Family

ID=36965157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019166A Expired - Fee Related JP4518261B2 (en) 2005-01-27 2005-01-27 Vehicle battery current detection device

Country Status (1)

Country Link
JP (1) JP4518261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227035A (en) * 2013-05-22 2014-12-08 株式会社デンソー Power supply system abnormality detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208259A (en) * 1994-01-18 1995-08-08 Nippondenso Co Ltd Vehicle-mounted load control device
JP2001327002A (en) * 2000-05-12 2001-11-22 Matsushita Electric Ind Co Ltd Current-detecting device for electric vehicle
JP2002027672A (en) * 2000-07-05 2002-01-25 Suzuki Motor Corp Remaining capacity meter for electric vehicle
JP2002238181A (en) * 2001-02-13 2002-08-23 Denso Corp Apparatus for detecting state of charge of vehicle battery
JP2004177187A (en) * 2002-11-25 2004-06-24 Yazaki Corp Method for determining offset adjustment value for current sensor of battery current detection apparatus and battery current detection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208259A (en) * 1994-01-18 1995-08-08 Nippondenso Co Ltd Vehicle-mounted load control device
JP2001327002A (en) * 2000-05-12 2001-11-22 Matsushita Electric Ind Co Ltd Current-detecting device for electric vehicle
JP2002027672A (en) * 2000-07-05 2002-01-25 Suzuki Motor Corp Remaining capacity meter for electric vehicle
JP2002238181A (en) * 2001-02-13 2002-08-23 Denso Corp Apparatus for detecting state of charge of vehicle battery
JP2004177187A (en) * 2002-11-25 2004-06-24 Yazaki Corp Method for determining offset adjustment value for current sensor of battery current detection apparatus and battery current detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227035A (en) * 2013-05-22 2014-12-08 株式会社デンソー Power supply system abnormality detector

Also Published As

Publication number Publication date
JP4518261B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
US10386420B2 (en) Secondary battery degradation determination method and secondary battery degradation determination device
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
JP6029751B2 (en) Storage battery state detection device and storage battery state detection method
JP5348336B2 (en) Failure detection device for electrically heated catalyst
US8961761B2 (en) Oxygen sensor control apparatus
US8393316B2 (en) Internal-combustion-engine control apparatus
JP2006333662A (en) Device and method for judging deterioration degree of battery
US10996280B2 (en) Battery pack that calculates full charge capacity of a battery based on a state of charge
JP2007292666A (en) Device for estimating charged state of secondary battery
JP2007024825A (en) Fault diagnostic system for current sensor
US20220224131A1 (en) Charge control apparatus
JPH09170997A (en) Apparatus for judging active state of air-fuel ratio sensor
JP2005037286A (en) Battery charge/discharge current detection device
JP2007064874A (en) Charge condition detector and charge condition detecting method for secondary battery
KR20160110700A (en) Fault diagnosis apparatus for battery system
JP2010025563A (en) State detection method of secondary battery, state detector, and secondary battery power supply system
JP4518261B2 (en) Vehicle battery current detection device
JP2010160026A (en) Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
JP2010204108A (en) Battery current detector for vehicle
JP2006010501A (en) Battery status administration system
EP2940288A1 (en) Glow plug diagnosis method and device for controlling driving of vehicle glow plug
JP5723321B2 (en) Sensor output processing apparatus and sensor system
KR101828329B1 (en) State of function prediction system for battery and method therefor
JP2007225560A (en) Heater control apparatus of gas sensor
JP3296059B2 (en) Vehicle generator control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees