JP2006207914A - Heat source system utilizing waste heat - Google Patents

Heat source system utilizing waste heat Download PDF

Info

Publication number
JP2006207914A
JP2006207914A JP2005019542A JP2005019542A JP2006207914A JP 2006207914 A JP2006207914 A JP 2006207914A JP 2005019542 A JP2005019542 A JP 2005019542A JP 2005019542 A JP2005019542 A JP 2005019542A JP 2006207914 A JP2006207914 A JP 2006207914A
Authority
JP
Japan
Prior art keywords
heat
fluid
heat load
hot water
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005019542A
Other languages
Japanese (ja)
Other versions
JP4152384B2 (en
Inventor
Kiyoshi Fukuzawa
清 福沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2005019542A priority Critical patent/JP4152384B2/en
Publication of JP2006207914A publication Critical patent/JP2006207914A/en
Application granted granted Critical
Publication of JP4152384B2 publication Critical patent/JP4152384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To add a system performing heating by utilizing waste heat of a generator with a simple constitution, to a system for heating hot water in a hot water storage tank by utilizing the waste heat of the generator. <P>SOLUTION: The waste heat of the generator 30 is absorbed by allowing waste heat absorbing fluid circulated in a master waste heat circulating passage 6 to pass through the generator 30. The hot water in a hot water storage tank 8 is circulated in a tank hot water circulating passage 9, and the hot water in the hot water storage tank 8 is heated by the waste heat absorbing fluid by heat exchange in a liquid-liquid heat exchanger 12. The heat load circulating fluid circulated in a heat load circulating passage 22 is allowed to pass through a heating device 1, and the heat of heat load circulating fluid from the heating device 1 is radiated for heating. The heat load circulating fluid is heated by the heat of waste heat absorbing fluid by heat exchange in a liquid-liquid heat exchanger 24. A temperature of the heat load circulating fluid is detected by a heat load-side temperature sensor 27, and a flow rate of the heat load circulating fluid is controlled by a water quantity control valve 26 so that a temperature of the heat load circulating fluid supplied to the heating device 1 is controlled to a set temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電装置の廃熱を給湯や、暖房等の加熱源として利用する廃熱利用熱源システムに関するものである。   The present invention relates to a waste heat utilization heat source system that utilizes waste heat of a power generator as a heating source for hot water supply or heating.

近年においては、省エネルギーを推進する観点から、コジェネレーションシステムが脚光をあびている。コジェネレーションシステムは、例えば、発電装置に供給する冷却水を循環させ、発電装置で発生する廃熱を冷却水に吸熱させ、この廃熱を吸熱して高温となった冷却水と、タンク(貯湯槽)に貯湯されている湯とを熱交換させてタンク内の湯を加熱し、この熱交換により低温化された冷却水を再び発電装置へ循環供給して発電装置の冷却(発電装置の廃熱の吸熱)を行うものである。   In recent years, cogeneration systems have attracted attention from the viewpoint of promoting energy saving. The cogeneration system, for example, circulates the cooling water supplied to the power generation device, absorbs the waste heat generated in the power generation device into the cooling water, absorbs the waste heat, and reaches a high temperature and a tank (hot water storage). Heat is exchanged with the hot water stored in the tank) to heat the hot water in the tank, and the cooling water lowered in temperature by this heat exchange is circulated and supplied to the power generator again to cool the power generator (the waste of the power generator) Heat absorption).

特開2003−120998JP2003-120998A

上記したように、コジェネレーションシステムにより、発電装置の廃熱を給湯の加熱源として利用することは行なわれている。本発明者は、給湯の加熱源としての機能と、給湯以外の加熱源としての機能とを兼ね備えたシステムを構築することによって、給湯の加熱源(熱源)としてのシステムと給湯以外の加熱源としてのシステムを別個独立に構築するよりもシステム構築が容易となり、構築コストも安価になり、コジェネレーションシステムの更なる普及と利便性が得られると確信している。しかしながら、このような、システムは提案されていない。   As described above, the cogeneration system is used to use the waste heat of the power generation apparatus as a heating source for hot water supply. As a heating source other than hot water, a system as a heating source (heat source) for hot water and a heating source other than hot water by constructing a system that has a function as a heating source for hot water and a function as a heating source other than hot water. I am convinced that it will be easier to construct the system than to construct these systems separately, the construction cost will be lower, and the cogeneration system will become more popular and convenient. However, such a system has not been proposed.

本発明は、上記事情に鑑み成されたものであり、その目的は給湯の加熱源としての機能と、給湯以外の加熱源としての機能とを兼ね備えた廃熱利用熱源システム(コジェネレーションシステム)を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide a waste heat utilization heat source system (cogeneration system) having both a function as a heating source for hot water supply and a function as a heating source other than hot water supply. It is to provide.

本発明は上記目的を達成するために次のような構成をもって課題を解決する手段と成している。すなわち、第1の発明は、給湯の湯を貯める貯湯タンクと、発電装置の廃熱を吸熱させた廃熱吸熱流体を循環させる主幹廃熱循環路とを有し、前記主幹廃熱循環路には前記廃熱吸熱流体と貯湯タンクの湯を熱交換させて貯湯タンク内の湯を加熱する給湯側熱交換手段が設けられている廃熱利用熱源システムにおいて、前記主幹廃熱循環路には熱負荷装置に前記廃熱吸熱流体を供給する熱負荷側往管が分岐接続されるとともに、前記熱負荷装置から廃熱吸熱流体を前記主幹廃熱循管路に戻す熱負荷側戻り管が前記熱負荷側往管の分岐接続部よりも下流側位置に接続されており、前記熱負荷装置には前記熱負荷側往管から供給される前記廃熱吸熱流体を通流させて前記熱負荷側戻り管に送出する熱負荷管路が設けられ、前記発電装置側から前記熱負荷側往管の分岐接続部に至る主幹廃熱循環路部位、前記熱負荷側往管、前記熱負荷管路、前記熱負荷側戻り管、該熱負荷側戻り管の接続部から前記発電装置に至る主幹廃熱循環路部位、を順に通る流路は熱負荷側循環路と成し、前記廃熱吸熱流体の流れを前記主幹廃熱循環路と熱負荷側循環路と間で切り換える流路切り替え手段が設けられている構成をもって課題を解決する手段と成している。   In order to achieve the above object, the present invention is a means for solving the problems with the following configuration. That is, the first invention has a hot water storage tank for storing hot water for hot water supply, and a main waste heat circulation path for circulating the waste heat endothermic fluid that has absorbed the waste heat of the power generator, Is a waste heat utilization heat source system provided with a hot water supply side heat exchanging means for heating the hot water in the hot water storage tank by exchanging heat between the waste heat absorbing fluid and the hot water in the hot water storage tank. A heat load side outgoing pipe for supplying the waste heat endothermic fluid to the load device is branched and connected, and a heat load side return pipe for returning the waste heat endothermic fluid from the heat load device to the main waste heat circuit is the heat It is connected to the downstream side of the branch connection portion of the load side outgoing pipe, and the waste heat absorption fluid supplied from the thermal load side outgoing pipe is passed through the thermal load device to return to the thermal load side. A heat load pipe is provided for delivery to the pipe, and the heat Main waste heat circulation path part leading to the branch connection part of the load side outgoing pipe, the thermal load side outgoing pipe, the thermal load pipe, the thermal load side return pipe, and the connection part of the thermal load side return pipe to the power generator The flow path that passes through the main waste heat circulation path part to the heat exhaust side circulation path is formed as a heat load side circulation path, and the flow path of the waste heat endothermic fluid is switched between the main waste heat heat circulation path and the heat load side circulation path. The structure provided with the switching means is a means for solving the problem.

また、第2の発明は、上記第1の発明の構成を備えたものにおいて、前記熱負荷往管の分岐接続部と熱負荷側戻り管の接続部とは発電装置から給湯側熱交換手段に至る間の主幹廃熱循管路に接続されていることを特徴とする。   Moreover, 2nd invention is provided with the structure of the said 1st invention, The branch connection part of the said heat load outgoing pipe and the connection part of a heat load side return pipe are changed from a power generator to the hot water supply side heat exchange means. It is connected to the main waste heat circuit.

さらに、第3の発明は、給湯の湯を貯める貯湯タンクと、発電装置の廃熱を吸熱させた廃熱吸熱流体を循環させる主幹廃熱循環路とを有し、前記主幹廃熱循環路には前記廃熱吸熱流体と貯湯タンクの湯を熱交換させて貯湯タンク内の湯を加熱する給湯側熱交換手段が設けられている廃熱利用熱源システムにおいて、前記主幹廃熱循環路とは別の、熱負荷側循環流体を循環させる熱負荷側循環路を有し、該熱負荷側循環路には、前記熱負荷側循環流体を通す熱負荷管路を備えた熱負荷装置と、熱負荷側循環路に熱負荷循環流体を循環駆動する熱負荷側循環ポンプと、熱負荷側循環流体の循環流量を調整する循環流量制御手段とが介設され、前記主幹廃熱循環路と熱負荷側循環路との間には廃熱吸熱流体側の熱を熱負荷循環流体に吸熱させる循環流体間熱交換手段が設けられ、この循環流体間熱交換手段の下流側の前記熱負荷側循環路の位置には熱負荷循環流体の温度を検出する熱負荷側流体温度検出手段が設けられるとともに、前記熱負荷側流体温度検出手段の検出温度に基いて前記熱負荷循環流体の温度を指定される設定温度になるように前記循環流量制御手段の熱負荷側循環流体における循環流量の調整量を制御する熱負荷流体温度制御手段が設けられている構成をもって前記課題を解決する手段と成している。   Furthermore, the third invention has a hot water storage tank for storing hot water for hot water supply, and a main waste heat circulation path for circulating the waste heat endothermic fluid that has absorbed the waste heat of the power generation device, and the main waste heat heat circulation path Is a waste heat utilization heat source system provided with hot water supply side heat exchanging means for exchanging heat between the waste heat absorbing fluid and hot water in the hot water storage tank to heat the hot water in the hot water storage tank, and separate from the main waste heat circulation path A heat load side circulation path for circulating the heat load side circulation fluid, the heat load side circulation path including a heat load line for passing the heat load side circulation fluid, and a heat load A heat load circulation pump that circulates and drives the heat load circulation fluid in the side circulation path, and a circulation flow rate control means that adjusts the circulation flow rate of the heat load circulation fluid, the main waste heat circulation path and the heat load side Circulation that makes the heat load circulating fluid absorb the heat of the waste heat endothermic fluid side between the circulation path An interbody heat exchanging means is provided, and a heat load side fluid temperature detecting means for detecting the temperature of the heat load circulating fluid is provided at the position of the heat load side circulation path downstream of the circulating fluid heat exchanging means. The amount of adjustment of the circulation flow rate in the heat load side circulating fluid of the circulation flow rate control means is set so that the temperature of the heat load circulating fluid becomes a specified temperature based on the temperature detected by the heat load side fluid temperature detection means. The heat load fluid temperature control means for controlling is configured as means for solving the above problems.

さらに、第4の発明は、給湯の湯を貯める貯湯タンクと、発電装置の廃熱を吸熱させた廃熱吸熱流体を循環させる主幹廃熱循環路とを有し、前記主幹廃熱循環路には前記廃熱吸熱流体と貯湯タンクの湯を熱交換させて貯湯タンク内の湯を加熱する給湯側熱交換手段が設けられている廃熱利用熱源システムにおいて、前記主幹廃熱循環路には該主幹廃熱循環路を循環する廃熱吸熱流体の循環流量を調整する循環流量制御手段が設けられ、また、前記主幹廃熱循環路とは別の、熱負荷側循環流体を循環させる熱負荷側循環路を有し、該熱負荷側循環管路には、前記熱負荷側循環流体を通す熱負荷管路を備えた熱負荷装置と、熱負荷側循環路に熱負荷循環流体を循環駆動する熱負荷側循環ポンプとが介設され、前記主幹廃熱循環路と熱負荷側循環路との間には廃熱吸熱流体側の熱を熱負荷循環流体に吸熱させる循環流体間熱交換手段が設けられ、この循環流体間熱交換手段の下流側の前記熱負荷側循環路の位置には熱負荷循環流体の温度を検出する熱負荷側流体温度検出手段が設けられるとともに、前記熱負荷側流体温度検出手段の検出温度に基いて前記熱負荷循環流体の温度を指定される設定温度になるように前記循環流量制御手段の廃熱吸熱流体における循環流量の調整量を制御する熱負荷流体温度制御手段が設けられている構成をもって課題を解決する手段と成している。   Furthermore, the fourth invention has a hot water storage tank for storing hot water for hot water supply, and a main waste heat circulation path for circulating the waste heat endothermic fluid that has absorbed the waste heat of the power generation device, Is a waste heat utilization heat source system provided with hot water supply side heat exchange means for heating the hot water in the hot water storage tank by exchanging heat between the waste heat absorbing fluid and the hot water in the hot water storage tank. A circulation flow rate control means for adjusting the circulation flow rate of the waste heat endothermic fluid circulating in the main waste heat circulation path is provided, and the heat load side for circulating the heat load side circulation fluid is provided separately from the main waste heat circulation path A heat load device having a heat load line through which the heat load side circulating fluid passes, and a heat load circulating fluid in the heat load side circuit. A heat load side circulation pump is interposed, and the main waste heat circulation path and the heat load side circulation path In between, there is provided a heat exchange means between circulating fluids that absorbs the heat on the waste heat endothermic fluid side into the heat load circulating fluid, and at the position of the heat load side circulation path downstream of the heat exchange means between the circulating fluids. Thermal load side fluid temperature detecting means for detecting the temperature of the thermal load circulating fluid is provided, and the temperature of the thermal load circulating fluid is set to a specified temperature based on the detected temperature of the thermal load side fluid temperature detecting means. Thus, the heat load fluid temperature control means for controlling the adjustment amount of the circulation flow rate in the waste heat endothermic fluid of the circulation flow rate control means is provided as means for solving the problems.

さらに、第5の発明は、前記第4の発明の構成を備えたものにおいて、主幹廃熱循環路には循環流体間熱交換手段を迂回するバイパス通路が設けられており、循環流量制御手段は廃熱吸熱流体が循環流体間熱交換手段に流れる流量とバイパス通路に流れる流量との流量比を可変して循環流体間熱交換手段に流れる流量を調整する構成と成し、熱負荷流体温度制御手段は前記循環流量制御手段の前記流量比を制御して熱負荷循環流体の温度を制御する構成としたことを特徴とする。   Further, the fifth invention is the one provided with the configuration of the fourth invention, wherein the main waste heat circulation path is provided with a bypass passage that bypasses the heat exchange means between the circulating fluids, and the circulation flow rate control means is The heat load fluid temperature control is configured to adjust the flow rate of the waste heat endothermic fluid flowing to the heat exchange means between the circulating fluids by changing the flow rate ratio between the flow rate of the heat exchange fluid between the circulation fluids and the flow rate of the bypass passage. The means is configured to control the temperature of the heat load circulating fluid by controlling the flow rate ratio of the circulating flow rate control means.

さらに、第6の発明は、前記第1乃至第5の何れか1つの発明の構成を備えたものにおいて、熱負荷側循環路には、熱負荷装置の上流側となる位置に加熱手段を具備する熱源機が介設され、該熱源機は入力する熱負荷循環流体の温度が予め指定される設定温度よりも低いときには前記熱負荷循環流体の温度を前記設定温度に高めて熱負荷装置へ向けて送出する構成としたことを特徴とする。   Furthermore, the sixth invention comprises the structure of any one of the first to fifth inventions, wherein the heat load circuit is provided with a heating means at a position upstream of the heat load device. When the temperature of the input heat load circulating fluid is lower than a preset temperature, the temperature of the heat load circulating fluid is increased to the set temperature and directed to the heat load device. And sending out.

さらに、第7の発明は、前記第2乃至第6の何れか1つの発明の構成を備えたものにおいて、循環流体間熱交換手段と、熱負荷側循環ポンプと、循環流量制御手段と、熱負荷側流体温度検出手段とは、集合されてオプションユニットと成し、該オプションユニットには、廃熱吸熱流体が循環流体間熱交換手段へ入る流入口と、廃熱吸熱流体が循環流体間熱交換手段からユニット外へ送出される廃熱吸熱流体の流出口と、熱負荷循環流体が循環流体間熱交換手段へ入る流入口と、熱負荷循環流体が循環流体間熱交換手段からユニット外へ送出される熱負荷循環流体の流出口とが設けられ、前記廃熱吸熱流体の流入口と流出口は主幹廃熱循環路の対応接続位置に接続され、熱負荷循環流体の流入口と流出口は熱負荷側循環管路の対応接続位置に接続されている構成としたことを特徴とする。   Furthermore, a seventh invention comprises the configuration of any one of the second to sixth inventions, wherein the heat exchange means between the circulating fluid, the heat load side circulation pump, the circulation flow rate control means, the heat The load-side fluid temperature detecting means is assembled into an optional unit, in which the waste heat endothermic fluid enters the heat exchange means between the circulating fluid and the waste heat endothermic fluid is between the circulating fluid heat. The outlet of the waste heat absorption fluid sent out from the exchange means to the outside of the unit, the inlet through which the heat load circulating fluid enters the heat exchange means between the circulating fluids, and the heat load circulating fluid from the heat exchange means between the circulating fluids to the outside of the unit An outlet for the heat load circulating fluid to be sent out, and an inlet and an outlet for the waste heat endothermic fluid are connected to corresponding connection positions of the main waste heat circulation path, and an inlet and an outlet for the heat load circulating fluid Is connected to the corresponding connection position on the circulation line on the heat load side. And characterized in that a configuration that is.

さらに、第8の発明は、前記第6の発明の構成を備えたものにおいて、循環流体間熱交換手段と、循環流量制御手段と、熱負荷側流体温度検出手段とは、集合されてオプションユニットと成し、該オプションユニットには、廃熱吸熱流体が循環流体間熱交換手段へ入る流入口と、廃熱吸熱流体が循環流体間熱交換手段からユニット外へ送出される廃熱吸熱流体の流出口と、熱負荷循環流体が循環流体間熱交換手段へ入る流入口と、熱負荷循環流体が循環流体間熱交換手段からユニット外へ送出される熱負荷循環流体の流出口とが設けられ、前記廃熱吸熱流体の流入口と流出口は主幹廃熱循環路の対応接続位置に接続され、熱負荷循環流体の流入口と流出口は熱負荷側循環管路の対応接続位置に接続されている構成としたことを特徴とする。   Further, the eighth invention is the one provided with the configuration of the sixth invention, wherein the heat exchange means between the circulating fluid, the circulation flow rate control means, and the heat load side fluid temperature detection means are assembled into an optional unit. The optional unit includes an inlet through which the waste heat endothermic fluid enters the heat exchange means between the circulating fluids, and a waste heat endothermic fluid that is sent out of the unit from the heat exchange means between the circulating fluids. An outlet, an inlet through which the heat load circulating fluid enters the heat exchange means between the circulating fluids, and an outlet of the heat load circulating fluid from which the heat load circulating fluid is sent out of the unit from the heat exchange means between the circulating fluids are provided. The inlet and outlet of the waste heat endothermic fluid are connected to the corresponding connection positions of the main waste heat circulation path, and the inlet and outlet of the heat load circulation fluid are connected to the corresponding connection positions of the heat load side circulation pipe. It is characterized by having a configuration.

さらに、第9の発明は、前記第1乃至第8の何れか1つの発明の構成を備えたものにおいて、廃熱吸熱流体と熱負荷循環流体は温水であり、熱負荷装置は熱負荷管路を温水が流通する温水パイプとした暖房装置である構成としたことを特徴とする。   Further, a ninth invention is the one provided with any one of the first to eighth inventions, wherein the waste heat endothermic fluid and the heat load circulating fluid are hot water, and the heat load device is a heat load pipe. It is set as the structure which is the heating apparatus made into the hot water pipe through which warm water distribute | circulates.

第1〜第9の発明によれば、発電装置の廃熱を利用して、貯湯タンク内の給湯の湯の加熱源としての機能と、暖房装置等の熱負荷装置の加熱源としての機能とを発揮することができる。このように、1つのシステムで、給湯の湯の加熱源としての機能と、熱負荷装置の加熱源としての機能とを兼備し、それぞれの機能を構成するシステムの一部分を兼用できるので、それぞれの機能を別個独立のシステムで構築する場合に比べ、システム構築が簡易となり、システム構築コストの低減化を図ることができる。   According to the first to ninth inventions, using the waste heat of the power generation device, a function as a heating source for hot water in a hot water storage tank, and a function as a heating source for a heat load device such as a heating device Can be demonstrated. In this way, since one system has both a function as a heating source of hot water for hot water supply and a function as a heating source for a heat load device, it is possible to share a part of the system that constitutes each function. Compared with the case where functions are constructed by separate and independent systems, system construction is simplified, and system construction costs can be reduced.

また、第3〜第9の発明によれば、熱負荷側流体温度検出手段によって検出される熱負荷循環流体の温度に応じて熱負荷側循環流体又は廃熱吸熱流体の循環流量が制御されるので、熱負荷循環流体の温度が設定温度となるように熱負荷側循環流体と廃熱吸熱流体との循環流体間熱交換手段での単位流量当りの熱交換量が制御されることとなり、熱負荷装置に設定温度の熱負荷側循環流体が供給されることで、熱負荷装置の加熱源としての機能を良好、かつ、安定化させることができる。しかも、熱負荷循環流体の温度制御は熱負荷側循環流体又は廃熱吸熱流体の循環流量を制御する構成なので、その熱負荷循環流体の温度制御を簡易な装置構成で行うことができる。   According to the third to ninth aspects, the circulation flow rate of the heat load side circulating fluid or the waste heat endothermic fluid is controlled according to the temperature of the heat load circulating fluid detected by the heat load side fluid temperature detecting means. Therefore, the heat exchange amount per unit flow rate in the heat exchange means between the circulating fluid between the heat load side circulating fluid and the waste heat endothermic fluid is controlled so that the temperature of the heat load circulating fluid becomes the set temperature. By supplying the load device with the heat load side circulating fluid at the set temperature, the function as a heating source of the heat load device can be improved and stabilized. Moreover, since the temperature control of the heat load circulating fluid is configured to control the circulation flow rate of the heat load circulating fluid or the waste heat endothermic fluid, the temperature control of the heat load circulating fluid can be performed with a simple device configuration.

特に、第6〜第9の発明においては、熱負荷側循環路に熱源機が介設されているので、循環流体間熱交換手段での熱交換量が熱負荷循環流体の温度を設定温度に高めるのに要する熱交換量に達しない不足の熱交換量しか得られない状況になったとしても、その不足分の熱交換量を熱源機によって補うことができ、熱負荷装置の稼動時には常時安定した設定温度の熱負荷循環流体を熱負荷装置に供給することができ、熱負荷装置の加熱源としての機能の信頼性をより一層高めることができる。   In particular, in the sixth to ninth inventions, since the heat source device is interposed in the heat load side circulation path, the amount of heat exchange in the heat exchange means between the circulating fluids sets the temperature of the heat load circulating fluid to the set temperature. Even if only a short heat exchange amount that does not reach the heat exchange amount required to increase the temperature can be obtained, the heat exchange amount can be supplemented by the heat source unit, and it is always stable when the heat load device is in operation. Thus, the heat load circulating fluid having the set temperature can be supplied to the heat load device, and the reliability of the function as the heating source of the heat load device can be further enhanced.

さらに、第7〜9の発明においては、主幹廃熱循環路を通る廃熱吸熱流体と熱負荷側循環路を通る熱負荷循環流体との熱交換を行う構成部分や、熱負荷循環流体の温度を制御する構成部分がオプションユニットとして集約されているので、このオプションユニットを主幹廃熱循環路および熱負荷装置側の経路(管路)に接続するだけで本発明の廃熱利用熱源システムが構築されることとなり、そのシステムの構築が容易であり、システム構築のコスト節減を図ることができる。   Further, in the seventh to ninth inventions, the temperature of the heat exchanging fluid, the component that performs heat exchange between the waste heat endothermic fluid passing through the main waste heat circulation path and the heat load circulating fluid passing through the heat load side circulation path, or Since the components that control the system are integrated as an optional unit, the waste heat utilization heat source system of the present invention can be constructed simply by connecting this optional unit to the main waste heat circulation path and the path (pipe) on the heat load device side. As a result, the system can be easily constructed, and the cost of system construction can be reduced.

特に、発電装置と貯湯タンクとを主幹廃熱循環路で連通した給湯熱源のシステムが既に設備されている施設(例えば、高校)に、熱負荷装置の設備を付加するような場合(例えば、高校に熱負荷装置としての暖房装置を設置して高校を老人ホームに転用するような場合)には、熱負荷装置の専用システムを構築する必要がなく、主幹廃熱循環路を途中で分断し、熱負荷装置に接続したオプションユニットをその分断した管路に接続するだけの作業で給湯熱源のシステムに熱負荷装置のシステムを付加したシステム(本発明の廃熱利用熱源システム)が構築されるので、設備の転用改善が非常に容易となる。   In particular, when a heat load device is added to a facility (for example, a high school) that already has a hot water supply heat source system in which a power generation device and a hot water storage tank are connected by a main waste heat circulation path (for example, a high school) If you install a heating device as a heat load device and convert a high school into a nursing home), you do not need to build a dedicated system for the heat load device. Because the system (the waste heat utilization heat source system of the present invention) is constructed by adding the system of the heat load device to the hot water supply heat source system simply by connecting the option unit connected to the heat load device to the divided pipe line Improvement of equipment diversion is very easy.

以下、本発明の実施の形態を図面に基き説明する。なお、各実施の形態(実施形態例)において、前に説明した実施の形態と共通の構成部分には共通の符号を付し、後の実施の形態での重複説明は省略又は簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that, in each embodiment (embodiment example), common reference numerals are given to components common to the above-described embodiment, and redundant description in the following embodiment is omitted or simplified.

図1には本発明に係る廃熱利用熱源システムの第1の実施の形態(第1の実施形態例)が示されている。この第1の実施形態例の廃熱利用熱源システムは、給湯ユニット7と、熱負荷装置としての暖房装置1と、制御装置21と、給湯ユニット7と発電装置30との間で廃熱吸熱流体としての冷却水を循環させる主幹廃熱循環路6と、暖房装置1と発電装置30と間で廃熱吸熱流体としての冷却水を循環させる熱負荷側循環路22とを有して構成されている。   FIG. 1 shows a first embodiment (first embodiment) of a waste heat utilization heat source system according to the present invention. The waste heat utilization heat source system according to the first embodiment includes a hot water supply unit 7, a heating device 1 as a heat load device, a control device 21, and a waste heat endothermic fluid between the hot water supply unit 7 and the power generation device 30. The main waste heat circulation path 6 that circulates the cooling water and the heat load side circulation path 22 that circulates the cooling water as the waste heat endothermic fluid between the heating device 1 and the power generation device 30. Yes.

発電装置30は例えば、エンジン発電機、タービン発電機、燃料電池等の発電機能を有する装置であり、発電動作に伴って廃熱を発生させる。主幹廃熱循環路6は発電装置30を通して冷却水(廃熱吸熱流体)を循環させ、発電装置30が発生する廃熱を冷却水に吸熱して回収する。図1の例では、主幹廃熱循環路6に、三方弁18と、液−液熱交換器12と、シスターン13と、主幹循環ポンプ14とが介設されており、発電装置30から、三方弁18、液−液熱交換器12、シスターン13、主幹循環ポンプ14を順に経て発電装置30に戻る管路が主幹廃熱循環路6を構成している。この主幹廃熱循環路6を通しての冷却水(廃熱吸熱流体)の循環駆動は主幹循環ポンプ14の運転により行われる。   The power generation device 30 is a device having a power generation function, such as an engine generator, a turbine generator, or a fuel cell, and generates waste heat along with the power generation operation. The main waste heat circulation path 6 circulates cooling water (waste heat endothermic fluid) through the power generator 30 and absorbs and recovers the waste heat generated by the power generator 30 into the cooling water. In the example of FIG. 1, a three-way valve 18, a liquid-liquid heat exchanger 12, a cistern 13, and a main circulation pump 14 are interposed in the main waste heat circulation path 6. A main pipe waste heat circulation path 6 constitutes a pipe line that returns to the power generator 30 through the valve 18, the liquid-liquid heat exchanger 12, the cistern 13, and the main circulation pump 14 in this order. Circulation driving of the cooling water (waste heat endothermic fluid) through the main waste heat circulation path 6 is performed by operation of the main circulation pump 14.

給湯ユニット7は、貯湯タンク8と、該貯湯タンク8内の湯を循環させるタンク湯水循環路9とを有して構成されている。タンク湯水循環路9には、水量制御弁10と、タンク循環ポンプ11と、給湯側熱交換手段としての液−液熱交換器12とが介設されており、タンク循環ポンプ11を駆動することにより、貯湯タンク8内の湯は、該貯湯タンク8から、水量制御弁10、タンク循環ポンプ11、液−液熱交換器12を順に通って貯湯タンク8に戻るタンク湯水循環路9の経路で循環駆動される。   The hot water supply unit 7 includes a hot water storage tank 8 and a tank hot water circulation path 9 for circulating hot water in the hot water storage tank 8. The tank hot water circulation path 9 is provided with a water amount control valve 10, a tank circulation pump 11, and a liquid-liquid heat exchanger 12 as hot water supply side heat exchange means, and drives the tank circulation pump 11. Thus, the hot water in the hot water storage tank 8 passes from the hot water storage tank 8 through the water amount control valve 10, the tank circulation pump 11, the liquid-liquid heat exchanger 12, and returns to the hot water storage tank 8 in this order. Circulation driven.

液−液熱交換器12は、内部に伝熱媒体として例えば水が満たされており、この液−液熱交換器12内に主幹廃熱循環路6の管路と、タンク湯水循環路9の管路とが通され、液−液熱交換器12内の熱媒体を介して主幹廃熱循環路6を循環する冷却水(廃熱吸熱流体)の熱が、タンク湯水循環路9を通る貯湯タンク8内の湯に吸熱される。つまり、主幹廃熱循環路6を通る冷却水とタンク湯水循環路9を通る貯湯タンク8内の湯(給湯の湯)との熱交換が行なわれ、貯湯タンク8内の湯の温度が給湯に適した温度に高められて貯湯タンク8に貯湯される。なお、貯湯タンク8には給湯管15が接続され、貯湯タンク8内の湯は給湯管15を通して外部へ給湯される。また、貯湯タンク8には減圧弁17を介して給水管16が接続され、給湯により減少した分の水量が給水管16を通して貯湯タンク8内に補充される。   The liquid-liquid heat exchanger 12 is filled with, for example, water as a heat transfer medium. The liquid-liquid heat exchanger 12 includes a main waste heat circulation path 6 and a tank hot water circulation path 9. Hot water stored in the tank hot water circulation path 9 passes through the pipe and heat of the cooling water (waste heat endothermic fluid) circulating through the main waste heat circulation path 6 through the heat medium in the liquid-liquid heat exchanger 12. Heat is absorbed by the hot water in the tank 8. That is, heat exchange is performed between the cooling water passing through the main waste heat circulation path 6 and the hot water (hot water in the hot water supply tank) in the hot water storage tank 8 passing through the tank hot water circulation path 9, and the temperature of the hot water in the hot water storage tank 8 is the hot water supply. The temperature is raised to a suitable temperature and stored in the hot water storage tank 8. A hot water supply pipe 15 is connected to the hot water storage tank 8, and hot water in the hot water storage tank 8 is supplied to the outside through the hot water supply pipe 15. A water supply pipe 16 is connected to the hot water storage tank 8 via a pressure reducing valve 17, and the amount of water reduced by the hot water supply is replenished into the hot water storage tank 8 through the water supply pipe 16.

暖房装置1は内部に前記冷却水(廃熱吸熱流体)を通す熱負荷管路が形成されており、この熱負荷管路を冷却水(発電装置30の廃熱を吸熱した高温の冷却水)が通水することにより、暖房装置1から熱が放熱され、暖房装置1が設置されている部屋等の暖房が行われる。暖房装置1として、様々な構成の装置を採用し得るが、一例として、図6には、フローリング等の床の暖房装置1として機能する暖房マット1が示されている。   The heating device 1 has a heat load pipe through which the cooling water (waste heat endothermic fluid) is passed. Cooling water (high temperature cooling water that has absorbed the waste heat of the power generator 30) is passed through the heat load pipe. When the water is passed through, the heat is radiated from the heating device 1 and the room where the heating device 1 is installed is heated. Although the apparatus of various structures can be employ | adopted as the heating apparatus 1, as an example, the heating mat 1 which functions as the heating apparatus 1 of floors, such as a flooring, is shown by FIG.

この暖房マット1はマット材2に骨材としての根太3を配置し、これらの根太3を迂回させながらマット材2に熱負荷管路としての温水パイプ4を引き回し敷設したものである。マット材2にはヘッダー5が配置され、このヘッダー5に熱負荷側往管19の出口端と、熱負荷側戻り管20の入り口端とが接続される。図6の例では、互いに隣り合わせにして敷設された2本の温水パイプ4a、4bの一端側がヘッダー5の右側に接続され、温水パイプ4a、4bの他端側がヘッダー5の左側に接続されている。   In this heating mat 1, joists 3 as aggregates are arranged on mat members 2, and hot water pipes 4 as heat load pipes are routed and laid on the mat members 2 while detouring these joists 3. A header 5 is disposed on the mat member 2, and an outlet end of the heat load side outgoing pipe 19 and an inlet end of the heat load side return pipe 20 are connected to the header 5. In the example of FIG. 6, one end side of two hot water pipes 4 a and 4 b laid next to each other is connected to the right side of the header 5, and the other end side of the hot water pipes 4 a and 4 b is connected to the left side of the header 5. .

ヘッダー5の内部には、熱負荷側往管19から供給される温水(前記廃熱吸熱流体)を右側に接続された温水パイプ4aと左側に接続された温水パイプ4bに分配送水する流路と、右側の温水パイプ4bから戻る温水と左側の温水パイプ4aから戻る温水を統合して熱負荷側戻り管20に送出する流路が形成されており、熱負荷側往管19から供給される温水が温水パイプ4a、4bを通ることで、暖房マット1の表面から温水の熱が放熱されて、暖房マット1が敷設されている部屋等の床面暖房が行われる。なお、一般的には、マット材2の表面には放熱特性を高めるためにアルミ箔等の放熱板が貼られるが、これらの暖房マット1自体の構成は周知であるので、暖房マット1自体の詳細説明は省略する。   Inside the header 5, a flow path for distributing the hot water (the waste heat absorption fluid) supplied from the heat load side outgoing pipe 19 to the hot water pipe 4 a connected to the right side and the hot water pipe 4 b connected to the left side. In addition, a flow path is formed in which the warm water returning from the right hot water pipe 4 b and the warm water returning from the left hot water pipe 4 a are integrated and sent to the heat load side return pipe 20. When the hot water passes through the hot water pipes 4a and 4b, the heat of the hot water is radiated from the surface of the heating mat 1, and floor heating of the room where the heating mat 1 is laid is performed. In general, a heat radiating plate such as an aluminum foil is attached to the surface of the mat member 2 in order to enhance heat dissipation characteristics. However, since the configuration of the heating mat 1 itself is well known, Detailed description is omitted.

図1に示されるように、熱負荷側往管19の入口端側は三方弁18を介して主幹廃熱循環路6に分岐接続されており、熱負荷側戻り管20の出口端も主幹廃熱循環路6に接続されており、熱負荷側戻り管20の出口端の接続位置は熱負荷側往管19の入口端側の分岐接続部よりも下流側と成している。図1の例では、これら、熱負荷側往管19の入口端側の分岐接続部と、熱負荷側戻り管20の出口端の接続部とは共に、発電装置30から液−液熱交換器12に至る間の主幹廃熱循環路6の管路に接続されている。   As shown in FIG. 1, the inlet end side of the heat load side outgoing pipe 19 is branched and connected to the main waste heat circulation path 6 via a three-way valve 18, and the outlet end of the heat load side return pipe 20 is also main waste. It is connected to the heat circulation path 6, and the connection position of the outlet end of the heat load side return pipe 20 is downstream of the branch connection portion on the inlet end side of the heat load side outgoing pipe 19. In the example of FIG. 1, both of the branch connection portion on the inlet end side of the heat load side outgoing pipe 19 and the connection portion on the outlet end side of the heat load side return pipe 20 are connected from the power generator 30 to the liquid-liquid heat exchanger. 12 to the main waste heat circulation path 6.

発電装置30から、三方弁18(熱負荷側往管19の分岐接続部)、熱負荷側往管19、暖房マット(暖房装置)1、熱負荷側戻り管20、液−液熱交換器12、シスターン13、主幹循環ポンプ14を順に経て発電装置30に戻る経路(流路)は熱負荷側循環路22を構成する。なお、熱負荷側循環路22の経路のうち、発電装置30から熱負荷側往管19の分岐接続部(三方弁18)に至る経路と、熱負荷側戻り管20の接続部から、液−液熱交換器12、シスターン13、主幹循環ポンプ14を経て発電装置30に戻るまでの経路は、主幹廃熱循環路6の経路との兼用経路と成している。三方弁18は流路切り替え手段として機能し、冷却水(廃熱吸熱流体)の流れを主幹廃熱循環路6を通る流れと、熱負荷側循環路22を通る流れとの間で選択的に切り替えるものである。   From the power generation device 30, the three-way valve 18 (branch connection part of the heat load side outgoing pipe 19), the heat load side outgoing pipe 19, the heating mat (heating device) 1, the heat load side return pipe 20, and the liquid-liquid heat exchanger 12. The path (flow path) that returns to the power generator 30 through the systern 13 and the main circulation pump 14 in this order constitutes a heat load side circulation path 22. Among the paths of the thermal load side circulation path 22, the path from the power generator 30 to the branch connection part (three-way valve 18) of the thermal load side outgoing pipe 19 and the connection part of the thermal load side return pipe 20, liquid − The path from the liquid heat exchanger 12, the cistern 13, and the main circulation pump 14 to the power generation device 30 is a path that is combined with the main waste heat circulation path 6. The three-way valve 18 functions as a flow path switching means, and selectively selects the flow of the cooling water (waste heat endothermic fluid) between the flow passing through the main waste heat circulation path 6 and the flow passing through the heat load side circulation path 22. It is to switch.

制御装置21は廃熱利用熱源システムの動作を制御するもので、予め与えられる動作制御のプログラムに従い、水量制御弁10、タンク循環ポンプ11、主幹循環ポンプ14、三方弁18等の動作を制御する。この制御装置21には必要に応じ、システム運転のオン、オフを指令したり、暖房装置(暖房マット)1の運転のオン、オフ等を指令するリモコン23が無線又は有線で信号接続される。   The control device 21 controls the operation of the waste heat utilization heat source system, and controls the operation of the water amount control valve 10, the tank circulation pump 11, the main circulation pump 14, the three-way valve 18 and the like according to an operation control program given in advance. . A remote controller 23 that commands on / off of the system operation or commands on / off of the operation of the heating device (heating mat) 1 is wirelessly or wiredly connected to the control device 21 as necessary.

次に、制御装置21による廃熱利用熱源システムの制御動作を簡単に説明する。発電装置30が稼動されている状況のときには、主幹循環ポンプ14が駆動されるが、このとき、リモコン23等から暖房装置1のオン指令(運転指令)がされていないときには、三方弁18を主幹廃熱循環路6側に切り替え、主幹循環ポンプ14が駆動される。そうすると、冷却水が主幹廃熱循環路6を循環し、発電装置30を通るときに発電装置30の廃熱を吸熱して冷却水の温度が例えば70〜80℃に高められる。主幹循環ポンプ14の駆動と同時又は所定のタイミングでタンク循環ポンプ11が駆動されることで、貯湯タンク8内の湯はタンク湯水循環路9を循環する。   Next, the control operation of the waste heat utilizing heat source system by the control device 21 will be briefly described. When the power generator 30 is in operation, the main circulation pump 14 is driven. At this time, when the ON command (operation command) of the heating device 1 is not issued from the remote controller 23 or the like, the three-way valve 18 is connected to the main pump 18. Switching to the waste heat circulation path 6 side, the main circulation pump 14 is driven. Then, when the cooling water circulates through the main waste heat circulation path 6 and passes through the power generation device 30, the waste heat of the power generation device 30 is absorbed and the temperature of the cooling water is increased to, for example, 70 to 80 ° C. The hot water in the hot water storage tank 8 circulates in the tank hot water circulation path 9 by driving the tank circulation pump 11 simultaneously with the driving of the main circulation pump 14 or at a predetermined timing.

タンク湯水循環路9を循環する湯は液−液熱交換器12を通るときに主幹廃熱循環路6を通る高温の冷却水との熱交換により加熱されて湯温が高められ、貯湯タンク8内の湯は給湯に適した湯温の状態に維持される。なお、必要に応じ、液−液熱交換器12に入る冷却水の温度を検出する温度センサと、貯湯タンク8内の湯温を検出する温度センサを設け、冷却水の温度(T)と貯湯タンク8内の湯の温度(T)との温度差ΔT(0<ΔT=T−T)に応じて水量制御弁10の通水量を制御してもよい。この場合は、温度差ΔTが小さくなるにつれ水量制御弁10の通水量を徐々に絞り、液−液熱交換器12から貯湯タンク8に戻る湯温をより高めるようにする。また、温度差ΔTが予め定めたしきい値よりも小さくなったとき、又は、冷却水の温度(T)が貯湯タンク8内の湯の温度(T)以下になるときにはタンク循環ポンプ11を停止する等の制御構成がとられる。 Hot water circulating in the tank hot water circulation path 9 is heated by heat exchange with high-temperature cooling water passing through the main waste heat circulation path 6 when passing through the liquid-liquid heat exchanger 12, and the hot water temperature is increased. The hot water inside is maintained at a hot water temperature suitable for hot water supply. If necessary, a temperature sensor that detects the temperature of the cooling water entering the liquid-liquid heat exchanger 12 and a temperature sensor that detects the temperature of the hot water in the hot water storage tank 8 are provided, and the temperature of the cooling water (T W ) The water flow rate of the water amount control valve 10 may be controlled in accordance with a temperature difference ΔT (0 <ΔT = T W −T H ) with the temperature (T H ) of the hot water in the hot water storage tank 8. In this case, as the temperature difference ΔT becomes smaller, the water flow rate of the water amount control valve 10 is gradually reduced so that the hot water temperature returned from the liquid-liquid heat exchanger 12 to the hot water storage tank 8 is further increased. Further, when the temperature difference ΔT becomes smaller than a predetermined threshold value or when the temperature of the cooling water (T W ) becomes equal to or lower than the temperature of the hot water in the hot water storage tank 8 (T H ), the tank circulation pump 11 The control configuration such as stopping is taken.

リモコン23等から暖房装置1の運転指令が制御装置21に加えられたときには、三方弁18を熱負荷側循環路22側へ切り替える。この結果、冷却水(廃熱吸熱流体)は熱負荷側循環路22を循環する。つまり、発電装置30から出た高温の冷却水は三方弁18から熱負荷側往管19を経て暖房装置1に供給され、暖房装置1の熱負荷管路を通る高温の冷却水の熱が暖房装置1から放熱されて暖房が行われる。暖房装置1の熱負荷管路の出口から熱負荷側戻り管20を通した高温の冷却水は、液−液熱交換器12に供給され、前記したように、液−液熱交換器12内で、熱負荷側循環路22を通る冷却水とタンク湯水循環路9を通る湯との熱交換により、貯湯タンク8内の湯が加熱される。液−液熱交換器12内の熱交換により低温化した冷却水は再び発電装置30へ供給され、発電装置30の冷却、つまり、発電装置30の廃熱の吸熱を行い、高温化されて再び暖房装置1へ向けて熱負荷側循環路22を循環し、暖房装置1の暖房と貯湯タンク8内の湯の加熱が引き続き行われる。   When an operation command for the heating device 1 is applied to the control device 21 from the remote controller 23 or the like, the three-way valve 18 is switched to the heat load side circulation path 22 side. As a result, the cooling water (waste heat absorption fluid) circulates in the heat load side circulation path 22. In other words, the high-temperature cooling water discharged from the power generation device 30 is supplied from the three-way valve 18 to the heating device 1 via the heat load side outgoing pipe 19, and the heat of the high-temperature cooling water passing through the heat load pipeline of the heating device 1 is heated. Heat is performed by radiating heat from the apparatus 1. The high-temperature cooling water that has passed through the heat load side return pipe 20 from the outlet of the heat load pipeline of the heating device 1 is supplied to the liquid-liquid heat exchanger 12 and, as described above, in the liquid-liquid heat exchanger 12 Thus, the hot water in the hot water storage tank 8 is heated by heat exchange between the cooling water passing through the heat load side circulation path 22 and the hot water passing through the tank hot water circulation path 9. The cooling water lowered in temperature by the heat exchange in the liquid-liquid heat exchanger 12 is supplied again to the power generation device 30, and the power generation device 30 is cooled, that is, the waste heat of the power generation device 30 is absorbed, and the temperature is raised again. The heat load side circulation path 22 is circulated toward the heating device 1, and the heating of the heating device 1 and the hot water in the hot water storage tank 8 are continuously performed.

この実施形態例によれば、暖房装置1側の熱負荷側往管19と熱負荷側戻り管20を主幹廃熱循環路6の管路に接続するだけで、貯湯タンク8内の湯の加熱源としての機能のシステムに暖房装置1の暖房熱源の機能としての機能を付加することができ、主幹廃熱循環路6の経路の大部分を熱負荷側循環路22の経路として兼用できるので、システムの構築が容易となり、給湯加熱源の機能と暖房熱源(加熱源)の機能を兼備したシステムを安価に構築することが可能である。   According to this embodiment, the hot water in the hot water storage tank 8 can be heated only by connecting the heat load side outgoing pipe 19 and the heat load side return pipe 20 on the heating device 1 side to the main waste heat circulation path 6. Since the function as the function of the heating heat source of the heating device 1 can be added to the system functioning as the source, and most of the path of the main waste heat circulation path 6 can also be used as the path of the heat load side circulation path 22, The system can be easily constructed, and it is possible to construct a system having both the function of the hot water supply heating source and the function of the heating heat source (heating source) at a low cost.

図2には本発明に係る廃熱利用熱源システムの第2の実施形態例が示されている。この第2の実施形態例が前記第1の実施形態例と異なる点は、主幹廃熱循環路6と熱負荷側循環路22とを別個独立の循環路構成としたことである。この第2の実施形態例では、図2(a)に示されるように、主幹廃熱循環路6と熱負荷側循環路22とが近接して通る経路(管路)部位に循環流体間熱交換手段としての液−液熱交換器24を介設し、この液−液熱交換器24内に主幹廃熱循環路6の管路の一部と熱負荷側循環路22の管路の一部とを通し、主幹廃熱循環路6を通る冷却水(廃熱吸熱流体)と熱負荷側循環路22を通る熱負荷循環流体とを熱交換させ、主幹廃熱循環路6を通る高温の冷却水を熱源として熱負荷循環流体を加熱する構成と成している。なお、液−液熱交換器24の構成は前述した液−液熱交換器12の構成と同じである。また、熱負荷循環流体は熱伝導性を有する流体の熱媒体であれば特に材料は限定されないが、ここでは、水が熱負荷循環流体として使用されている。   FIG. 2 shows a second embodiment of the waste heat utilization heat source system according to the present invention. The second embodiment differs from the first embodiment in that the main waste heat circulation path 6 and the heat load side circulation path 22 have separate circulation path configurations. In the second embodiment, as shown in FIG. 2 (a), the heat between the circulating fluids is passed through a path (pipe line) portion through which the main waste heat circulation path 6 and the heat load side circulation path 22 pass close to each other. A liquid-liquid heat exchanger 24 is provided as an exchange means, and a part of the main waste heat circulation path 6 and one of the heat load side circulation paths 22 are provided in the liquid-liquid heat exchanger 24. The coolant (waste heat endothermic fluid) passing through the main waste heat circulation path 6 and the heat load circulation fluid passing through the heat load side circulation path 22 are subjected to heat exchange, and the high temperature passing through the main waste heat circulation path 6 The cooling fluid is used as a heat source to heat the heat load circulating fluid. The configuration of the liquid-liquid heat exchanger 24 is the same as the configuration of the liquid-liquid heat exchanger 12 described above. The heat load circulating fluid is not particularly limited as long as it is a heat medium of heat-conductive fluid, but here water is used as the heat load circulating fluid.

液−液熱交換器24の下流側の該液−液熱交換器24から暖房装置(暖房マット)1に至る経路(管路)は熱負荷側往管19と成し、暖房装置1から液−液熱交換器24に戻る経路は熱負荷側戻り管20と成し、液−液熱交換器24から、熱負荷側往管19、暖房装置1、熱負荷側戻り管20を順に経て液−液熱交換器24に戻る経路によって熱負荷側循環路22が構成される。熱負荷側往管19には液−液熱交換器24の下流側位置に熱負荷循環流体の温度を検出するサーミスタ等からなる熱負荷側流体温度検出手段としての熱負荷側温度センサ27と、循環流量制御手段としての水量制御弁26が設けられている。   A path (pipe) from the liquid-liquid heat exchanger 24 downstream of the liquid-liquid heat exchanger 24 to the heating device (heating mat) 1 forms a heat load side outgoing pipe 19, and the liquid from the heating device 1 The path returning to the liquid heat exchanger 24 is formed by the heat load side return pipe 20, and the liquid-liquid heat exchanger 24 passes through the heat load side outgoing pipe 19, the heating device 1, and the heat load side return pipe 20 in order. The heat load side circulation path 22 is constituted by a path returning to the liquid heat exchanger 24. A thermal load side temperature sensor 27 as a thermal load side fluid temperature detecting means including a thermistor for detecting the temperature of the thermal load circulating fluid at a downstream position of the liquid-liquid heat exchanger 24 in the thermal load side outgoing pipe 19; A water amount control valve 26 as a circulation flow rate control means is provided.

そして、水量制御弁26の下流側の位置で、熱負荷側往管19は複数に分岐され、各分岐された熱負荷側分岐往管19aは開閉弁29を介して複数の場所に設置されている暖房装置の内の対応する暖房装置1に接続されている。同様に、熱負荷側戻り管20の上流側も複数に分岐され、分岐された各熱負荷側分岐戻り管20aはそれぞれ対応する暖房装置1に接続されている(図6参照)。   Then, at the downstream side of the water amount control valve 26, the thermal load side outgoing pipe 19 is branched into a plurality of branches, and each branched thermal load side outgoing pipe 19a is installed at a plurality of locations via the on-off valve 29. The heating device is connected to a corresponding heating device 1. Similarly, the upstream side of the heat load side return pipe 20 is also branched into a plurality of branches, and each of the branched heat load side branch return pipes 20a is connected to the corresponding heating device 1 (see FIG. 6).

各熱負荷側分岐戻り管20aが統合された熱負荷側戻り管20にはシスターン28と熱負荷側循環ポンプ25とが介設されており、熱負荷側循環ポンプ25を駆動することによって熱負荷循環流体は熱負荷側循環路22を循環する。熱負荷側往管19の熱負荷側温度センサ27と水量制御弁26は暖房装置1に供給される熱負荷循環流体の温度を予め与えられる設定温度となるように制御するために設けられ、この温度制御は制御装置21の熱負荷流体温度制御手段40の制御信号によって行われる。   The heat load side return pipe 20 in which the heat load side branch return pipes 20a are integrated is provided with a systern 28 and a heat load side circulation pump 25. By driving the heat load side circulation pump 25, the heat load is returned. The circulating fluid circulates through the heat load side circulation path 22. The heat load side temperature sensor 27 and the water amount control valve 26 of the heat load side outgoing pipe 19 are provided for controlling the temperature of the heat load circulating fluid supplied to the heating device 1 so as to be a preset temperature. The temperature control is performed by a control signal from the heat load fluid temperature control means 40 of the control device 21.

図2(a)は、制御装置21の前記熱負荷流体温度制御手段40の構成例を示すもので、熱負荷流体温度制御手段40は開弁量制御部34と、メモリ35とを有している。メモリ35には、例えば、水量制御弁26の開弁量の変化量と熱負荷循環流体の温度変化量との関係を示す制御データが格納されている。開弁量制御部34は熱負荷側温度センサ27から液−液熱交換器24で熱交換された後の熱負荷循環流体の温度検出情報を取り込む。そして、リモコン23で指令(指定)された設定温度と熱負荷循環流体の検出温度とを比較し、検出温度がメモリ35等に予め格納されている設定温度に対する許容範囲から外れたときには前記制御データに基いて検出温度を設定温度にするための開弁量の変化量を演算等により求め、水量制御弁26の開弁量をその求めた変化量だけ変化させる。   FIG. 2A shows a configuration example of the thermal load fluid temperature control means 40 of the control device 21, and the thermal load fluid temperature control means 40 has a valve opening amount control unit 34 and a memory 35. Yes. The memory 35 stores, for example, control data indicating the relationship between the amount of change in the valve opening amount of the water amount control valve 26 and the amount of change in temperature of the heat load circulating fluid. The valve opening amount control unit 34 takes in the temperature detection information of the heat load circulating fluid after heat exchange is performed by the liquid-liquid heat exchanger 24 from the heat load side temperature sensor 27. Then, the set temperature commanded (designated) by the remote controller 23 is compared with the detected temperature of the heat load circulating fluid, and when the detected temperature deviates from the allowable range for the set temperature stored in advance in the memory 35 or the like, the control data The amount of change in the valve opening amount for setting the detected temperature to the set temperature is obtained by calculation or the like, and the valve opening amount of the water amount control valve 26 is changed by the obtained amount of change.

この水量制御弁26の開弁量の調整量の制御、つまり、熱負荷循環流体の循環流量を制御することにより、液−液熱交換器24での主幹廃熱循環路6を通る高温の冷却水と、熱負荷側循環路22を通る熱負荷循環流体との単位流量当りの熱交換量が変化し、これに伴い熱負荷循環流体の温度が変化し(熱負荷循環流体の流量が大きくなれば、熱負荷循環流体の温度が低下方向に変化し、流量が小さくなれば、熱負荷循環流体の温度は上昇方向に変化し)、熱負荷循環流体の温度は設定温度に制御される。   By controlling the adjustment amount of the water amount control valve 26, that is, by controlling the circulation flow rate of the heat load circulating fluid, the high-temperature cooling through the main waste heat circulation path 6 in the liquid-liquid heat exchanger 24 is performed. The amount of heat exchange per unit flow rate between the water and the heat load circulating fluid passing through the heat load side circulation path 22 changes, and the temperature of the heat load circulating fluid changes accordingly (the flow rate of the heat load circulating fluid increases). For example, if the temperature of the heat load circulating fluid changes in the decreasing direction and the flow rate decreases, the temperature of the heat load circulating fluid changes in the increasing direction), and the temperature of the heat load circulating fluid is controlled to the set temperature.

なお、熱負荷循環流体の温度制御は必ずしも上記の制御データを利用するとは限らず、例えば、メモリ35に水量制御弁26の開弁量の単位変化量を与えておき、開弁量制御部34は熱負荷循環流体の検出温度が設定温度に対する許容範囲から外れたときには設定温度に近づく方向に水量制御弁26の開弁量を単位変化量だけ変化させ、その後、予め与えた所定の時間(例えば30秒)を経過しても熱負荷循環流体の温度が許容範囲に入らないときにはさらに設定温度に近づく方向に水量制御弁26の開弁量を単位変化量だけ変化させるというような様々な制御構成を採用し得る。   The temperature control of the heat load circulating fluid does not necessarily use the above control data. For example, a unit change amount of the opening amount of the water amount control valve 26 is given to the memory 35, and the opening amount control unit 34 is provided. When the detected temperature of the heat load circulating fluid deviates from the allowable range with respect to the set temperature, the opening amount of the water amount control valve 26 is changed by a unit change amount in a direction approaching the set temperature, and then a predetermined time (for example, When the temperature of the heat load circulating fluid does not fall within the allowable range even after 30 seconds), various control configurations such that the opening amount of the water amount control valve 26 is changed by a unit change amount in a direction closer to the set temperature. Can be adopted.

この、第2の実施形態例においては、給湯ユニット7に、貯湯タンク8内の湯温を検出する貯湯温度センサ32と、液−液熱交換器12で熱交換される前の冷却水(廃熱吸熱流体)の温度を検出する給湯加熱源温度センサ33とを設け、制御装置21によって、貯湯タンク8内の給湯の湯の加熱制御を行う構成を備えている。この加熱制御の構成は、前記熱負荷循環流体の温度制御と同様にタンク湯水循環路9を循環する流量を水量制御弁10の開弁量によって制御する構成のものである。   In the second embodiment, the hot water supply unit 7 includes a hot water storage temperature sensor 32 that detects the hot water temperature in the hot water storage tank 8 and cooling water (waste) before heat exchange is performed in the liquid-liquid heat exchanger 12. The hot water supply source temperature sensor 33 for detecting the temperature of the heat absorption fluid) is provided, and the controller 21 is configured to control the heating of the hot water in the hot water storage tank 8 by the control device 21. The configuration of this heating control is a configuration in which the flow rate circulating through the tank hot water circulation path 9 is controlled by the amount of opening of the water amount control valve 10 as in the temperature control of the heat load circulating fluid.

すなわち、例えば、メモリ35に貯湯タンク8内の湯の温度と主幹廃熱循環路6を循環する冷却水(廃熱吸熱流体)の温度との温度差と、水量制御弁10の開弁量の変化量との関係を示す制御データが格納される。開弁量制御部34は、給湯加熱源温度センサ33で検出される冷却水の温度(T)と貯湯温度センサ32で検出される貯湯タンク8内の湯の温度(T)との温度差ΔT(0<ΔT=T−T)を求め、その求めた温度差ΔTに応じた水量制御弁10の開弁量の変化量を前記メモリ35に格納されている制御データに基き求める。そして、その求めた開弁量の変化量分だけ温度差ΔTが小さくなる方向に水量制御弁10の開弁量を制御する。 That is, for example, the temperature difference between the temperature of the hot water in the hot water storage tank 8 and the temperature of the cooling water (waste heat endothermic fluid) circulating through the main waste heat circulation path 6 in the memory 35 and the valve opening amount of the water amount control valve 10 Control data indicating the relationship with the amount of change is stored. The valve opening amount control unit 34 is the temperature between the temperature of the cooling water (T W ) detected by the hot water supply heating source temperature sensor 33 and the temperature of the hot water (T H ) in the hot water storage tank 8 detected by the hot water storage temperature sensor 32. A difference ΔT (0 <ΔT = T W −T H ) is obtained, and a change amount of the valve opening amount of the water amount control valve 10 corresponding to the obtained temperature difference ΔT is obtained based on the control data stored in the memory 35. . Then, the valve opening amount of the water amount control valve 10 is controlled in such a direction that the temperature difference ΔT decreases by the amount of change of the obtained valve opening amount.

具体的には、温度差Δが大きいとき(貯湯タンク8内の湯が低下しているとき)には、水量制御弁10の開弁量(流量)を小さくする方向に制御する。これにより、液−液熱交換器12で熱交換された後の湯温は水量制御弁10の開弁量(流量)が大きい場合よりも高くなり、低下した貯湯タンク8内の湯温を効率的に高めることができる。その逆に、温度差Δが小さいときには水量制御弁10の開弁量(流量)を大きくする方向に制御する。また、温度差ΔTが予め定めたしきい値よりも小さくなったとき、又は、冷却水の温度(T)が貯湯タンク8内の湯の温度(T)以下になるときにはタンク循環ポンプ11を停止する等の制御構成がとられる。 Specifically, when the temperature difference Δ is large (when the hot water in the hot water storage tank 8 is low), the valve opening amount (flow rate) of the water amount control valve 10 is controlled to decrease. As a result, the hot water temperature after the heat exchange in the liquid-liquid heat exchanger 12 becomes higher than when the valve opening amount (flow rate) of the water amount control valve 10 is large, and the lowered hot water temperature in the hot water storage tank 8 is efficiently used. Can be enhanced. On the contrary, when the temperature difference Δ is small, the water amount control valve 10 is controlled to increase the valve opening amount (flow rate). Further, when the temperature difference ΔT becomes smaller than a predetermined threshold value or when the temperature of the cooling water (T W ) becomes equal to or lower than the temperature of the hot water in the hot water storage tank 8 (T H ), the tank circulation pump 11 The control configuration such as stopping is taken.

第2実施形態例では、図2(a)の鎖線で囲まれている部分はオプションユニット31として集合一体化して構成されている。このオプションユニット31には冷却水が液−液熱交換器24に入る流入口Aと、液−液熱交換器24から冷却水がユニット外に出る流出口Bと、熱負荷循環流体が液−液熱交換器24に入る流入口Cと、熱負荷循環流体がユニット外に出る流出口Dとが設けられており、流入口Aと流出口Bが主幹廃熱循環路6の対応する接続位置に接続され、流入口Cと流出口Dが対応する熱負荷側循環路22に接続(流入口Cが外部の熱負荷側戻り管20に、流出口Dが外部の熱負荷側往管19に接続)されて、オプションユニット31がシステム内に組み込まれている。   In the second embodiment, the portion surrounded by the chain line in FIG. The optional unit 31 includes an inlet A where cooling water enters the liquid-liquid heat exchanger 24, an outlet B where cooling water exits from the liquid-liquid heat exchanger 24, and a heat load circulating fluid as liquid- An inlet C that enters the liquid heat exchanger 24 and an outlet D through which the heat load circulating fluid exits the unit are provided, and the inlet A and outlet B correspond to the corresponding connection positions of the main waste heat circulation path 6. The inlet C and the outlet D are connected to the corresponding heat load side circulation paths 22 (the inlet C is connected to the external heat load side return pipe 20, and the outlet D is connected to the external heat load side outgoing pipe 19. The option unit 31 is incorporated in the system.

この第2の実施形態例においても、前記第1の実施形態例と同様に、主幹循環ポンプ14を駆動することにより、発電装置30の冷却水が主幹廃熱循環路6を通して循環し、液−液熱交換器12の熱交換動作によって貯湯タンク8内の湯が加熱され、貯湯タンク8内の湯は給湯に適した湯温に維持される。そして、暖房装置1の暖房運転のオン指令がリモコン23等により加えられたときには、熱負荷側循環ポンプ25が駆動され、熱負荷循環流体は熱負荷側循環路22を循環する。この循環動作によって、熱負荷側循環路22を循環する熱負荷循環流体は液−液熱交換器24によって主幹廃熱循環路6を通る高温の冷却水を熱源として加熱され暖房に適した温度となる。   Also in the second embodiment, as in the first embodiment, by driving the main circulation pump 14, the cooling water of the power generator 30 circulates through the main waste heat circulation path 6, and the liquid- The hot water in the hot water storage tank 8 is heated by the heat exchange operation of the liquid heat exchanger 12, and the hot water in the hot water storage tank 8 is maintained at a hot water temperature suitable for hot water supply. When an ON command for heating operation of the heating device 1 is applied by the remote controller 23 or the like, the heat load side circulation pump 25 is driven, and the heat load circulation fluid circulates through the heat load side circulation path 22. By this circulation operation, the heat load circulating fluid circulating in the heat load side circulation path 22 is heated by the liquid-liquid heat exchanger 24 using high-temperature cooling water passing through the main waste heat circulation path 6 as a heat source, and a temperature suitable for heating. Become.

この加熱された熱負荷循環流体が暖房装置1の温水パイプ4(4a、4b)を流通することで、暖房装置(暖房マット)1の表面から熱が放熱され暖房(図示の例では床面暖房)が行われる。この実施形態例では、水量制御弁26による循環流量の制御によって熱負荷循環流体の温度が設定温度となるように制御されるので、暖房装置1から放熱される熱の時間的なむらがなくなり、快適な暖房を達成することができる。   The heated heat load circulating fluid circulates through the hot water pipes 4 (4a, 4b) of the heating device 1 so that heat is radiated from the surface of the heating device (heating mat) 1 and heating (in the illustrated example, floor heating). ) Is performed. In this embodiment, since the temperature of the heat load circulating fluid is controlled to be the set temperature by controlling the circulation flow rate by the water amount control valve 26, there is no time unevenness of the heat radiated from the heating device 1, Comfortable heating can be achieved.

また、この実施形態例においては、暖房装置1の暖房を行う主要な機能部分の構成がオプションユニット31として集合一体化されているため、廃熱利用熱源システムを構築する施工が容易である。また、発電装置30と給湯ユニット7間に主幹廃熱循環路6が形成された給湯加熱源のシステムが既に構築されている施設に、暖房装置1を設置する場合には、既設のシステムの主幹廃熱循環路6の一部を分断してオプションユニット31の流入口Aと流出口Bに接続し、暖房側の外部の熱負荷側往管19と熱負荷側戻り管20をオプションユニット31の流入口Cと流出口Dに接続するだけの作業で、暖房のシステムを給湯加熱源のシステムに付加できるので、その設備変更が非常に容易である。   Moreover, in this embodiment example, since the structure of the main functional parts for heating the heating device 1 is integrated and integrated as the option unit 31, it is easy to construct a waste heat utilization heat source system. In addition, when the heating device 1 is installed in a facility in which a hot water heating source system in which the main waste heat circulation path 6 is formed between the power generation device 30 and the hot water supply unit 7 is already installed, the existing system main trunk is installed. A part of the waste heat circulation path 6 is divided and connected to the inlet A and the outlet B of the optional unit 31, and the external heat load side outgoing pipe 19 and the thermal load side return pipe 20 of the heating side are connected to the optional unit 31. By simply connecting to the inlet C and outlet D, the heating system can be added to the hot water supply source system, so that the equipment change is very easy.

特に、将来においては少子化による生徒数の減少と高齢者の増加が予測され、例えば、高校を新たに建設する場合には、将来は高校を廃校して老人ホームに転用することが計画に盛り込まれつつある。高校としての使用期間は床面暖房の施設は通常設けられることはなく、給湯熱源システムが給湯使用の設備として設置されるのが一般的である。その後、例えば、十数年或いは数十年経過したときに、高校を老人ホームに転用する際には、教室であった床に床面暖房の設備が設置される。この際に、本実施形態例のように、暖房の主要機能部分をオプションユニット31として集約することにより、既設の給湯加熱源のシステムを暖房加熱源のシステムとして兼用使用でき、その施工工事も容易であるので、高校から老人ホームへの転用を円滑、安価、迅速に行うことができる。   In particular, it is predicted that the number of students will decrease and the number of elderly people will increase due to the declining birthrate in the future.For example, when newly constructing a high school, it is planned to close the high school and convert it to a nursing home. It is being During the period of use as a high school, a floor heating facility is not usually provided, and a hot water supply heat source system is generally installed as equipment for hot water use. Thereafter, for example, when a high school is converted into a nursing home after a dozen years or a few decades, floor heating equipment is installed on the floor that was the classroom. At this time, as in the present embodiment, by consolidating the main functional parts of heating as the option unit 31, the existing hot water supply heating source system can be used as the heating heating source system, and the construction work is also easy. Therefore, diversion from high school to a nursing home can be performed smoothly, inexpensively and quickly.

図3には本発明に係る廃熱利用熱源システムの第3の実施形態例が示されている。この第3の実施形態例が前記第2の実施形態例と異なることは、熱負荷側循環路22を循環する熱負荷循環流体の温度制御を主幹廃熱循環路6を循環する冷却水(廃熱吸熱流体)の流量を制御して行う構成としたことであり、それ以外の構成は前記の第2の実施形態例と同様である。このため、第3実施形態例においては、第2の実施形態例の熱負荷側循環路22に設けられている水量制御弁26を除去し、主幹廃熱循環路6の経路(管路)のうち、液−液熱交換器24に入る側の管路と液−液熱交換器24から出る側の管路を連通させた通路、すなわち、液−液熱交換器24を迂回するバイパス通路36を設け、このバイパス通路36の入口側の分岐部(液−液熱交換器24の入口側の主幹廃熱循環路6の管路からバイパス通路36が分岐する部位)に冷却水(廃熱吸熱流体)が液−液熱交換器24へ入り込む量(流量)とバイパス通路36側へ流れる流量との流量比を可変調整する循環流量制御手段としての水量制御弁37が設けられている。   FIG. 3 shows a third embodiment of the waste heat utilization heat source system according to the present invention. The third embodiment is different from the second embodiment in that the temperature control of the heat load circulating fluid circulating in the heat load side circulation path 22 is performed by cooling water (waste) circulating in the main waste heat circulation path 6. This is a configuration in which the flow rate of the heat endothermic fluid) is controlled, and the other configurations are the same as those in the second embodiment. For this reason, in the third embodiment, the water amount control valve 26 provided in the heat load side circulation path 22 of the second embodiment is removed, and the path (pipe) of the main waste heat circulation path 6 is removed. Among them, a passage in which a pipe line entering the liquid-liquid heat exchanger 24 and a pipe line exiting from the liquid-liquid heat exchanger 24 are communicated, that is, a bypass passage 36 bypassing the liquid-liquid heat exchanger 24. And a cooling water (waste heat endotherm) at a branch portion on the inlet side of the bypass passage 36 (a portion where the bypass passage 36 branches from the pipe of the main waste heat circulation path 6 on the inlet side of the liquid-liquid heat exchanger 24). A water amount control valve 37 is provided as a circulation flow rate control means for variably adjusting the flow rate ratio between the amount (flow rate) of the fluid) entering the liquid-liquid heat exchanger 24 and the flow rate flowing to the bypass passage 36 side.

この水量制御弁37の流量比を制御しての熱負荷循環流体の温度制御は制御装置21の熱負荷流体温度制御手段40によって行われる。この熱負荷流体温度制御手段40の構成は図2(b)に示されたものと同様のブロック構成のもので、開弁量制御部34とメモリ35とを有して構成されている。   The temperature control of the heat load circulating fluid by controlling the flow rate ratio of the water amount control valve 37 is performed by the heat load fluid temperature control means 40 of the control device 21. The configuration of the heat load fluid temperature control means 40 has the same block configuration as that shown in FIG. 2B, and includes a valve opening amount control unit 34 and a memory 35.

メモリ35には、例えば、水量制御弁37の流量比の変化量と熱負荷循環流体の温度変化量との関係を示す制御データが格納されている。開弁量制御部34は熱負荷側温度センサ27から液−液熱交換器24で熱交換された後の熱負荷循環流体の温度検出情報を取り込む。そして、リモコン23で指令(指定)された設定温度と熱負荷循環流体の検出温度とを比較し、検出温度がメモリ35等に予め格納されている設定温度に対する許容範囲から外れたときには前記制御データに基いて検出温度を設定温度にするための流量比の変化量を演算等により求め、水量制御弁37の流量比をその求めた変化量だけ変化させる。   The memory 35 stores, for example, control data indicating the relationship between the change amount of the flow rate ratio of the water amount control valve 37 and the temperature change amount of the heat load circulating fluid. The valve opening amount control unit 34 takes in the temperature detection information of the heat load circulating fluid after heat exchange is performed by the liquid-liquid heat exchanger 24 from the heat load side temperature sensor 27. Then, the set temperature commanded (designated) by the remote controller 23 is compared with the detected temperature of the heat load circulating fluid, and when the detected temperature deviates from the allowable range for the set temperature stored in advance in the memory 35 or the like, the control data The flow rate ratio change amount for setting the detected temperature to the set temperature is obtained by calculation or the like, and the flow rate ratio of the water amount control valve 37 is changed by the obtained change amount.

この水量制御弁37の流量比の制御、つまり、液−液熱交換器24へ入って液−液熱交換器24内の流路38を流れる冷却水(廃熱吸熱流体)の循環流量を制御することにより、液−液熱交換器24での流路38を通る高温の冷却水と、熱負荷側循環路22を通る熱負荷循環流体との単位流量当りの熱交換量が変化し、これに伴い熱負荷循環流体の温度が変化し(流路38を流れる高温の冷却水の流量が大きくなれば、熱負荷循環流体の温度が上昇方向に変化し、流量が小さくなれば、熱負荷循環流体の温度は低下方向に変化し)、熱負荷循環流体の温度は設定温度に制御される。   Control of the flow rate ratio of the water amount control valve 37, that is, the circulation flow rate of the cooling water (waste heat endothermic fluid) that enters the liquid-liquid heat exchanger 24 and flows through the flow path 38 in the liquid-liquid heat exchanger 24 is controlled. As a result, the amount of heat exchange per unit flow rate between the high-temperature cooling water passing through the flow path 38 in the liquid-liquid heat exchanger 24 and the heat load circulating fluid passing through the heat load side circulation path 22 changes. Accordingly, the temperature of the heat load circulating fluid changes (if the flow rate of the high-temperature cooling water flowing through the flow path 38 increases, the temperature of the heat load circulating fluid changes in the upward direction, and if the flow rate decreases, the heat load circulation fluid changes. The temperature of the fluid changes in the decreasing direction), and the temperature of the heat load circulating fluid is controlled to the set temperature.

なお、熱負荷循環流体の温度制御は必ずしも上記の制御データを利用するとは限らず、例えば、メモリ35に水量制御弁37の流量比の単位変化量を与えておき、開弁量制御部34は熱負荷循環流体の検出温度が設定温度に対する許容範囲から外れたときには設定温度に近づく方向に水量制御弁37の流量比を単位変化量だけ変化させ、その後、予め与えた所定の時間(例えば30秒)を経過しても熱負荷循環流体の温度が許容範囲に入らないときにはさらに設定温度に近づく方向に水量制御弁37の流量比を単位変化量だけ変化させるというような様々な制御構成を採用し得る。   The temperature control of the heat load circulating fluid does not necessarily use the above control data. For example, a unit change amount of the flow rate ratio of the water amount control valve 37 is given to the memory 35, and the valve opening amount control unit 34 When the detected temperature of the heat load circulating fluid deviates from the allowable range with respect to the set temperature, the flow rate ratio of the water amount control valve 37 is changed by the unit change amount in a direction approaching the set temperature, and then a predetermined time (for example, 30 seconds) given in advance. When the temperature of the heat load circulating fluid does not fall within the allowable range even after elapse of a), various control configurations are adopted such that the flow rate ratio of the water amount control valve 37 is changed by a unit change amount in a direction closer to the set temperature. obtain.

この第3の実施形態例においても、貯湯タンク8内の湯の加熱制御は第2の実施形態例の場合と同様に行なわれる。そして、熱負荷側循環路22を循環して暖房装置1に供給される熱負荷循環流体の温度は水量制御弁37の流量比(流路38を流れる流量とバイパス通路36を流れる流量との比)を制御することによって設定温度に制御され、暖房装置1の放熱量の時間的むらを抑制した好適な暖房が行われる等の、前記第2の実施形態例と同様な効果が得られる。   Also in the third embodiment, the heating control of the hot water in the hot water storage tank 8 is performed in the same manner as in the second embodiment. The temperature of the heat load circulating fluid that circulates through the heat load side circulation path 22 and is supplied to the heating device 1 is the flow rate ratio of the water amount control valve 37 (the ratio of the flow rate that flows through the flow path 38 and the flow rate that flows through the bypass passage 36. ) Is controlled to a set temperature, and the same effect as in the second embodiment is obtained, such as suitable heating in which the temporal unevenness of the heat dissipation amount of the heating device 1 is suppressed.

図4は本発明に係る廃熱利用熱源システムの第4の実施形態例を示す。この第4の実施形態例は、熱負荷側往管19と暖房装置1との間の経路(管路)に熱源機46を介設し、熱源機46に入る熱負荷循環流体の温度がリモコン23等によって設定される設定温度よりも低いときには、熱負荷循環流体を熱源機46で設定温度に加熱して暖房装置(暖房マット)1に供給する構成としたものである。この第4の実施形態例においては、前記第1〜第3の各実施形態例のシステムの熱負荷側往管19と暖房装置1との間の経路(管路)に熱源機46が介設されるが、図4においては、その代表例として図3に示される第3の実施形態例のシステムの熱負荷側往管19と暖房装置1との間の経路(管路)に熱源機46を介設した例を示している。   FIG. 4 shows a fourth embodiment of the waste heat utilization heat source system according to the present invention. In the fourth embodiment, a heat source unit 46 is provided in a path (pipe) between the heat load side outgoing pipe 19 and the heating device 1, and the temperature of the heat load circulating fluid entering the heat source unit 46 is controlled by the remote controller. When the temperature is lower than the set temperature set by 23 or the like, the heat load circulating fluid is heated to the set temperature by the heat source unit 46 and supplied to the heating device (heating mat) 1. In the fourth embodiment, a heat source unit 46 is provided in a path (pipe) between the heat load side outgoing pipe 19 and the heating device 1 in the systems of the first to third embodiments. However, in FIG. 4, as a representative example, the heat source machine 46 is arranged on the path (pipe line) between the heat load side outgoing pipe 19 and the heating apparatus 1 of the system of the third embodiment shown in FIG. 3. An example in which is interposed is shown.

熱源機46は一般的な給湯器(瞬間湯沸し器)と同様な構成のものであり、内部にポンプを内蔵しているので、この内蔵のポンプを熱負荷側循環ポンプ25として代替機能させ、オプションユニット31から熱負荷側循環ポンプ25を除去している。また、図3のオプションユニット31にはシスターン28が設けられているが、熱源機46を接続した場合はシスターン28は不要となるので、図4のオプションユニット31では、シスターン28は除外されている。   The heat source unit 46 has the same configuration as that of a general water heater (instantaneous water heater) and has a built-in pump. The heat load side circulation pump 25 is removed from the unit 31. Further, the option unit 31 of FIG. 3 is provided with the cistern 28. However, when the heat source device 46 is connected, the cistern 28 is not necessary. Therefore, the option unit 31 of FIG. 4 excludes the cistern 28. .

熱源機46は熱負荷側往管19から入る熱負荷循環流体を熱負荷側循環ポンプ25から開閉制御弁43、熱交換器41を順に通して暖房装置1へ向けて送出する加熱経路と、熱負荷側循環ポンプ25から開閉制御弁44を有するバイパス管路45を通して暖房装置1へむけて熱負荷循環流体を送出する非加熱経路とを有している。なお、図4中の符号47は暖房装置1へ向けて送出される熱負荷循環流体の温度を検出する温度センサを示す。なお、第4の実施形態例では、液−液熱交換器24から、熱負荷側往管19、熱源機46、熱負荷側往管(熱負荷側分岐往管)19a、暖房装置1、熱負荷側戻り管20(20a)を経て液−液熱交換器24に戻る経路(管路)が熱負荷側循環路22を構成している。   The heat source machine 46 is a heating path for sending the heat load circulating fluid entering from the heat load side outgoing pipe 19 from the heat load side circulation pump 25 to the heating device 1 through the opening / closing control valve 43 and the heat exchanger 41 in order, A non-heating path for sending the heat load circulating fluid from the load-side circulation pump 25 to the heating device 1 through a bypass line 45 having an open / close control valve 44. In addition, the code | symbol 47 in FIG. 4 shows the temperature sensor which detects the temperature of the heat load circulating fluid sent toward the heating apparatus 1. FIG. In the fourth embodiment, from the liquid-liquid heat exchanger 24, the heat load side outgoing pipe 19, the heat source machine 46, the heat load side outgoing pipe (heat load side branch outgoing pipe) 19a, the heating device 1, the heat A path (pipe) returning to the liquid-liquid heat exchanger 24 through the load side return pipe 20 (20a) constitutes the heat load side circulation path 22.

熱源機46の動作は制御装置21によって行われており、制御装置21は暖房運転中(熱負荷側循環ポンプ25の循環駆動中)に熱負荷側温度センサ27又は熱源機46内の温度センサ(図示せず)によって検出される熱源機46の入力側(入水側)の熱負荷循環流体の温度が設定温度に与えられる許容範囲よりも低いときには、開閉制御弁43を開き、開閉制御弁44を閉じて熱負荷循環流体を加熱経路に通す。そして、熱交換器41を通る熱負荷循環流体をガスや石油を燃料とするバーナ42の燃焼火炎により加熱して温度センサ47で検出される熱負荷循環流体の温度が設定温度となるように加熱量を制御し、その設定温度の熱負荷循環流体を暖房装置1に供給する。   The operation of the heat source device 46 is performed by the control device 21, and the control device 21 performs the heat load side temperature sensor 27 or the temperature sensor (in the heat source device 46 during the heating operation of the heat load side circulation pump 25). When the temperature of the heat load circulating fluid on the input side (incoming water side) of the heat source device 46 detected by the heat source device 46 is lower than the allowable range given to the set temperature, the open / close control valve 43 is opened and the open / close control valve 44 is opened. Close and pass the heat load circulating fluid through the heating path. Then, the heat load circulating fluid passing through the heat exchanger 41 is heated by the combustion flame of the burner 42 using gas or petroleum as fuel, and the temperature of the heat load circulating fluid detected by the temperature sensor 47 is heated to the set temperature. The amount is controlled, and the heat load circulating fluid at the set temperature is supplied to the heating device 1.

その一方で、制御装置21は、熱負荷側温度センサ27又は熱源機46内の温度センサ(図示せず)によって検出される熱源機46の入力側(入水側)の熱負荷循環流体の温度が設定温度に与えられる許容範囲から外れて低下していないときは、加熱の必要がないので、開閉制御弁43を閉じ、開閉制御弁44を開いて熱負荷循環流体を非加熱経路を通して暖房装置1へ向けて送出する。   On the other hand, the control device 21 determines that the temperature of the heat load circulating fluid on the input side (incoming water side) of the heat source unit 46 detected by the heat load side temperature sensor 27 or the temperature sensor (not shown) in the heat source unit 46 is high. When the temperature does not fall outside the allowable range given to the set temperature, there is no need for heating. Therefore, the opening / closing control valve 43 is closed and the opening / closing control valve 44 is opened to allow the heat load circulating fluid to pass through the non-heating path. To send to.

この第4の実施形態例においては、発電装置30の電力需要が減少し発電量が小さくなって、廃熱吸熱流体の温度が低下し、これに伴い、液−液熱交換器24の熱交換量も小さくなって熱負荷側往管19を循環する熱負荷循環流体の温度が設定温度よりも低下したときには、直ちに熱源機46が稼動して熱負荷循環流体の温度を設定温度に加熱するので、暖房装置1へ供給される暖房熱源(熱負荷循環流体)の温度が設定温度に安定維持され、暖房装置1の時間的な暖房むら(時間的な暖房温度の自然変動)の生じない好適な暖房運転が可能となる。   In the fourth embodiment, the power demand of the power generation device 30 is reduced, the amount of power generation is reduced, and the temperature of the waste heat endothermic fluid is lowered. Accordingly, the heat exchange of the liquid-liquid heat exchanger 24 is performed. When the amount of the heat load circulating fluid circulating through the heat load side outflow pipe 19 decreases below the set temperature, the heat source unit 46 immediately operates and heats the temperature of the heat load circulating fluid to the set temperature. The temperature of the heating heat source (heat load circulating fluid) supplied to the heating device 1 is stably maintained at the set temperature, and the heating device 1 is preferably free from temporal heating unevenness (temporal fluctuation of the heating temperature in time). Heating operation is possible.

なお、本発明に係る廃熱利用熱源システムは上記の各実施形態例の構成に限定されることなく、様々な実施の形態を採り得る。例えば、上記の各実施形態例では、廃熱吸熱流体および熱負荷循環流体を水によって構成したが、オイル等の水以外の液体によって構成してもよい。   In addition, the waste heat utilization heat source system according to the present invention is not limited to the configuration of each of the above-described exemplary embodiments, and can adopt various embodiments. For example, in each of the above-described embodiments, the waste heat endothermic fluid and the heat load circulating fluid are configured by water, but may be configured by a liquid other than water such as oil.

また、熱負荷装置として床の暖房装置を例にして説明したが、床以外の室内暖房装置にも適用されるものであり、また、熱負荷循環流体を循環させた乾燥装置等にも適用されるものである。   Further, the floor heating device has been described as an example of the heat load device. However, the heat load device is also applied to an indoor heating device other than the floor, and is also applied to a drying device in which a heat load circulating fluid is circulated. Is.

さらに、上記各実施形態例では、給湯側熱交換手段を液−液熱交換器12で構成したが、主幹廃熱循環路6を循環する熱負荷循環流体と熱交換して貯湯タンク8内の湯を加熱する手段であれば他の構成でもよく、例えば、図5に示すように、主幹廃熱循環路6の管路を貯湯タンク8内に通し、貯湯タンク8内で、主幹廃熱循環路6を通る熱負荷循環流体と貯湯タンク8内の湯との熱交換を行う構成としてもよい。   Further, in each of the above embodiments, the hot water supply side heat exchanging means is constituted by the liquid-liquid heat exchanger 12, but heat exchange with the heat load circulating fluid circulating in the main waste heat circulation path 6 is performed in the hot water storage tank 8. For example, as shown in FIG. 5, the main waste heat circulation path 6 is passed through the hot water storage tank 8, and the main waste heat circulation is performed in the hot water storage tank 8. The heat exchange between the heat load circulating fluid passing through the path 6 and the hot water in the hot water storage tank 8 may be performed.

さらに、図1の例では、熱負荷側往管19と熱負荷側戻り管20とを、液−液熱交換器12の上流側位置で主幹廃熱循環路6に接続されているが、液−液熱交換器12の下流側位置(例えば、主幹循環ポンプ14と発電装置30との間の管路位置)で、熱負荷側往管19と熱負荷側戻り管20を主幹廃熱循環路6に接続してもよい。ただ、そのようにすると、液−液熱交換器12での熱交換によって温度が低下した廃熱吸熱流体が暖房装置1に供給されることになり、液−液熱交換器12の下流側の廃熱吸熱流体の温度が暖房装置1へ供給するための設定温度よりも低下してしまうような場合には図1に示されるように、熱負荷側往管19と熱負荷側戻り管20とを液−液熱交換器12の上流側に接続することが望ましい。ただし、熱負荷側往管19に図4に示すような熱源機46を介設する場合はこの限りではない。   Further, in the example of FIG. 1, the heat load side outgoing pipe 19 and the heat load side return pipe 20 are connected to the main waste heat circulation path 6 at the upstream position of the liquid-liquid heat exchanger 12. -At the downstream position of the liquid heat exchanger 12 (for example, the position of the conduit between the main circulation pump 14 and the power generation device 30), the heat load side outgoing pipe 19 and the heat load side return pipe 20 are connected to the main waste heat circulation path. 6 may be connected. However, by doing so, the waste heat endothermic fluid whose temperature has decreased due to heat exchange in the liquid-liquid heat exchanger 12 is supplied to the heating device 1, and the downstream side of the liquid-liquid heat exchanger 12. When the temperature of the waste heat endothermic fluid is lower than the set temperature for supplying to the heating device 1, as shown in FIG. 1, the heat load side forward pipe 19 and the heat load side return pipe 20 Is preferably connected to the upstream side of the liquid-liquid heat exchanger 12. However, this is not the case when a heat source device 46 as shown in FIG.

さらに、図1の例では、流路切り替え手段を三方弁18によって構成したが、廃熱吸熱流体を主幹廃熱循環路6側と熱負荷側循環路22側との間で選択的に流路を切り替える構成を有していればよく、三方弁18以外の構成としてもよい。   Further, in the example of FIG. 1, the flow path switching means is configured by the three-way valve 18, but the waste heat endothermic fluid is selectively flowed between the main waste heat circulation path 6 side and the heat load side circulation path 22 side. As long as it has the structure which switches, it is good also as structures other than the three-way valve 18. FIG.

さらに、図4に示す例では、熱負荷側循環ポンプ25として熱源機46の内蔵のポンプを使用したが、熱源機46内にそのような内蔵のポンプが装備されていないときには、図2のオプションユニット31に示されるように、オプションユニット31に熱負荷側循環ポンプ25が装備されることとなる。   Furthermore, in the example shown in FIG. 4, a pump with a built-in heat source device 46 is used as the heat load side circulation pump 25, but when such a built-in pump is not installed in the heat source device 46, the option of FIG. As shown in the unit 31, the option unit 31 is equipped with the heat load side circulation pump 25.

さらに、第3の実施形態例では、図3に示されるようにバイパス通路36が設けられているが、このバイパス通路36は設けなくともよい。その場合は、例えば、流路38へ入る側、又は流路38から出る側の主幹廃熱循環路6の管路に図2の水量制御弁26と同様な開弁量を制御する水量制御弁を設け、その水量制御弁の開弁量制御によって、流路38を通る廃熱吸熱流体の流量を制御して、熱負荷側循環路22を循環しながら暖房装置1へ供給される熱負荷循環流体の温度を設定温度となるように制御することとなる。   Furthermore, in the third embodiment, the bypass passage 36 is provided as shown in FIG. 3, but the bypass passage 36 may not be provided. In that case, for example, a water amount control valve for controlling the valve opening amount similar to the water amount control valve 26 in FIG. 2 on the pipe line of the main waste heat circulation path 6 on the side entering or leaving the flow path 38. And the heat load circulation supplied to the heating device 1 while circulating through the heat load side circulation path 22 by controlling the flow rate of the waste heat endothermic fluid passing through the flow path 38 by controlling the opening amount of the water amount control valve. The temperature of the fluid is controlled to be the set temperature.

さらに、第4の実施形態例の熱源機46は、石油や、ガスを燃料とする燃焼式の器具としたが、電気ヒータ等を用いて熱負荷循環流体を加熱する非燃焼式の熱源機としてもよい。   Furthermore, although the heat source unit 46 of the fourth embodiment is a combustion type instrument using oil or gas as a fuel, it is a non-combustion type heat source unit that heats the heat load circulating fluid using an electric heater or the like. Also good.

さらに、上記各実施形態例では、制御装置21にリモコン23が接続されている例のシステムを対象として説明したが、リモコン23は設けなくてもよい。その場合には、暖房等の熱負荷装置の運転のオン、オフを指令したり、熱負荷装置へ供給される熱負荷循環流体の設定温度を指定する操作部を制御装置21や、他の場所に設けることとなる。   Further, in each of the above-described embodiments, the example of the system in which the remote controller 23 is connected to the control device 21 has been described, but the remote controller 23 may not be provided. In that case, the operation unit for instructing on / off of the operation of the heat load device such as heating or for specifying the set temperature of the heat load circulating fluid to be supplied to the heat load device is provided as the control device 21 or other place. Will be provided.

本発明に係る廃熱利用熱源システムの第1の実施形態例の構成説明図である。1 is a configuration explanatory diagram of a first embodiment of a waste heat utilization heat source system according to the present invention. FIG. 本発明に係る廃熱利用熱源システムの第2の実施形態例の構成説明図である。It is composition explanatory drawing of the 2nd Example of the waste heat utilization heat source system which concerns on this invention. 本発明に係る廃熱利用熱源システムの第3の実施形態例の構成説明図である。It is composition explanatory drawing of the 3rd Embodiment of the waste heat utilization heat source system which concerns on this invention. 本発明に係る廃熱利用熱源システムの第4の実施形態例の構成説明図である。It is composition explanatory drawing of the example of 4th Embodiment of the waste heat utilization heat source system which concerns on this invention. 給湯側熱交換手段の他の例の説明図である。It is explanatory drawing of the other example of the hot water supply side heat exchange means. 熱負荷装置を構成する暖房装置の一例を示す図である。It is a figure which shows an example of the heating apparatus which comprises a heat load apparatus.

符号の説明Explanation of symbols

1 暖房装置(熱負荷装置)
6 主幹廃熱循環路
8 貯湯タンク
12 液−液熱交換器(給湯側熱交換手段)
18 三方弁(流路切り替え手段)
19 熱負荷側往管
20 熱負荷側戻り管
22 熱負荷側循環路
24 液−液熱交換器(循環流体間熱交換手段)
25 熱負荷側循環ポンプ
26、37 水量制御弁(循環流量制御手段)
27 熱負荷側温度センサ(熱負荷側流体温度検出手段)
30 発電装置
31 オプションユニット
40 熱負荷流体温度制御手段
46 熱源機
1 Heating device (heat load device)
6 Main waste heat circulation path 8 Hot water storage tank 12 Liquid-liquid heat exchanger (hot water supply side heat exchange means)
18 Three-way valve (channel switching means)
19 heat load side outgoing pipe 20 heat load side return pipe 22 heat load side circulation path 24 liquid-liquid heat exchanger (heat exchange means between circulating fluids)
25 Thermal load side circulation pump 26, 37 Water volume control valve (circulation flow rate control means)
27 Thermal load side temperature sensor (thermal load side fluid temperature detection means)
30 Power Generator 31 Option Unit 40 Thermal Load Fluid Temperature Control Unit 46 Heat Source Machine

Claims (9)

給湯の湯を貯める貯湯タンクと、発電装置の廃熱を吸熱させた廃熱吸熱流体を循環させる主幹廃熱循環路とを有し、前記主幹廃熱循環路には前記廃熱吸熱流体と貯湯タンクの湯を熱交換させて貯湯タンク内の湯を加熱する給湯側熱交換手段が設けられている廃熱利用熱源システムにおいて、前記主幹廃熱循環路には熱負荷装置に前記廃熱吸熱流体を供給する熱負荷側往管が分岐接続されるとともに、前記熱負荷装置から廃熱吸熱流体を前記主幹廃熱循管路に戻す熱負荷側戻り管が前記熱負荷側往管の分岐接続部よりも下流側位置に接続されており、前記熱負荷装置には前記熱負荷側往管から供給される前記廃熱吸熱流体を通流させて前記熱負荷側戻り管に送出する熱負荷管路が設けられ、前記発電装置側から前記熱負荷側往管の分岐接続部に至る主幹廃熱循環路部位、前記熱負荷側往管、前記熱負荷管路、前記熱負荷側戻り管、該熱負荷側戻り管の接続部から前記発電装置に至る主幹廃熱循環路部位、を順に通る流路は熱負荷側循環路と成し、前記廃熱吸熱流体の流れを前記主幹廃熱循環路と熱負荷側循環路と間で切り換える流路切り替え手段が設けられていることを特徴とする廃熱利用熱源システム。   A hot water storage tank for storing hot water for hot water supply, and a main waste heat circulation path for circulating a waste heat endothermic fluid that has absorbed the waste heat of the power generation device, and the main waste heat heat circulation path includes the waste heat endothermic fluid and hot water storage In the waste heat utilization heat source system provided with hot water supply side heat exchange means for exchanging heat of the hot water in the tank to heat the hot water in the hot water storage tank, the waste heat endothermic fluid is connected to the heat load device in the main waste heat circulation path And a heat load side return pipe for returning the waste heat endothermic fluid from the heat load device to the main waste heat circuit is a branch connection portion of the heat load side forward pipe. A heat load line that is connected to a position downstream of the heat load device and that causes the waste heat endothermic fluid supplied from the heat load side outgoing pipe to flow through the heat load device and that is sent to the heat load side return pipe From the power generator side to the branch connection portion of the heat load side outgoing pipe A main waste heat circulation path part, the heat load side outgoing pipe, the heat load pipe, the heat load side return pipe, a main waste heat circulation path part from the connection part of the heat load side return pipe to the power generator, The flow path passing through the heat load side circulation path, and the flow path switching means for switching the flow of the waste heat endothermic fluid between the main waste heat circulation path and the heat load side circulation path is provided. A heat source system utilizing waste heat. 熱負荷往管の分岐接続部と熱負荷側戻り管の接続部とは発電装置から給湯側熱交換手段に至る間の主幹廃熱循管路に接続されている請求項1記載の廃熱利用熱源システム。   The waste heat utilization according to claim 1, wherein the branch connection portion of the heat load outgoing pipe and the connection portion of the heat load side return pipe are connected to a main waste heat circulation path between the power generator and the hot water supply side heat exchange means. Heat source system. 給湯の湯を貯める貯湯タンクと、発電装置の廃熱を吸熱させた廃熱吸熱流体を循環させる主幹廃熱循環路とを有し、前記主幹廃熱循環路には前記廃熱吸熱流体と貯湯タンクの湯を熱交換させて貯湯タンク内の湯を加熱する給湯側熱交換手段が設けられている廃熱利用熱源システムにおいて、前記主幹廃熱循環路とは別の、熱負荷側循環流体を循環させる熱負荷側循環路を有し、該熱負荷側循環路には、前記熱負荷側循環流体を通す熱負荷管路を備えた熱負荷装置と、熱負荷側循環路に熱負荷循環流体を循環駆動する熱負荷側循環ポンプと、熱負荷側循環流体の循環流量を調整する循環流量制御手段とが介設され、前記主幹廃熱循環路と熱負荷側循環路との間には廃熱吸熱流体側の熱を熱負荷循環流体に吸熱させる循環流体間熱交換手段が設けられ、この循環流体間熱交換手段の下流側の前記熱負荷側循環路の位置には熱負荷循環流体の温度を検出する熱負荷側流体温度検出手段が設けられるとともに、前記熱負荷側流体温度検出手段の検出温度に基いて前記熱負荷循環流体の温度を指定される設定温度になるように前記循環流量制御手段の熱負荷側循環流体における循環流量の調整量を制御する熱負荷流体温度制御手段が設けられていることを特徴とする廃熱利用熱源システム。   A hot water storage tank for storing hot water for hot water supply, and a main waste heat circulation path for circulating a waste heat endothermic fluid that has absorbed the waste heat of the power generation device, and the main waste heat heat circulation path includes the waste heat endothermic fluid and hot water storage In the waste heat utilization heat source system provided with hot water supply side heat exchange means for heat exchange of the hot water in the tank to heat the hot water in the hot water storage tank, a heat load side circulating fluid different from the main waste heat circulation circuit is provided. A thermal load side circulation path to be circulated, and the thermal load side circulation path includes a thermal load line that passes the thermal load side circulation fluid; and a thermal load circulation fluid in the thermal load side circulation path And a circulation flow rate control means for adjusting the circulation flow rate of the heat load side circulating fluid are interposed, and there is no waste between the main waste heat circulation path and the heat load side circulation path. A heat exchange means between the circulating fluids is provided to absorb the heat on the heat absorbing fluid side into the heat load circulating fluid. A heat load side fluid temperature detecting means for detecting the temperature of the heat load circulating fluid is provided at a position of the heat load side circulation path downstream of the circulating fluid heat exchanging means, and the heat load side fluid temperature is Thermal load fluid temperature control for controlling the amount of adjustment of the circulation flow rate in the heat load side circulation fluid of the circulation flow rate control means so that the temperature of the heat load circulation fluid becomes a specified temperature based on the detection temperature of the detection means A heat source system utilizing waste heat, characterized in that means are provided. 給湯の湯を貯める貯湯タンクと、発電装置の廃熱を吸熱させた廃熱吸熱流体を循環させる主幹廃熱循環路とを有し、前記主幹廃熱循環路には前記廃熱吸熱流体と貯湯タンクの湯を熱交換させて貯湯タンク内の湯を加熱する給湯側熱交換手段が設けられている廃熱利用熱源システムにおいて、前記主幹廃熱循環路には該主幹廃熱循環路を循環する廃熱吸熱流体の循環流量を調整する循環流量制御手段が設けられ、また、前記主幹廃熱循環路とは別の、熱負荷側循環流体を循環させる熱負荷側循環路を有し、該熱負荷側循環管路には、前記熱負荷側循環流体を通す熱負荷管路を備えた熱負荷装置と、熱負荷側循環路に熱負荷循環流体を循環駆動する熱負荷側循環ポンプとが介設され、前記主幹廃熱循環路と熱負荷側循環路との間には廃熱吸熱流体側の熱を熱負荷循環流体に吸熱させる循環流体間熱交換手段が設けられ、この循環流体間熱交換手段の下流側の前記熱負荷側循環路の位置には熱負荷循環流体の温度を検出する熱負荷側流体温度検出手段が設けられるとともに、前記熱負荷側流体温度検出手段の検出温度に基いて前記熱負荷循環流体の温度を指定される設定温度になるように前記循環流量制御手段の廃熱吸熱流体における循環流量の調整量を制御する熱負荷流体温度制御手段が設けられていることを特徴とする廃熱利用熱源システム。   A hot water storage tank for storing hot water for hot water supply, and a main waste heat circulation path for circulating a waste heat endothermic fluid that has absorbed the waste heat of the power generation device, and the main waste heat heat circulation path includes the waste heat endothermic fluid and hot water storage In a waste heat utilization heat source system provided with a hot water supply side heat exchange means for heat exchange of hot water in a tank to heat hot water in a hot water storage tank, the main waste heat circulation path is circulated in the main waste heat circulation path A circulation flow rate control means for adjusting a circulation flow rate of the waste heat endothermic fluid is provided, and has a heat load side circulation path for circulating the heat load side circulation fluid, which is different from the main waste heat circulation path, and the heat The load side circulation line is provided with a heat load device having a heat load line for passing the heat load side circulation fluid and a heat load side circulation pump for circulatingly driving the heat load circulation fluid in the heat load side circulation path. A waste heat endothermic fluid between the main waste heat circuit and the heat load circuit. The heat load circulating fluid absorbs the heat of the heat load to the heat load circulating fluid, and the temperature of the heat load circulating fluid is detected at the position of the heat load side circulation path on the downstream side of the heat exchange means between the circulating fluids. A heat load side fluid temperature detecting means is provided, and the circulation flow rate control means is discarded so that the temperature of the heat load circulating fluid becomes a specified set temperature based on the temperature detected by the heat load side fluid temperature detecting means. A heat source system utilizing waste heat, characterized in that a heat load fluid temperature control means for controlling an adjustment amount of a circulation flow rate in the heat absorbing fluid is provided. 主幹廃熱循環路には循環流体間熱交換手段を迂回するバイパス通路が設けられており、循環流量制御手段は廃熱吸熱流体が循環流体間熱交換手段に流れる流量とバイパス通路に流れる流量との流量比を可変して循環流体間熱交換手段に流れる流量を調整する構成と成し、熱負荷流体温度制御手段は前記循環流量制御手段の前記流量比を制御して熱負荷循環流体の温度を制御する構成とした請求項4記載の廃熱利用熱源システム。   The main waste heat circulation path is provided with a bypass passage that bypasses the heat exchange means between the circulating fluids, and the circulation flow control means includes a flow rate of the waste heat endothermic fluid flowing through the heat exchange means between the circulating fluids and a flow rate flowing through the bypass passages. The heat load fluid temperature control means controls the flow ratio of the circulation flow control means to control the temperature of the heat load circulation fluid. The heat source system using waste heat according to claim 4, wherein the heat source system is configured to control the heat. 熱負荷側循環路には、熱負荷装置の上流側となる位置に加熱手段を具備する熱源機が介設され、該熱源機は入力する熱負荷循環流体の温度が予め指定される設定温度よりも低いときには前記熱負荷循環流体の温度を前記設定温度に高めて熱負荷装置へ向けて送出する構成とした請求項1乃至5の何れか1つに記載の廃熱利用熱源システム。   The heat load side circulation path is provided with a heat source device having heating means at a position upstream of the heat load device, and the heat source device has a temperature of the input heat load circulation fluid from a preset temperature specified in advance. The waste heat utilization heat source system according to any one of claims 1 to 5, wherein when the temperature is lower, the temperature of the heat load circulating fluid is raised to the set temperature and sent to the heat load device. 循環流体間熱交換手段と、熱負荷側循環ポンプと、循環流量制御手段と、熱負荷側流体温度検出手段とは、集合されてオプションユニットと成し、該オプションユニットには、廃熱吸熱流体が循環流体間熱交換手段へ入る流入口と、廃熱吸熱流体が循環流体間熱交換手段からユニット外へ送出される廃熱吸熱流体の流出口と、熱負荷循環流体が循環流体間熱交換手段へ入る流入口と、熱負荷循環流体が循環流体間熱交換手段からユニット外へ送出される熱負荷循環流体の流出口とが設けられ、前記廃熱吸熱流体の流入口と流出口は主幹廃熱循環路の対応接続位置に接続され、熱負荷循環流体の流入口と流出口は熱負荷側循環管路の対応接続位置に接続されている請求項2乃至6の何れか1つに記載の廃熱利用熱源システム。   The heat exchange means between the circulating fluids, the heat load side circulation pump, the circulation flow rate control means, and the heat load side fluid temperature detection means are assembled into an optional unit, and the optional unit includes waste heat endothermic fluid. Enters the heat exchange means between the circulating fluid, the waste heat endothermic fluid outlet where the waste heat endothermic fluid is sent out of the unit from the heat exchange means between the circulating fluid, and the heat load circulating fluid exchanges heat between the circulating fluids. And an outlet for the heat load circulating fluid through which the heat load circulating fluid is sent out of the unit from the heat exchange means between the circulating fluids. 7. The waste heat circulation path is connected to a corresponding connection position, and an inlet and an outlet of the heat load circulation fluid are connected to a corresponding connection position of the heat load side circulation pipe. Waste heat utilization heat source system. 循環流体間熱交換手段と、循環流量制御手段と、熱負荷側流体温度検出手段とは、集合されてオプションユニットと成し、該オプションユニットには、廃熱吸熱流体が循環流体間熱交換手段へ入る流入口と、廃熱吸熱流体が循環流体間熱交換手段からユニット外へ送出される廃熱吸熱流体の流出口と、熱負荷循環流体が循環流体間熱交換手段へ入る流入口と、熱負荷循環流体が循環流体間熱交換手段からユニット外へ送出される熱負荷循環流体の流出口とが設けられ、前記廃熱吸熱流体の流入口と流出口は主幹廃熱循環路の対応接続位置に接続され、熱負荷循環流体の流入口と流出口は熱負荷側循環管路の対応接続位置に接続されている請求項6記載の廃熱利用熱源システム。   The heat exchange means between the circulating fluid, the circulation flow rate control means, and the heat load side fluid temperature detection means are assembled to form an optional unit, in which the waste heat endothermic fluid is exchanged between the circulating fluid and the heat exchange means. An inlet for the waste heat endothermic fluid to be discharged from the heat exchange means between the circulating fluids to the outside of the unit, an inlet for the heat load circulating fluid to enter the heat exchange means for the circulating fluids, A heat load circulating fluid is sent from the heat exchange means between the circulating fluids to the outside of the unit, and the waste heat endothermic fluid inlet and outlet are connected to the main waste heat circulation path. The waste heat utilization heat source system according to claim 6, wherein the heat load circulating fluid inlet and outlet are connected to corresponding connection positions of the heat load circulation pipe. 廃熱吸熱流体と熱負荷循環流体は温水であり、熱負荷装置は熱負荷管路を温水が流通する温水パイプとした暖房装置であることを特徴とする請求項1乃至8の何れか1つに記載の廃熱利用熱源システム。   The waste heat absorption fluid and the heat load circulating fluid are warm water, and the heat load device is a heating device having a heat load pipe as a hot water pipe through which warm water flows. The waste heat utilization heat source system described in 1.
JP2005019542A 2005-01-27 2005-01-27 Waste heat utilization heat source system Expired - Fee Related JP4152384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019542A JP4152384B2 (en) 2005-01-27 2005-01-27 Waste heat utilization heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019542A JP4152384B2 (en) 2005-01-27 2005-01-27 Waste heat utilization heat source system

Publications (2)

Publication Number Publication Date
JP2006207914A true JP2006207914A (en) 2006-08-10
JP4152384B2 JP4152384B2 (en) 2008-09-17

Family

ID=36964979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019542A Expired - Fee Related JP4152384B2 (en) 2005-01-27 2005-01-27 Waste heat utilization heat source system

Country Status (1)

Country Link
JP (1) JP4152384B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007950A (en) * 2008-06-26 2010-01-14 Aisin Seiki Co Ltd Cogeneration system
KR101107930B1 (en) * 2011-09-26 2012-01-25 안중미 Water thermostat of kitchen for business using waste heat of gas range
CN103162403A (en) * 2013-03-11 2013-06-19 信发科技开发有限公司 Heating device of improved digestion sleeve and method
KR101488472B1 (en) 2013-08-23 2015-02-03 주식회사 경동나비엔 Drain device control system of waste heat using mixing valve and the mehtod thereof
JP2017048995A (en) * 2015-09-04 2017-03-09 大阪瓦斯株式会社 Cogeneration system
JP2017053626A (en) * 2016-12-26 2017-03-16 大阪瓦斯株式会社 Cogeneration system and heating equipment
JP2017096620A (en) * 2016-12-26 2017-06-01 大阪瓦斯株式会社 Cogeneration system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007950A (en) * 2008-06-26 2010-01-14 Aisin Seiki Co Ltd Cogeneration system
KR101107930B1 (en) * 2011-09-26 2012-01-25 안중미 Water thermostat of kitchen for business using waste heat of gas range
CN103162403A (en) * 2013-03-11 2013-06-19 信发科技开发有限公司 Heating device of improved digestion sleeve and method
KR101488472B1 (en) 2013-08-23 2015-02-03 주식회사 경동나비엔 Drain device control system of waste heat using mixing valve and the mehtod thereof
WO2015026063A1 (en) * 2013-08-23 2015-02-26 주식회사 경동나비엔 System for controlling exhaust heat recovery temperature using mixing valve and method therefor
US9939173B2 (en) 2013-08-23 2018-04-10 Kyungdong Navien Co., Ltd System for controlling exhaust heat recovery temperature using mixing valve and method therefor
JP2017048995A (en) * 2015-09-04 2017-03-09 大阪瓦斯株式会社 Cogeneration system
JP2017053626A (en) * 2016-12-26 2017-03-16 大阪瓦斯株式会社 Cogeneration system and heating equipment
JP2017096620A (en) * 2016-12-26 2017-06-01 大阪瓦斯株式会社 Cogeneration system

Also Published As

Publication number Publication date
JP4152384B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4152384B2 (en) Waste heat utilization heat source system
JP5174950B2 (en) Temperature adjusting device, fluid supply system, heating system, temperature adjusting device mounting method, and fluid supply method
JP5580658B2 (en) Heat medium supply device
JP4513754B2 (en) Hybrid hot water supply system
JP6655898B2 (en) Exhaust heat recovery device, heat supply system, and method of operating exhaust heat recovery device
JP2009299941A (en) Hot water supply system
JP4215699B2 (en) Heat pump water heater / heater
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP5146731B2 (en) Hot water supply apparatus and hot water supply system
JP2018031520A (en) Storage water heater
JP5887038B2 (en) Heat source equipment
JP5875907B2 (en) Hot water heating system
JP5667856B2 (en) Water heater
JP2012107793A (en) Hot water supply system
JP4304601B2 (en) Storage water heater and cogeneration system
JP2003056910A (en) Heat recovery apparatus and cogeneration system
JP2012225562A (en) Heat supply system
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
JP2018044721A (en) Heat supply system
JP5567947B2 (en) Heat source equipment
WO2017110900A1 (en) Heat supply system
JP4953436B2 (en) Thermal storage and heat dissipation system
JP6403631B2 (en) Hot water storage unit
JP6403630B2 (en) Hot water storage unit
JP7235502B2 (en) Heat source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees