JP2006207712A - Variable speed pneumatic action mechanism using pneumatic cylinder - Google Patents

Variable speed pneumatic action mechanism using pneumatic cylinder Download PDF

Info

Publication number
JP2006207712A
JP2006207712A JP2005021123A JP2005021123A JP2006207712A JP 2006207712 A JP2006207712 A JP 2006207712A JP 2005021123 A JP2005021123 A JP 2005021123A JP 2005021123 A JP2005021123 A JP 2005021123A JP 2006207712 A JP2006207712 A JP 2006207712A
Authority
JP
Japan
Prior art keywords
pneumatic cylinder
pneumatic
speed
neutral
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005021123A
Other languages
Japanese (ja)
Inventor
Yasuhiro Wada
泰博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005021123A priority Critical patent/JP2006207712A/en
Publication of JP2006207712A publication Critical patent/JP2006207712A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To build up a variable speed pneumatic action mechanism in a simple mechanism, in which its action speed of a pneumatic cylinder is reduced in front of its action end while the pneumatic cylinder is operating and the pneumatic cylinder reaches the action end at reduced speed; to restrain costs of facilities and remodeling costs at a low level when a variable speed mechanism is added on an existing pneumatic system; and to remove residual pressure in a pnuematic pipe. <P>SOLUTION: An electromagnetic valve, which can switch ventilating and a neutral state while ventilating haldway in the non-exciting state of the valve, is arranged halfway in a passage of the pipe leading to the pneumatic cylinder driven by the electromagnetic valve which is in a neutral state at the exciting state of the valve capable of switching its ventilation in a ventilating direction, a neutral direction, and a reverse direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は空気圧シリンダを用いた可変速空気圧動作機構に関する。   The present invention relates to a variable speed pneumatic operation mechanism using a pneumatic cylinder.

油圧、水圧、空気圧などの流体の圧力でシリンダを動作させる機構は、シリンダの断面積を大きくすることで、パスカルの原理により、大きな力を得ることができることから、世の中に広く用いられている。   A mechanism for operating a cylinder with a fluid pressure such as hydraulic pressure, water pressure, and air pressure is widely used in the world because a large force can be obtained by the Pascal principle by increasing the cross-sectional area of the cylinder.

非圧縮性流体である油圧や水圧の方が、より大きな力を発揮できるとともに、動作応答性、停止精度ともよく、さらに、油圧の場合は配管の腐食防止にも適している。しかし、これら液圧の場合、配管系統全体を閉じた系にして、動作用の流体を回収し、漏出防止を図らなければならない面倒がある。   Hydraulic pressure and water pressure, which are incompressible fluids, can exert a greater force, have better responsiveness and stopping accuracy, and, in the case of hydraulic pressure, are suitable for preventing corrosion of piping. However, in the case of these hydraulic pressures, there is a hassle to make the entire piping system closed, collect the fluid for operation, and prevent leakage.

それに比べ、空気圧は、液圧に比べれば、発揮できる力が小さく、空気という圧縮性流体を用いている関係で、その分、動作応答性、停止精度の点で若干劣る、という弱点はあるものの、配管系統全体を閉じた系にする必要まではなく、動作用の流体を回収し、漏出防止する設計も不要であるため、発揮できる力が足りる限度においては、設備費が安くて済み、メンテナンスも楽であるという利点がある。   In comparison, air pressure has a weakness that it can exert less force than hydraulic pressure, and because it uses a compressible fluid called air, its operation responsiveness and stopping accuracy are slightly inferior. It is not necessary to make the entire piping system closed, and there is no need for a design that collects the working fluid and prevents leakage, so that the equipment cost is low and maintenance is possible as long as the power that can be demonstrated is sufficient There is also an advantage that it is easy.

ところで、重量が数トンと大きい物体を動作させるのに空気圧シリンダが用いられることがあるが、該空気圧シリンダが動作端まで動作したときに、その物体は急停止させられることになるから、それに伴うシリンダの破損や、その物体が付近の別の物体に衝突(慣性によるオーバーランや、振れによるものも含む)することによる破損を防止する目的で、空気圧シリンダを、動作途中であって、動作端よりも手前で動作速度を低下させ、低下後の速度で動作端に達するようにしたい、という技術的要求がある。空気圧シリンダにクッション機構が設けられたものも一般に用いられているが、その作用では十分でない。   By the way, a pneumatic cylinder is sometimes used to move an object having a weight as large as several tons. However, when the pneumatic cylinder is moved to the operating end, the object is suddenly stopped. In order to prevent damage to the cylinder and damage caused by the object colliding with another nearby object (including overruns due to inertia and vibration) There is a technical demand to reduce the operating speed before this, and to reach the operating end at the reduced speed. A pneumatic cylinder provided with a cushion mechanism is generally used, but its action is not sufficient.

空気圧シリンダの動作速度を低下させる速度調整は、一般的に、空気圧シリンダから排気される側の配管の流路の途中に設けられた、絞り弁と逆止弁からなる速度調整弁によって、空気圧シリンダから排出される空気の流量を調整することにより行われる。   The speed adjustment for reducing the operating speed of the pneumatic cylinder is generally performed by a speed adjustment valve, which is provided in the middle of the flow path of the pipe exhausted from the pneumatic cylinder, by a speed adjustment valve composed of a throttle valve and a check valve. This is done by adjusting the flow rate of air discharged from the air.

空気圧シリンダの動作速度を、動作途中であって、動作端よりも手前で動作速度を低下させる方法としては、特許文献1のように、液圧式速度制御装置により、動作中のエアシリンダのピストンロッドに、液の粘性により負荷を加えることで動作速度を低下させる方法がある。   As a method of reducing the operating speed of the pneumatic cylinder in the middle of the operation and before the operating end, a piston rod of the operating air cylinder is operated by a hydraulic speed control device as in Patent Document 1. In addition, there is a method of reducing the operation speed by applying a load due to the viscosity of the liquid.

特許文献2には、図3を参照しつつ説明するが、圧力エア供給源10と空気圧シリンダ11との間に介在された3位置切り換え可能な駆動切り換え用電磁弁12と、駆動切り換え用電磁弁12に対して並列関係をもって圧力エア供給源10と空気圧シリンダ11との間に介在されたクッション切り換え用電磁弁15と、クッション切り換え用電磁弁15の第1の切り換え位置に対する第1の排気ポート15dに接続された第1の排気圧調整弁16Aと、クッション切り換え用電磁弁15の第2の切り換え位置に対する第2の排気ポート15eに接続された第2の排気圧調整弁16Bとを備え、駆動切り換え用電磁弁12の第1の方向切り換え位置では第2の排気ポート15eを大気接続すると共に、第2の方向切り換え位置では第1の排気ポート15dを大気接続し、駆動切り換え用電磁弁12の中立位置では駆動切り換え用電磁弁12を介した前記両排気ポート15d、15eの大気接続を遮断するようにした空気圧シリンダの速度制御装置が記載されている。   Japanese Patent Application Laid-Open No. 2003-228561 will be described with reference to FIG. 3, but a three-position switchable solenoid valve 12 interposed between a pressure air supply source 10 and a pneumatic cylinder 11 and a drive switch solenoid valve. 12 and a cushion switching solenoid valve 15 interposed between the pressure air supply source 10 and the pneumatic cylinder 11 in parallel with each other, and a first exhaust port 15d with respect to a first switching position of the cushion switching solenoid valve 15. A first exhaust pressure adjusting valve 16A connected to the second exhaust pressure adjusting valve 16B connected to the second exhaust port 15e with respect to the second switching position of the cushion switching electromagnetic valve 15, and driven. At the first direction switching position of the switching solenoid valve 12, the second exhaust port 15e is connected to the atmosphere, and at the second direction switching position, the first exhaust port is connected. A pneumatic cylinder speed control device is described in which the air connection of the exhaust ports 15d and 15e through the drive switching solenoid valve 12 is cut off at the neutral position of the drive switching solenoid valve 12 at the neutral position. Has been.

なお、後述の実施例にて登場する金属板コイルのコイル巻き不揃い修正装置に関する特許文献3をここで引用しておく。
特開平09−108966号公報 実開平05−058903号公報 特開平06−015355号公報
It should be noted that Patent Document 3 relating to a device for correcting uneven winding of a metal plate coil, which appears in an example described later, is cited here.
JP 09-108966 A Japanese Utility Model Publication No. 05-058903 Japanese Patent Laid-Open No. 06-015355

しかしながら、特許文献1のような方法では、空気圧系統の他に液圧式速度制御装置などの液圧系統を必要とするため、液圧系統については閉じた系にする必要があり、動作用の油圧油を回収し、漏出防止する設計が必要となり、結局、設備費が高くつき、メンテナンスも大変になる。   However, since the method as in Patent Document 1 requires a hydraulic system such as a hydraulic speed control device in addition to the pneumatic system, the hydraulic system needs to be closed, and the hydraulic pressure for operation A design to recover oil and prevent leakage is required, which ultimately results in high equipment costs and maintenance.

また、特許文献2のような装置では、空気圧配管内に残圧が残るため、たとえ、空気圧供給源であるポンプやコンプレッサーなどが停止していたとしても、結露などにより間違って動作スイッチの回路が短絡し、少なくとも一つの電磁弁が動作した場合に、空気圧シリンダを動作させたくないにもかかわらず動作してしまい、安全上の問題がある。   In addition, in the device as in Patent Document 2, since the residual pressure remains in the pneumatic piping, even if the pump or the compressor that is the pneumatic supply source is stopped, the operation switch circuit is mistakenly caused by condensation or the like. When a short circuit occurs and at least one solenoid valve is operated, the pneumatic cylinder is operated although it is not desired to operate, which causes a safety problem.

さらに、既設の空気圧系統に可変速機能を追設しようとした場合に、バルブスタンドの全面更新あるいは大幅改造が必要になるなど、改造費が高くつく、という問題もある。   Furthermore, there is also a problem that when the variable speed function is to be added to the existing pneumatic system, the modification cost is high, such as the entire valve stand needs to be renewed or greatly modified.

本発明は、上記のような従来技術の問題を解決するためになされたものである。すなわち、本発明では、通気と中立と逆方向通気を切替可能な非励磁時中立状態の電磁弁にて駆動される空気圧シリンダに通ずる配管の流路の途中に、通気と中立を切替可能な非励磁時通気状態の電磁弁を設けることにより、空気圧シリンダの動作速度を可変とする。   The present invention has been made to solve the problems of the prior art as described above. In other words, according to the present invention, ventilation and neutral can be switched in the middle of a flow path of a pipe that leads to a pneumatic cylinder driven by a non-excited neutral solenoid valve that can switch between ventilation and neutral and reverse ventilation. The operation speed of the pneumatic cylinder is made variable by providing a solenoid valve that is vented during excitation.

本発明によれば、空気圧シリンダを、動作途中であって、動作端よりも手前で動作速度を低下させ、低下後の速度で動作端に達するようにする可変速空気圧動作機構を、簡単なしくみで構築でき、また、既設の空気圧系統に可変速機能を追設しようとする場合も含め、設備費、改造費を安く抑えられ、しかも、空気圧配管内に残圧が残らないようにできる。   According to the present invention, a variable speed pneumatic operation mechanism that reduces the operation speed of the pneumatic cylinder in the middle of the operation and before the operation end and reaches the operation end at the reduced speed is a simple mechanism. In addition, the equipment and remodeling costs can be kept low, including when trying to add a variable speed function to an existing pneumatic system, and there is no residual pressure remaining in the pneumatic piping.

図1に示す金属板コイルのコイル巻き不揃い修正装置に適用した場合を例に、同図1を用いて以下説明する。空気圧シリンダ11の前進時には、通気と中立と逆方向通気を切替可能な非励磁時中立状態の電磁弁12(いわゆるDS3P:Double Solenoid 3−Positionの形式)を12a側すなわち通気状態側に励磁することによって、空気圧シリンダ11のヘッド側11aに空気が流入する。空気圧シリンダのロッド側11bの空気は流量調整弁13Bの内の、絞り弁13B−aを通って大気に向け排出される。このとき同時に流量調整弁18の内の、絞り弁18−aを通っても大気に向け排出される。ちなみに、流量調整弁13B、18の流量を調整することによって、結果的に速度のレベルも調整できる。   An example in which the present invention is applied to the apparatus for correcting uneven winding of a metal plate coil shown in FIG. 1 will be described below with reference to FIG. When the pneumatic cylinder 11 moves forward, the non-excited neutral solenoid valve 12 (so-called DS3P: Double Solenoid 3-Position) that can switch between ventilation, neutral and reverse ventilation is excited to the 12a side, that is, the ventilation state side. As a result, air flows into the head side 11 a of the pneumatic cylinder 11. The air on the rod side 11b of the pneumatic cylinder is discharged toward the atmosphere through the throttle valve 13B-a in the flow rate adjusting valve 13B. At the same time, it is discharged toward the atmosphere even if it passes through the throttle valve 18-a in the flow rate adjusting valve 18. Incidentally, by adjusting the flow rate of the flow rate adjusting valves 13B and 18, the speed level can be adjusted as a result.

図1では空気圧シリンダ11が前進して金属板コイルのコイル巻き不揃いをいよいよ修正しようとする様子を描いているが、最初は空気圧シリンダ11は後退限にあり、その状態から空気圧シリンダ11は(正確には、そのロッドが)前進を開始する。   FIG. 1 depicts a state in which the pneumatic cylinder 11 moves forward to finally correct the coil winding irregularity of the metal plate coil. At first, the pneumatic cylinder 11 is in the retreat limit, and from that state, the pneumatic cylinder 11 (exactly The rod starts to advance).

空気圧シリンダ11が前進を続けて磁石式の近接スイッチを用いた速度切り替え位置センサLにストライカSがONすると、図示しない制御装置にその信号が伝送され、それを受けた制御装置の側では、通気と中立を切替可能な非励磁時通気状態の電磁弁17(いわゆるSS2P:Single Solenoid 2−Positionの形式)に向け指令を送り、電磁弁17が17a側すなわち中立状態側に励磁する。すると、空気圧シリンダ11のロッド側の空気は流量調整弁13Bの内の、絞り弁13B−aを通ってのみ大気に向け排出されるようになる。このように、速度切り替え位置センサLのON/OFFで空気の排出側の配管の総断面積を変化させることで、高速→低速の速度切り替え(可変速)を可能にする。   When the striker S is turned on to the speed switching position sensor L using the magnetic proximity switch while the pneumatic cylinder 11 continues to advance, the signal is transmitted to a control device (not shown), and on the side of the control device receiving it, the ventilation A command is sent to the solenoid valve 17 in a non-excited ventilation state (so-called SS2P: Single Solenoid 2-Position type) that can be switched between neutral and the solenoid valve 17 is excited to the 17a side, that is, the neutral state side. Then, the air on the rod side of the pneumatic cylinder 11 is discharged toward the atmosphere only through the throttle valve 13B-a in the flow rate adjustment valve 13B. Thus, by changing the total cross-sectional area of the pipe on the air discharge side by turning ON / OFF the speed switching position sensor L, it is possible to switch from high speed to low speed (variable speed).

各電磁弁12、17の電源を落とす、あるいは何らかのトラブルで停電する、などした場合、電磁弁12、17とも非励磁の状態となるが、非励磁の状態だと、電磁弁12は中立の状態すなわち12cが配管と挿通することになり、電磁弁17は17b側すなわち通気状態側が配管と挿通することになる。   When the power of each solenoid valve 12 or 17 is turned off or a power failure occurs due to some trouble, the solenoid valves 12 and 17 are both in a non-excited state. However, in a non-excited state, the solenoid valve 12 is in a neutral state. That is, 12c is inserted into the pipe, and the solenoid valve 17 is inserted into the pipe on the 17b side, that is, the ventilation state side.

このため、空気圧シリンダ11のヘッド側11aとロッド側11bの圧力が、空気圧シリンダ11が動作しない状態になるような、つりあいの状態になり、しかも、空気圧シリンダ11のロッド側11bは大気圧と同じ圧力になる。   For this reason, the pressure on the head side 11a and the rod side 11b of the pneumatic cylinder 11 is in a balanced state such that the pneumatic cylinder 11 does not operate, and the rod side 11b of the pneumatic cylinder 11 is the same as the atmospheric pressure. Become pressure.

よって、図1の空気圧系統全体に残圧が残らない状態になる。この点、従来の図3のものとは異なる。すると、結露などにより間違って動作スイッチの回路が短絡し、少なくとも一つの電磁弁が動作した場合などでも、空気圧シリンダが動作することはなく、安全になる。   Thus, no residual pressure remains in the entire pneumatic system in FIG. This is different from the conventional one shown in FIG. Then, even when the operation switch circuit is accidentally short-circuited due to condensation or the like and at least one solenoid valve is operated, the pneumatic cylinder does not operate and it is safe.

ところで、図1には2つの空気圧シリンダが示されているが、以上の説明に登場しなかった空気圧シリンダの側も、以上の説明と同様なしくみにすることはいうまでもない。   By the way, although two pneumatic cylinders are shown in FIG. 1, it goes without saying that the pneumatic cylinder side which has not appeared in the above description is structured in the same manner as in the above description.

なお、以上説明した実施の形態は、あくまで一例にすぎず、例えば、流量調整弁13A、13B、18などは、一つ以上、適宜省略したとしても、本発明は成立するし、制御装置を用いて自動制御しなくても、操作者が目視により速度を低速に切り替えるべき位置まで動作したと判断したら、電磁弁17を17a側が励磁するように手動操作するようにしても本発明は成立する。   The embodiment described above is merely an example. For example, even if one or more of the flow rate adjusting valves 13A, 13B, and 18 are omitted as appropriate, the present invention is established and the control device is used. Even if automatic control is not performed, if the operator visually determines that the speed has been changed to a position where the speed should be switched to a low speed, the present invention is established even if the solenoid valve 17 is manually operated so that the 17a side is excited.

あるいは、速度切り替え位置センサとしては、磁石式の近接スイッチのほか、機械式のリミットスイッチやレーザセンサ、光電管など、その他のセンサを用いることもできる。   Alternatively, as the speed switching position sensor, other sensors such as a mechanical limit switch, a laser sensor, and a phototube can be used in addition to the magnetic proximity switch.

さらに、本発明は、金属板コイルのコイル巻き不揃い修正装置100に限らず、可変速空気圧動作機構全般に適用可能なことはいうまでもない。   Furthermore, it goes without saying that the present invention is applicable not only to the coil winding irregularity correcting device 100 for metal plate coils but also to variable speed pneumatic operation mechanisms in general.

本発明を、図1に示す金属板コイルのコイル巻き不揃い修正装置100に適用した。本装置は金属板コイル30の巻き取り時の端面の不揃い部をあて板20(物体)で押えながら、同時にこのあて板を加振することで、コイル巻き不揃いを修正するものである。金属板コイル30の幅寸法は600mm〜2000mmの間で金属板コイル30ごとに変化する。出来る限り短時間でコイル巻き不揃いを修正できるのが望ましい。   The present invention was applied to the apparatus 100 for correcting uneven winding of a metal plate coil shown in FIG. The present apparatus corrects the coil winding irregularity by simultaneously pressing the addressing plate while pressing the uneven portion of the end face at the time of winding the metal plate coil 30 with the addressing plate 20 (object). The width dimension of the metal plate coil 30 changes for each metal plate coil 30 between 600 mm and 2000 mm. It is desirable that the coil winding irregularity can be corrected in as short a time as possible.

すなわち、最初、高速であて板20を金属板コイル30の端面に近づけ、動作途中であって、動作端よりも手前で動作速度を低下させ、低下後の速度で動作端に達するようにしたい。金属板コイル30の端面を破損しないようにするために低速であて板20を金属板コイル30の端面に接触させる必要があるからである。   That is, at first, the plate 20 is brought close to the end face of the metal plate coil 30 at a high speed, and the operation speed is lowered before the operation end in the middle of the operation, and reaches the operation end at the reduced speed. This is because it is necessary to bring the plate 20 into contact with the end surface of the metal plate coil 30 at a low speed so as not to damage the end surface of the metal plate coil 30.

図1では、空気圧シリンダ11の全動作ストロークを1600mm(高速移動区間900mm、低速移動区間700mm)として、後退限から900mmの位置に速度切り替え位置センサLを設けてある。ここではセンサとして非接触式の近接スイッチを用いているが、リミットスイッチ等の接触式センサを用いてもよい。空気圧系統は、通気と中立と逆方向通気を切替可能な非励磁時中立状態の電磁弁12、流量調整弁13Aおよび13Bの既設の基本空気圧系統に、通気と中立を切替可能な非励磁時通気状態の電磁弁17および流量調整弁18を追設したものを用いている。   In FIG. 1, assuming that the total operation stroke of the pneumatic cylinder 11 is 1600 mm (high-speed moving section 900 mm, low-speed moving section 700 mm), a speed switching position sensor L is provided at a position 900 mm from the retreat limit. Here, a non-contact proximity switch is used as a sensor, but a contact sensor such as a limit switch may be used. The pneumatic system is a non-excited non-excited ventilator that can switch between venting and neutral to the existing basic pneumatic system of the non-excited neutral solenoid valve 12 and flow rate adjusting valves 13A and 13B that can switch between venting, neutral and reverse venting. A solenoid valve 17 and a flow rate adjustment valve 18 are additionally provided.

既設の基本空気圧系統を構成する配管の側部に別な配管を接続し、既設の配管から分岐する形で流量調整弁18、電磁弁17を接続するだけで済んだため、簡単な改造で済み、改造費を安く抑えることができた。図3に示したような従来技術のものに改造したとしたら、圧力エア供給源10と電磁弁15を接続する配管および2つの排気圧調整弁16A、Bが必要になるため、より複雑な改造になり、もっと改造費が高くついたであろう。   Since it is only necessary to connect another pipe to the side of the pipe constituting the existing basic pneumatic system and connect the flow rate adjustment valve 18 and the electromagnetic valve 17 in a form of branching from the existing pipe, simple modification is sufficient. The cost of remodeling could be kept low. If the modification is made to the prior art as shown in FIG. 3, a piping for connecting the pressure air supply source 10 and the electromagnetic valve 15 and the two exhaust pressure adjusting valves 16A, B are required, so that more complicated modification is required. It would have been more expensive to remodel.

空気圧は0.4MPaとして、高速移動区間を300mm/s、低速移動区間を100mm/sで移動可能なように流量調整弁13Bおよび18を調整した結果、所望の動作所要時間の目標である10秒をクリアすることが出来た。図2に前進動作時の速度パターンを模式的に示す。   As a result of adjusting the flow rate adjusting valves 13B and 18 so that the air pressure is 0.4 MPa, the high speed moving section can be moved at 300 mm / s, and the low speed moving section can be moved at 100 mm / s, 10 seconds which is a target of a desired required operation time I was able to clear. FIG. 2 schematically shows a speed pattern during forward movement.

なお、空気圧シリンダの場合、空気が圧縮性流体であるため、動作中の速度変更により圧力ハンチングが発生する懸念があるが、本実施例程度の速度比(3:1程度)であれば、影響は小さく問題なかった。   In the case of a pneumatic cylinder, since air is a compressible fluid, there is a concern that pressure hunting may occur due to a speed change during operation. However, if the speed ratio is about the same as this embodiment (about 3: 1), there is an effect. Was small and no problem.

本発明の一つの実施の形態について説明する図。The figure explaining one embodiment of this invention. 本発明を適用した場合の動作時の速度パターンを模式的に示す図。The figure which shows typically the speed pattern at the time of operation | movement at the time of applying this invention. 従来技術について説明する図。The figure explaining a prior art.

符号の説明Explanation of symbols

11 空気圧シリンダ
20 あて板
L 速度切り替え位置センサ
S ストライカ
12 通気と中立と逆方向通気を切替可能な非励磁時中立状態の電磁弁
13A,13B,18 流量調整弁
13A−a、13B−a、18−a 絞り弁
13A−b、13B−b、18−b 逆止弁
17 通気と中立を切替可能な電磁弁
30 金属板コイル
100 金属板コイルのコイル巻き不揃い修正装置(可変速空気圧動作機構)
11 Pneumatic cylinder 20 Address plate L Speed switching position sensor S Strike 12 Non-excited neutral solenoid valves 13A, 13B, 18 capable of switching between ventilation, neutral and reverse ventilation Flow rate adjusting valves 13A-a, 13B-a, 18 -A Throttle valves 13A-b, 13B-b, 18-b Check valve 17 Electromagnetic valve 30 capable of switching between ventilation and neutral 30 Metal plate coil 100 Coil winding irregularity correction device for metal plate coil (variable speed pneumatic operation mechanism)

Claims (1)

空気圧シリンダを用いて物体を動作させる空気圧動作機構であって、通気と中立と逆方向通気を切替可能な非励磁時中立状態の電磁弁にて駆動される空気圧シリンダに通ずる配管の流路の途中に、通気と中立を切替可能な非励磁時通気状態の電磁弁を設けることにより、該空気圧シリンダの動作速度を可変としたことを特徴とする空気圧シリンダを用いた可変速空気圧動作機構。   A pneumatic operation mechanism that moves an object using a pneumatic cylinder, and is in the middle of a flow path of a pipe that leads to a pneumatic cylinder driven by a non-excited neutral solenoid valve that can switch between ventilation, neutral and reverse ventilation A variable speed pneumatic operation mechanism using a pneumatic cylinder characterized in that the operation speed of the pneumatic cylinder is variable by providing an electromagnetic valve in a non-excited ventilation state capable of switching between ventilation and neutral.
JP2005021123A 2005-01-28 2005-01-28 Variable speed pneumatic action mechanism using pneumatic cylinder Pending JP2006207712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021123A JP2006207712A (en) 2005-01-28 2005-01-28 Variable speed pneumatic action mechanism using pneumatic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021123A JP2006207712A (en) 2005-01-28 2005-01-28 Variable speed pneumatic action mechanism using pneumatic cylinder

Publications (1)

Publication Number Publication Date
JP2006207712A true JP2006207712A (en) 2006-08-10

Family

ID=36964803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021123A Pending JP2006207712A (en) 2005-01-28 2005-01-28 Variable speed pneumatic action mechanism using pneumatic cylinder

Country Status (1)

Country Link
JP (1) JP2006207712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433918B1 (en) 2012-05-14 2014-08-29 (주)선린 The Speed Variable Form Cylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433918B1 (en) 2012-05-14 2014-08-29 (주)선린 The Speed Variable Form Cylinder

Similar Documents

Publication Publication Date Title
JP3900949B2 (en) Control device and control method for hydraulic work machine
JP5331988B2 (en) Reduction mechanism of piston in pneumatic cylinder device
JP4827789B2 (en) Hydraulic actuator speed controller
CN101273205A (en) Ventilation of an operating element
JP2006207712A (en) Variable speed pneumatic action mechanism using pneumatic cylinder
WO2008010536A1 (en) Method for controlling pump of working machine
JP2010101446A (en) Control method for hydraulic operation system
CN104029722A (en) Hydraulic steering system of engineering machine
JP2015137678A (en) Fluid pressure system
KR100663320B1 (en) Hydraulic cylinder stroke corrector in concrete pump system
KR100998614B1 (en) hydraulic control system of construction equipment
JP6859411B2 (en) Speed-up valve device
US20110158821A1 (en) Hydraulic circuit and method for controlling the same
JP4432707B2 (en) Hydraulic control circuit for construction machinery
JP4761467B2 (en) Hydraulic control device for work machine
JP2009029555A (en) Lifter device
JP2003293400A (en) Hydraulic circuit of hydraulic excavator
JP4117636B2 (en) Solenoid valve for energy saving drive
JP5382572B2 (en) Double-acting pneumatic cylinder positioning control device and control method thereof
JP2005030559A (en) Hydraulic unit
JP6550297B2 (en) Hydraulic drive system
JP2576637Y2 (en) Air cylinder drive control circuit
JP2002195215A (en) Control device and method for reciprocating mobile carriage
JP4743187B2 (en) Hydraulic device
JP2009185910A (en) Directional control valve

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921