JP2006207544A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2006207544A
JP2006207544A JP2005023367A JP2005023367A JP2006207544A JP 2006207544 A JP2006207544 A JP 2006207544A JP 2005023367 A JP2005023367 A JP 2005023367A JP 2005023367 A JP2005023367 A JP 2005023367A JP 2006207544 A JP2006207544 A JP 2006207544A
Authority
JP
Japan
Prior art keywords
oil
oil separation
working fluid
chamber
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005023367A
Other languages
Japanese (ja)
Inventor
Takeshi Ikedaka
剛士 池高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005023367A priority Critical patent/JP2006207544A/en
Publication of JP2006207544A publication Critical patent/JP2006207544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scroll compressor capable of improving separability of lubricant in an oil separation chamber with a simple structure and securing a well lubricated state. <P>SOLUTION: The scroll compressor is equipped with an oil separating means for separating a portion of the lubricant from a compressed working fluid. The oil separating means includes: the oil separating chamber 90 provided in a discharge passage of the working fluid extending from a scroll unit 40 to a discharge port and has a inflow port and an outflow port for the working fluid; an oil separating pipe 94 provided in the oil separation chamber 90 and which has one end opening to the oil separation chamber 90 and another end connected to the outflow port; and a separation flow passage which is partitioned between the inner peripheral face of the oil separation chamber 90 and the outer peripheral face of the oil separation pipe 94, extending from the inflow port to the one end of the oil separation pipe 94, for making the working fluid which flows into the oil separation chamber 90 to flow in a spiral around the oil separation pipe 94 and centrifuging the lubricant from the working fluid. The separation flow passage has a throttle 96 between the upstream end and the downstream end where a flow cross section area is throttled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はスクロール圧縮機に関する。   The present invention relates to a scroll compressor.

この種のスクロール圧縮機は、例えば車両用空調装置の冷凍回路等に適用され、そのハウジングには、固定及び可動スクロールからなるスクロールユニットが収容されている。ハウジングの一方の内端壁とスクロールユニットとの間は駆動室として区画され、この駆動室に固定スクロールに対し可動スクロールを旋回運動させるための旋回ユニットが収容されている。この旋回ユニットの作動に伴い、スクロールユニットはその可動スクロールが旋回運動することにより作動流体の吸入、圧縮及び吐出の一連のプロセスを実行する。一方、ハウジングの他方の内端壁とスクロールユニットとの間には吐出室が区画され、この吐出室にスクロールユニットから高圧の作動流体が吐出されるようになっている。なお、作動流体はハウジングの吸入ポートを通じてスクロールユニット内に導入され、そして、吐出室内の高圧の作動流体はハウジングの吐出ポートを通じて吐出室から送出される。   This type of scroll compressor is applied to, for example, a refrigeration circuit of a vehicle air conditioner, and a scroll unit including fixed and movable scrolls is accommodated in the housing. A space between one inner end wall of the housing and the scroll unit is defined as a drive chamber, and a revolving unit for revolving the movable scroll with respect to the fixed scroll is accommodated in the drive chamber. Along with the operation of the swivel unit, the scroll unit performs a series of processes of sucking, compressing and discharging the working fluid by the swivel movement of the movable scroll. On the other hand, a discharge chamber is defined between the other inner end wall of the housing and the scroll unit, and high-pressure working fluid is discharged from the scroll unit into the discharge chamber. The working fluid is introduced into the scroll unit through the suction port of the housing, and the high-pressure working fluid in the discharge chamber is delivered from the discharge chamber through the discharge port of the housing.

ところで、一般に、作動流体としての冷媒は、旋回ユニットの軸受等のための潤滑油を含むが、潤滑油が冷凍回路を循環するとその冷凍能力が低下する。このため、この種のスクロール圧縮機では、圧縮された作動流体から潤滑油を一部分離する油分離室と、この油分離室と連通孔を介して連通し、分離した潤滑油を一旦貯留するオイル室とが吐出室に隣接して設けられている。オイル室と駆動室との間は潤滑油の還流路により繋がれ、この還流路を通じて潤滑油のみがオイル室から駆動室、つまり旋回ユニットに供給される(例えば、特許文献1参照)。
特開平11−82352号公報
By the way, in general, the refrigerant as the working fluid includes lubricating oil for the bearing of the swivel unit and the like, but when the lubricating oil circulates in the refrigeration circuit, its refrigerating capacity is lowered. Therefore, in this type of scroll compressor, an oil separation chamber that partially separates the lubricating oil from the compressed working fluid, and an oil that communicates with the oil separation chamber via the communication hole and temporarily stores the separated lubricating oil. A chamber adjacent to the discharge chamber. The oil chamber and the drive chamber are connected by a recirculation path for lubricating oil, and only the lubricating oil is supplied from the oil chamber to the drive chamber, that is, the swivel unit through this recirculation path (see, for example, Patent Document 1).
JP 11-82352 A

上述した従来技術の圧縮機では、油分離室での潤滑油の分離能力が高いほど好ましい。
本発明は上述の事情に基づいてなされたもので、その目的とするところは、油分離室での潤滑油の分離能力が簡単な構成にて向上し、良好な潤滑状態が確保されるスクロール圧縮機を提供することにある。
In the conventional compressor described above, it is preferable that the lubricating oil separating ability in the oil separating chamber is higher.
The present invention has been made on the basis of the above-described circumstances, and the object of the present invention is to improve the separation capability of the lubricating oil in the oil separation chamber with a simple configuration and to ensure a good lubrication state. Is to provide a machine.

上述の目的を達成するため、本発明によれば、吸入ポート及び吐出ポートを有するハウジングと、前記ハウジング内に配置され、前記吸入ポートから導入した潤滑油を含む作動流体に対して、その吸込み、圧縮及び吐出工程からなる一連のプロセスを実行し、前記吐出ポートを通じて高圧の作動流体を送出させるスクロールユニットと、前記スクロールユニットにより吐出された前記作動流体から前記潤滑油を一部分離する油分離手段と、を備えるスクロール圧縮機において、前記油分離手段は、前記スクロールユニットから前記吐出ポートに亘る前記作動流体の吐出経路中に設けられ、前記作動流体の流入口及び流出口を有する油分離室と、前記油分離室内に設けられ、前記油分離室に開口した一端及び前記流出口に接続された他端を有する油分離管と、前記油分離室の内周面と前記油分離管の外周面との間に前記流入口から前記油分離管の一端に亘って区画され、前記油分離室内に流入した前記作動流体を前記油分離管の周りに螺旋状に流動させて前記作動流体から前記潤滑油を遠心分離するための分離流路とを含み、前記分離流路は、その上流端と下流端との間に流路断面積が絞られた絞りを有することを特徴とするスクロール圧縮機が提供される(請求項1)。   In order to achieve the above-described object, according to the present invention, a housing having a suction port and a discharge port, and suction of a working fluid disposed in the housing and including lubricating oil introduced from the suction port, A scroll unit that executes a series of processes including compression and discharge steps, and sends a high-pressure working fluid through the discharge port; and oil separation means that partially separates the lubricating oil from the working fluid discharged by the scroll unit; The oil separation means is provided in a discharge path of the working fluid from the scroll unit to the discharge port, and has an oil separation chamber having an inlet and an outlet of the working fluid; Provided in the oil separation chamber, having one end opened to the oil separation chamber and the other end connected to the outlet The operation separated from the inlet to one end of the oil separation pipe between the oil separation pipe, an inner peripheral surface of the oil separation chamber and an outer peripheral surface of the oil separation pipe, and flows into the oil separation chamber A separation flow path for causing the fluid to spirally flow around the oil separation pipe and centrifuging the lubricating oil from the working fluid, the separation flow path between the upstream end and the downstream end There is provided a scroll compressor characterized in that it has a restriction with a reduced flow path cross-sectional area (Claim 1).

本発明のスクロール圧縮機によれば、分離流路の絞りでは流路断面積が絞られているので、潤滑油を含む作動流体は、絞りを流れるときに加速される。作動流体の加速は、遠心分離に利用される遠心力、つまり螺旋状に流れる作動流体及び潤滑油に加わる遠心力の増大をもたらす。このため絞りでは作動流体から潤滑油が遠心分離され易く、その結果として油分離室での潤滑油の分離能力が向上する。   According to the scroll compressor of the present invention, since the cross-sectional area of the flow path is reduced in the restriction of the separation flow path, the working fluid including the lubricating oil is accelerated when flowing through the restriction. The acceleration of the working fluid results in an increase in the centrifugal force used for the centrifugal separation, that is, the centrifugal force applied to the working fluid and the lubricating oil flowing in a spiral shape. Therefore, in the throttle, the lubricating oil is easily centrifuged from the working fluid, and as a result, the ability to separate the lubricating oil in the oil separation chamber is improved.

好適な態様として、前記絞りは、前記分離流路の前記下流端に設けられている(請求項2)。作動流体に含まれる潤滑油量は、潤滑油が遠心分離されることにより作動流体が分離流路の下流端に近付くに連れて減少する。このため、下流端では作動流体に含まれる潤滑油量が少なく、作動流体からの潤滑油の遠心分離が困難になる。しかしながら、この場合、下流端に設けられた絞りにより作動流体が加速されて遠心力が増大し、下流端であっても作動流体から潤滑油が遠心分離されるので、油分離室での潤滑油の分離能力が一層向上する。   As a preferred aspect, the throttle is provided at the downstream end of the separation channel (Claim 2). The amount of lubricating oil contained in the working fluid decreases as the working fluid approaches the downstream end of the separation flow path as the lubricating oil is centrifuged. For this reason, the amount of lubricating oil contained in the working fluid is small at the downstream end, and centrifugal separation of the lubricating oil from the working fluid becomes difficult. However, in this case, the working fluid is accelerated by the throttle provided at the downstream end to increase the centrifugal force, and the lubricating oil is centrifuged from the working fluid even at the downstream end. The separation ability of the is further improved.

好適な態様として、前記油分離管の前記内周面及び前記油分離管の外周面の少なくとも一方は前記絞りを得るために、前記分離流路の前記上流端から下流端に亘って形成されたテーパ面を含む(請求項3)。この場合、分離流路にて作動流体から分離され、前記油分離管の内周面及び油分離管の外周面に付着した潤滑油が、テーパ面に沿って円滑に流動し、油分離室から速やかに排出される。   As a preferred aspect, at least one of the inner peripheral surface of the oil separation tube and the outer peripheral surface of the oil separation tube is formed from the upstream end to the downstream end of the separation flow path in order to obtain the throttle. A tapered surface is included (claim 3). In this case, the lubricating oil that is separated from the working fluid in the separation channel and adheres to the inner peripheral surface of the oil separation tube and the outer peripheral surface of the oil separation tube flows smoothly along the tapered surface, from the oil separation chamber. It is discharged promptly.

以上説明したように、請求項1〜3のスクロール圧縮機では、油分離室の分離流路に絞りを設けたことで油分離室での潤滑油の分離能力が向上するため、駆動室に還流される潤滑油が十分に確保され、潤滑状態が良好に保たれる。このため、これらのスクロール圧縮機は、簡単な構成ながら寿命が長く、更には動力損失が低減される。
特に、請求項2のスクロール圧縮機によれば、分離流路の下流端に絞りを設けたことで、潤滑油の分離能力が一層向上する。
As described above, in the scroll compressor according to the first to third aspects, since the separation performance of the lubricating oil in the oil separation chamber is improved by providing a restriction in the separation flow path of the oil separation chamber, it is returned to the drive chamber. A sufficient amount of lubricating oil is ensured, and the lubricating state is kept good. For this reason, these scroll compressors have a long life while having a simple configuration, and further reduce power loss.
In particular, according to the scroll compressor of claim 2, by providing a throttle at the downstream end of the separation flow path, the ability to separate the lubricating oil is further improved.

また、請求項3のスクロール圧縮機では、油分離室から分離された潤滑油が速やかに排出されるので、駆動室に還流される潤滑油が確実に確保される。   In the scroll compressor according to the third aspect, since the lubricating oil separated from the oil separation chamber is quickly discharged, the lubricating oil returned to the driving chamber is reliably ensured.

図1は車両用空調装置の冷凍回路に適用された一実施例のスクロール圧縮機を示す。
スクロール圧縮機は、冷媒が循環する冷凍回路の循環流路2に配置され、冷媒の循環方向でみて循環流路2における圧縮機の下流には、凝縮器4、レシーバ6、膨張弁8及び蒸発器10が順次配置されている。圧縮機は作動流体としての冷媒を圧縮して凝縮器4に送出し、これにより冷媒が循環流路2を循環する。冷媒は潤滑油を含み、この冷媒中の潤滑油は圧縮機内の軸受や種々の摺動面を潤滑するのみならず、摺動面をシールする機能をも発揮する。
FIG. 1 shows a scroll compressor of one embodiment applied to a refrigeration circuit of a vehicle air conditioner.
The scroll compressor is disposed in the circulation flow path 2 of the refrigeration circuit through which the refrigerant circulates, and the condenser 4, the receiver 6, the expansion valve 8 and the evaporation are disposed downstream of the compressor in the circulation flow path 2 in the circulation direction of the refrigerant. Containers 10 are sequentially arranged. The compressor compresses the refrigerant as the working fluid and sends it to the condenser 4, whereby the refrigerant circulates in the circulation channel 2. The refrigerant contains lubricating oil, and the lubricating oil in the refrigerant not only lubricates the bearings and various sliding surfaces in the compressor, but also functions to seal the sliding surfaces.

スクロール圧縮機はハウジング12を備え、このハウジング12は駆動ケーシング14及び圧縮ケーシング16からなる。これら駆動及び圧縮ケーシング14,16は複数の連結ボルト18により相互に連結されている。なお、この圧縮機は、後述するように潤滑油が圧縮ケーシング16内の底部に貯留されることから、図1の縦方向が上下方向に略一致するように車両のエンジンルーム内に設置される。   The scroll compressor includes a housing 12, and the housing 12 includes a drive casing 14 and a compression casing 16. The drive and compression casings 14 and 16 are connected to each other by a plurality of connection bolts 18. As will be described later, this compressor is installed in the engine room of the vehicle so that the lubricating oil is stored in the bottom of the compression casing 16 and the vertical direction of FIG. .

駆動ケーシング14内には駆動軸20が配置され、この駆動軸20は圧縮ケーシング16側に大径端部22を有し、この大径端部22から小径軸部24が延びている。大径端部22はニードル軸受26を介して駆動ケーシング14に回転自在に支持され、小径軸部24はボール軸受28を介して駆動ケーシング14に回転自在に支持されている。更に、小径軸部24にはボール軸受28と大径端部22との間にリップシール30が取付けられ、このリップシール30は小径軸部24に相対的に摺接し、駆動ケーシング14内を気密に区画している。   A drive shaft 20 is disposed in the drive casing 14, and the drive shaft 20 has a large-diameter end portion 22 on the compression casing 16 side, and a small-diameter shaft portion 24 extends from the large-diameter end portion 22. The large diameter end portion 22 is rotatably supported by the drive casing 14 via a needle bearing 26, and the small diameter shaft portion 24 is rotatably supported by the drive casing 14 via a ball bearing 28. Further, a lip seal 30 is attached to the small diameter shaft portion 24 between the ball bearing 28 and the large diameter end portion 22, and the lip seal 30 is slidably contacted with the small diameter shaft portion 24 so that the inside of the drive casing 14 is hermetically sealed. It is divided into.

駆動軸20における小径軸部24は駆動ケーシング14から突出し、その突出端に電磁クラッチ32のドリブン側が取り付けられている。電磁クラッチ32は、そのドライブ側に駆動プーリ34を有し、駆動プーリ34は軸受36を介して駆動ケーシング14に回転自在に支持されている。駆動プーリ34は車両のエンジン38からの動力を受けて回転され、駆動プーリ34の回転は、電磁クラッチ32を介して駆動軸20に断続的に伝達可能である。従って、エンジン38の駆動中、電磁クラッチ32がオン作動されれば、駆動軸20は駆動プーリ34とともに回転される。   The small diameter shaft portion 24 of the drive shaft 20 protrudes from the drive casing 14, and the driven side of the electromagnetic clutch 32 is attached to the protruding end. The electromagnetic clutch 32 has a drive pulley 34 on its drive side, and the drive pulley 34 is rotatably supported by the drive casing 14 via a bearing 36. The drive pulley 34 is rotated by receiving power from the engine 38 of the vehicle, and the rotation of the drive pulley 34 can be intermittently transmitted to the drive shaft 20 via the electromagnetic clutch 32. Therefore, if the electromagnetic clutch 32 is turned on while the engine 38 is being driven, the drive shaft 20 is rotated together with the drive pulley 34.

一方、圧縮ケーシング16は、図示しないけれども、その外周壁に吸入ポート及び吐出ポートが形成され、吸入ポート及び吐出ポートは、冷凍回路の蒸発器10又は凝縮器4に対して循環流路2により接続される。
圧縮ケーシング16内にはスクロールユニット40が収容され、スクロールユニット40と駆動ケーシング14の内端壁との間には駆動室42が形成されるとともに、スクロールユニット40と圧縮ケーシング16の外周壁との間には、圧縮ケーシング16の吸入ポートと連通する吸入室44が形成されている。なお、駆動室42と吸入室44との間は互いに連通している。
On the other hand, although not shown, the compression casing 16 is formed with a suction port and a discharge port on its outer peripheral wall, and the suction port and the discharge port are connected to the evaporator 10 or the condenser 4 of the refrigeration circuit by the circulation flow path 2. Is done.
A scroll unit 40 is accommodated in the compression casing 16, and a drive chamber 42 is formed between the scroll unit 40 and the inner end wall of the drive casing 14, and between the scroll unit 40 and the outer peripheral wall of the compression casing 16. A suction chamber 44 communicating with the suction port of the compression casing 16 is formed therebetween. The drive chamber 42 and the suction chamber 44 are in communication with each other.

スクロールユニット40は可動スクロール46及び固定スクロール48を有し、これら可動及び固定スクロール46,48は、それぞれ基板50と、この基板50に一体に形成された渦巻き壁52とから形成されている。
図1から明らかなように、可動及び固定スクロール46,48は、基板50同士が互いに対向し、且つ、渦巻き壁52同士が互いに噛み合うようにして配置されている。この配置では、各渦巻き壁52の先端面が、他方の基板50に対して摺接するとともに、渦巻き壁52同士が互いに局所的に摺接し、これにより可動スクロール46と固定スクロール48との間に圧縮室54が形成されている。この圧縮室54内への冷媒の吸込工程及び冷媒の圧縮/吐出工程は、可動スクロール46の旋回運動に伴い実行される。
The scroll unit 40 includes a movable scroll 46 and a fixed scroll 48, and each of the movable and fixed scrolls 46 and 48 is formed of a substrate 50 and a spiral wall 52 formed integrally with the substrate 50.
As is clear from FIG. 1, the movable and fixed scrolls 46 and 48 are arranged such that the substrates 50 face each other and the spiral walls 52 mesh with each other. In this arrangement, the front end surface of each spiral wall 52 is in sliding contact with the other substrate 50, and the spiral walls 52 are in local contact with each other, thereby compressing between the movable scroll 46 and the fixed scroll 48. A chamber 54 is formed. The refrigerant suction process and the refrigerant compression / discharge process into the compression chamber 54 are executed as the movable scroll 46 turns.

上述した可動スクロール46に旋回運動を付与するため、駆動室42内には旋回ユニットが配置されている。より詳しくは、可動スクロール46と駆動軸20の大径端部22とは、ニードル軸受56、偏心ブッシュ58及びクランクピン60を介して互いに連結され、可動スクロール46と駆動ケーシング14との間には、可動スクロール46の自転を阻止するボール型の旋回スラストベアリング62が配置されている。なお、図1中の参照符号64はカウンタウエイトを示し、このカウンタウエイト64は偏心ブッシュ58に取付けられている。   In order to impart a turning motion to the movable scroll 46 described above, a turning unit is disposed in the drive chamber 42. More specifically, the movable scroll 46 and the large-diameter end 22 of the drive shaft 20 are connected to each other via a needle bearing 56, an eccentric bush 58 and a crank pin 60, and the movable scroll 46 and the drive casing 14 are connected to each other. A ball-type orbiting thrust bearing 62 for preventing the rotation of the movable scroll 46 is disposed. Reference numeral 64 in FIG. 1 indicates a counterweight, and this counterweight 64 is attached to an eccentric bush 58.

一方、固定スクロール48は圧縮ケーシング16内にて複数の固定ボルト(図示しない)を介して固定され、固定スクロール48と圧縮ケーシング16の端壁16aとの間には、吐出室66及びオイル室68が仕切壁70を介して上下に区画されている。
オイル室68は、油還流手段つまり固定スクロール48の貫通孔72に設けられたオリフィスフィルタ74を介して駆動室42に連通している。オリフィスフィルタ74は、オリフィスチューブ76と、オリフィスチューブ76に外側から部分的に嵌合したスリーブ78と、スリーブ78に融着され、オイル室68側のオリフィスチューブ76の基端部を囲む円筒状のフィルタ材80とからなる。オリフィスチューブ76は例えば金属の中空円筒をその軸線方向に引き延ばして得られ、その内部を潤滑油のための極小径な内部流路(図示せず)が貫通しており、オイル室68と駆動室42との間は、フィルタ材80及びオリフィスチューブ76の内部流路を介して連通している。
On the other hand, the fixed scroll 48 is fixed in the compression casing 16 via a plurality of fixing bolts (not shown), and between the fixed scroll 48 and the end wall 16 a of the compression casing 16, a discharge chamber 66 and an oil chamber 68. Are partitioned vertically via a partition wall 70.
The oil chamber 68 communicates with the drive chamber 42 through an oil recirculation means, that is, an orifice filter 74 provided in the through hole 72 of the fixed scroll 48. The orifice filter 74 has a cylindrical shape surrounding the proximal end portion of the orifice tube 76 on the oil chamber 68 side, the orifice tube 76, a sleeve 78 partially fitted to the orifice tube 76 from the outside, and being fused to the sleeve 78. And a filter material 80. The orifice tube 76 is obtained, for example, by extending a metal hollow cylinder in the axial direction thereof, and an extremely small internal passage (not shown) for lubricating oil passes through the inside of the orifice tube 76, and an oil chamber 68 and a drive chamber. 42 communicates with the filter material 80 and the internal flow path of the orifice tube 76.

一方、吐出室66は、吐出弁82を介して上流の圧縮室54に連通し、吐出弁82は、固定スクロール48に設けられた弁孔としての吐出孔84と、吐出孔84を開閉するリード弁体86と、リード弁体86の開度を規制するストッパプレート88とを有する。
また、吐出室66内には油分離室90が区画されている。より詳しくは、図2に拡大して示したように、吐出室66と油分離室90との間は円筒状の区画壁(以下、周壁といい符号92を付す)により区画され、周壁92は仕切壁70から圧縮ケーシング16の外周壁に亘り端壁16aに沿って上下方向に延びている。周壁92内には、油分離管94が同心上に配置され、油分離管94は、圧入により周壁92の内周面に嵌合した大径筒部94aと、大径筒部94aから仕切壁70に向けて下方に延びる小径筒部94bとからなる。油分離室90は、油分離管94の大径筒部94aから仕切壁70に亘る周壁92の領域によりその内側に形成されているが、この圧縮機では、当該領域における周壁92の内周面が、大径筒部94aから仕切壁70に向かうに連れて縮径するテーパ面92aとして形成されている。このため、油分離管94の小径筒部94bの外周面と周壁92の内周面との距離は、小径筒部94bの上端から下端に向かうに連れて縮小され、小径筒部94bの下端で最小になっている。従って、小径筒部94bの下端とテーパ面92aとの間には絞り96が形成されている。なお、周壁92は、圧縮ケーシング16を例えばアルミダイキャストにより成形するときに一体に成形され、テーパ面92aは鋳造肌よりなる。
On the other hand, the discharge chamber 66 communicates with the upstream compression chamber 54 via the discharge valve 82, and the discharge valve 82 has a discharge hole 84 as a valve hole provided in the fixed scroll 48 and a lead that opens and closes the discharge hole 84. The valve body 86 has a stopper plate 88 that regulates the opening degree of the reed valve body 86.
An oil separation chamber 90 is defined in the discharge chamber 66. More specifically, as shown in an enlarged view in FIG. 2, the discharge chamber 66 and the oil separation chamber 90 are partitioned by a cylindrical partition wall (hereinafter referred to as a peripheral wall 92). The partition wall 70 extends in the vertical direction along the end wall 16 a from the outer peripheral wall of the compression casing 16. An oil separation pipe 94 is concentrically disposed in the peripheral wall 92, and the oil separation pipe 94 is fitted to the inner peripheral surface of the peripheral wall 92 by press-fitting, and a partition wall from the large diameter cylindrical part 94a. A small-diameter cylindrical portion 94b extending downwardly toward 70. The oil separation chamber 90 is formed inside the region of the peripheral wall 92 extending from the large-diameter cylindrical portion 94a of the oil separation pipe 94 to the partition wall 70. In this compressor, the inner peripheral surface of the peripheral wall 92 in the region. However, it is formed as a tapered surface 92a that decreases in diameter as it goes from the large-diameter cylindrical portion 94a toward the partition wall 70. For this reason, the distance between the outer peripheral surface of the small diameter cylindrical portion 94b of the oil separation pipe 94 and the inner peripheral surface of the peripheral wall 92 is reduced from the upper end to the lower end of the small diameter cylindrical portion 94b, and at the lower end of the small diameter cylindrical portion 94b. It is the minimum. Accordingly, a diaphragm 96 is formed between the lower end of the small diameter cylindrical portion 94b and the tapered surface 92a. The peripheral wall 92 is integrally formed when the compression casing 16 is formed by, for example, aluminum die casting, and the tapered surface 92a is made of cast skin.

周壁92からの油分離管94の抜けは止輪98により防止され、周壁92の上端はプラグ100により閉塞されているが、プラグ100と油分離管94との間にて、周壁92の内周面には吐出ポートに連なる横孔102が開口している。つまり、油分離室90は、油分離管94の内部を通じて下流の吐出ポートに連通し、小径筒部94bの上端は、その内側に油分離室90の流出口を形成している。   The oil separation pipe 94 is prevented from coming off from the peripheral wall 92 by a retaining ring 98, and the upper end of the peripheral wall 92 is closed by the plug 100, but the inner periphery of the peripheral wall 92 is between the plug 100 and the oil separation pipe 94. A horizontal hole 102 connected to the discharge port is opened on the surface. In other words, the oil separation chamber 90 communicates with the downstream discharge port through the oil separation pipe 94, and the upper end of the small diameter cylindrical portion 94b forms an outlet of the oil separation chamber 90 on the inside thereof.

油分離室90とその上流の吐出室66との間は、周壁92に上下に並べて設けられた2つの導入孔104を介して互いに連通している。これら導入孔104は、上下方向でみて油分離管94の小径筒部94bの上端近傍に位置し、油分離室90の上部にて周壁92のテーパ面92aに開口し、油分離室90の流入口をなす開口端を有する。また、これら導入孔104は周壁92をその接線方向に貫通し、油分離室90側の導入孔104の開口端は、油分離管94の小径筒部94bの正面ではなく、小径筒部94bの側方と周壁92の内周面との間を臨むように開口している。   The oil separation chamber 90 and the discharge chamber 66 upstream thereof communicate with each other via two introduction holes 104 provided on the peripheral wall 92 side by side. These introduction holes 104 are positioned in the vicinity of the upper end of the small-diameter cylindrical portion 94b of the oil separation pipe 94 when viewed in the vertical direction, open to the tapered surface 92a of the peripheral wall 92 at the upper part of the oil separation chamber 90, and flow in the oil separation chamber 90 It has an open end that forms an inlet. Further, these introduction holes 104 penetrate the peripheral wall 92 in the tangential direction, and the opening end of the introduction hole 104 on the oil separation chamber 90 side is not the front surface of the small diameter cylinder part 94b of the oil separation pipe 94 but the small diameter cylinder part 94b. An opening is provided so as to face between the side and the inner peripheral surface of the peripheral wall 92.

また、油分離室90とオイル室68との間は、油分離室90の底壁としての仕切壁70に形成された連通孔106を介してオイル室68に連通している。より詳しくは、連通孔106は、仕切壁70を上下方向に貫通し、仕切壁70の上面及び下面にて開口した開口端を有する。そして、油分離室90側の連通孔106の開口端から、周壁92のテーパ面92aが連続的に立ち上がっている。   Further, the oil separation chamber 90 and the oil chamber 68 communicate with the oil chamber 68 through a communication hole 106 formed in the partition wall 70 as a bottom wall of the oil separation chamber 90. More specifically, the communication hole 106 has an opening end that penetrates the partition wall 70 in the vertical direction and opens at the upper surface and the lower surface of the partition wall 70. The tapered surface 92a of the peripheral wall 92 rises continuously from the opening end of the communication hole 106 on the oil separation chamber 90 side.

上述したスクロール圧縮機によれば、駆動軸20の回転に伴い可動スクロール46が旋回運動し、この際、可動スクロール46の自転は旋回スラストベアリング62により阻止された状態にある。可動スクロール46の旋回運動は圧縮室54を吐出孔84に対して接離する方向に周期的に移動させ、これに伴い、圧縮室54の容積が増減される。
この結果、吸入室44から圧縮室54内に冷媒が吸い込まれ、そして、吸い込まれた冷媒は圧縮室54が吐出孔84に向けて移動し、その容積が減少していく過程にて圧縮される。そして、圧縮室54が吐出孔84に達すると、圧縮室54内の冷媒の圧力は吐出弁82の締切圧に打ち勝って吐出弁82を開き、圧縮冷媒が圧縮室54から吐出孔84を通じて吐出室66内に吐出される。
According to the scroll compressor described above, the movable scroll 46 orbits as the drive shaft 20 rotates. At this time, the rotation of the movable scroll 46 is blocked by the orbiting thrust bearing 62. The orbiting movement of the movable scroll 46 periodically moves the compression chamber 54 in the direction of moving toward and away from the discharge hole 84, and accordingly, the volume of the compression chamber 54 is increased or decreased.
As a result, the refrigerant is sucked into the compression chamber 54 from the suction chamber 44, and the sucked refrigerant is compressed in the process in which the compression chamber 54 moves toward the discharge hole 84 and its volume decreases. . When the compression chamber 54 reaches the discharge hole 84, the pressure of the refrigerant in the compression chamber 54 overcomes the shutoff pressure of the discharge valve 82 and opens the discharge valve 82, and the compressed refrigerant is discharged from the compression chamber 54 through the discharge hole 84. 66 is discharged.

そして、圧縮冷媒は、吐出室66から導入孔104を通じて油分離室90に流入し、油分離管94の小径筒部94bの回りを旋回しながら下方へ向かって流れる。この際、冷媒に含まれる霧状の潤滑油が遠心分離されて周壁92の内面に付着し、分離された潤滑油はその自重により下降し、連通孔106を通じてオイル室68へと流入する。
こうして潤滑油が分離された圧縮冷媒は、油分離管94の下端から油分離管94内に流入して上昇し、そして、吐出ポートを通じて凝縮器4に供給される。
Then, the compressed refrigerant flows from the discharge chamber 66 into the oil separation chamber 90 through the introduction hole 104 and flows downward while turning around the small diameter cylindrical portion 94b of the oil separation pipe 94. At this time, the mist-like lubricating oil contained in the refrigerant is centrifuged and adheres to the inner surface of the peripheral wall 92, and the separated lubricating oil descends due to its own weight and flows into the oil chamber 68 through the communication hole 106.
The compressed refrigerant from which the lubricating oil is thus separated flows into the oil separation pipe 94 from the lower end of the oil separation pipe 94 and rises, and is supplied to the condenser 4 through the discharge port.

一方、オイル室68に貯えられた潤滑油は、駆動室42とオイル室68との間の圧力差を利用し、オリフィスフィルタ74を通じて駆動室42内に還流され、旋回ユニットを構成するニードル軸受56等の各摺動部に供給される。つまり、フィルタ材80を通過することによって濾過された潤滑油が、オリフィスチューブ76を通して駆動室42に供給される。   On the other hand, the lubricant stored in the oil chamber 68 is recirculated into the drive chamber 42 through the orifice filter 74 using the pressure difference between the drive chamber 42 and the oil chamber 68, and the needle bearing 56 constituting the swivel unit. Are supplied to each sliding part. That is, the lubricating oil filtered by passing through the filter material 80 is supplied to the drive chamber 42 through the orifice tube 76.

ここで、上述した圧縮機では、油分離管94の小径筒部94bの外周面と周壁92の内周面との間に、作動流体を螺旋状に流動させて作動流体から潤滑油を遠心分離する分離流路が区画されているが、分離流路には絞り96が形成されている。絞り96は、分離流路の流路断面積を絞っているので、潤滑油を含む作動流体は、絞り96を流れるときに加速される。作動流体の加速は、遠心分離に利用される遠心力、つまり螺旋状に流れる作動流体及び潤滑油に加わる遠心力の増大をもたらす。このため絞り96では作動流体から潤滑油が遠心分離され易く、その結果として、油分離室90での潤滑油の分離能力が向上する。   Here, in the compressor described above, the working fluid is caused to flow spirally between the outer peripheral surface of the small diameter cylindrical portion 94b of the oil separation pipe 94 and the inner peripheral surface of the peripheral wall 92, and the lubricating oil is centrifuged from the working fluid. A separation channel is defined, and a restriction 96 is formed in the separation channel. Since the restriction 96 restricts the cross-sectional area of the separation passage, the working fluid containing the lubricating oil is accelerated when flowing through the restriction 96. The acceleration of the working fluid results in an increase in the centrifugal force used for the centrifugal separation, that is, the centrifugal force applied to the working fluid and the lubricating oil flowing in a spiral shape. For this reason, in the throttle 96, the lubricating oil is easily centrifuged from the working fluid, and as a result, the capability of separating the lubricating oil in the oil separation chamber 90 is improved.

そして、上述した圧縮機を備える車両用空調装置の冷凍回路は、循環流路2を流れる潤滑油量が少ないので、良好な冷凍能力を有する。
本発明は上述の一実施例に制約されるものではなく種々の変形が可能である。
例えば、一実施例では、絞り96は分離流路の下流端に設けられていたけれども、分離流路の上流端と下流端との間のいずれかの流域、つまり油分離管94の小径筒部94bの上端と下端との間に設ければよい。ただし、一実施例のように、絞り96は分離流路の下流端に設けるのが好ましい。理由は以下の通りである。作動流体に含まれる潤滑油量は、潤滑油が遠心分離されることにより作動流体が分離流路の下流端に近付くに連れて減少する。このため、分離流路の下流端では作動流体に含まれる潤滑油量が少なく、作動流体からの潤滑油の遠心分離が困難になる。しかしながら、絞り96を分離流路の下流端に設けた場合、作動流体に含まれる潤滑油量が少なくても、絞り96により作動流体が加速されることで作動流体から潤滑油が更に遠心分離され、油分離室での潤滑油の分離能力が一層向上する。
And the refrigerating circuit of the vehicle air conditioner provided with the compressor mentioned above has a good refrigerating capacity because the amount of lubricating oil flowing through the circulation channel 2 is small.
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, in one embodiment, the throttle 96 is provided at the downstream end of the separation flow path, but any flow area between the upstream end and the downstream end of the separation flow path, that is, the small diameter cylindrical portion of the oil separation pipe 94. What is necessary is just to provide between the upper end of 94b, and a lower end. However, as in one embodiment, the restriction 96 is preferably provided at the downstream end of the separation channel. The reason is as follows. The amount of lubricating oil contained in the working fluid decreases as the working fluid approaches the downstream end of the separation flow path as the lubricating oil is centrifuged. For this reason, the amount of lubricating oil contained in the working fluid is small at the downstream end of the separation flow path, making it difficult to centrifuge the lubricating oil from the working fluid. However, when the throttle 96 is provided at the downstream end of the separation flow path, even if the amount of lubricating oil contained in the working fluid is small, the working fluid is accelerated by the throttle 96 so that the lubricating oil is further centrifuged from the working fluid. In addition, the ability to separate the lubricating oil in the oil separation chamber is further improved.

また、一実施例では、分離流路の流路断面積は絞り96に向けて連続的に減少しているけれども、絞りにて流路断面積を不連続に減少させてもよい。つまり、周壁92の内周面に段差を設けて絞りを形成してもよい。ただし、周壁92の内周面に付着した潤滑油を円滑に下降させるため、一実施例のように、テーパ面92aにより流路断面積を連続的に減少させるのが好ましい。   In one embodiment, the channel cross-sectional area of the separation channel continuously decreases toward the throttle 96, but the channel cross-sectional area may be reduced discontinuously by the throttle. That is, the diaphragm may be formed by providing a step on the inner peripheral surface of the peripheral wall 92. However, in order to smoothly lower the lubricating oil adhering to the inner peripheral surface of the peripheral wall 92, it is preferable to continuously reduce the flow path cross-sectional area by the tapered surface 92a as in the embodiment.

更に、一実施例では、直管状の小径筒部94bを有する油分離管94を用い、且つ、周壁92の内周面にテーパ面92aを形成することで、分離流路の外径を縮径して絞り96を形成したけれども、図3に示したように、内径が一定の周壁92内に、上端から下端に向けて外径が拡径された小径筒部108bを有した油分離管108を適用し、分離流路の内径を拡径することにより分離流路に絞り96を形成してもよい。この場合も、何らかの原因により油分離管108の小径筒部108bの外周面に潤滑油が付着したときに、潤滑油を円滑に下降させるため、小径筒部108bの外周面をテーパ面として形成するのが好ましい。ただし、一実施例のように、絞り96は分離流路の外径を縮径して形成するのが好ましい。理由は以下の通りである。分離流路における作動流体の旋回半径は、分離流路の外径により規定されるので、分離流路の外径を縮径して絞り96を形成すれば、分離流路における作動流体の旋回半径は絞り96にて減少される。絞り96にて作動流体の旋回半径が減少すると、作動流体及び潤滑油に加わる遠心力が増大し、作動流体から潤滑油が一層分離され易くなる。   Furthermore, in one embodiment, the outer diameter of the separation flow path is reduced by using the oil separation pipe 94 having a straight tubular small-diameter cylindrical portion 94b and forming the tapered surface 92a on the inner peripheral surface of the peripheral wall 92. Although the throttle 96 is formed, as shown in FIG. 3, the oil separation pipe 108 having a small-diameter cylindrical portion 108b whose outer diameter is increased from the upper end toward the lower end in the peripheral wall 92 having a constant inner diameter. And the restriction 96 may be formed in the separation channel by expanding the inner diameter of the separation channel. Also in this case, when the lubricating oil adheres to the outer peripheral surface of the small-diameter cylindrical portion 108b of the oil separation pipe 108 for some reason, the outer peripheral surface of the small-diameter cylindrical portion 108b is formed as a tapered surface in order to smoothly lower the lubricating oil. Is preferred. However, as in one embodiment, the restriction 96 is preferably formed by reducing the outer diameter of the separation channel. The reason is as follows. Since the turning radius of the working fluid in the separation channel is defined by the outer diameter of the separation channel, the turning radius of the working fluid in the separation channel can be obtained by reducing the outer diameter of the separation channel to form the throttle 96. Is reduced by the diaphragm 96. When the turning radius of the working fluid is reduced at the throttle 96, the centrifugal force applied to the working fluid and the lubricating oil increases, and the lubricating oil is more easily separated from the working fluid.

また更に、一実施例では、周壁92のテーパ面92aは鋳造肌により形成されていたけれども、切削加工等の加工肌により形成されていてもよい。ただし、テーパ面92aは鋳造肌により形成されているのが好ましい。鋳造肌は適度な表面粗さを有し、潤滑油が付着し易いため、潤滑油の分離能力が向上するからである。   Furthermore, in one Example, although the taper surface 92a of the surrounding wall 92 was formed with the casting skin, you may form with processing skins, such as cutting. However, it is preferable that the taper surface 92a is formed by casting skin. This is because the casting skin has an appropriate surface roughness and the lubricating oil easily adheres, so that the separating ability of the lubricating oil is improved.

車両用空調装置の冷凍回路に適用した一実施例のスクロール圧縮機の縦断面図ある。It is a longitudinal cross-sectional view of the scroll compressor of one Example applied to the refrigerating circuit of the vehicle air conditioner. 図1中、油分離室近傍の拡大図である。FIG. 2 is an enlarged view of the vicinity of an oil separation chamber in FIG. 1. 変形例の油分離室近傍の拡大図である。It is an enlarged view of the oil separation chamber vicinity of a modification.

符号の説明Explanation of symbols

12 ハウジング
16 圧縮ケーシング
40 スクロールユニット
46 可動スクロール
48 固定スクロール
54 圧縮室
82 吐出弁
90 油分離室
92 周壁
92a テーパ面
94 油分離管
94a 大径筒部
94b 小径筒部
96 絞り
12 housing 16 compression casing 40 scroll unit 46 movable scroll 48 fixed scroll 54 compression chamber 82 discharge valve 90 oil separation chamber 92 peripheral wall 92a taper surface 94 oil separation tube 94a large diameter cylindrical portion 94b small diameter cylindrical portion 96 throttle

Claims (3)

吸入ポート及び吐出ポートを有するハウジングと、
前記ハウジング内に配置され、前記吸入ポートから導入した潤滑油を含む作動流体に対して、その吸込み、圧縮及び吐出工程からなる一連のプロセスを実行し、前記吐出ポートを通じて高圧の作動流体を送出させるスクロールユニットと、
前記スクロールユニットにより吐出された前記作動流体から前記潤滑油を一部分離する油分離手段と、
を備えるスクロール圧縮機において、
前記油分離手段は、
前記スクロールユニットから前記吐出ポートに亘る前記作動流体の吐出経路中に設けられ、前記作動流体の流入口及び流出口を有する油分離室と、
前記油分離室内に設けられ、前記油分離室に開口した一端及び前記流出口に接続された他端を有する油分離管と、
前記油分離室の内周面と前記油分離管の外周面との間に前記流入口から前記油分離管の一端に亘って区画され、前記油分離室内に流入した前記作動流体を前記油分離管の周りに螺旋状に流動させて前記作動流体から前記潤滑油を遠心分離するための分離流路と
を含み、
前記分離流路は、その上流端と下流端との間に流路断面積が絞られた絞りを有することを特徴とするスクロール圧縮機。
A housing having a suction port and a discharge port;
A series of processes including suction, compression, and discharge processes are performed on the working fluid including the lubricating oil that is disposed in the housing and introduced from the suction port, and a high-pressure working fluid is sent through the discharge port. A scroll unit;
Oil separation means for partially separating the lubricating oil from the working fluid discharged by the scroll unit;
In a scroll compressor comprising:
The oil separating means includes
An oil separation chamber provided in a discharge path of the working fluid from the scroll unit to the discharge port, and having an inlet and an outlet of the working fluid;
An oil separation pipe provided in the oil separation chamber and having one end opened to the oil separation chamber and the other end connected to the outlet;
The oil separation chamber is partitioned between the inner peripheral surface of the oil separation chamber and the outer peripheral surface of the oil separation pipe from the inflow port to one end of the oil separation pipe, and the working fluid flowing into the oil separation chamber is separated into the oil. A separation flow path for spirally flowing around the tube to centrifuge the lubricating oil from the working fluid;
The scroll compressor characterized in that the separation flow path has a throttle with a flow path cross-sectional area narrowed between an upstream end and a downstream end.
前記絞りは、前記分離流路の前記下流端に設けられていることを特徴とする請求項1記載のスクロール圧縮機。   The scroll compressor according to claim 1, wherein the throttle is provided at the downstream end of the separation channel. 前記油分離管の前記内周面及び前記油分離管の外周面の少なくとも一方は前記絞りを得るために、前記分離流路の前記上流端から下流端に亘って形成されたテーパ面を含むことを特徴とする請求項1又は2記載のスクロール圧縮機。   At least one of the inner peripheral surface of the oil separation tube and the outer peripheral surface of the oil separation tube includes a tapered surface formed from the upstream end to the downstream end of the separation flow path in order to obtain the throttle. The scroll compressor according to claim 1 or 2.
JP2005023367A 2005-01-31 2005-01-31 Scroll compressor Pending JP2006207544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023367A JP2006207544A (en) 2005-01-31 2005-01-31 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023367A JP2006207544A (en) 2005-01-31 2005-01-31 Scroll compressor

Publications (1)

Publication Number Publication Date
JP2006207544A true JP2006207544A (en) 2006-08-10

Family

ID=36964665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023367A Pending JP2006207544A (en) 2005-01-31 2005-01-31 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2006207544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120062415A (en) * 2010-12-06 2012-06-14 한라공조주식회사 Scroll compressor
KR20160032440A (en) * 2014-09-16 2016-03-24 한온시스템 주식회사 Oil separator for scroll compressor
WO2021254939A1 (en) * 2020-06-17 2021-12-23 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Compressor module and electric-motor-driven refrigerant compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546538U (en) * 1978-09-19 1980-03-26
JPH05312437A (en) * 1992-05-15 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
JPH0683969U (en) * 1993-05-21 1994-12-02 サンデン株式会社 Compressor casing
JPH0712072A (en) * 1993-06-23 1995-01-17 Toyota Autom Loom Works Ltd Vane compressor
JPH1182352A (en) * 1997-09-05 1999-03-26 Denso Corp Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546538U (en) * 1978-09-19 1980-03-26
JPH05312437A (en) * 1992-05-15 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
JPH0683969U (en) * 1993-05-21 1994-12-02 サンデン株式会社 Compressor casing
JPH0712072A (en) * 1993-06-23 1995-01-17 Toyota Autom Loom Works Ltd Vane compressor
JPH1182352A (en) * 1997-09-05 1999-03-26 Denso Corp Compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120062415A (en) * 2010-12-06 2012-06-14 한라공조주식회사 Scroll compressor
KR101682251B1 (en) * 2010-12-06 2016-12-02 한온시스템 주식회사 Scroll compressor
KR20160032440A (en) * 2014-09-16 2016-03-24 한온시스템 주식회사 Oil separator for scroll compressor
KR102013596B1 (en) 2014-09-16 2019-08-23 한온시스템 주식회사 Oil separator for scroll compressor
WO2021254939A1 (en) * 2020-06-17 2021-12-23 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Compressor module and electric-motor-driven refrigerant compressor

Similar Documents

Publication Publication Date Title
JP4286175B2 (en) Compressor
US7314355B2 (en) Compressor including deviated separation chamber
JP4806262B2 (en) Compressor
JP5708570B2 (en) Vane type compressor
US7281913B2 (en) Compressor including integrally formed separation tube and seal bolt
JP2006342722A (en) Compressor
JP2005351112A (en) Scroll compressor
JP2006207544A (en) Scroll compressor
EP3325807B1 (en) Compressor bearing housing drain
JP2006241982A (en) Compressor
JP4469742B2 (en) Compressor
JP4149947B2 (en) Compressor
JP2007162621A (en) Compressor
JP2006144660A (en) Compressor
JP2006307803A (en) Scroll compressor
JP2006105064A (en) Compressor
JP2006214288A (en) Scroll compressor and air conditioner for vehicle
JP2006233810A (en) Scroll compressor
JP2001003867A (en) Horizontal type compressor
JP2007198250A (en) Reciprocating type fluid machine
JP4436185B2 (en) Compressor
JP4958534B2 (en) Scroll compressor
JPH1047283A (en) Scroll compressor
JP2007192154A (en) Reciprocating fluid machine
US8944781B2 (en) Electrically driven gas compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070720

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Effective date: 20091111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A02 Decision of refusal

Effective date: 20101110

Free format text: JAPANESE INTERMEDIATE CODE: A02