JP2006207003A - Method for recovering noble metal from catalyst layer constituting electrode of fuel cell - Google Patents

Method for recovering noble metal from catalyst layer constituting electrode of fuel cell Download PDF

Info

Publication number
JP2006207003A
JP2006207003A JP2005024007A JP2005024007A JP2006207003A JP 2006207003 A JP2006207003 A JP 2006207003A JP 2005024007 A JP2005024007 A JP 2005024007A JP 2005024007 A JP2005024007 A JP 2005024007A JP 2006207003 A JP2006207003 A JP 2006207003A
Authority
JP
Japan
Prior art keywords
catalyst layer
noble metal
carbon powder
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005024007A
Other languages
Japanese (ja)
Other versions
JP4501706B2 (en
Inventor
Hiroshige Takase
高瀬  浩成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005024007A priority Critical patent/JP4501706B2/en
Publication of JP2006207003A publication Critical patent/JP2006207003A/en
Application granted granted Critical
Publication of JP4501706B2 publication Critical patent/JP4501706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Fuel Cell (AREA)
  • Processing Of Solid Wastes (AREA)
  • Electrostatic Separation (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering a noble metal, which is a catalyst, from a catalyst layer of a used fuel cell with high efficiency at high purity and by a simple operation. <P>SOLUTION: The catalyst layer is taken out of a membrane-electrode assembly of the fuel cell and after the catalyst layer is pulverized, the powder is put into an electrodeposition liquid composed of a polar solvent (for example, acetonitrile) and a basic compound (for example, triethylamine) and is subjected to electrophoresis. Carbon powder is ionized and is deposited on the electrode 2. The noble metal is recovered by a means, such as filtration, from the electrodeposition liquid separated from the carbon powder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池の電極を構成する触媒層から貴金属を回収する方法に関し、特に、固体高分子型燃料電池で用いられる膜電極接合体を構成する電極触媒層から、触媒として機能する高価な貴金属を回収するための方法に関する。   The present invention relates to a method for recovering a noble metal from a catalyst layer constituting an electrode of a fuel cell, and in particular, from an electrode catalyst layer constituting a membrane electrode assembly used in a polymer electrolyte fuel cell, an expensive functioning as a catalyst. The present invention relates to a method for recovering precious metals.

燃料電池は実験段階から実機段階に入りつつあり、環境に優しいエネルギー源として大きな期待が寄せられている。燃料電池は、電解質を挟んで空気極と酸素極である電極が位置する構成を基本単位としており、固体高分子型燃料電池では、固体であるイオン交換膜(例えばパーフルオロ膜)をPTFE(ポリテトラフルオロエチレン)フィブリルを補強材として膜状に一体化したものが電解質膜として用いられ、電極としては、触媒としての貴金属微粒子(白金、ルテニウムなど)を担持した炭素粉末を湿式法あるいは乾式法により電解質膜上に積層したものが用いられ、電極触媒層あるいは単に触媒層と呼ばれている。そして、電解質膜の両側に電極を構成する前記触媒層を積層したものが、膜電極積層体(MEA:Membrane−Electrode Assembly)と呼ばれており、通常、触媒層の外側には拡散層が積層される。   Fuel cells are entering the actual machine stage from the experimental stage, and there are great expectations as an environmentally friendly energy source. A fuel cell has a basic unit in which an electrode that is an air electrode and an oxygen electrode is located with an electrolyte interposed therebetween. In a polymer electrolyte fuel cell, a solid ion exchange membrane (for example, a perfluoro membrane) is made of PTFE (polyethylene oxide). Tetrafluoroethylene) fibrils integrated in the form of a membrane are used as the electrolyte membrane, and as the electrode, carbon powder carrying precious metal fine particles (platinum, ruthenium, etc.) as a catalyst is applied by a wet method or a dry method. What is laminated on the electrolyte membrane is used, and is called an electrode catalyst layer or simply a catalyst layer. And what laminated | stacked the said catalyst layer which comprises an electrode on both sides of an electrolyte membrane is called a membrane electrode laminated body (MEA: Membrane-Electrode Assembly), and a diffusion layer is usually laminated | stacked on the outer side of a catalyst layer. Is done.

触媒層で触媒として機能する貴金属類は高価なものであり、実機として燃料電池が広く使用される段階では、使用済みの触媒層から貴金属を回収して再使用することが、コストの面からも環境保護の面から、緊要の課題となる。その課題に答えるものとして、特許文献1には、使用済み電極を粉砕して所要の燃焼器に回収した後、該加熱容器の外側から熱をかけることで白金を担持している炭素を完全に燃焼させ、燃焼残滓から直接あるいは無機酸(王水、硫酸)に溶解させて白金を回収する方法が記載されている。また、使用済み電極を酸化性ガス(塩素、二酸化炭素)中で燃焼させて白金を揮発性化合物に変換する方法も行われている。   Precious metals that function as catalysts in the catalyst layer are expensive, and at the stage where fuel cells are widely used as actual equipment, it is also possible to recover the precious metal from the used catalyst layer and reuse it from the viewpoint of cost. This is an urgent issue in terms of environmental protection. As an answer to that problem, Patent Document 1 discloses that the carbon carrying platinum is completely removed by pulverizing the used electrode and collecting it in a required combustor, and then applying heat from the outside of the heating vessel. A method is described in which platinum is burned and directly dissolved from a combustion residue or dissolved in an inorganic acid (aqua regia, sulfuric acid) to recover platinum. A method of converting platinum into a volatile compound by burning a used electrode in an oxidizing gas (chlorine, carbon dioxide) is also performed.

特開昭63−161129号公報JP 63-161129 A

一般に、燃焼法による場合は、特別な燃焼器や燃焼環境を必要とし作業が複雑となる。また、白金を揮発性化合物に変換する方法は、白金と酸化性ガスとの反応をさせるために、他の化合物(五塩化リン、過塩素酸マグネシウム、塩化カルシウム)が必要で、これらの反応資材や副産物の排気処理も必要となる。王水などに溶解させる方法は、膜電極接合体には前記のように通常PTFEが含まれており、PTFEの存在によって酸による抽出作用が阻害されることが起こる。また、白金を溶解するために多量の酸が必要であり、低濃度(低効率)の回収となること、溶解した白金イオンと他の金属イオンとの分離が困難なこと、などの問題もある。   In general, in the case of the combustion method, a special combustor and a combustion environment are required, and the work is complicated. In addition, the method of converting platinum into a volatile compound requires other compounds (phosphorus pentachloride, magnesium perchlorate, calcium chloride) to react platinum with an oxidizing gas. And exhaust treatment of by-products is also required. In the method of dissolving in aqua regia etc., the membrane electrode assembly usually contains PTFE as described above, and the presence of PTFE inhibits the extraction action by acid. In addition, a large amount of acid is required to dissolve platinum, and there are problems such as low concentration (low efficiency) recovery and difficulty in separating dissolved platinum ions from other metal ions. .

本発明は、上記のような事情に鑑みてなされたものであり、燃料電池の電極を構成する触媒層から、触媒である貴金属を、高い効率でかつ簡単な操作でもって、高純度に回収することを可能とする、まったく新たな回収方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and recovers a noble metal, which is a catalyst, with high purity from a catalyst layer constituting an electrode of a fuel cell with high efficiency and simple operation. It aims to provide a completely new collection method that makes it possible.

上記の課題を解決するために、本発明では、電気泳動の原理を基本的に利用する。すなわち、一般に炭素粉表面には官能基(−COOH,−OHなど)が存在することに本発明者らは注目し、塩基性化合物を用いて該官能基から水素を飛ばしてイオン化(帯電)すれば、電気泳動法により炭素粉のみを回収電極側に引き寄せることができることに着目して、本発明をなすに至った。   In order to solve the above problems, the present invention basically uses the principle of electrophoresis. That is, the present inventors pay attention to the fact that functional groups (-COOH, -OH, etc.) generally exist on the surface of carbon powder, and ionization (charging) is performed by removing hydrogen from the functional group using a basic compound. For example, focusing on the fact that only carbon powder can be drawn to the collection electrode side by electrophoresis, the present invention has been made.

すなわち、本発明は、燃料電池の電極を構成する触媒層から触媒である貴金属を回収する方法であって、触媒層を構成する貴金属および貴金属を担持する炭素粉の混合体を極性溶媒および塩基性化合物で構成される電着液の中に入れて炭素粉をイオン化し、電気泳動により炭素粉を電極上に析出させて分離し、炭素粉が分離した電着液から貴金属を回収することを特徴とする。   That is, the present invention is a method for recovering a noble metal as a catalyst from a catalyst layer constituting an electrode of a fuel cell, wherein a mixture of the noble metal constituting the catalyst layer and the carbon powder supporting the noble metal is treated with a polar solvent and a basic It is characterized by ionizing carbon powder in an electrodeposition solution composed of a compound, depositing and separating carbon powder on an electrode by electrophoresis, and recovering noble metal from the electrodeposition solution separated by carbon powder And

本発明では、電気化学的手法により炭素粉を分離した電着液中から、物理的な手法により貴金属を分離回収するようにしており、貴金属を溶解させることはないので、簡単な操作でもって、高純度かつ高効率での貴金属回収が可能となる。また、燃焼処理も行わないので、排気処理なども不要であり、回収処理全体が簡素化される。   In the present invention, the noble metal is separated and recovered by a physical method from the electrodeposition liquid from which the carbon powder has been separated by an electrochemical method, and the precious metal is not dissolved. Precious metal recovery with high purity and high efficiency is possible. Further, since no combustion process is performed, an exhaust process or the like is unnecessary, and the entire recovery process is simplified.

本発明において、電気泳動法そのものは、従来知られている電気泳動法であってよく、特別なものではない。炭素粉回収用の電極、対極電極には、銅、ニッケル、銀や白金などを適宜用いることができる。電着液も、後記するように塩基性化合物を含むことを条件に、極性溶媒を含む従来の電気泳動法で用いられる電着液であってよい。   In the present invention, the electrophoresis method itself may be a conventionally known electrophoresis method and is not special. Copper, nickel, silver, platinum, or the like can be used as appropriate for the electrode for collecting carbon powder and the counter electrode. The electrodeposition liquid may also be an electrodeposition liquid used in a conventional electrophoresis method including a polar solvent on the condition that a basic compound is included as described later.

本発明は、炭素粉をイオン化する(電荷を持たせる)ために、電着液が塩基性化合物を含むことを特徴としており、電着液中で、塩基性化合物の存在により、炭素粉の表面に位置する官能基から水素が離脱して、炭素粉はイオン化した状態となる。イオン化した炭素粉は、電着液中を泳動して炭素粉回収用の電極表面に付着して電着液から分離する。一方、炭素粉表面から剥離した貴金属はイオン化することはないので、電着液中にとどまり、沈殿物となる。沈殿した貴金属を電着液とともに装置から抜き出し、ろ別などの適宜の物理的な手段により分別することにより、貴金属を高純度かつ高効率で回収することができる。電着液は、炭素粉をイオン化することにより減少した分の塩基性化合物と蒸発した極性溶媒を追加することにより、再び次の分離回収に利用することができる。   The present invention is characterized in that the electrodeposition liquid contains a basic compound in order to ionize the carbon powder (to give an electric charge), and the surface of the carbon powder is caused by the presence of the basic compound in the electrodeposition liquid. Hydrogen is released from the functional group located at, and the carbon powder is ionized. The ionized carbon powder migrates in the electrodeposition liquid, adheres to the electrode surface for collecting the carbon powder, and is separated from the electrodeposition liquid. On the other hand, the noble metal peeled off from the surface of the carbon powder is not ionized, so it stays in the electrodeposition liquid and becomes a precipitate. By precipitating the precipitated noble metal together with the electrodeposition liquid from the apparatus and separating it by an appropriate physical means such as filtration, the noble metal can be recovered with high purity and high efficiency. The electrodeposition liquid can be used again for the next separation and recovery by adding the basic compound reduced by ionizing the carbon powder and the polar solvent evaporated.

本発明において、好ましくは、電気泳動中に、電着液中に超音波振動が付与される。それにより、スラリー状となった電着液と貴金属担持炭素粉の混合液の分散と、担持された貴金属の炭素粉表面上からの剥離が助長されて、短時間での電気泳動による炭素粉の電極上への析出分離が可能となる。   In the present invention, preferably, ultrasonic vibration is applied to the electrodeposition liquid during electrophoresis. As a result, the dispersion of the mixed solution of the electrodeposition liquid in a slurry state and the noble metal-supported carbon powder and the peeling of the supported noble metal from the surface of the carbon powder are facilitated, and the carbon powder by electrophoresis in a short time is promoted. Precipitation separation on the electrode becomes possible.

本発明において、使用済みの燃料電池から触媒層中の貴金属を回収する際には、さらに、前工程として、燃料電池から膜電極接合体を取り出す工程、取り出した膜電極接合体から触媒層と電解質膜との積層体を取り出す工程、触媒層と電解質膜との積層体をアルコール液に浸漬して電解質膜中の電解質や他の電解質をアルコール中に溶解させる工程、電解質が溶解したアルコール溶液から触媒層を構成する貴金属および貴金属を担持する炭素粉の混合体を取り出す工程、とを行う。   In the present invention, when recovering the noble metal in the catalyst layer from the spent fuel cell, as a previous step, a step of taking out the membrane electrode assembly from the fuel cell, a catalyst layer and an electrolyte from the taken out membrane electrode assembly The step of taking out the laminate with the membrane, the step of immersing the laminate of the catalyst layer and the electrolyte membrane in the alcohol solution and dissolving the electrolyte in the electrolyte membrane and other electrolytes in the alcohol, the catalyst from the alcohol solution in which the electrolyte is dissolved And a step of taking out a mixture of noble metal constituting the layer and carbon powder supporting the noble metal.

通常の場合、燃料電池モジュールを解体してセパレータを分離し、膜電極接合体単体とする。さらに、膜電極接合体から拡散層を剥ぎ取り、触媒層と電解質膜との積層体とする。次に、好ましくはそれらを粉砕し、加温加圧した状態で超音波攪拌をしながら、電解質膜および触媒層(の粉砕品)をアルコール中に浸漬する。それにより、電解質膜中の電解質および触媒層中に存在することのある電解質はアルコール中に溶解する。その後、電解質の溶解したアルコール溶液をろ過するまたは遠心分離するなどの手段により、不溶物(電解質膜の補強のために使用されていたPTFE、剥離した貴金属、貴金属を担持した炭素粉)を回収する。そして、前記回収物を電気泳動装置中に投入し、前記したようにして、炭素粉と貴金属との分離回収を行う。   In a normal case, the fuel cell module is disassembled and the separator is separated into a single membrane electrode assembly. Further, the diffusion layer is peeled off from the membrane electrode assembly to obtain a laminate of the catalyst layer and the electrolyte membrane. Next, the electrolyte membrane and the catalyst layer (pulverized product thereof) are immersed in alcohol, preferably while pulverizing them and stirring ultrasonically in a heated and pressurized state. Thereby, the electrolyte in the electrolyte membrane and the electrolyte that may be present in the catalyst layer are dissolved in the alcohol. Thereafter, the insoluble matter (PTFE used to reinforce the electrolyte membrane, peeled noble metal, carbon powder supporting the noble metal) is collected by means such as filtering or centrifuging the alcohol solution in which the electrolyte is dissolved. . Then, the recovered material is put into an electrophoresis apparatus, and the carbon powder and the noble metal are separated and recovered as described above.

本発明において、極性溶媒としては、アセトニトリル、プロピオニトリル、ブチルニトリル、イサブチルニトリル、ベンゾニトリルなどのニトリル化合物類、ジメチルスルホオキシド、スルホラン、ジメチルチオホルムアミドなどの含硫黄化合物類、N−メチルピロドリン、ピリジン、ジビリジンなどの含窒素化合物類、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、トリメチルリン酸などのエステル化合物類、エチルアルコール、2−プロパノールなどのアルコール類、ブチロラクトンなどのラクトン類、からなる群から選ばれる少なくとも1種を挙げることができる。特に、有効なものは、電気化学的安定性(電気分解されないため)と粘度(円滑なイオン拡散、伝導性確保のため)の観点から、アセトニトリルまたはプロピレンカーボネート、ブチロラクトンを主成分とする溶媒は好ましい。   In the present invention, polar solvents include nitrile compounds such as acetonitrile, propionitrile, butyl nitrile, isabutyl nitrile and benzonitrile, sulfur-containing compounds such as dimethyl sulfoxide, sulfolane and dimethylthioformamide, N-methylpyrrole. A group consisting of nitrogen-containing compounds such as drin, pyridine and diviridine, ester compounds such as propylene carbonate, dimethyl carbonate, diethyl carbonate and trimethyl phosphoric acid, alcohols such as ethyl alcohol and 2-propanol, and lactones such as butyrolactone. The at least 1 sort (s) chosen from can be mentioned. Particularly effective solvents are acetonitrile, propylene carbonate, and butyrolactone as main components from the viewpoints of electrochemical stability (because they are not electrolyzed) and viscosity (to ensure smooth ion diffusion and conductivity). .

本発明において、塩基性化合物としては、下記式1

Figure 2006207003
In the present invention, the basic compound is represented by the following formula 1
Figure 2006207003

で示されるオニウム塩を形成できる、通常、窒素,リンおよび硫黄からなる群から選択される少なくとも1種の元素を含有する官能基を持つ化合物が挙げられる。 The compound which has the functional group containing the at least 1 sort (s) of element normally selected from the group which consists of nitrogen, phosphorus, and sulfur which can form onium salt shown by these is mentioned.

式1中、Zは窒素またはリン原子を示す。また、R1,R2,R3は、同一または異なった、炭素原子数1〜14の有機基を示す。   In Formula 1, Z represents a nitrogen or phosphorus atom. R1, R2, and R3 represent the same or different organic groups having 1 to 14 carbon atoms.

また、R1およびR2,またはR1,R2およびR3が一緒になって、これらが結合している窒素原子、リン原子または硫黄原子とともに複素環基を形成していてもよい。   R1 and R2, or R1, R2 and R3 may be combined to form a heterocyclic group together with the nitrogen atom, phosphorus atom or sulfur atom to which they are bonded.

R1,R2,R3で示される炭素原子数1〜14の有機基としては、例えば、水酸基、アルコキシル基、エーテル結合などの形態で酸素原子の如き異種原子を含有していてもよい炭素原子数1〜14好ましくは炭素原子数1〜8の炭化水素基が挙げられる。上記炭化水素基としては、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アリール基、アラルキル基などの脂肪族、脂環式または芳香族炭化水素基を例示できる。   Examples of the organic group having 1 to 14 carbon atoms represented by R1, R2, and R3 include, for example, a hydroxyl group, an alkoxyl group, an ether bond, and the like, which may contain a different atom such as an oxygen atom. -14 Preferably a C1-C8 hydrocarbon group is mentioned. Examples of the hydrocarbon group include aliphatic, alicyclic or aromatic hydrocarbon groups such as an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aryl group, and an aralkyl group.

これらのうち、特にアルキル基が好適である。このアルキル基は、直鎖状および分岐鎖状のいずれであってもよく、具体的には、例えばメチル、エチル、n−またはisoプロピル、n−,iso−,sec−またはtert−ブチル、ペンチル、ヘプチル、オクチル基などが挙げられる。   Of these, an alkyl group is particularly preferred. The alkyl group may be linear or branched, and specifically includes, for example, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, pentyl , Heptyl, octyl group and the like.

上記シクロアルキル基またはシクロアルキルアルキル基としては、炭素原子数5〜8個のものが好ましく、具体的には、シクロペンチル、シクロヘキシル、シクロヘキシルメチル、シクロヘキシルエチル基などが挙げられる。   As said cycloalkyl group or a cycloalkylalkyl group, a C5-C8 thing is preferable, and a cyclopentyl, a cyclohexyl, a cyclohexylmethyl, a cyclohexylethyl group etc. are mentioned specifically ,.

上記アリール基としては、具体的に、例えばフェニル、トルイル、キシリル基などが挙げられる。   Specific examples of the aryl group include phenyl, toluyl, and xylyl groups.

また、上記アラルキル基としては、具体的には、例えばベンジル、フェネチル基などが挙げられる。   Specific examples of the aralkyl group include benzyl and phenethyl groups.

また、異種原子、例えば酸素原子が含有されている炭化水素基の好ましい例としては、ヒドロキシアルキル基、具体的にはヒドロキシメチル、ヒドロキシエチル、ヒドロキシブチル、ヒドロキシペンチル、ヒドロキシヘキシル、ヒドロキシヘプチル、ヒドロキシオクチル基などや、アルコキシル基、具体的にはメトキシメチル、エトキシメチル、エトキシエチル、n−プロポキシエチル、iso−プロポキシメチル、n−ブトキシメチル、iso−ブトキシエチル、tert−ブトキシエチル基などを例示できる。   Preferred examples of the hydrocarbon group containing a hetero atom such as an oxygen atom include hydroxyalkyl groups, specifically hydroxymethyl, hydroxyethyl, hydroxybutyl, hydroxypentyl, hydroxyhexyl, hydroxyheptyl, hydroxyoctyl. Examples thereof include an alkoxyl group, specifically a methoxymethyl, ethoxymethyl, ethoxyethyl, n-propoxyethyl, iso-propoxymethyl, n-butoxymethyl, iso-butoxyethyl, tert-butoxyethyl group and the like.

また、R1およびR2,またはR1,R2およびR3が一緒になって、これらが結合している窒素原子、リン原子または硫黄原子とともに複素環基を形成する場合の基としては、具体的には、下記式2に示すものを例示できる。

Figure 2006207003
In addition, as a group in the case where R1 and R2, or R1, R2 and R3 are combined to form a heterocyclic group together with the nitrogen atom, phosphorus atom or sulfur atom to which they are bonded, specifically, The following formula 2 can be exemplified.
Figure 2006207003

特に、有効なのは、(イ)高いイオン剥離が期待できること、(ロ)高いイオン伝導(移動度)が期待できることから、R1,R2およびR3が炭素原子数1ないし2のアルキル基のものがよい。最もよいのは、エチルメチルアミン、トリメチルアミン、エチルジメチルアミン、ジエチルメチルアミンである。   In particular, it is preferable that R1, R2 and R3 are alkyl groups having 1 to 2 carbon atoms because (a) high ion separation can be expected and (b) high ion conduction (mobility) can be expected. The best are ethylmethylamine, trimethylamine, ethyldimethylamine, diethylmethylamine.

以下、図面を参照して本発明を実施の形態に基づき説明する。図1は固体高分子型燃料電池の一例を説明する図であり、図2はその燃料電池モジュールを解体して、そこから貴金属を回収するまでのプロセスを示している。図3は本発明による貴金属の回収方法で用いる電気泳動装置の一例を示し、図4は電着液中で炭素粉がイオン化する態様を示す模式図である。   Hereinafter, the present invention will be described based on embodiments with reference to the drawings. FIG. 1 is a diagram for explaining an example of a polymer electrolyte fuel cell, and FIG. 2 shows a process from dismantling the fuel cell module to recovering noble metal therefrom. FIG. 3 shows an example of an electrophoresis apparatus used in the noble metal recovery method according to the present invention, and FIG. 4 is a schematic view showing an embodiment in which carbon powder is ionized in the electrodeposition liquid.

燃料電池の1つとして固体高分子形燃料電池は知られており、図1に示すように、多数この燃料電池モジュール10が気密に組み付けられて燃料電池スタック11とされ、実用に供される。燃料電池モジュール10は、電解質膜1の両側に触媒層2と拡散層3とが電極(アノード側電極、カソード側電極)4として積層された膜電極接合体5と、それを両面から挟持するリブ(ガス流路)6、6を備えたセパレータ7とで、通常構成される。セパレータ7の外周領域にはガス流路となる穴(マニホルド穴)8・・が形成され、燃料電池の運転に必要な燃料ガス(水素)および酸化ガス(酸素、通常は空気)がマニホルド穴8・・を通してセパレータ7の両面に形成したリブ(ガス流路)6、6を介して電極4、4にそれぞれ供給される。また、冷却水用のマニホルド穴も設けられる場合もある。   A polymer electrolyte fuel cell is known as one of the fuel cells. As shown in FIG. 1, a number of fuel cell modules 10 are assembled in an airtight manner to form a fuel cell stack 11, which is put to practical use. The fuel cell module 10 includes a membrane electrode assembly 5 in which a catalyst layer 2 and a diffusion layer 3 are stacked on both sides of an electrolyte membrane 1 as electrodes (anode side electrode, cathode side electrode) 4, and ribs for sandwiching the membrane electrode assembly 5 from both sides (Gas flow path) It is normally comprised with the separator 7 provided with 6 and 6. FIG. Holes (manifold holes) 8... Serving as gas flow paths are formed in the outer peripheral region of the separator 7, and fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) necessary for the operation of the fuel cell are provided in the manifold holes 8. .. Are supplied to the electrodes 4 and 4 via ribs (gas flow paths) 6 and 6 formed on both sides of the separator 7. A manifold hole for cooling water may also be provided.

上記形態の使用済みとなった燃料電池スタック11を分解して、その触媒層2から貴金属(ここでは白金)を回収する場合を例として、本発明を説明する。図2はそのプロセスを示しており、最初に、燃料電池スタック11を多数個の燃料電池モジュール10に分解し、各モジュール10をセパレータ屑7と膜電極接合体(MEA)5とに解体する(S201)。MEA5から拡散層3を剥ぎ取り、電解質膜1と触媒層2との積層体とする(S202)。   The present invention will be described by taking, as an example, the case where the spent fuel cell stack 11 of the above-described form is disassembled and the noble metal (here, platinum) is recovered from the catalyst layer 2. FIG. 2 shows the process. First, the fuel cell stack 11 is disassembled into a number of fuel cell modules 10, and each module 10 is disassembled into separator waste 7 and a membrane electrode assembly (MEA) 5 ( S201). The diffusion layer 3 is peeled off from the MEA 5 to obtain a laminate of the electrolyte membrane 1 and the catalyst layer 2 (S202).

電解質膜1と触媒層2との積層体を粉砕器に入れて物理的に粉砕した後、それをアルコールの入った容器に入れて浸漬し、超音波攪拌を行う(S203)。それにより、アルコール可溶性のもの(電解質膜1の一部である電解質および触媒層2の一部を構成することのある電解質)はアルコールに溶解する。電解質膜1に使用されていたPTFEと白金を担持した炭素粉はアルコール不溶性であり、そのまま残る。ここでの超音波攪拌により、炭素粉に担持されていた白金の一部は炭素粉から剥離することもある。   After the laminated body of the electrolyte membrane 1 and the catalyst layer 2 is physically pulverized in a pulverizer, it is immersed in a container containing alcohol and subjected to ultrasonic stirring (S203). Thereby, alcohol-soluble substances (an electrolyte that is a part of the electrolyte membrane 1 and an electrolyte that may constitute a part of the catalyst layer 2) are dissolved in the alcohol. The carbon powder supporting PTFE and platinum used in the electrolyte membrane 1 is insoluble in alcohol and remains as it is. By this ultrasonic agitation, a part of platinum carried on the carbon powder may be peeled off from the carbon powder.

そのアルコール不溶性の固体を含むスラリー状のアルコール溶液を遠心分離する(S204)。それにより、不溶物である剥離した白金および白金を担持した炭素粉とPTFEとは、電解質を溶解したアルコール溶液から分離される。不溶物からさらにPTFEを篩い分けで分離する。   The slurry-like alcohol solution containing the alcohol-insoluble solid is centrifuged (S204). Thereby, the peeled platinum which is an insoluble matter, the carbon powder carrying platinum and the PTFE are separated from the alcohol solution in which the electrolyte is dissolved. Further, PTFE is separated from the insoluble material by sieving.

残った剥離した白金および白金を担持した炭素粉とを電気泳動装置に投入する。図3は電気泳動装置20の一例であり、電解槽21内には、例えば多孔質セラミックスである電着液隔離膜22を挟んで、炭素回収用電極23と対極24とが対置されている。炭素回収用電極23には、銅、ニッケル、銀のような材料が用いられ、対極24には白金のような材料が用いられる。図示の例では、電極上に析出した炭素粉を連続回収し易くするために炭素回収用電極23は帯状かつ循環式となっているが、固定した電極であってもよい。炭素回収用電極23と対極24との間には電源25からの電圧が印加され、電場がかけられる。電解槽21における炭素回収用電極23の近傍には超音波発生器26が配置されている。   The remaining peeled platinum and carbon powder carrying platinum are put into an electrophoresis apparatus. FIG. 3 shows an example of the electrophoretic apparatus 20. In the electrolytic cell 21, a carbon recovery electrode 23 and a counter electrode 24 are placed opposite to each other with an electrodeposition liquid isolation film 22 made of, for example, porous ceramics interposed therebetween. A material such as copper, nickel, or silver is used for the carbon recovery electrode 23, and a material such as platinum is used for the counter electrode 24. In the illustrated example, the carbon recovery electrode 23 has a strip shape and a circulation type in order to facilitate the continuous recovery of the carbon powder deposited on the electrode, but it may be a fixed electrode. A voltage from the power source 25 is applied between the carbon recovery electrode 23 and the counter electrode 24 to apply an electric field. An ultrasonic generator 26 is disposed in the vicinity of the carbon recovery electrode 23 in the electrolytic cell 21.

電解槽21内の電着液27は、前記したように、好ましくはアセトニトリル、プロピレンカーボネートまたはブチロクラトンなどである極性溶媒と、エチルメチルフミン、トリエチルアミン、エチルジメチルアミンまたはジエチルメチルアミンなどである塩基性化合物が含まれている。塩基性化合物の量は、少なくとも投入される炭素粉をイオン化できるだけの量であればよく、適宜補充することもできる。   As described above, the electrodeposition liquid 27 in the electrolytic cell 21 is preferably a polar solvent such as acetonitrile, propylene carbonate, or butyrocraton, and a basic compound such as ethyl methyl humin, triethyl amine, ethyl dimethyl amine, or diethyl methyl amine. It is included. The amount of the basic compound may be at least an amount sufficient to ionize the carbon powder to be added, and can be appropriately supplemented.

前記した分離後の剥離した白金および白金を担持した炭素粉を電解槽21の炭素回収用電極23側に投入する。電場をかけながら、あるいは電場をかける前に、超音波発生器26を作動して、電解液27に超音波振動を与える。それにより、炭素粉表面上からの白金の剥離は一層確実に進行する。一方、図4に模式図を示すように、炭素粉31の表面には官能基(この例では−COOH)が存在しており、塩基性化合物(この例ではアミン)が官能基の水素イオンに配位してアンモニウムカチオンとなり、炭素粉31はイオン化する。   The separated platinum after separation and the carbon powder carrying platinum are put into the carbon recovery electrode 23 side of the electrolytic cell 21. While applying the electric field or before applying the electric field, the ultrasonic generator 26 is operated to apply ultrasonic vibration to the electrolytic solution 27. Thereby, peeling of platinum from the surface of the carbon powder proceeds more reliably. On the other hand, as shown in the schematic diagram of FIG. 4, a functional group (in this example, —COOH) exists on the surface of the carbon powder 31, and a basic compound (in this example, an amine) becomes a functional group hydrogen ion. The carbon powder 31 is ionized by coordination to become an ammonium cation.

その状態で電場をかけることにより、イオン化した炭素粉は炭素回収用電極23に静電的に引き寄せられ、電極上に電着して析出する。一方、剥離した白金は塩基性化合物(この例ではアミン)の作用を受けないので、超音波を停止すれば電着槽21の底に沈殿する。電着液27とともに取り出し、ろ過などの手段に分別することにより、白金を確実に回収することができる。   By applying an electric field in this state, the ionized carbon powder is electrostatically attracted to the carbon recovery electrode 23, and is electrodeposited and deposited on the electrode. On the other hand, the peeled platinum is not subjected to the action of a basic compound (amine in this example), and therefore precipitates on the bottom of the electrodeposition tank 21 when the ultrasonic wave is stopped. By taking out together with the electrodeposition liquid 27 and separating it into means such as filtration, platinum can be reliably recovered.

以下、実施例と比較例により本発明を説明する。   Hereinafter, the present invention will be described with reference to examples and comparative examples.

[実施例1]
図3に示した電気泳動装置20を用いた。炭素回収用電極23に銅箔(厚さ50μm)を、対極24に白金電極(厚さ100μm)を用いた。対極24側の槽21内にアセトニトリルを入れた。一方、炭素回収用電極23側の槽21内にアセトニトリルとトリエチルアミンを入れた攪拌し、そこに膜電極接合体(MEA)から回収した剥離した白金および白金を担持した炭素粉の混合物440mgを入れ、超音波にて30分間スラリー状となった電解液を攪拌し分散させた。電気泳動条件として、印加電圧400V,通電時間10分間とした。
[Example 1]
The electrophoresis apparatus 20 shown in FIG. 3 was used. A copper foil (thickness 50 μm) was used as the carbon recovery electrode 23, and a platinum electrode (thickness 100 μm) was used as the counter electrode 24. Acetonitrile was placed in the tank 21 on the counter electrode 24 side. On the other hand, acetonitrile and triethylamine were stirred in the tank 21 on the carbon recovery electrode 23 side, and 440 mg of a mixture of peeled platinum recovered from the membrane electrode assembly (MEA) and carbon powder carrying platinum was put therein, The electrolytic solution in a slurry state for 30 minutes was stirred and dispersed with ultrasonic waves. The electrophoresis conditions were an applied voltage of 400 V and an energization time of 10 minutes.

10分後に銅電極(炭素回収用電極23)を引き上げたところ、電極表面を炭素粉が覆っており、白金粉は槽の底に沈んでいた。白金粉を電着液とともに抜き出して、ろ別して白金粉200mgを回収した。銅箔上の回収炭素を燃焼させて残った灰分を比色分析したが白金は検出下限以下であった。ろ別後の電着液からの白金検出はなく、白金回収率は100%であった。   After 10 minutes, when the copper electrode (carbon recovery electrode 23) was pulled up, the electrode surface was covered with carbon powder, and the platinum powder was sinking to the bottom of the tank. The platinum powder was extracted together with the electrodeposition solution and filtered to recover 200 mg of platinum powder. Colorimetric analysis was performed on the ash remaining after burning the recovered carbon on the copper foil, but platinum was below the lower limit of detection. There was no platinum detection from the electrodeposition solution after filtration, and the platinum recovery rate was 100%.

電着液は減少した分のトリエチルアミンと蒸発した溶媒を追加することによって、繰り返し使用することができた。   The electrodeposition solution could be used repeatedly by adding reduced amounts of triethylamine and evaporated solvent.

[実施例2]
炭素回収用電極23側の槽21内にアセトニトリルとメチルジエチルアミンを入れた以外は、実施例1と同じ条件で分別を行った。同じように、銅電極表面を炭素粉が覆い、白金粉は槽の底に沈んでいた。白金粉を電着液とともに抜き出して、ろ別して白金粉を回収した。白金回収率は98.9%であった。この場合も、減少した分のメチルジエチルアミンと蒸発した溶媒を追加することによって、電着液は繰り返し使用することができた。
[Example 2]
Fractionation was performed under the same conditions as in Example 1 except that acetonitrile and methyldiethylamine were placed in the tank 21 on the carbon recovery electrode 23 side. Similarly, carbon powder covered the copper electrode surface, and platinum powder was sinking to the bottom of the tank. The platinum powder was extracted together with the electrodeposition solution and filtered to recover the platinum powder. The platinum recovery rate was 98.9%. In this case as well, the electrodeposition solution could be used repeatedly by adding the reduced amount of methyldiethylamine and the evaporated solvent.

[比較例1]
実施例1と同量の白金担持炭素粉を王水中に入れ、90℃に加熱しながら60分間、超音波攪拌をして。その後、PTFEフィルタで炭素粉をろ別した。王水を100倍希釈して溶解した白金を原子吸光光度法にて分析し、王水溶液中の白金重量は194mgであることがわかった。その王水を乾燥させては塩酸を加えるとして脱硝操作を2〜3回繰り返し、希釈、冷却、ろ別して、白金が溶解した塩酸溶液を得た。この塩酸溶液に水素化ホウ酸ナトリウムで還元させた白金189gを回収した。回収率は94.5%であった。
[Comparative Example 1]
The same amount of platinum-supported carbon powder as in Example 1 was placed in aqua regia and ultrasonically stirred for 60 minutes while heating to 90 ° C. Thereafter, the carbon powder was filtered off with a PTFE filter. Platinum dissolved in aqua regia diluted 100 times was analyzed by atomic absorption spectrophotometry, and it was found that the platinum weight in the aqua regia solution was 194 mg. The aqua regia was dried and hydrochloric acid was added, and the denitration operation was repeated 2-3 times, diluted, cooled and filtered to obtain a hydrochloric acid solution in which platinum was dissolved. In this hydrochloric acid solution, 189 g of platinum reduced with sodium borohydride was recovered. The recovery rate was 94.5%.

[比較例2]
比較例1と同じ操作をして、白金が溶解した王水溶液を得た。この王水溶液を電解層に移して30Aの電流で電解して白金183mgを回収した。回収率は91.5%であった。
[Comparative Example 2]
The same operation as in Comparative Example 1 was performed to obtain an aqua regia solution in which platinum was dissolved. This aqua regia solution was transferred to the electrolytic layer and electrolyzed with a current of 30 A to recover 183 mg of platinum. The recovery rate was 91.5%.

[考察]
本発明による回収方法では、回収率が100%あるいは98.9%%と高い回収を達成できた。一方、比較例1および2では、多くの工程を必要とし、また長い処理時間を要しながら、回収率は94.4%あるいは91.5%と低く、本発明の優位性が示される。
[Discussion]
In the recovery method according to the present invention, a recovery rate as high as 100% or 98.9% could be achieved. On the other hand, Comparative Examples 1 and 2 require many steps and require a long treatment time, and the recovery rate is as low as 94.4% or 91.5%, indicating the superiority of the present invention.

固体高分子型燃料電池の一例を説明する図。The figure explaining an example of a polymer electrolyte fuel cell. 燃料電池モジュールを解体して、そこから貴金属を回収するまでのプロセスを示す図。The figure which shows the process after dismantling a fuel cell module and collect | recovering noble metals from there. 本発明による貴金属の回収方法で用いる電気泳動装置の一例を示す図。The figure which shows an example of the electrophoresis apparatus used with the collection | recovery method of the noble metal by this invention. 電着液中で炭素粉がイオン化する態様を示す模式図。The schematic diagram which shows the aspect which carbon powder ionizes in an electrodeposition liquid.

符号の説明Explanation of symbols

10…燃料電池モジュール、1…電解質膜、2…触媒層、3…拡散層、4…電極(アノード側電極、カソード側電極)、5…膜電極接合体、7…セパレータ、20…電気泳動装置、21…電解槽、22…電着液隔離膜、23…炭素回収用電極、24…対極、25…電源、26…超音波発生器、27…電着液   DESCRIPTION OF SYMBOLS 10 ... Fuel cell module, 1 ... Electrolyte membrane, 2 ... Catalyst layer, 3 ... Diffusion layer, 4 ... Electrode (anode side electrode, cathode side electrode), 5 ... Membrane electrode assembly, 7 ... Separator, 20 ... Electrophoresis apparatus , 21 ... Electrolyzer, 22 ... Electrodeposition separator, 23 ... Electrode for carbon recovery, 24 ... Counter electrode, 25 ... Power source, 26 ... Ultrasonic generator, 27 ... Electrodeposition solution

Claims (5)

燃料電池の電極を構成する触媒層から触媒である貴金属を回収する方法であって、触媒層を構成する貴金属および貴金属を担持する炭素粉の混合体を極性溶媒および塩基性化合物とを含む電着液の中に入れて炭素粉をイオン化し、電気泳動により炭素粉を電極上に析出させて分離し、炭素粉が分離した電着液から貴金属を回収することを特徴とする触媒層からの貴金属回収方法。   A method for recovering a noble metal as a catalyst from a catalyst layer constituting an electrode of a fuel cell, wherein a mixture of the noble metal constituting the catalyst layer and a carbon powder supporting the noble metal is electrodeposited containing a polar solvent and a basic compound Precious metal from the catalyst layer, characterized by ionizing carbon powder in a liquid, ionizing and separating the carbon powder on an electrode by electrophoresis, and recovering the precious metal from the electrodeposition liquid from which the carbon powder has been separated Collection method. 電着液中に超音波振動を付与することを特徴とする請求項1に記載の触媒層からの貴金属回収方法。   2. The method for recovering a noble metal from a catalyst layer according to claim 1, wherein ultrasonic vibration is applied to the electrodeposition liquid. 前工程として、燃料電池から膜電極接合体を取り出す工程、取り出した膜電極接合体から触媒層と電解質膜との積層体を取り出す工程、触媒層と電解質膜との積層体をアルコール液に浸漬して電解質を溶解させる工程、電解質が溶解したアルコール溶液から触媒層を構成する貴金属および貴金属を担持する炭素粉の混合体を取り出す工程、とをさらに含むことを特徴とする請求項1または2に記載の触媒層からの貴金属回収方法。   As a previous step, a step of taking out the membrane electrode assembly from the fuel cell, a step of taking out the laminate of the catalyst layer and the electrolyte membrane from the taken out membrane electrode assembly, and immersing the laminate of the catalyst layer and the electrolyte membrane in an alcohol liquid The method further comprises: a step of dissolving the electrolyte, and a step of taking out a mixture of the noble metal constituting the catalyst layer and the carbon powder supporting the noble metal from the alcohol solution in which the electrolyte is dissolved. For recovering precious metals from the catalyst layer. 塩基性化合物が、エチルメチルフミン、トリエチルアミン、エチルジメチルアミンまたはジエチルメチルアミンからなる群から選ばれる少なくとも1種であることを特徴とする請求項1ないし3のいずれかに記載の触媒層からの貴金属回収方法。   The noble metal from the catalyst layer according to any one of claims 1 to 3, wherein the basic compound is at least one selected from the group consisting of ethylmethylhumin, triethylamine, ethyldimethylamine or diethylmethylamine. Collection method. 極性溶媒が、アセトニトリル、プロピレンカーボネートまたはブチロクラトンからなる群から選ばれる少なくとも1種であることを特徴とする請求項1ないし3のいずれかに記載の触媒層からの貴金属回収方法。   The method for recovering a noble metal from a catalyst layer according to any one of claims 1 to 3, wherein the polar solvent is at least one selected from the group consisting of acetonitrile, propylene carbonate, and butyrocraton.
JP2005024007A 2005-01-31 2005-01-31 Method for recovering noble metal from catalyst layer constituting electrode of fuel cell Expired - Fee Related JP4501706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024007A JP4501706B2 (en) 2005-01-31 2005-01-31 Method for recovering noble metal from catalyst layer constituting electrode of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024007A JP4501706B2 (en) 2005-01-31 2005-01-31 Method for recovering noble metal from catalyst layer constituting electrode of fuel cell

Publications (2)

Publication Number Publication Date
JP2006207003A true JP2006207003A (en) 2006-08-10
JP4501706B2 JP4501706B2 (en) 2010-07-14

Family

ID=36964175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024007A Expired - Fee Related JP4501706B2 (en) 2005-01-31 2005-01-31 Method for recovering noble metal from catalyst layer constituting electrode of fuel cell

Country Status (1)

Country Link
JP (1) JP4501706B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113240A1 (en) 2008-03-11 2009-09-17 パナソニック株式会社 Film electrode assembly
CN113594485A (en) * 2015-06-19 2021-11-02 24M技术公司 Electrochemical cell repair method
CN115449630A (en) * 2022-08-12 2022-12-09 上海师范大学 Method for selective metal leaching of photocatalysis nitrile-amine-containing solution system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697859A (en) * 1979-12-29 1981-08-06 Asahi Chem Ind Co Ltd Separation of substance by electrophoresis
JPS60184647A (en) * 1984-03-01 1985-09-20 Hitachi Ltd Method for recovering noble metal from fuel cell
JP2003317724A (en) * 2002-04-23 2003-11-07 Choichi Furuya Gas diffusion electrode, its manufacturing method and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697859A (en) * 1979-12-29 1981-08-06 Asahi Chem Ind Co Ltd Separation of substance by electrophoresis
JPS60184647A (en) * 1984-03-01 1985-09-20 Hitachi Ltd Method for recovering noble metal from fuel cell
JP2003317724A (en) * 2002-04-23 2003-11-07 Choichi Furuya Gas diffusion electrode, its manufacturing method and fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113240A1 (en) 2008-03-11 2009-09-17 パナソニック株式会社 Film electrode assembly
JP4437166B2 (en) * 2008-03-11 2010-03-24 パナソニック株式会社 Membrane electrode assembly
JP2010080449A (en) * 2008-03-11 2010-04-08 Panasonic Corp Membrane electrode assembly
JP4469414B2 (en) * 2008-03-11 2010-05-26 パナソニック株式会社 Membrane electrode assembly
JPWO2009113240A1 (en) * 2008-03-11 2011-07-21 パナソニック株式会社 Membrane electrode assembly
CN113594485A (en) * 2015-06-19 2021-11-02 24M技术公司 Electrochemical cell repair method
CN115449630A (en) * 2022-08-12 2022-12-09 上海师范大学 Method for selective metal leaching of photocatalysis nitrile-amine-containing solution system

Also Published As

Publication number Publication date
JP4501706B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
CN100369317C (en) Resource separation of waste lithium ion battery
CN112996931B (en) Lithium ion battery material recovery method
CN108666645B (en) Green stripping method for waste lithium ion power battery electrode material
US20060237034A1 (en) Process for recycling components of a PEM fuel cell membrane electrode assembly
CN103825064A (en) Demonstration process for recovering waste and old dynamic lithium iron phosphate cell in environmental protection mode
JP2002500424A (en) Chemical battery
JP2013500158A (en) Bipolar electrode, supercapacitor desalination apparatus and manufacturing method
KR20210095900A (en) Method and system for scalable direct recycling of batteries
JP2007297655A (en) Method for collecting noble metal from membrane/electrode assembly (mea)
KR101300652B1 (en) A method for decompostion of paraffin oil and polyethylene from waste secondary battery separator membrane
JPH11288732A (en) Method for recovering and reusing material for solid high polymer fuel cell
JP4501706B2 (en) Method for recovering noble metal from catalyst layer constituting electrode of fuel cell
Natarajan et al. Recycling/reuse of current collectors from spent lithium‐ion batteries: benefits and issues
CN104485492A (en) Method for separating electrode material and current collector of waste lithium ion battery
JP2007502009A (en) Method for concentrating noble metals from fuel cell components containing fluorine
Siwal et al. A review on electrochemical techniques for metal recovery from waste resources
JP2018524791A (en) High power redox flow battery based on CRIII / CRVI redox pair and its mediated regeneration
CN106025421B (en) A kind of plating stripping recovery method of electrode of lithium cell
JP2004079210A (en) Liquid-fuel direct feeding fuel cell system
JP2004171921A (en) Method of collecting catalyst metal and fluorine containing polymer having sulfonic acid group from fuel cell
JP4635450B2 (en) Reuse method of fluorine-containing polymer
WO2016108603A1 (en) Intermittent electrochemical reduction system of carbon dioxide
JP5172246B2 (en) Method for recovering catalyst noble metals for fuel cells
JP2005235511A (en) Catalyst collection method
JP5245194B2 (en) Liquid fuel direct supply fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4501706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees