JP2004079210A - Liquid-fuel direct feeding fuel cell system - Google Patents

Liquid-fuel direct feeding fuel cell system Download PDF

Info

Publication number
JP2004079210A
JP2004079210A JP2002233865A JP2002233865A JP2004079210A JP 2004079210 A JP2004079210 A JP 2004079210A JP 2002233865 A JP2002233865 A JP 2002233865A JP 2002233865 A JP2002233865 A JP 2002233865A JP 2004079210 A JP2004079210 A JP 2004079210A
Authority
JP
Japan
Prior art keywords
liquid
products
cell system
fuel cell
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233865A
Other languages
Japanese (ja)
Other versions
JP3985151B2 (en
Inventor
Toshio Sano
佐野 利夫
Fumiya Ishimaru
石丸 文也
Eiichi Nomura
野村 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2002233865A priority Critical patent/JP3985151B2/en
Publication of JP2004079210A publication Critical patent/JP2004079210A/en
Application granted granted Critical
Publication of JP3985151B2 publication Critical patent/JP3985151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a liquid-fuel direct feeding fuel cell system in which a by-product, ion by-product or metal ion can be steadily removed from the liquid content produced by electrochemical reaction of a positive electrode and a negative electrode. <P>SOLUTION: A filter 6, which adsorbs or decomposes the by-product, the ion by-product or the metal ion from the liquid content, is provided at a liquid content recovery means 4 in which a reaction product produced by the electrochemical reaction of the negative electrode 12 and the liquid fuel that has not contributed to the reaction, and a reaction product produced by the electrochemical reaction of the positive electrode 13 and an oxidizer gas that has not contributed to the reaction, are supplied to a gas-liquid separation tank 3 and separated into a gas and a liquid by this gas-liquid separation tank 3, and the separated liquid content is recovered. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は液体燃料直接供給形燃料電池システムに関するもので、さらに詳しく言えば、液体燃料と酸化剤ガスとを直接供給して発電を行うことができる液体燃料直接供給形燃料電池を、分散形電源、移動体用電源、小型携帯用電源に適用するに際しての、その最適な構造に関するものである。
【0002】
【従来の技術】
近年、環境問題や資源問題への対策がクローズアップされ、その一環として燃料電池の開発が活発に行われている。
【0003】
燃料電池は、電解質の両側に負極と正極とを設け、負極に水素などの還元剤を供給し、正極に空気中の酸素などの酸化剤を供給し、電解質を介した電気化学反応によって発電を行うものであり、その発電効率、エネルギー密度が高いことから、ニッケル−水素電池やリチウムイオン電池などの二次電池に代わる電源として注目されている。特に、還元剤として、メタノールなどの液体燃料を用いる、直接メタノール形燃料電池に代表される液体燃料直接供給形燃料電池は、燃料を改質、ガス化せずに直接発電に利用することができることから、構造がシンプルにでき、容易に小型化、軽量化できるので、種々の移動体用電源、分散形電源、可搬用電源、コンピューター用等のコンシューマ電源として検討されている。
【0004】
このような直接メタノール形燃料電池では、電解質の両側に負極と正極とを対設し、前記負極にメタノール水溶液を供給し、前記正極に空気を供給するとともに、前記セルの電気化学反応によって生成した反応生成物を排出するための流路溝とマニホールドを有するセパレータを介して複数個積層されたセルスタック、または電解質の両側に負極と正極とを対設し、前記負極にメタノール水溶液を供給し、前記正極に空気を供給するとともに、前記セルの電気化学反応によって生成した反応生成物を排出するための流路溝とマニホールドを有するセパレータからなるセルを発電ユニットとしている。そして、このセパレータによって、負極にメタノール水溶液を供給し、正極に空気を供給すると、負極の電気化学反応によって二酸化炭素が反応生成物として生成し、正極の電気化学反応によって水が反応生成物として生成し、負極側では前記二酸化炭素が反応に寄与しなかったメタノール水溶液とともに、正極側では前記水が反応に寄与しなかった空気とともに外部に排出される。
【0005】
また、上記した直接メタノール形燃料電池には、正極に空気を供給するのに、ポンプ等の外部動力を用いるタイプと、正極に空気を大気中から取り入れるための開口を前記セパレータに設け、この開口を通じて大気中の酸素を自然拡散、自然対流によって供給するタイプとが検討されており、後者のものは、前者のものと比較して、出力を得にくいといった短所はあるものの、ポンプを駆動するための電力が不要であることから、発電効率を高くでき、システムをシンプルでコンパクトにできる、ポンプの駆動音のない静かな発電機にできる、といった長所がある。このようなことから、直接メタノール形燃料電池は、コンピューター用等の小型のコンシューマ電源として最適なものとなる可能性がある。
【0006】
【発明が解決しようとする課題】
上記した如く、直接メタノール形燃料電池では、負極側から二酸化炭素と反応に寄与しなかったメタノール水溶液が排出され、正極側から水と反応に寄与しなかった空気が排出され、さらに上記電気化学反応によって、たとえばホルムアルデヒドや蟻酸といった副生成物が微量に生成されたり、これらが反応することによって、たとえば蟻酸メチルといった副生成物が微量に生成されることがあり、また前記副生成物の一部が蟻酸イオンといったイオン副生成物として微量に含有されたり、負極または正極から溶出した白金イオン、ルテニウムイオンといった金属イオンが微量に含有されることがあるため、前記二酸化炭素と水や反応に寄与しなかったメタノール水溶液と空気をどのように処理し、前記副生成物、イオン副生成物、金属イオンをどのように処理するかが、直接メタノール形燃料電池の実用化の上で重要であった。従来の直接メタノール形燃料電池では、二酸化炭素と水、反応に寄与しなかったメタノール水溶液と空気は、副生成物、イオン副生成物、金属イオンとともに一括して気液分離槽に導入し、この気液分離槽によって気体成分と液体成分とに分離し、気体成分は大気中に排出する前に副生成物を除去していたが、液体成分は副生成物、イオン副生成物、金属イオンを除去しないで再利用していた。従って、このような副生成物、イオン副生成物、金属イオンを含有したメタノール水溶液が継続的に電気化学反応に使用されることになり、電池特性の低下が促進されるという問題があった。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたもので、液体成分中に混在する副生成物を除去し、電池特性の低下が促進されないようにすることを目的としている。すなわち、その請求項1記載の発明は、プロトン導電性固体高分子膜からなる電解質を介して負極と正極とを対設し、前記負極に液体燃料を、前記正極に酸化剤ガスを供給する構成を設けたセルまたはこのセルが複数個積層されたセルスタックからなる発電ユニットを備え、前記正、負極の電気化学反応によって起電力を得る液体燃料直接供給形燃料電池システムにおいて、前記正、負極の電気化学反応によって生成した反応生成物および前記電気化学反応に寄与しなかった液体燃料と酸化剤ガスから気体と液体を分離する構成を設けるとともに、前記反応生成物および前記電気化学反応に寄与しなかった液体燃料と酸化剤ガスから分離された液体成分を回収する液体成分回収手段を設けたことを特徴とし、請求項2記載の発明は、前記液体成分回収手段が、液体成分中の、正、負極の電気化学反応によって生成される副生成物、前記副生成物の一部がイオン化したイオン副生成物、負極または正極から溶出した金属イオン、の少なくとも一つを吸着または分解するフィルターを備えていることを特徴とする。
【0008】
すなわち、請求項1および2記載の発明によれば、正、負極の電気化学反応によって生成した反応生成物および前記電気化学反応に寄与しなかった液体燃料と酸化剤ガスから分離された液体成分を液体成分回収手段で回収し、この液体成分回収手段に副生成物、前記副生成物の一部がイオン化したイオン副生成物、負極または正極から溶出した金属イオン、の少なくとも一つをする吸着または分解するフィルターを備えているから、再利用するメタノール水溶液中に、蟻酸、ホルムアルデヒド、蟻酸メチルといった副生成物が含有されないようにでき、蟻酸イオンといったイオン副生成物が含有されないようにでき、白金イオンやルテニウムイオンといった金属イオンが含有されないようにできる。
【0009】
また、請求項3記載の発明は、フィルターが副生成物を吸着する吸着材を含有していることを特徴とし、請求項4記載の発明は、フィルターが副生成物を分解する光化学触媒を含有していることを特徴とし、請求項5記載の発明は、フィルターがイオン副生成物または金属イオンを吸着するイオン交換樹脂を含有していることを特徴とする。
【0010】
すなわち、請求項3記載の発明によれば、副生成物を吸着材で吸着させることができ、請求項4記載の発明によれば、副生成物を光化学触媒で分解させることができ、請求項5記載の発明によれば、イオン副生成物または金属イオンをイオン交換樹脂で吸着させることができるから、蟻酸、ホルムアルデヒド、蟻酸メチルといった副生成物、蟻酸イオンといったイオン副生成物、白金イオンやルテニウムイオンといった金属イオンを除去したメタノール水溶液を再利用に供することができる。
【0011】
【発明の実施の形態】
以下、本発明を、その実施の形態に基づいて説明する。
【0012】
図1は、本発明の実施の形態に係る液体燃料直接供給形燃料電池システムの例として示した直接メタノール形燃料電池システムの構成図であり、その特徴は、プロトン導電性固体高分子膜からなる電解質11を介して負極12と正極13とを対設したセル1を発電ユニットとし、前記負極12に、液体燃料としてのメタノール水溶液を、その電気化学反応に適した濃度にして貯蔵する燃料タンク2から供給し、前記正極13に、酸化剤ガスとしての空気を供給し、前記セル1の電気化学反応よって生成した反応生成物を、前記電気化学反応に寄与しなかったメタノール水溶液と空気を気液分離槽3に導入し、この気液分離槽3で気体と液体に分離し、液体成分としての水とメタノール水溶液とを液体成分回収手段4を介して燃料タンク2に回収されるようにしたことである。前記液体成分中には電気化学反応よって生成した、たとえば蟻酸、ホルムアルデヒド、蟻酸メチルのような副生成物、前記副生成物の一部がイオン化した、たとえば蟻酸イオンのようなイオン副生成物、負極または正極から溶出した、たとえば白金イオンやルテニウムイオンのような金属イオンが含有されている。なお、前記気液分離槽3で分離された気体成分としての空気と二酸化炭素とは気体成分回収手段5に回収されるようにしている。
【0013】
前記液体成分回収手段4には、前記副生成物、イオン副生成物、金属イオンの少なくとも一つを吸着または分解するフィルター6が備えられている。また、前記気体成分回収手段5にも、気体成分中の副生成物が吸収または分解するフィルターを備えていてもよい。
【0014】
【実施例】
(実施例1)
図2は、本発明の第1の実施例に係る液体燃料直接供給形燃料電池システムの例として示した直接メタノール形燃料電池システムの構成図を示し、正極13に供給する空気を図示していないポンプ等によって強制的にセル1に供給し、負極12の反応生成物と反応に寄与しなかったメタノール水溶液および正極13の反応生成物と反応に寄与しなかった空気を一括して気液分離槽3に導入し、この気液分離槽3によって、液体成分としての水とメタノール水溶液を分離して液体成分回収手段4に導入し、気体成分としての空気と二酸化炭素を分離して気体成分回収手段5に導入するようにしたものである。
【0015】
前記実施例1の液体成分回収手段4には、負極12の電気化学反応に寄与しなかったメタノール水溶液と正極13の電気化学反応によって生成した水とが液体成分として導入され、この液体成分回収手段4に内蔵されたフィルター6によって、前記液体成分中の蟻酸、ホルムアルデヒド、蟻酸メチルのような副生成物、前記副生成物の一部がイオン化した蟻酸イオンのようなイオン副生成物、前記負極または正極から溶出した白金イオンやルテニウムイオンのような金属イオン、の少なくとも一つが吸着または分解されて、燃料タンク2に送出されるようにしている。
【0016】
(実施例2)
図3は、本発明の第2の実施例に係る液体燃料直接供給形燃料電池システムの例として示した直接メタノール形燃料電池システムの構成図を示し、正極13に供給する空気を、ファンによる自然拡散または自然対流で供給するものである。なお、この第2の実施例では、セル1の正極側が大気中に開放されているため、セル1全体をケースに入れるとともに、負極12の反応生成物と反応に寄与しなかったメタノール水溶液のみを気液分離槽3に導入し、この気液分離槽3によって液体成分としてのメタノール水溶液を分離して液体成分回収手段4に導入するようにしたものである。
【0017】
前記実施例2の液体成分回収手段4には、負極12の電気化学反応に寄与しなかったメタノール水溶液が液体成分として導入され、この液体成分回収手段4に内蔵されたフィルター6によって、前記液体成分中の蟻酸、ホルムアルデヒド、蟻酸メチルのような副生成物、前記副生成物の一部がイオン化した蟻酸イオンのようなイオン副生成物、前記負極または正極から溶出した白金イオンやルテニウムイオンのような金属イオン、の少なくとも一つが吸着または分解されて、燃料タンク2に送出されるようにしている。
【0018】
前述した実施例1、2の液体成分回収手段4に内蔵されたフィルター6が、蟻酸、ホルムアルデヒド、蟻酸メチルといった副生成物を吸着する、活性炭またはゼオライトなどの吸着材を含有したものであると、前記副生成物を吸着することができ、前記フィルター6が、蟻酸、ホルムアルデヒド、蟻酸メチルといった副生成物を分解する、酸化チタンなどの光化学触媒を含有したものであると、前記副生成物を水と二酸化炭素に分解することができ、前記フィルター6が、蟻酸イオンのようなイオン副生成物や白金イオンまたはルテニウムイオンのような金属イオンを吸着する、スチレン系、アクリル系またはメタクリル酸系などのイオン交換樹脂を含有したものであると、前記イオン副生成物や金属イオンを吸着することができるので、このような副生成物、イオン副生成物、金属イオンが含有されたメタノール水溶液が燃料タンク2に送出されるのを防止することができる。
【0019】
上記した、吸着材、光化学触媒またはイオン交換樹脂をフィルターに含有させる方法としては、これらをハニカム層に担持させておくのがよいが、光化学触媒をハニカム層に担持させておく場合は、このハニカム層に太陽光が照射されるようにしたり、ハニカム層の近傍にケミカルランプを配置して、その光が照射されるようにする必要がある。
【0020】
また、上記した吸着材、光化学触媒またはイオン交換樹脂はそれぞれを単独で用いてもよいが、適宜組み合わせてもよい。この場合は、それらの相乗効果が期待できる。
【0021】
また、上記した実施の形態や実施例は、液体燃料にメタノール水溶液を用いる直接メタノール形燃料電池システムで説明したが、メタノール水溶液以外の液体燃料、たとえばエチルアルコール、ブタノール、ジメチルエーテル等を用いた液体燃料直接供給形燃料電池にも適用することができる。
【0022】
また、上記した実施の形態や実施例は、発電ユニットがセル1からなるものについて説明したが、このセル1を複数個積層したセルスタックで発電ユニットを構成しても同様に適用することができる。
【0023】
なお、上記した実施の形態や実施例は、液体成分回収手段4にフィルター6を備えたものであるが、気体成分回収手段5にも同様のフィルターを備えておき、反応後の空気と反応生成物としての二酸化炭素中に含有される副生成物を吸収または分解するようにしてもよい。
【0024】
また、上記した実施の形態や実施例において例示した吸着剤、光化学触媒、イオン交換樹脂は、これらに限定されるものではなく、同様の機能を有する他の種類のものであってもよいし、これらの形状(たとえば粒子径)も限定されるものではなく、これらをフィルターに含有させる方法も上述した方法に限定されるものではない。
【0025】
【発明の効果】
以上のように、本発明によれば、メタノール水溶液を改質、ガス化することなく発電を行うことができるといった直接メタノール形燃料電池などの液体燃料直接供給形燃料電池を、携帯用電源、コンピューター用電源といった小型コンシューマー用途に適用するに際し、再利用されるメタノール水溶液から、副生成物、イオン副生成物または金属イオンを確実に除去することができるので、上記した用途に適した、電池特性の低下が抑制できるシステムの構成に寄与することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る液体燃料直接供給形燃料電池システムの構成図である。
【図2】本発明の第1の実施例に係る液体燃料直接供給形燃料電池システムの構成図である。
【図3】本発明の第2の実施例に係る液体燃料直接供給形燃料電池システムの構成図である。
【符号の説明】
1 セル
2 燃料タンク
3 気液分離槽
4 液体成分回収手段
5 気体成分回収手段
6 フィルター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid fuel direct supply type fuel cell system, and more specifically, to a liquid fuel direct supply type fuel cell capable of directly supplying a liquid fuel and an oxidizing gas to generate power, and a distributed power supply. The present invention relates to an optimum structure when applied to a power supply for a mobile object and a small portable power supply.
[0002]
[Prior art]
In recent years, measures against environmental problems and resource problems have been highlighted, and as one of the measures, fuel cells are being actively developed.
[0003]
Fuel cells are equipped with a negative electrode and a positive electrode on both sides of the electrolyte, supply a reducing agent such as hydrogen to the negative electrode, supply an oxidizing agent such as oxygen in the air to the positive electrode, and generate electricity through an electrochemical reaction through the electrolyte. Because of its high power generation efficiency and high energy density, it has attracted attention as a power source to replace secondary batteries such as nickel-hydrogen batteries and lithium ion batteries. In particular, a liquid fuel direct supply type fuel cell represented by a direct methanol fuel cell, which uses a liquid fuel such as methanol as a reducing agent, can be used for direct power generation without reforming or gasifying the fuel. Therefore, since the structure can be simplified and the size and weight can be easily reduced, it has been studied as a power source for various mobile objects, a distributed power source, a portable power source, a consumer power source for computers, and the like.
[0004]
In such a direct methanol fuel cell, a negative electrode and a positive electrode are provided on both sides of the electrolyte, an aqueous methanol solution is supplied to the negative electrode, air is supplied to the positive electrode, and the fuel cell is formed by an electrochemical reaction of the cell. A plurality of stacked cell stacks via a separator having a flow channel and a manifold for discharging reaction products, or a negative electrode and a positive electrode are provided on both sides of an electrolyte, and a methanol aqueous solution is supplied to the negative electrode. A cell including a separator having a channel groove and a manifold for supplying air to the positive electrode and discharging a reaction product generated by an electrochemical reaction of the cell is defined as a power generation unit. When a methanol aqueous solution is supplied to the negative electrode and air is supplied to the positive electrode by this separator, carbon dioxide is generated as a reaction product by the electrochemical reaction of the negative electrode, and water is generated as a reaction product by the electrochemical reaction of the positive electrode. On the negative electrode side, the carbon dioxide is discharged to the outside together with the aqueous methanol solution that did not contribute to the reaction, and on the positive electrode side, the water is discharged to the outside together with air that did not contribute to the reaction.
[0005]
Further, in the direct methanol fuel cell described above, a type in which an external power such as a pump is used to supply air to the positive electrode, and an opening for introducing air from the atmosphere to the positive electrode are provided in the separator, and the opening is provided in the separator. Through the natural diffusion and natural convection of oxygen in the atmosphere through the use of natural gas, the latter has the disadvantage that it is more difficult to obtain an output than the former, but it is necessary to drive the pump. Since there is no need for electric power, there are advantages that the power generation efficiency can be increased, the system can be made simple and compact, and a quiet generator without pump driving noise can be obtained. For these reasons, the direct methanol fuel cell may be optimal as a small-sized consumer power supply for computers and the like.
[0006]
[Problems to be solved by the invention]
As described above, in the direct methanol fuel cell, an aqueous methanol solution that did not contribute to the reaction with carbon dioxide was discharged from the negative electrode side, air that did not contribute to the reaction with water was discharged from the positive electrode side, and further the above-mentioned electrochemical reaction was performed. In some cases, for example, by-products such as formaldehyde and formic acid are generated in a very small amount, or when these react with each other, by-products such as methyl formate may be generated in a very small amount. Since it is contained in a trace amount as an ion by-product such as formate ion, or may contain a trace amount of a metal ion such as platinum ion and ruthenium ion eluted from the negative electrode or the positive electrode, it does not contribute to the reaction with the carbon dioxide and water. How the aqueous methanol solution and air were treated, the by-products, ion by-products, How to process was the important practical application of direct methanol fuel cells. In a conventional direct methanol fuel cell, carbon dioxide and water, an aqueous methanol solution and air that did not contribute to the reaction, were introduced into the gas-liquid separation tank together with by-products, ion by-products, and metal ions. The gas-liquid separation tank separates the gas component and the liquid component, and the gas component removes by-products before discharging to the atmosphere.The liquid component removes by-products, ion by-products, and metal ions. Reused without removal. Therefore, a methanol aqueous solution containing such by-products, ion by-products, and metal ions is continuously used in an electrochemical reaction, and there is a problem that deterioration of battery characteristics is promoted.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and has as its object to remove by-products mixed in a liquid component so as not to promote deterioration of battery characteristics. That is, the invention according to claim 1 has a configuration in which a negative electrode and a positive electrode are opposed to each other via an electrolyte made of a proton conductive solid polymer membrane, and a liquid fuel is supplied to the negative electrode and an oxidizing gas is supplied to the positive electrode. In the liquid fuel direct supply type fuel cell system, comprising a cell provided with or a cell stack in which a plurality of the cells are stacked, and obtaining an electromotive force by an electrochemical reaction of the positive and negative electrodes, A configuration is provided for separating gas and liquid from the reaction product generated by the electrochemical reaction and the liquid fuel and the oxidizing gas that have not contributed to the electrochemical reaction, and does not contribute to the reaction product and the electrochemical reaction. 3. A liquid component recovery means for recovering a liquid component separated from the liquid fuel and the oxidant gas is provided, wherein the liquid component recovery means is provided. Minute collection means, in the liquid component, positive, by-products generated by the electrochemical reaction of the negative electrode, ion by-products ionized part of the by-products, metal ions eluted from the negative electrode or the positive electrode, It is characterized by having a filter for adsorbing or decomposing at least one.
[0008]
That is, according to the first and second aspects of the present invention, the reaction product generated by the positive and negative electrode electrochemical reactions and the liquid component separated from the liquid fuel and the oxidizing gas that did not contribute to the electrochemical reaction are separated from each other. The liquid component is recovered by a liquid component recovery means, and the liquid component recovery means adsorbs or removes at least one of a by-product, an ion by-product in which a part of the by-product is ionized, and a metal ion eluted from a negative electrode or a positive electrode. Since it is equipped with a filter that decomposes, it is possible to prevent by-products such as formic acid, formaldehyde and methyl formate from being contained in the aqueous methanol solution to be reused, and to prevent ionic by-products such as formate ions from being contained in platinum aqueous solution. And metal ions such as ruthenium ions.
[0009]
The invention according to claim 3 is characterized in that the filter contains an adsorbent for adsorbing by-products, and the invention according to claim 4 includes the photochemical catalyst in which the filter decomposes by-products. The invention according to claim 5 is characterized in that the filter contains an ion exchange resin that adsorbs ion by-products or metal ions.
[0010]
That is, according to the invention of claim 3, by-products can be adsorbed by the adsorbent, and according to the invention of claim 4, the by-products can be decomposed by the photochemical catalyst. According to the fifth aspect of the present invention, since ion by-products or metal ions can be adsorbed by the ion exchange resin, by-products such as formic acid, formaldehyde and methyl formate, ion by-products such as formate ion, platinum ion and ruthenium The aqueous methanol solution from which metal ions such as ions have been removed can be reused.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the embodiments.
[0012]
FIG. 1 is a configuration diagram of a direct methanol fuel cell system shown as an example of a liquid fuel direct supply type fuel cell system according to an embodiment of the present invention, and is characterized by a proton conductive solid polymer membrane. A cell 1 in which a negative electrode 12 and a positive electrode 13 are opposed to each other via an electrolyte 11 is a power generation unit, and a fuel tank 2 for storing an aqueous methanol solution as a liquid fuel in the negative electrode 12 at a concentration suitable for the electrochemical reaction. , And air as an oxidizing gas is supplied to the positive electrode 13, and a reaction product generated by the electrochemical reaction of the cell 1 is separated into a methanol aqueous solution and air which did not contribute to the electrochemical reaction. The gas is introduced into a separation tank 3, separated into a gas and a liquid in the gas-liquid separation tank 3, and water and an aqueous methanol solution as liquid components are returned to the fuel tank 2 via a liquid component recovery means 4. It is to have to be. In the liquid component, for example, formic acid, formaldehyde, by-products such as methyl formate, a part of the by-products are ionized, for example, ion by-products such as formate ion, and a negative electrode. Alternatively, metal ions such as platinum ions and ruthenium ions eluted from the positive electrode are contained. Note that air and carbon dioxide as gas components separated in the gas-liquid separation tank 3 are collected by the gas component collection unit 5.
[0013]
The liquid component recovery means 4 is provided with a filter 6 for adsorbing or decomposing at least one of the by-products, ion by-products and metal ions. Further, the gas component recovery means 5 may be provided with a filter for absorbing or decomposing by-products in the gas component.
[0014]
【Example】
(Example 1)
FIG. 2 shows a configuration diagram of a direct methanol fuel cell system shown as an example of the liquid fuel direct supply type fuel cell system according to the first embodiment of the present invention, and does not show air supplied to the positive electrode 13. The aqueous methanol solution which did not contribute to the reaction with the reaction product of the negative electrode 12 and the reaction product of the positive electrode 13 and air which did not contribute to the reaction are collectively supplied to the cell 1 by a pump or the like, and the gas-liquid separation tank 3, water and a methanol aqueous solution as liquid components are separated by the gas-liquid separation tank 3 and introduced into the liquid component recovery means 4, and air and carbon dioxide as gas components are separated and the gas component recovery means 5 is introduced.
[0015]
An aqueous methanol solution that did not contribute to the electrochemical reaction of the negative electrode 12 and water generated by the electrochemical reaction of the positive electrode 13 were introduced as liquid components into the liquid component collecting means 4 of the first embodiment. By the filter 6 built in 4, by-products such as formic acid, formaldehyde and methyl formate in the liquid component, ionic by-products such as formate ion in which a part of the by-products are ionized, the negative electrode or At least one of metal ions such as platinum ions and ruthenium ions eluted from the positive electrode is adsorbed or decomposed and sent to the fuel tank 2.
[0016]
(Example 2)
FIG. 3 is a configuration diagram of a direct methanol fuel cell system shown as an example of a liquid fuel direct supply fuel cell system according to a second embodiment of the present invention. It is supplied by diffusion or natural convection. In the second embodiment, since the positive electrode side of the cell 1 is open to the atmosphere, the entire cell 1 is put in a case, and only the reaction product of the negative electrode 12 and the aqueous methanol solution which has not contributed to the reaction are removed. This is introduced into the gas-liquid separation tank 3, and the aqueous methanol solution as a liquid component is separated by the gas-liquid separation tank 3 and introduced into the liquid component recovery means 4.
[0017]
An aqueous methanol solution that did not contribute to the electrochemical reaction of the negative electrode 12 was introduced as a liquid component into the liquid component recovery means 4 of the second embodiment, and the liquid component recovery means 4 was filtered by the filter 6 incorporated therein. Formic acid, formaldehyde, by-products such as methyl formate, ion by-products such as formate ions in which part of the by-products are ionized, and platinum ions and ruthenium ions eluted from the negative electrode or the positive electrode At least one of the metal ions is adsorbed or decomposed and sent to the fuel tank 2.
[0018]
If the filter 6 incorporated in the liquid component recovery means 4 of the first and second embodiments contains an adsorbent such as activated carbon or zeolite that adsorbs by-products such as formic acid, formaldehyde and methyl formate, When the by-product can be adsorbed and the filter 6 contains a photochemical catalyst such as titanium oxide that decomposes by-products such as formic acid, formaldehyde, and methyl formate, the by-product is converted to water. And the filter 6 adsorbs ion by-products such as formate ions and metal ions such as platinum ions or ruthenium ions. When the resin contains an ion exchange resin, the ion by-products and metal ions can be adsorbed. By-products such as, ion-products, it is possible to prevent the aqueous methanol solution in which the metal ion is contained is sent to the fuel tank 2.
[0019]
As a method for allowing the filter to contain the adsorbent, the photochemical catalyst, or the ion exchange resin, it is preferable that these are supported on the honeycomb layer. However, when the photochemical catalyst is supported on the honeycomb layer, the honeycomb is used. It is necessary to irradiate the layer with sunlight, or to arrange a chemical lamp near the honeycomb layer to irradiate the light.
[0020]
In addition, the above-mentioned adsorbent, photochemical catalyst or ion exchange resin may be used alone, or may be appropriately combined. In this case, a synergistic effect can be expected.
[0021]
In the above embodiments and examples, a direct methanol fuel cell system using an aqueous methanol solution as a liquid fuel has been described. However, a liquid fuel other than an aqueous methanol solution, for example, a liquid fuel using ethyl alcohol, butanol, dimethyl ether, etc. The present invention can also be applied to a direct supply type fuel cell.
[0022]
In the above-described embodiments and examples, the description has been given of the case where the power generation unit is composed of the cell 1. However, the power generation unit can be similarly applied even if the power generation unit is configured by a cell stack in which a plurality of the cells 1 are stacked. .
[0023]
In the above-described embodiments and examples, the liquid component collecting means 4 is provided with the filter 6, but the gas component collecting means 5 is also provided with the same filter so that the air after the reaction and the reaction product are generated. By-products contained in carbon dioxide as a substance may be absorbed or decomposed.
[0024]
In addition, the adsorbents, photochemical catalysts, and ion exchange resins exemplified in the above-described embodiments and examples are not limited thereto, and may be other types having the same function, The shape (for example, the particle size) is not limited, and the method of including them in the filter is not limited to the above-described method.
[0025]
【The invention's effect】
As described above, according to the present invention, a liquid fuel direct supply type fuel cell such as a direct methanol type fuel cell capable of generating electricity without reforming and gasifying a methanol aqueous solution can be used as a portable power source, a computer, When applied to small consumer applications such as power supplies for use, by-products, ion by-products or metal ions can be reliably removed from the methanol aqueous solution that is reused, so that the battery characteristics suitable for the above-mentioned applications are This can contribute to the configuration of the system in which the reduction can be suppressed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a liquid fuel direct supply type fuel cell system according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a liquid fuel direct supply type fuel cell system according to a first embodiment of the present invention.
FIG. 3 is a configuration diagram of a liquid fuel direct supply type fuel cell system according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cell 2 Fuel tank 3 Gas-liquid separation tank 4 Liquid component recovery means 5 Gas component recovery means 6 Filter

Claims (5)

プロトン導電性固体高分子膜からなる電解質を介して負極と正極とを対設し、前記負極に液体燃料を、前記正極に酸化剤ガスを供給する構成を設けたセルまたはこのセルが複数個積層されたセルスタックからなる発電ユニットを備え、前記正、負極の電気化学反応によって起電力を得る液体燃料直接供給形燃料電池システムにおいて、前記正、負極の電気化学反応によって生成した反応生成物および前記電気化学反応に寄与しなかった液体燃料と酸化剤ガスから気体と液体を分離する構成を設けるとともに、前記反応生成物および前記電気化学反応に寄与しなかった液体燃料と酸化剤ガスから分離された液体成分を回収する液体成分回収手段を設けたことを特徴とする液体燃料直接供給形燃料電池システム。A cell having a configuration in which a negative electrode and a positive electrode are opposed to each other via an electrolyte made of a proton conductive solid polymer membrane, and a liquid fuel is supplied to the negative electrode and an oxidizing gas is supplied to the positive electrode, or a plurality of such cells are stacked. A liquid fuel direct supply type fuel cell system comprising a power generation unit comprising a cell stack, wherein the positive and negative electrodes obtain an electromotive force by an electrochemical reaction. A configuration is provided for separating gas and liquid from the liquid fuel and the oxidizing gas that did not contribute to the electrochemical reaction, and the reaction product and the liquid fuel and the oxidizing gas that did not contribute to the electrochemical reaction were separated from the oxidizing gas. A liquid fuel direct supply type fuel cell system comprising a liquid component recovery means for recovering a liquid component. 請求項1記載の液体燃料直接供給形燃料電池システムにおいて、液体成分回収手段は、液体成分中の、正、負極の電気化学反応によって生成される副生成物、前記副生成物の一部がイオン化したイオン副生成物、負極または正極から溶出した金属イオン、の少なくとも一つを吸着または分解するフィルターを備えていることを特徴とする液体燃料直接供給形燃料電池システム。2. The liquid fuel direct supply type fuel cell system according to claim 1, wherein the liquid component recovery means includes a by-product generated by an electrochemical reaction between positive and negative electrodes in the liquid component, and a part of the by-product is ionized. A liquid fuel direct supply type fuel cell system, comprising: a filter for adsorbing or decomposing at least one of selected ion by-products and metal ions eluted from a negative electrode or a positive electrode. 請求項2記載の液体燃料直接供給形燃料電池システムにおいて、フィルターは副生成物を吸着する吸着材を含有していることを特徴とする液体燃料直接供給形燃料電池システム。3. The liquid fuel direct supply type fuel cell system according to claim 2, wherein the filter contains an adsorbent for adsorbing by-products. 請求項2記載の液体燃料直接供給形燃料電池システムにおいて、フィルターは副生成物を分解する光化学触媒を含有していることを特徴とする液体燃料直接供給形燃料電池システム。3. The liquid fuel direct supply type fuel cell system according to claim 2, wherein the filter contains a photochemical catalyst for decomposing by-products. 請求項2記載の液体燃料直接供給形燃料電池システムにおいて、フィルターはイオン副生成物または金属イオンを吸着するイオン交換樹脂を含有していることを特徴とする液体燃料直接供給形燃料電池システム。3. The liquid fuel direct supply type fuel cell system according to claim 2, wherein the filter contains an ion exchange resin that adsorbs ion by-products or metal ions.
JP2002233865A 2002-08-09 2002-08-09 Liquid fuel direct supply fuel cell system Expired - Fee Related JP3985151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233865A JP3985151B2 (en) 2002-08-09 2002-08-09 Liquid fuel direct supply fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233865A JP3985151B2 (en) 2002-08-09 2002-08-09 Liquid fuel direct supply fuel cell system

Publications (2)

Publication Number Publication Date
JP2004079210A true JP2004079210A (en) 2004-03-11
JP3985151B2 JP3985151B2 (en) 2007-10-03

Family

ID=32018883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233865A Expired - Fee Related JP3985151B2 (en) 2002-08-09 2002-08-09 Liquid fuel direct supply fuel cell system

Country Status (1)

Country Link
JP (1) JP3985151B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049032A (en) * 2004-08-03 2006-02-16 Nidec Sankyo Corp Fuel cartridge and fuel cell system
EP1643576A2 (en) 2004-07-20 2006-04-05 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and transport eqipment including the same
JP2006120598A (en) * 2004-09-21 2006-05-11 Toshiba Corp Fuel cell system
JP2006127851A (en) * 2004-10-27 2006-05-18 Canon Inc Liquid fuel for direct methanol type fuel cell, cartridge, and fuel cell system
WO2006093098A1 (en) * 2005-02-28 2006-09-08 Nippon Shokubai Co., Ltd. Low-temperature fuel cell system
JP2007123054A (en) * 2005-10-27 2007-05-17 Gs Yuasa Corporation:Kk Liquid fuel direct supply type fuel cell system
KR100723326B1 (en) 2004-03-15 2007-05-31 가부시끼가이샤 도시바 Fuel cell system
JP2007280667A (en) * 2006-04-04 2007-10-25 Gs Yuasa Corporation:Kk Liquid fuel direct supply fuel cell system
JP2007537575A (en) * 2004-05-11 2007-12-20 ソシエテ ビック Cartridge with fuel supply and membrane electrode assembly stack
JP2008045021A (en) * 2006-08-15 2008-02-28 Toyo Seikan Kaisha Ltd Method for purifying liquid fuel and system for purifying liquid fuel
JP2009224302A (en) * 2008-03-18 2009-10-01 Hyundai Motor Co Ltd Catalyst collection device and method for fuel cell
US8637207B2 (en) * 2005-05-09 2014-01-28 Kabushiki Kaisha Toshiba Liquid fuel, fuel cartridge and fuel cell
WO2015118583A1 (en) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 Fuel cell system and fuel circulation system for fuel cell system
CN110416663A (en) * 2019-08-07 2019-11-05 郑州佛光发电设备有限公司 Liquid path circulating system and method of metal fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723326B1 (en) 2004-03-15 2007-05-31 가부시끼가이샤 도시바 Fuel cell system
JP2007537575A (en) * 2004-05-11 2007-12-20 ソシエテ ビック Cartridge with fuel supply and membrane electrode assembly stack
EP1643576A2 (en) 2004-07-20 2006-04-05 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and transport eqipment including the same
US7781110B2 (en) 2004-07-20 2010-08-24 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and transport equipment including the same
JP2006049032A (en) * 2004-08-03 2006-02-16 Nidec Sankyo Corp Fuel cartridge and fuel cell system
JP2006120598A (en) * 2004-09-21 2006-05-11 Toshiba Corp Fuel cell system
JP2006127851A (en) * 2004-10-27 2006-05-18 Canon Inc Liquid fuel for direct methanol type fuel cell, cartridge, and fuel cell system
WO2006093098A1 (en) * 2005-02-28 2006-09-08 Nippon Shokubai Co., Ltd. Low-temperature fuel cell system
US8637207B2 (en) * 2005-05-09 2014-01-28 Kabushiki Kaisha Toshiba Liquid fuel, fuel cartridge and fuel cell
JP2007123054A (en) * 2005-10-27 2007-05-17 Gs Yuasa Corporation:Kk Liquid fuel direct supply type fuel cell system
JP2007280667A (en) * 2006-04-04 2007-10-25 Gs Yuasa Corporation:Kk Liquid fuel direct supply fuel cell system
JP2008045021A (en) * 2006-08-15 2008-02-28 Toyo Seikan Kaisha Ltd Method for purifying liquid fuel and system for purifying liquid fuel
JP2009224302A (en) * 2008-03-18 2009-10-01 Hyundai Motor Co Ltd Catalyst collection device and method for fuel cell
WO2015118583A1 (en) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 Fuel cell system and fuel circulation system for fuel cell system
CN110416663A (en) * 2019-08-07 2019-11-05 郑州佛光发电设备有限公司 Liquid path circulating system and method of metal fuel cell

Also Published As

Publication number Publication date
JP3985151B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP2003223920A (en) Liquid-fuel direct supply fuel cell system
US6824900B2 (en) Method and apparatus for water management of a fuel cell system
JP3985151B2 (en) Liquid fuel direct supply fuel cell system
JP3748417B2 (en) Direct liquid fuel fuel cell power generator and control method thereof
TWI301158B (en) Hydrogen production system
US7867670B2 (en) Fuel tank and fuel cell system including the same
KR20040024844A (en) Gas generation system
US20050031931A1 (en) Fuel cell system and fuel feeder
CN115036539A (en) Fuel cell power generation system and control method thereof
CN1860635A (en) System and method for safe removal/oxidative decomposition of fuel from a fuel container
CN100342577C (en) Fuel processing device, fuel cell system having the same, and method of driving thereof
JP3925695B2 (en) Liquid fuel direct supply fuel cell
JP2005129261A (en) Direct liquid supply type fuel cell
US8557456B2 (en) Fuel cell system
JP4416503B2 (en) Apparatus and method for supplying hydrogen to a fuel cell and use of the fuel cell for electrically driving a vehicle
JP2003208910A (en) Liquid-fuel direct supply type fuel cell system
US20090029202A1 (en) Fuel cell using deuterium
JP2003223919A (en) Direct methanol fuel cell system
JP5245194B2 (en) Liquid fuel direct supply fuel cell system
CN1532970A (en) Hydrogen reutilizing mixed fuel cell
JP2007280667A (en) Liquid fuel direct supply fuel cell system
US20110236729A1 (en) Hydrogen cells or microcells with a hydrogen generator
JP4678108B2 (en) Direct dimethyl ether fuel cell
JP2003157879A (en) Liquid fuel direct supply type fuel cell
JP2003272688A (en) Fuel cell generating device and operating method of fuel cell generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees