JP2006206641A - Vacuum ultraviolet phosphor, phosphor paste composition and plasma display panel - Google Patents

Vacuum ultraviolet phosphor, phosphor paste composition and plasma display panel Download PDF

Info

Publication number
JP2006206641A
JP2006206641A JP2005017000A JP2005017000A JP2006206641A JP 2006206641 A JP2006206641 A JP 2006206641A JP 2005017000 A JP2005017000 A JP 2005017000A JP 2005017000 A JP2005017000 A JP 2005017000A JP 2006206641 A JP2006206641 A JP 2006206641A
Authority
JP
Japan
Prior art keywords
phosphor
vacuum ultraviolet
silicon oxide
vuv
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005017000A
Other languages
Japanese (ja)
Inventor
Ryuji Adachi
隆二 安達
Takayuki Hisamune
孝之 久宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP2005017000A priority Critical patent/JP2006206641A/en
Publication of JP2006206641A publication Critical patent/JP2006206641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum ultraviolet phosphor, a phosphor paste composition, and a plasma display using the same. <P>SOLUTION: The vacuum ultraviolet phosphor is composed of a phosphor such as an Mn-activated silicate phosphor represented by (A<SB>x</SB>B<SB>y</SB>)<SB>2</SB>SiO<SB>4</SB>(wherein A is at least one kind of Zn and Mg, and B is Mn), a metal oxide represented by M<SB>2</SB>O<SB>3</SB>, (wherein M is at least one metallic element of Y, La, and Al) and silicon oxide (SiO<SB>2</SB>), and at least part of the surface of the above phosphor is coated with the above M<SB>2</SB>O<SB>3</SB>and the above silicon oxide (SiO<SB>2</SB>) or the above phosphor is mixed with the above M<SB>2</SB>O<SB>3</SB>and the above silicon oxide (SiO<SB>2</SB>). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマディスプレイパネル(以下、PDPという)、希ガス放電ランプ等に使用される、真空紫外線で励起されて発光する真空紫外線用蛍光体(以下、VUV用蛍光体という)、その蛍光体を含有する蛍光体ペースト組成物及びその蛍光体を含む蛍光膜を備えたPDPに関する。   The present invention relates to a phosphor for vacuum ultraviolet light (hereinafter referred to as a VUV phosphor) that is excited by vacuum ultraviolet light and used for a plasma display panel (hereinafter referred to as PDP), a rare gas discharge lamp or the like, and the phosphor. The present invention relates to a phosphor paste composition containing a phosphor and a PDP having a phosphor film containing the phosphor.

近年、Ar、Xe、He、Ne、Xe−Ne等の希ガスをガラスなどの真空外囲器に封入し、その希ガスの放電によって放射される真空紫外線で、外囲器内部の蛍光膜を励起して発光させる真空紫外線励起発光素子(以下、VUV励起発光素子という)が実用化されている。なかでも、PDPはこれらVUV励起発光素子を適用したカラー表示用デバイスとして活発な開発及び改良がなされている。   In recent years, rare gases such as Ar, Xe, He, Ne, and Xe-Ne are sealed in a vacuum envelope such as glass, and the fluorescent film inside the envelope is formed by vacuum ultraviolet rays emitted by the discharge of the rare gas. Vacuum ultraviolet-excited light-emitting elements that emit light when excited (hereinafter referred to as VUV-excited light-emitting elements) have been put into practical use. Among these, PDP has been actively developed and improved as a color display device to which these VUV excitation light emitting elements are applied.

VUV励起発光素子で使用されている蛍光体としては、赤色発光蛍光体としては例えば(Y,Gd)BO3:Eu、緑色発光蛍光体としては例えばLaPO4:Ce,Tbや(Zn,Mn)SiO4、青色発光蛍光体としては例えばBaMgAl1017:Eu、(Ba,Sr)MgAl1017:Eu,Mnなどが挙げられる。
カラーPDPの場合、真空紫外線励起により赤、青、緑に発光する各蛍光体をマトリックス状に塗り分けることにより、フルカラーの表示を行うことができるが、上記蛍光体の中でもカラーPDPにおいては、赤色発光蛍光体には(Y,Gd)BO3:Euが、緑色発光蛍光体にはZn2SiO4:Mnが、また青色発光蛍光体にはBaMgAl1017:Eu等がそれぞれ主として使用されている。
As the phosphor used in the VUV excitation light emitting element, for example, (Y, Gd) BO 3 : Eu is used as a red light emitting phosphor, and LaPO 4 : Ce, Tb or (Zn, Mn) is used as a green light emitting phosphor. Examples of the SiO 4 and the blue light emitting phosphor include BaMgAl 10 O 17 : Eu, (Ba, Sr) MgAl 10 O 17 : Eu, Mn, and the like.
In the case of a color PDP, full-color display can be performed by separately coating each phosphor that emits red, blue, and green in a matrix when excited by vacuum ultraviolet rays. (Y, Gd) BO 3 : Eu is mainly used for the light emitting phosphor, Zn 2 SiO 4 : Mn is mainly used for the green light emitting phosphor, and BaMgAl 10 O 17 : Eu is mainly used for the blue light emitting phosphor. Yes.

ところで、VUV用蛍光体は比較的エネルギーの強い紫外線により励起されるので、紫外線照射や放電により発生する残留ガスイオンなどのイオン衝撃等により蛍光体が劣化すると言われている。特に、蛍光体の表面がマイナスに帯電しているZn2SiO4:Mn等は、放電により発生したプラスイオンが蛍光体表面に吸着することにより化学反応が進行して蛍光体が劣化し、その発光輝度が低下し易いと言われている。そこで、蛍光体の表面を希土類酸化物やアルミナで被覆したり(特許文献1)、希土類硼酸塩で被覆したり(特許文献2)することによって予め蛍光体粒子の表面を放電イオンと同じプラスに帯電させておき、帯電の極性反発によって蛍光体へのプラス放電イオンの影響を抑制し、蛍光体の劣化を抑制する方法が提案されている。 By the way, since the phosphor for VUV is excited by ultraviolet rays having relatively high energy, it is said that the phosphor is deteriorated by ion bombardment such as residual gas ions generated by ultraviolet irradiation or discharge. In particular, Zn 2 SiO 4 : Mn, etc., whose surface of the phosphor is negatively charged, a chemical reaction proceeds due to adsorption of positive ions generated by discharge to the phosphor surface, and the phosphor deteriorates. It is said that the light emission luminance tends to decrease. Therefore, by coating the surface of the phosphor with a rare earth oxide or alumina (Patent Document 1) or by coating with a rare earth borate (Patent Document 2), the surface of the phosphor particles is made the same plus as the discharge ions in advance. A method has been proposed in which charging is performed and the influence of positive discharge ions on the phosphor is suppressed by repulsion of the polarity of the charging to suppress deterioration of the phosphor.

また、VUV用蛍光体は、上記のPDP等として使用される時(真空紫外線で照射された際)の劣化による発光輝度の低下以外に、PDPを製造する過程、特に蛍光体ペースト組成物を塗布し、乾燥し、焼成する工程(ベーキング工程)で蛍光体の劣化が発生し、発光輝度が低下するという問題があった。そのため、これら焼成工程における発光輝度の低下を抑制する方法として、例えば蛍光体に対して特定珪酸塩のコートを施すとか、特定珪酸塩を該蛍光体と混合することにより熱劣化を改善する方法(特許文献3)や、また、蛍光体の加熱による輝度低下の抑制を意図したものではないが、蛍光体表面へ水の拡散や吸着を抑え蛍光体の輝度劣化を防止するために、青色発光蛍光体であるBAM蛍光体及び赤色蛍光体であるY23:Euの表面に特定の有機の珪酸塩をコートし、緻密な被膜を設けることによって蛍光体表面へ水の拡散や吸着を抑え、蛍光体の輝度劣化を防止しようとするとの提案もなされている(特許文献4)。 Moreover, the phosphor for VUV is applied in the process of producing PDP, in particular, the phosphor paste composition, in addition to the decrease in emission luminance due to deterioration when used as the above PDP or the like (when irradiated with vacuum ultraviolet rays). However, the phosphor is deteriorated in the step of drying and baking (baking step), and there is a problem that the light emission luminance is lowered. Therefore, as a method for suppressing a decrease in light emission luminance in these firing steps, for example, a method of improving the thermal degradation by applying a specific silicate coat to the phosphor or mixing a specific silicate with the phosphor ( Patent Document 3) is not intended to suppress the decrease in luminance due to heating of the phosphor, but in order to prevent the phosphor from deteriorating in luminance by suppressing the diffusion and adsorption of water to the phosphor surface. By coating a specific organic silicate on the surface of the BAM phosphor, which is the body, and Y 2 O 3 : Eu, which is the red phosphor, and providing a dense film, the diffusion and adsorption of water to the phosphor surface is suppressed, There has also been a proposal to prevent luminance deterioration of the phosphor (Patent Document 4).

ここで形成されるSiOxや、珪酸塩は、前記の放電プラスイオンによる劣化を考えた場合は、BAMやY23:Eu蛍光体は表面がプラス帯電しており、マイナスイオン化材である珪酸塩や酸化珪素をある程度被覆することは許容できるが多く付着させることは好ましくない。一方、マイナス帯電している緑色発光蛍光体のZnSiO4蛍光体に適用すると逆にSiOxのイオン特性上マイナスイオン化が加速され逆効果となる。前述のようにこれまでの技術はプラス帯電材であるアルミナ等と珪酸塩コートを併用すると、各々の役割はあるにもかかわらず電荷的に相反し、また、使用される蛍光体自体の電荷特性にも影響されるためにそれぞれのコート材のもつ機能がうまく活用できず、蛍光体の市場ニーズに応じた劣化防止のレベル向上をはかることが出来なかった。 SiO x or silicates formed here, considering deterioration due to the discharge positive ions, BAM and Y 2 O 3: Eu phosphor has surface is positively charged, is on the minus side ionized material It is acceptable to coat silicate or silicon oxide to some extent, but it is not preferable to deposit a lot. On the other hand, when applied to a negatively charged green-emitting phosphor ZnSiO 4 phosphor, on the contrary, negative ionization is accelerated due to the ionic characteristics of SiO x , resulting in an adverse effect. As described above, when the conventional technology, such as alumina, which is a positively charged material, and silicate coating are used in combination, there is a charge reciprocal despite their role, and the charge characteristics of the phosphor itself used. Therefore, the function of each coating material could not be used well, and the level of deterioration prevention according to the market needs of the phosphor could not be improved.

特開2003−183650号公報JP 2003-183650 A 特開2003−336047号公報JP 2003-336047 A 特開2000− 34478号公報JP 2000-34478 A 特開2003−82342号公報JP 2003-82342 A

本発明は、VUV用蛍光体の持つ上記問題点を解消し、VUV励起発光素子の蛍光膜の成膜工程の熱劣化による発光輝度の低下が少なく、しかも真空紫外線の照射を受けた際の放電によるイオン衝撃やプラスイオンの吸着をも抑制することで、従来の蛍光体よりも発光輝度の劣化の少ないVUV用蛍光体、蛍光膜の成膜工程での熱劣化による発光輝度の低下が少ない蛍光体ペースト組成物及びこれを用いたPDPを提供しようとするものである。   The present invention eliminates the above-mentioned problems associated with phosphors for VUV, causes little decrease in light emission luminance due to thermal deterioration of the film forming process of the phosphor film of the VUV excitation light emitting element, and discharges when irradiated with vacuum ultraviolet rays. Suppressing ion bombardment and adsorption of positive ions due to UV, phosphor for VUV with less degradation of emission brightness than conventional phosphors, and fluorescence with less decrease in emission brightness due to thermal degradation in the film formation process of phosphor film It is intended to provide a body paste composition and a PDP using the same.

本発明者等は、上記課題を解決するために、真空紫外線励起により発光する蛍光体の表面を被覆する種々の物質について、該物質を被覆したことによる真空紫外線照射後、及びその蛍光体をペースト化してベーキング処理したことによる発光輝度劣化の防止効果に関して鋭意検討した結果、蛍光体の表面に希土類酸化物及び酸化アルミニウムのうち少なくとも1種からなる金属酸化物と、酸化珪素、特に特定粒径で球状の酸化珪素とを蛍光体粒子表面被覆するか、これらの酸化物を蛍光体と混合することによって蛍光体粒子間に立体障害的な形で介在させることで、蛍光体の表面を酸化珪素又は珪酸塩の緻密な被膜で被覆うことにより熱劣化は改善されるものの、放電劣化に影響を与えるマイナス帯電が加速するという従来の蛍光体の欠点を補うことができ、その結果プラス帯電材としての前記金属酸化物との組合わせにより、使用時の放電のプラスイオン衝撃による劣化を抑えることができ、しかも製造過程での熱劣化をも抑制され、上記課題が解決されることを見出した本発明に至った。
本発明のVUV用蛍光体、蛍光体ペースト組成物及びPDP次の構成からなる。
In order to solve the above-mentioned problems, the present inventors made various pastes on the surface of a phosphor that emits light by excitation with vacuum ultraviolet rays, after irradiation with vacuum ultraviolet rays by coating the substance, and paste the phosphors As a result of diligent study on the effect of preventing the luminance degradation due to the baking treatment, the surface of the phosphor has a metal oxide composed of at least one of rare earth oxide and aluminum oxide and silicon oxide, particularly with a specific particle size. Spherical silicon oxide is coated on the surface of the phosphor particles, or these oxides are mixed with the phosphor to interpose the phosphor particles between the phosphor particles in a sterically hindered manner. Although the thermal degradation is improved by coating with a dense silicate coating, the disadvantage of conventional phosphors that negative charging that affects discharge degradation is accelerated. As a result, by combining with the metal oxide as a positive charging material, it is possible to suppress deterioration due to positive ion bombardment of discharge during use, and also suppress thermal deterioration in the manufacturing process, It came to the present invention which discovered that the said subject was solved.
The phosphor for VUV of the present invention, the phosphor paste composition, and the PDP are composed as follows.

(1)蛍光体と、M23で表される金属酸化物と酸化珪素とからなり、かつ、前記M23で表される酸化物及び前記酸化珪素はそれぞれ前記蛍光体表面の少なくとも一部に被覆されるか、または、前記蛍光体と混合されてなることを特徴とする真空紫外線用蛍光体。
(ただし、MはY、La及びAlの中の少なくとも1種の金属元素を表す。)
(2)前記酸化珪素が球状粒子であることを特徴とする前記(1)に記載の真空紫外線用蛍光体。
(3)前記酸化珪素の平均粒子径が10〜200nmの範囲にあることを特徴とする前記(1)または前記(2)に記載の真空紫外線用蛍光体。
(1) It consists of a phosphor, a metal oxide represented by M 2 O 3 and silicon oxide, and the oxide represented by M 2 O 3 and the silicon oxide are each at least on the surface of the phosphor. A phosphor for vacuum ultraviolet rays, which is partially coated or mixed with the phosphor.
(However, M represents at least one metal element in Y, La and Al.)
(2) The phosphor for vacuum ultraviolet ray according to (1), wherein the silicon oxide is a spherical particle.
(3) The phosphor for vacuum ultraviolet rays according to (1) or (2) above, wherein an average particle diameter of the silicon oxide is in a range of 10 to 200 nm.

(4)前記酸化珪素の含有量が前記蛍光体重量に対して、0.01〜10wt%の範囲であることを特徴とする前記(1)〜(3)のいずれかに記載の真空紫外線用蛍光体。
(5)前記M23で表される金属酸化物の総含有量が前記蛍光体重量に対して、0.01〜10wt%の範囲であることを特徴とする前記(1)〜(4)のいずれか1項に記載の真空紫外線用蛍光体。
(6)前記蛍光体が(Axy)2SiO4で表されるMn付活珪酸塩蛍光体であることを特徴とする前記(1)〜(5)のいずれかに記載の真空紫外線用蛍光体。
(ただし、AはZn及びMgのうちの少なくとも一種であり、BはMnであり、x+yは1.5〜2.5の範囲の数を表す)
(4) The content of the silicon oxide is in a range of 0.01 to 10 wt% with respect to the weight of the phosphor, for vacuum ultraviolet rays according to any one of (1) to (3), Phosphor.
(5) The total content of the metal oxide represented by M 2 O 3 is in the range of 0.01 to 10 wt% with respect to the phosphor weight, (1) to (4) The phosphor for vacuum ultraviolet rays according to any one of (1).
(6) vacuum ultraviolet light according to any one of the phosphor above, wherein the a (A x B y) Mn-activated silicate phosphor represented by 2 SiO 4 (1) ~ ( 5) Phosphor.
(However, A is at least one of Zn and Mg, B is Mn, and x + y represents a number in the range of 1.5 to 2.5)

(7)蛍光体をバインダー樹脂中に分散させてなる蛍光体ペースト組成物において、前記蛍光体が前記(1)〜(6)のいずれかに記載の真空紫外線用蛍光体からなることを特徴とする蛍光体ペースト組成物。 (7) A phosphor paste composition in which a phosphor is dispersed in a binder resin, wherein the phosphor comprises the phosphor for vacuum ultraviolet rays according to any one of (1) to (6). A phosphor paste composition.

(8)前記(1)〜(6)のいずれかに記載の真空紫外線用蛍光体を含む蛍光膜を有することを特徴とするプラズマディスプレイパネル。 (8) A plasma display panel comprising a phosphor film containing the phosphor for vacuum ultraviolet rays according to any one of (1) to (6).

本発明は、上記の構成を採用することにより、蛍光体がより帯電量の多いプラス側に帯電し、真空紫外線照射によるイオン衝撃やガス吸着を抑制し輝度劣化の低下による発光効率の低減が抑制されるとともに、蛍光膜を形成する際の焼成工程における熱劣化による輝度低下が抑制され、発光効率の高いVUV用蛍光体、蛍光体ペースト及び発光効率の改善されたPDPの提供を可能にする。   By adopting the above configuration, the present invention charges the phosphor on the positive side with a larger charge amount, suppresses ion bombardment and gas adsorption due to vacuum ultraviolet irradiation, and suppresses reduction in luminous efficiency due to reduced luminance deterioration. In addition, it is possible to provide a VUV phosphor, a phosphor paste, and a PDP with improved luminous efficiency, which are suppressed in luminance reduction due to thermal degradation in the baking process when forming the fluorescent film.

以下、本発明をさらに詳細に説明する。
本発明のVUV線用蛍光体は、真空紫外線励起により発光する蛍光体、一般式M23で表される金属酸化物(但し、MはY、La及びAlの中の少なくとも1種を表す。以下、この金属酸化物を単にM23という)及び酸化珪素からなり、前記M23及び酸化珪素は前記蛍光体粒子の表面の少なくとも1部に被覆されているか、前記蛍光体と単に混合されてなることを特徴とする。
Hereinafter, the present invention will be described in more detail.
The phosphor for VUV rays of the present invention is a phosphor that emits light by excitation with vacuum ultraviolet rays, a metal oxide represented by the general formula M 2 O 3 (where M represents at least one of Y, La, and Al). Hereinafter, this metal oxide is simply referred to as M 2 O 3 ) and silicon oxide, and the M 2 O 3 and silicon oxide are coated on at least a part of the surface of the phosphor particles, or the phosphor and It is characterized by being simply mixed.

本発明のVUV用蛍光体を製造するには、蛍光体を水などの溶媒に分散させた蛍光体スラリーを調製し、その蛍光体スラリー中に所定量のM23と酸化珪素とを添加して十分に攪拌、混合した後、溶媒を除去し、乾燥させることにより製造することができる。その際、酸化珪素源としてコロイダルシリカなどのスラリー状の酸化珪素原料を用いる場合は、蛍光体スラリー中にさらに硝酸亜鉛などの水溶性金属塩の溶液を添加することによって、蛍光体表面へのM23や酸化珪素の付着力を高めることが出来るのでより好ましい。 In order to produce the phosphor for VUV of the present invention, a phosphor slurry in which the phosphor is dispersed in a solvent such as water is prepared, and a predetermined amount of M 2 O 3 and silicon oxide are added to the phosphor slurry. Then, after sufficiently stirring and mixing, the solvent can be removed and dried. At that time, when a slurry-like silicon oxide raw material such as colloidal silica is used as a silicon oxide source, a solution of a water-soluble metal salt such as zinc nitrate is further added to the phosphor slurry to thereby add M to the phosphor surface. This is more preferable because it can increase the adhesion of 2 O 3 and silicon oxide.

また、蛍光体と所定量の粉体状のM23と酸化珪素とをボールミル等でミリングして機械的に混合することによっても製造することが出来る。しかしながら、蛍光膜形成における焼成工程での輝度劣化の抑制をより確実にする点では、前記の蛍光体スラリー中でM23や酸化珪素を直接蛍光体の表面の少なくとも1部分に付着もしくは被覆させる方法の方がより好ましい。 Alternatively, the phosphor, a predetermined amount of powdered M 2 O 3 and silicon oxide can be milled with a ball mill or the like and mechanically mixed. However, in order to more surely suppress the luminance deterioration in the firing step in forming the phosphor film, M 2 O 3 or silicon oxide is directly attached or coated on at least a part of the phosphor surface in the phosphor slurry. The method of making it more preferable.

本発明のVUV用蛍光体の主構成成分である、蛍光体としては、一般式(Axy)2SiO4で表される珪酸塩蛍光体(ただし、AはZn及びMgのうちの少なくとも一種であり、BはMnであり、x+yは1.5〜2.5の範囲の数を表す)、一般式(M1 1-x Eux )O・a(M2 1-y ,Mny )O・(5.5−0.5a)Al2 3 蛍光体(式中、M1 はBa,Sr及びCaからなる群より選択される少なくとも1種の元素を表し、M2 はMg及び/又はZnを表し、aは、0<a≦2の実数を表し、x及びyはそれぞれ0<x<1,0≦y<1の実数を表す)で表されるEu2+やMn2+で付活されたアルミン酸塩蛍光体、BaAl1219:Mn蛍光体、BaMgAl1017:Eu蛍光体、(Ba,Sr)MgAl1017:Eu,Mn蛍光体、LaPO4 :Ce,Tb蛍光体をはじめとする、真空紫外線照射を受けて発光し得る蛍光体であればいずれも使用することができるが、これらの蛍光体の中でも通常マイナス帯電を有している一般式(Axy)2SiO4で表される珪酸塩蛍光体を用いた場合、特に耐イオン衝撃性を高め得る点で特に有効である。 Which is the main constituent of VUV phosphor of the present invention, the phosphor of the general formula (A x B y) 2 silicate phosphor represented by SiO 4 (although, A is one of Zn and Mg least One type, B is Mn, x + y represents a number in the range of 1.5 to 2.5), general formula (M 1 1-x Eu x ) O · a (M 2 1-y , Mn y) O · (5.5-0.5a) Al 2 O 3 phosphor (wherein, M 1 is at least one element selected from the group consisting of Ba, Sr and Ca, M 2 is Eu 2+ represented by Mg and / or Zn, a represents a real number of 0 <a ≦ 2, and x and y represent a real number of 0 <x <1, 0 ≦ y <1, respectively. activated with aluminate phosphor with Mn 2+, BaAl 12 O 19: Mn phosphor, BaMgAl 10 O 17: Eu phosphor, (Ba, Sr) MgAl 10 O 17: Eu, Mn phosphor LaPO 4: Ce, including Tb phosphor, but also by any of the phosphors that can emit light by receiving vacuum ultraviolet radiation can be used, and a normal negatively charged Among these phosphors when using the formula (a x B y) silicate phosphor represented by 2 SiO 4, is particularly especially effective in that it can enhance the resistance to ion impact.

本発明のVUV用蛍光体の1構成成分である、M23としては、Y、La及びAlの酸化物であればその種類に関して特に制限はない。 M 2 O 3 , which is one component of the phosphor for VUV of the present invention, is not particularly limited with respect to its type as long as it is an oxide of Y, La, and Al.

本発明のVUV用蛍光体の別の構成成分である酸化珪素に関しては、M23と共に蛍光体に添加する酸化珪素源としては固体状の酸化珪素であっても、コロイダルシリカなどのゾル状酸化珪素であってもよいが、最終的に得られたVUV用蛍光体中では、球状もしくはほぼ球状の粒子(これらを総称して球状粒子という)の酸化珪素として蛍光体表面に被覆、または蛍光体と混合されていることが好ましい。
蛍光体に被覆または混合される酸化珪素はその粒子径がおよそ10nmより小さいとマイナス帯電を加速させ、蛍光体の耐イオン衝撃性の低下による劣化が起こり易くなり、また、逆に200nmより大きくてもイオン衝撃による劣化抑制効果が低下し、蛍光体へ付着しにくくなる。従って、本発明において使用される酸化珪素の粒子径はおよそ10〜200nmの範囲にあるものを用いるのが好ましい。
Regarding silicon oxide, which is another component of the phosphor for VUV of the present invention, the silicon oxide source added to the phosphor together with M 2 O 3 is a solid silicon oxide, but a sol form such as colloidal silica. Silicon oxide may be used, but in the finally obtained phosphor for VUV, the phosphor surface is coated as spherical or nearly spherical particles (collectively referred to as spherical particles), or fluorescent. It is preferably mixed with the body.
When the particle diameter of silicon oxide coated or mixed with the phosphor is smaller than about 10 nm, negative charging is accelerated, and deterioration due to a decrease in the ion bombardment resistance of the phosphor is likely to occur. However, the effect of suppressing deterioration due to ion bombardment is reduced, and it becomes difficult to adhere to the phosphor. Accordingly, the silicon oxide used in the present invention preferably has a particle diameter in the range of about 10 to 200 nm.

本発明のVUV用蛍光体中のM23及び酸化珪素の含有量が蛍光体に対してそれぞれ0.01重量%より少ないと、真空紫外線照射による輝度劣化の抑制効果及び成膜工程での焼成による熱劣化の防止効果が少なく、逆に10重量%より多すぎると、蛍光体への励起光の浸透及び蛍光体からの発光の取り出しが阻害され、蛍光体の発光効率が低下するので好ましくない。したがって、本発明のVUV用蛍光体中のM23及び酸化珪素の含有量は蛍光体に対してそれぞれ0.01〜10重量%とするのが好ましい。
また、蛍光体に含有させるM23と酸化珪素との含有比はおよそ1:5〜5:1の範囲とするのが好ましく、特に1:2〜2:1の範囲とするのがより好ましい。
When the contents of M 2 O 3 and silicon oxide in the phosphor for VUV of the present invention are less than 0.01% by weight with respect to the phosphor, respectively, the effect of suppressing luminance deterioration due to vacuum ultraviolet irradiation and the film forming process The effect of preventing thermal deterioration due to firing is small, and on the contrary, if it is more than 10% by weight, penetration of excitation light into the phosphor and extraction of light emission from the phosphor are hindered, and the luminous efficiency of the phosphor is decreased. Absent. Therefore, the contents of M 2 O 3 and silicon oxide in the phosphor for VUV of the present invention are preferably 0.01 to 10% by weight with respect to the phosphor, respectively.
The content ratio of M 2 O 3 and silicon oxide contained in the phosphor is preferably in the range of about 1: 5 to 5: 1, and more preferably in the range of 1: 2 to 2: 1. preferable.

本発明の蛍光体ペースト組成物は、蛍光体粉末として前記の本発明のVUV用蛍光体を用いる以外は従来の蛍光体ペースト組成物と同様にして製造される。すなわち、前記本発明のVUV蛍光体とバインダー樹脂が溶解された溶媒とをそれぞれ所定量加えて十分に撹拌・混練して溶媒中に該蛍光体を分散させるとともに、溶媒の量を適宜加減することによって使用目的にかなった粘度に調整することにより得ることができる。   The phosphor paste composition of the present invention is produced in the same manner as the conventional phosphor paste composition except that the phosphor for VUV of the present invention is used as the phosphor powder. That is, the VUV phosphor of the present invention and the solvent in which the binder resin is dissolved are respectively added in predetermined amounts and sufficiently stirred and kneaded to disperse the phosphor in the solvent, and the amount of the solvent is appropriately adjusted. By adjusting to a viscosity suitable for the purpose of use.

バインダー樹脂としては、得られる蛍光体ペースト組成物の使用目的に応じてエチルセルロース、ニトロセルロース、アクリル樹脂、ポリスチレンオキサイドなどの樹脂を用い、ブチルカルビトール、ブチルカルビトールアセテート、テルピネオール、酢酸ブチル、酢酸エチル、メチルエチルケトンなどの溶剤とともに均一に混合して分散させる。蛍光体ペースト組成物中の蛍光体の配合量は、5〜80重量%、好ましくは20〜60重量%の範囲が適当である。また、バインダー樹脂の配合量は、4〜50重量%、好ましくは8〜50重量%の範囲が適当である。さらに、溶剤の添加量は、10〜90重量%、好ましくは40〜80重量%の範囲が適当である。   As the binder resin, a resin such as ethyl cellulose, nitrocellulose, acrylic resin, or polystyrene oxide is used according to the purpose of use of the obtained phosphor paste composition. Butyl carbitol, butyl carbitol acetate, terpineol, butyl acetate, ethyl acetate And uniformly mixed with a solvent such as methyl ethyl ketone. The blending amount of the phosphor in the phosphor paste composition is 5 to 80% by weight, preferably 20 to 60% by weight. Further, the blending amount of the binder resin is 4 to 50% by weight, preferably 8 to 50% by weight. Furthermore, the amount of the solvent added is 10 to 90% by weight, preferably 40 to 80% by weight.

また、本発明のPDPは、カラーPDPの場合、例えばガラス板等の背面板に内部電極を形成し、ストライプ状もしくはマトリックス状の隔壁を設けて複数の放電セルを構成し、赤、緑、青の各色毎に放電セルを構成する各隔壁の底部並びに内壁にスクリーン印刷法等の方法によりそれぞれ赤、緑、青のVUV用蛍光体からなる発光色の異なる3種類の本発明の蛍光体ペースト組成物を塗布し、これを乾燥しベーキングして各放電セル内に発光色の異なる3種類の蛍光膜を形成すると共に、背面板と一定間隔を隔てて内部電極が形成されたガラス板等からなる前面板を対向配置し前面板と背面板との周囲を封じて、内部を排気してから希ガスを封入して本発明のPDPとする。   Further, in the case of the color PDP, the PDP of the present invention forms internal electrodes on a back plate such as a glass plate and provides a plurality of discharge cells by providing stripe-shaped or matrix-shaped barrier ribs. Three types of phosphor paste compositions of the present invention having different emission colors comprising red, green, and blue phosphors for VUV by a method such as screen printing on the bottom and inner wall of each partition wall constituting each discharge cell. It is composed of a glass plate or the like on which three kinds of fluorescent films having different emission colors are formed in each discharge cell and an internal electrode is formed at a predetermined distance from the back plate. The front plate is disposed oppositely, the periphery of the front plate and the back plate is sealed, the inside is evacuated, and then the rare gas is sealed to obtain the PDP of the present invention.

なお、本発明の蛍光体ペースト組成物はまた、スキャナーの読取り用光源等に使用される希ガスランプの蛍光膜形成のためにも使用することができる。希ガスランプは、例えば4〜12mmの内径を有する透明なガラス細管の一端から、管内に流動可能な程度にまでその粘度が調節された蛍光体ペースト組成物を流し塗りし、100〜200℃で乾燥した後、400〜800℃で5〜30分間焼成してガラス管壁に蛍光膜を形成し、ガラス管の内部を排気してから該管内に少量のNe98%−Xe2%の混合ガス、He98%−Xe2%の混合ガスなどの希ガスを封入し、管の両端を封じた後、ガラス細管の両端もしくはガラス管の内部と外部、もしくはガラス管の外部の対向した両面に電極を取り付けることによって製造される。   The phosphor paste composition of the present invention can also be used for forming a fluorescent film of a rare gas lamp used for a light source for reading a scanner. A rare gas lamp is prepared by, for example, applying a phosphor paste composition whose viscosity is adjusted to the extent that it can flow into a tube from one end of a transparent glass thin tube having an inner diameter of 4 to 12 mm, at 100 to 200 ° C. After drying, baking is performed at 400 to 800 ° C. for 5 to 30 minutes to form a fluorescent film on the glass tube wall, and the inside of the glass tube is evacuated, and then a small amount of Ne98% -Xe2% mixed gas, He98 By sealing rare gas such as% -Xe2% mixed gas, sealing both ends of the tube, and then attaching electrodes to both ends of the glass capillary tube, inside and outside of the glass tube, or both sides facing outside of the glass tube Manufactured.

以下、実施例により本発明を説明するが、本発明はこれらに制限されるものではない。
〔実施例1〕
(Zn,Mn)2SiO4蛍光体100gをイオン交換水400mlに投入し十分に攪拌することによって蛍光体スラリーを調製し、この蛍光体スラリー中に平均粒径33nmの酸化イットリウム水分散液(濃度10w/v)を1.5ml添加して30分間攪拌した後、粒径20nmのコロイダルシリカ(商品名;スノーテックス20L、日産化学製)の分散液を6.6ml添加して10分間攪拌した後、さらにこの蛍光体スラリー中にZnを0.15g含有するZn(NO32の水溶液を滴下し30分間攪拌した後、攪拌を止めた。次いでこれを脱水し、120℃で12時間乾燥することで、(Zn,Mn)2SiO4蛍光体の表面に0.15%のY23と、0.15%の酸化珪素とを被覆した実施例1のVUV用蛍光体を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to these.
[Example 1]
A phosphor slurry is prepared by adding 100 g of (Zn, Mn) 2 SiO 4 phosphor to 400 ml of ion-exchanged water and stirring sufficiently, and an aqueous yttrium oxide dispersion (concentration) having an average particle size of 33 nm in the phosphor slurry. After adding 1.5 ml of 10 w / v) and stirring for 30 minutes, 6.6 ml of a dispersion of colloidal silica having a particle size of 20 nm (trade name; Snowtex 20L, manufactured by Nissan Chemical) was added and stirred for 10 minutes. Further, an aqueous solution of Zn (NO 3 ) 2 containing 0.15 g of Zn in this phosphor slurry was dropped and stirred for 30 minutes, and then stirring was stopped. Next, this was dehydrated and dried at 120 ° C. for 12 hours to coat the surface of the (Zn, Mn) 2 SiO 4 phosphor with 0.15% Y 2 O 3 and 0.15% silicon oxide. Thus, a VUV phosphor of Example 1 was obtained.

〔実施例2〕
(Zn,Mn)2SiO4蛍光体の水スラリーに酸化イットリウム水分散液とコロイダルシリカの分散液を順次添加した蛍光体の水スラリーを10分間攪拌した後、Zn(NO32の水溶液を添加しないで攪拌しながら加熱、蒸発させて液量を減らし、最後に蒸発乾固させ、酸化珪素のみを被覆した蛍光体を得た後、該酸化珪素を被覆した蛍光体に0.15重量%のY23を混合して表面に酸化珪素を付着させた上にさらにY23が混合された実施例2のVUV用蛍光体を得た。
[Example 2]
After stirring the phosphor water slurry obtained by sequentially adding the yttrium oxide aqueous dispersion and the colloidal silica dispersion to the (Zn, Mn) 2 SiO 4 phosphor water slurry, an aqueous solution of Zn (NO 3 ) 2 was added. Heating and evaporating while stirring without addition to reduce the amount of liquid, and finally evaporating to dryness to obtain a phosphor coated only with silicon oxide, and then 0.15% by weight on the phosphor coated with silicon oxide was obtained in Y 2 O 3 to the surface and mixed further in on-deposited silicon oxide Y 2 O 3 is mixed VUV phosphor of example 2.

〔実施例3〕
実施例1において酸化イットリウムの水分散液の代わりに粒径33nmの酸化ランタン水分散液を1.5ml添加した以外は実施例1と同様にして(Zn,Mn)2SiO4蛍光体の表面に0.15%のLa23と、0.15%の酸化珪素とを被覆した実施例3のVUV用蛍光体を得た。
Example 3
In the same manner as in Example 1 except that 1.5 ml of a lanthanum oxide aqueous dispersion having a particle size of 33 nm was added instead of the aqueous dispersion of yttrium oxide in Example 1, the surface of the (Zn, Mn) 2 SiO 4 phosphor was applied to the surface. The VUV phosphor of Example 3 coated with 0.15% La 2 O 3 and 0.15% silicon oxide was obtained.

〔実施例4〕
実施例1において酸化イットリウムの水分散液の代わりに、粒子の大きさが100nm×10nmの市販のアルミナゾルの分散液(濃度10w/v)を1.5ml添加した以外は実施例1と同様にして(Zn,Mn)2SiO4蛍光体の表面に0.15%のAl23と、0.15%の酸化珪素とを被覆した実施例4のVUV用蛍光体を得た。
Example 4
The same procedure as in Example 1 was performed except that 1.5 ml of a commercially available alumina sol dispersion (concentration: 10 w / v) having a particle size of 100 nm × 10 nm was added instead of the aqueous dispersion of yttrium oxide in Example 1. The VUV phosphor of Example 4 was obtained in which the surface of the (Zn, Mn) 2 SiO 4 phosphor was coated with 0.15% Al 2 O 3 and 0.15% silicon oxide.

〔実施例5〕
実施例1において酸化イットリウム分散液の投入量を1.5mlではなく6.0mlとした以外は実施例1と同様にして(Zn,Mn)2SiO4蛍光体の表面に0.6%の酸化イットリウムと0.15%の酸化珪素とを付着させた実施例5のVUV用蛍光体を得た。
Example 5
In the same manner as in Example 1 except that the input amount of the yttrium oxide dispersion was changed to 6.0 ml instead of 1.5 ml, 0.6% oxidation was performed on the surface of the (Zn, Mn) 2 SiO 4 phosphor. The phosphor for VUV of Example 5 to which yttrium and 0.15% silicon oxide were adhered was obtained.

〔実施例6〕
実施例1においてコロイダルシリカ分散液の投入量を6.6mlから26.4mlに変更し、Znを0.15gではなく0.60g含有する含有するZn(NO32の水溶液を滴下した以外は実施例1と同様にして(Zn,Mn)2SiO4蛍光体の表面に0.15%の酸化イットリウムと0.6%の酸化珪素とを前記蛍光体に付着させた実施例6のVUV用蛍光体を得た。
Example 6
In Example 1, the amount of colloidal silica dispersion charged was changed from 6.6 ml to 26.4 ml, and an aqueous solution of Zn (NO 3 ) 2 containing 0.60 g of Zn instead of 0.15 g was added dropwise. In the same manner as in Example 1, 0.15% yttrium oxide and 0.6% silicon oxide were adhered to the phosphor on the surface of the (Zn, Mn) 2 SiO 4 phosphor. A phosphor was obtained.

〔実施例7〕
実施例1において酸化イットリウム分散液の投入量を1.5mlではなく60mlに変更した以外は実施例1と同様にして(Zn,Mn)2SiO4蛍光体の表面に0.6%の酸化イットリウムと0.15%の酸化珪素とを前記蛍光体に付着させた実施例5のVUV用蛍光体を得た。
Example 7
In the same manner as in Example 1, except that the input amount of the yttrium oxide dispersion was changed to 60 ml instead of 1.5 ml, 0.6% yttrium oxide was formed on the surface of the (Zn, Mn) 2 SiO 4 phosphor. Thus, a VUV phosphor of Example 5 in which 0.15% of silicon oxide was adhered to the phosphor was obtained.

〔実施例8〕
実施例1において、蛍光体として(Zn,Mn)2SiO4蛍光体の代わりに(Ba,Eu)MgAl1017蛍光体を用いた以外は実施例1と同様にして(Ba,Eu)MgAl1017蛍光体の表面に0.15%のY23と、0.15%の酸化珪素とを被覆した
実施例8のVUV用蛍光体を得た。
Example 8
In Example 1, (Ba, Eu) MgAl was used in the same manner as in Example 1 except that (Ba, Eu) MgAl 10 O 17 phosphor was used instead of (Zn, Mn) 2 SiO 4 phosphor as the phosphor. The VUV phosphor of Example 8 was obtained by coating the surface of the 10 O 17 phosphor with 0.15% Y 2 O 3 and 0.15% silicon oxide.

〔比較例1〕
23も酸化珪素も被覆または混合されていない、実施例1〜7で用いた(Zn,Mn)2SiO4蛍光体を比較例1のVUV用蛍光体とした。
[Comparative Example 1]
The (Zn, Mn) 2 SiO 4 phosphor used in Examples 1 to 7, which was not coated or mixed with M 2 O 3 or silicon oxide, was used as the VUV phosphor of Comparative Example 1.

〔比較例2〕
実施例1において、調製された蛍光体スラリーに粒径33nmの酸化イットリウム水分散液(濃度10w/v)のみを1.5ml添加し、コロイダルシリカ及びZn(NO32の水溶液を添加しなかった以外は実施例1と同様にして、(Zn,Mn)2SiO4蛍光体の表面に0.15%のY23のみを被覆した比較例1のVUV用蛍光体を得た。
[Comparative Example 2]
In Example 1, 1.5 ml of an aqueous yttrium oxide dispersion (concentration: 10 w / v) having a particle diameter of 33 nm was added to the prepared phosphor slurry, and an aqueous solution of colloidal silica and Zn (NO 3 ) 2 was not added. A VUV phosphor of Comparative Example 1 was obtained in the same manner as in Example 1 except that the surface of the (Zn, Mn) 2 SiO 4 phosphor was coated only with 0.15% Y 2 O 3 .

〔比較例3〕
実施例1において、調製された蛍光体スラリーに粒径20nmのコロイダルシリカ(商品名;スノーテックス20L、日産化学製)の分散液6.6mlとZnを0.15g含有するZn(NO32の水溶液とを順次添加し、酸化イットリウム水分散液を添加しなかった以外は実施例1と同様にして、(Zn,Mn)2SiO4蛍光体の表面に0.15%の酸化珪素のみを被覆した比較例3のVUV用蛍光体を得た。
[Comparative Example 3]
In Example 1, Zn (NO 3 ) 2 containing 6.6 ml of a dispersion of colloidal silica (trade name; Snowtex 20L, manufactured by Nissan Chemical Co., Ltd.) having a particle diameter of 20 nm and 0.15 g of Zn in the prepared phosphor slurry. In the same manner as in Example 1 except that the aqueous yttrium oxide dispersion was not added and only 0.15% silicon oxide was added to the surface of the (Zn, Mn) 2 SiO 4 phosphor. A coated VUV phosphor of Comparative Example 3 was obtained.

〔比較例4〕
実施例8において、M23も酸化珪素も被覆または混合されていない、実施例8で用いた(Ba,Eu)MgAl1017蛍光体を比較例4のVUV用蛍光体とした。
[Comparative Example 4]
In Example 8, the (Ba, Eu) MgAl 10 O 17 phosphor used in Example 8 that was not coated or mixed with M 2 O 3 or silicon oxide was used as the VUV phosphor of Comparative Example 4.

[熱処理による蛍光体粉体の輝度劣化の評価]
各実施例及び比較例の蛍光体粉体について、熱処理後における発光輝度の輝度維持率1を測定し、各蛍光体の熱処理による輝度劣化の程度を評価する指標とした。得られた実施例1〜8及び比較例1〜4の各蛍光体の輝度維持率1を表1に示す。
なお、表1における維持率1は熱処理を行う前の蛍光体粉体の発光輝度[Br1]と該熱処理を行った後での蛍光体粉体の発光輝度[Br2]との比の百分率{[Br2]/[Br1])×100}で求めた値であり、蛍光体の熱処理は550℃の温度で1時間行った。また、蛍光体の発光輝度は各蛍光体に対して146nmの真空紫外線を照射した時の発光輝度である。
[Evaluation of luminance deterioration of phosphor powder by heat treatment]
For the phosphor powders of the examples and comparative examples, the luminance maintenance ratio 1 of the emission luminance after the heat treatment was measured and used as an index for evaluating the degree of luminance deterioration due to the heat treatment of each phosphor. Table 1 shows the luminance maintenance rates 1 of the phosphors of Examples 1 to 8 and Comparative Examples 1 to 4 thus obtained.
The maintenance rate 1 in Table 1 is a percentage of the ratio of the emission luminance [Br1] of the phosphor powder before the heat treatment and the emission luminance [Br2] of the phosphor powder after the heat treatment {[ Br2] / [Br1]) × 100}, and the phosphor was heat-treated at a temperature of 550 ° C. for 1 hour. Further, the emission luminance of the phosphors is the emission luminance when each phosphor is irradiated with 146 nm vacuum ultraviolet rays.

Figure 2006206641
Figure 2006206641

表1において、実施例1〜7の各VUV用蛍光体の発光輝度[Br1]は、表面に何も被覆されていない比較例1の(Zn,Mn)2SiO4蛍光体の熱処理前における発光輝度[Br1]を100としたときの相対値であり、実施例8のVUV用蛍光体の発光輝度[Br1]は表面に何も被覆されていない比較例4の(Ba,Eu)MgAl1017蛍光体の熱処理前における発光輝度[Br1]を100としたときの相対値で表した。 In Table 1, the emission luminance [Br1] of each of the VUV phosphors of Examples 1 to 7 is the light emission before heat treatment of the (Zn, Mn) 2 SiO 4 phosphor of Comparative Example 1 in which nothing is coated on the surface. It is a relative value when the luminance [Br1] is 100, and the emission luminance [Br1] of the phosphor for VUV of Example 8 is (Ba, Eu) MgAl 10 O of Comparative Example 4 with no surface coated. It was expressed as a relative value when the emission luminance [Br1] of the 17 phosphor before heat treatment was set to 100.

[蛍光体粉体の帯電量評価]
実施例1〜8および比較例1〜4のVUV用蛍光体について、それぞれの帯電量を測定した。帯電量は、各蛍光体1gをPVA(ポリビニルアルコール)粉末10gとともにガラス製サンプル瓶に入れ、振とう機で30分間十分に混合したのち、その0.1gを計り取り東芝製ブローオフ帯電量測定装置で測定し、得られた各蛍光体のブローオフ帯電量を各蛍光体の帯電量の指標として表1に併記した。
[Evaluation of charge amount of phosphor powder]
The charge amounts of the VUV phosphors of Examples 1 to 8 and Comparative Examples 1 to 4 were measured. Charge amount is 1g of each phosphor together with 10g of PVA (polyvinyl alcohol) powder in a glass sample bottle and mixed well for 30 minutes with a shaker. Table 1 shows the blow-off charge amount of each phosphor obtained as an index of the charge amount of each phosphor.

〔実施例9〜16〕
実施例1〜8のVUV用蛍光体をそれぞれ3g秤取し、それぞれの蛍光体にエチルセルロースの樹脂を2.5gとブチルカルビトール1g及びブチルカルビトールアセテート5.3gを加えて混練してそれぞれ実施例9〜16の蛍光体ペーストを得た。
〔比較例5〜8〕
実施例9において、実施例1のVUV用蛍光体に代えて比較例1〜4のVUV用蛍光体をそれぞれ用いた以外は実施例9の蛍光体ペーストと同様にしてそれぞれ比較例5〜8の蛍光体ペーストを得た。
[Examples 9 to 16]
3 g of each VUV phosphor of Examples 1 to 8 was weighed, 2.5 g of ethyl cellulose resin, 1 g of butyl carbitol and 5.3 g of butyl carbitol acetate were added to each phosphor and kneaded. The phosphor pastes of Examples 9 to 16 were obtained.
[Comparative Examples 5 to 8]
In Example 9, the VUV phosphors of Comparative Examples 1 to 4 were used in place of the VUV phosphors of Example 1, respectively, in the same manner as the phosphor paste of Example 9, and Comparative Examples 5 to 8, respectively. A phosphor paste was obtained.

[蛍光膜形成工程での蛍光体ペーストの輝度劣化の評価]
実施例9〜16及び比較例5〜8の各蛍光体ペースト組成物をそれぞれガラス板上に0.5mmの厚さに塗布し、120℃で30分間乾燥した後、450℃で30分間焼成処理して蛍光体塗布膜を作製して各蛍光体ペースト組成物の評価サンプル(蛍光膜)とした。
次に、作製された各評価サンプル(蛍光膜)について、146nmの真空紫外線を照射した時のそれぞれの発光輝度[Br3]を測定し、各蛍光体ペースト組成物の輝度維持率2を求め、蛍光膜形成時における熱処理による各蛍光体ペースト組成物の輝度劣化の程度を評価する指標とした。実施例9〜16及び比較例5〜8の各蛍光体の輝度維持率2を表2に示す。
[Evaluation of luminance deterioration of phosphor paste in phosphor film forming process]
Each phosphor paste composition of Examples 9 to 16 and Comparative Examples 5 to 8 was applied to a glass plate to a thickness of 0.5 mm, dried at 120 ° C. for 30 minutes, and then fired at 450 ° C. for 30 minutes. Thus, a phosphor coating film was prepared and used as an evaluation sample (phosphor film) of each phosphor paste composition.
Next, for each of the prepared evaluation samples (phosphor films), the respective emission luminance [Br3] when irradiated with vacuum ultraviolet light of 146 nm is measured, the luminance maintenance rate 2 of each phosphor paste composition is obtained, and fluorescence is obtained. This was used as an index for evaluating the degree of luminance deterioration of each phosphor paste composition by heat treatment during film formation. Table 2 shows the luminance maintenance rates 2 of the phosphors of Examples 9 to 16 and Comparative Examples 5 to 8.

Figure 2006206641
表2における輝度維持率2はそれぞれの蛍光体ペースト組成物の調製に用いた、熱処理を行う前の蛍光体粉体の発光輝度[Br1]に対する、各評価サンプル(蛍光膜)の発光輝度[Br3]の比の百分率{([Br3]/[Br1])×100}により求めた値である。
なお、表2において実施例9〜15及び比較例5〜7の各蛍光体ペースト組成物を使用して作製された各評価サンプル(蛍光膜)の発光輝度[Br3]は比較例1のVUV用蛍光体粉体の発光輝度[Br1]を100とした時の相対値で示してあり、また、実施例16及び比較例8の各蛍光体ペースト組成物を使用して作製された各評価サンプル(蛍光膜)の発光輝度[Br3]は比較例8のVUV用蛍光体粉体の発光輝度[Br1]を100とした時の相対値で示してある。
Figure 2006206641
The luminance maintenance rate 2 in Table 2 indicates the emission luminance [Br3] of each evaluation sample (phosphor film) with respect to the emission luminance [Br1] of the phosphor powder before the heat treatment used for the preparation of each phosphor paste composition. ] Ratio {([Br3] / [Br1]) × 100}.
In Table 2, the emission luminance [Br3] of each evaluation sample (phosphor film) produced using each phosphor paste composition of Examples 9 to 15 and Comparative Examples 5 to 7 is for VUV of Comparative Example 1. Each evaluation sample (shown as a relative value when the emission luminance [Br1] of the phosphor powder is set to 100) and each phosphor paste composition of Example 16 and Comparative Example 8 ( The emission luminance [Br3] of the phosphor film) is shown as a relative value when the emission luminance [Br1] of the phosphor powder for VUV of Comparative Example 8 is 100.

表1の結果から明らかなように実施例1〜7のVUV用蛍光体は表面に被覆処理を施していない比較例1の蛍光体に比べて維持率1の値がいずれも大きく、蛍光体の熱劣化に対する輝度劣化の程度が大幅に改善されていると共に帯電量がプラスになっており、同様に、表面になんら被覆処理が施されていない比較例4の蛍光体に比べて、表面にY23及び酸化珪素が被覆された実施例8のVUV用蛍光体は輝度維持率1の値も帯電量も大きくなっている。 As is clear from the results in Table 1, the VUV phosphors of Examples 1 to 7 all have a large retention rate of 1 compared to the phosphor of Comparative Example 1 in which the surface is not coated. The degree of luminance deterioration with respect to heat deterioration is greatly improved and the charge amount is positive, and similarly, the surface has Y as compared with the phosphor of Comparative Example 4 where no coating treatment is applied to the surface. The VUV phosphor of Example 8 coated with 2 O 3 and silicon oxide has a large luminance maintenance factor of 1 and a large charge amount.

また、表2の結果から明らかなように、実施例9〜15の蛍光体ペースト組成物を用いて形成された蛍光膜は、表面になんら被覆処理を施していないか、M23及び酸化珪素のいずれかが被覆されていない比較例1〜3の蛍光体からなる比較例5〜7の蛍光体ペースト組成物を用いて形成された蛍光膜に比べて維持率2の値が何れも大となっていおり、同様に表面にY23及び酸化珪素が被覆された実施例8のVUV用蛍光体からなる実施例16の蛍光体ペースト組成物を用いた蛍光膜は、表面になんら被覆処理を施していない比較例4の蛍光体ペースト組成物からなる比較例8の蛍光体ペースト組成物を用いた蛍光膜よりも輝度維持率2の値が大となる。 Further, as is apparent from the results in Table 2, the phosphor films formed using the phosphor paste compositions of Examples 9 to 15 were not subjected to any coating treatment on the surface, and M 2 O 3 and oxidation were not performed. The value of the maintenance factor 2 is large as compared with the phosphor film formed using the phosphor paste composition of Comparative Examples 5 to 7 made of the phosphor of Comparative Examples 1 to 3 that is not coated with any of silicon. Similarly, the surface of the phosphor film using the phosphor paste composition of Example 16 composed of the phosphor for VUV of Example 8 whose surface is coated with Y 2 O 3 and silicon oxide is covered at all. The value of the luminance maintenance factor 2 is larger than that of the phosphor film using the phosphor paste composition of Comparative Example 8 made of the phosphor paste composition of Comparative Example 4 that has not been treated.

このように、本発明のVUV用蛍光体は熱劣化による輝度劣化の程度が大幅に改善されるとともに、帯電量の値がプラス側に大きくなり、本発明のVUV用蛍光体からなる蛍光体ペースト組成物を用いて形成された蛍光膜をPDPに適用することにより、予想される放電によるイオン衝撃やプラスイオンの吸着による輝度劣化が抑制された非常に優れた特性を有するPDPとなる。   As described above, the phosphor for VUV of the present invention is greatly improved in the degree of luminance degradation due to thermal degradation, and the value of the charge amount is increased to the plus side, and the phosphor paste comprising the phosphor for VUV of the present invention. By applying a fluorescent film formed using the composition to the PDP, a PDP having very excellent characteristics in which luminance deterioration due to expected ion bombardment due to discharge and adsorption of positive ions is suppressed.

本発明のVUV用蛍光体及びこれを用いた蛍光体ペースト組成物は真空紫外線照射によるイオン衝撃を抑制して輝度劣化、並びに蛍光膜形成の際の焼成工程での熱劣化による輝度低下が低減されるため、発光効率の高いPDPや希ガスランプなどに好適に利用できる。
The phosphor for VUV and the phosphor paste composition using the same of the present invention suppress the ion bombardment caused by the irradiation of vacuum ultraviolet rays, thereby reducing the luminance degradation and the luminance degradation due to the thermal degradation in the baking process when forming the phosphor film. Therefore, it can be suitably used for a PDP or a rare gas lamp with high luminous efficiency.

Claims (8)

蛍光体とM23で表される金属酸化物と酸化珪素とからなり、かつ、前記M23で表される金属酸化物及び前記酸化珪素はそれぞれ前記蛍光体表面の少なくとも一部に被覆されるか、または、前記蛍光体と混合されてなることを特徴とする真空紫外線用蛍光体。
(ただし、MはY、La及びAlの中の少なくとも1種の金属元素を表す。)
Consists of a metal oxide and silicon oxide represented by the phosphor and M 2 O 3, and at least a portion of each of the M metal oxide and the silicon oxide represented by 2 O 3 is the phosphor surface A phosphor for vacuum ultraviolet rays, which is coated or mixed with the phosphor.
(However, M represents at least one metal element in Y, La and Al.)
前記酸化珪素が球状粒子であることを特徴とする請求項1に記載の真空紫外線用蛍光体。 The phosphor for vacuum ultraviolet rays according to claim 1, wherein the silicon oxide is a spherical particle. 前記酸化珪素の平均粒子径が10〜200nmの範囲にあることを特徴とする請求項1または2に記載の真空紫外線用蛍光体。 The phosphor for vacuum ultraviolet rays according to claim 1 or 2, wherein the average particle diameter of the silicon oxide is in the range of 10 to 200 nm. 前記酸化珪素の含有量が前記蛍光体重量に対して、0.01〜10wt%の範囲であることを特徴とする請求項1〜3のいずれか1項に記載の真空紫外線用蛍光体。 The phosphor for vacuum ultraviolet rays according to any one of claims 1 to 3, wherein a content of the silicon oxide is in a range of 0.01 to 10 wt% with respect to a weight of the phosphor. 前記M23で表される金属酸化物の総含有量が前記蛍光体重量に対して、0.01〜10wt%の範囲であることを特徴とする請求項1〜4のいずれか1項に記載の真空紫外線用蛍光体。 5. The total content of the metal oxide represented by M 2 O 3 is in a range of 0.01 to 10 wt% with respect to the weight of the phosphor. The phosphor for vacuum ultraviolet rays described in 1. 前記蛍光体が(Axy)2SiO4で表されるMn付活珪酸塩蛍光体であることを特徴とする請求項1〜5のいずれか1項に記載の真空紫外線用蛍光体。
(ただし、AはZn及びMgのうちの少なくとも一種であり、BはMnであり、x+yは1.5〜2.5の範囲の数を表す)
The phosphor (A x B y) 2 VUV phosphor according to any one of claims 1 to 5, wherein the SiO 4 is Mn-activated silicate phosphor represented by.
(However, A is at least one of Zn and Mg, B is Mn, and x + y represents a number in the range of 1.5 to 2.5)
蛍光体をバインダー樹脂中に分散させてなる蛍光体ペースト組成物において、前記蛍光体が請求項1〜6のいずれか1項に記載の真空紫外線用蛍光体からなることを特徴とする蛍光体ペースト組成物。 A phosphor paste composition obtained by dispersing a phosphor in a binder resin, wherein the phosphor comprises the phosphor for vacuum ultraviolet rays according to any one of claims 1 to 6. Composition. 請求項1〜6のいずれか1項に記載の真空紫外線用蛍光体を含む蛍光膜を有することを特徴とするプラズマディスプレイパネル。

A plasma display panel comprising a phosphor film containing the phosphor for vacuum ultraviolet rays according to claim 1.

JP2005017000A 2005-01-25 2005-01-25 Vacuum ultraviolet phosphor, phosphor paste composition and plasma display panel Pending JP2006206641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017000A JP2006206641A (en) 2005-01-25 2005-01-25 Vacuum ultraviolet phosphor, phosphor paste composition and plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017000A JP2006206641A (en) 2005-01-25 2005-01-25 Vacuum ultraviolet phosphor, phosphor paste composition and plasma display panel

Publications (1)

Publication Number Publication Date
JP2006206641A true JP2006206641A (en) 2006-08-10

Family

ID=36963843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017000A Pending JP2006206641A (en) 2005-01-25 2005-01-25 Vacuum ultraviolet phosphor, phosphor paste composition and plasma display panel

Country Status (1)

Country Link
JP (1) JP2006206641A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291251A (en) * 2007-04-26 2008-12-04 Sharp Corp Manufacturing method of phosphor, wavelength converting member and light-emitting device
WO2012081223A1 (en) * 2010-12-13 2012-06-21 パナソニック株式会社 Phosphor, phosphor-containing composition, light-emitting module, lamp, and illumination device
JP2012229289A (en) * 2011-04-23 2012-11-22 Nihon Ceratec Co Ltd Method for producing phosphor material, phosphor material, and light emitting device
CN115627161A (en) * 2022-10-13 2023-01-20 英特美光电(苏州)有限公司 Coating method of silicate fluorescent powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570774A (en) * 1991-09-11 1993-03-23 Toshiba Corp Phosphor and fluorescent lamp
JPH06196093A (en) * 1992-12-25 1994-07-15 Hokuriku Toryo Kk Manufacture of phosphor layer for gas discharge panel
JPH10125240A (en) * 1996-08-29 1998-05-15 Matsushita Electric Ind Co Ltd Plasma display panel, and manufacture of phosphor for plasma display panel
JP2000285809A (en) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp Plasma display panel
JP2005163040A (en) * 2003-11-29 2005-06-23 Samsung Sdi Co Ltd Green phosphor for plasma display panel and plasma display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570774A (en) * 1991-09-11 1993-03-23 Toshiba Corp Phosphor and fluorescent lamp
JPH06196093A (en) * 1992-12-25 1994-07-15 Hokuriku Toryo Kk Manufacture of phosphor layer for gas discharge panel
JPH10125240A (en) * 1996-08-29 1998-05-15 Matsushita Electric Ind Co Ltd Plasma display panel, and manufacture of phosphor for plasma display panel
JP2000285809A (en) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp Plasma display panel
JP2005163040A (en) * 2003-11-29 2005-06-23 Samsung Sdi Co Ltd Green phosphor for plasma display panel and plasma display panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291251A (en) * 2007-04-26 2008-12-04 Sharp Corp Manufacturing method of phosphor, wavelength converting member and light-emitting device
WO2012081223A1 (en) * 2010-12-13 2012-06-21 パナソニック株式会社 Phosphor, phosphor-containing composition, light-emitting module, lamp, and illumination device
JP2012229289A (en) * 2011-04-23 2012-11-22 Nihon Ceratec Co Ltd Method for producing phosphor material, phosphor material, and light emitting device
KR101771448B1 (en) 2011-04-23 2017-08-25 니뽄 도쿠슈 도교 가부시키가이샤 Method for producing phosphor material, phosphor material and light emitting device
CN115627161A (en) * 2022-10-13 2023-01-20 英特美光电(苏州)有限公司 Coating method of silicate fluorescent powder

Similar Documents

Publication Publication Date Title
KR100966764B1 (en) Phosphor for plasma display panel and plasma display panel having phosphor layer formed of the same
JP4042372B2 (en) Method for manufacturing phosphor
JP4415578B2 (en) Plasma display device
JP4244727B2 (en) Plasma display device
JP2002097466A (en) Aluminate phosphor, phosphor paste composition and light-emitting device by vacuum ultraviolet excitation
JP3947175B2 (en) Plasma display panel
JP2007103052A (en) Plasma display panel
KR100696512B1 (en) Phosphor for plasma display panel and plasma display panel having phosphor layer formed of the same
JP4399518B2 (en) Phosphor for vacuum ultraviolet ray, method for producing the same, phosphor paste composition, and vacuum ultraviolet light emitting device
JP4244726B2 (en) Plasma display device
JP4977331B2 (en) Phosphor and gas discharge display device
JP2006206641A (en) Vacuum ultraviolet phosphor, phosphor paste composition and plasma display panel
EP1506990A1 (en) Plasma display unit, phosphor and process for producing phosphor
JP3977551B2 (en) Fluorescent substance for vacuum ultraviolet ray, phosphor paste composition, and vacuum ultraviolet ray excited light emitting device
JP2008075083A (en) Green fluorescent substance for use in plasma display panel, and plasma display panel utilizing it
JP2001279239A (en) Method for producing fluorescent substance for light- emitting element and fluorescent substance paste
JP4157324B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP2008050390A (en) Vacuum ultraviolet excitation aluminate phosphor and vacuum ultraviolet excitation light emitting device using the same
JP2000026855A (en) Phosphor paste composition and vacuum-ultraviolet- excited light-emitting element
KR100554814B1 (en) Blue phosphor, method of manufacturing the same and plasma display unit comprising the same
JP2002275464A (en) Aluminate fluorescent substance, fluorescent paste composition and vacuum ultraviolet ray-excited light- emitting element
JP2007099909A (en) Mixed phosphor, phosphor paste composition and vacuum ultraviolet light-excited light emitting element
WO2007080649A1 (en) Green fluorophor and plasma display panel
JP5304004B2 (en) Vacuum ultraviolet excitation phosphor and vacuum ultraviolet excitation light emitting device using the same
JP2004091623A (en) Plasma display panel

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026