JP2006206396A - Method for executing catalyzed reaction - Google Patents

Method for executing catalyzed reaction Download PDF

Info

Publication number
JP2006206396A
JP2006206396A JP2005022000A JP2005022000A JP2006206396A JP 2006206396 A JP2006206396 A JP 2006206396A JP 2005022000 A JP2005022000 A JP 2005022000A JP 2005022000 A JP2005022000 A JP 2005022000A JP 2006206396 A JP2006206396 A JP 2006206396A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
methanol
carrying
conductive medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005022000A
Other languages
Japanese (ja)
Other versions
JP4802505B2 (en
Inventor
Futoshi Ikoma
太志 生駒
Koki Takamura
光喜 高村
Kenji Nakamura
賢司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005022000A priority Critical patent/JP4802505B2/en
Publication of JP2006206396A publication Critical patent/JP2006206396A/en
Application granted granted Critical
Publication of JP4802505B2 publication Critical patent/JP4802505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which reaction efficiency is more simply enhanced in a steam reforming reaction of hydrocarbon or oxygen-containing hydrocarbons, a methanol decomposition reaction or a methanol synthesis reaction in which an exothermic or endothermic reaction is a rate-controlling factor of catalytic activity. <P>SOLUTION: A reaction system in which a catalyst layer comprises a packing type fixed bed uniformly including a heat transfer medium and a catalyst is used as the method for enhancing reaction efficiency by improving the heat conductivity of catalyst's surroundings. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発熱又は吸熱反応が律速となる、触媒の介在する反応系における反応の実施方法に関する。詳しくは、炭化水素若しくは含酸素炭化水素類の水蒸気改質反応、又はメタノールの分解反応若しくはメタノールの合成方法において、触媒層が熱伝導性媒体と触媒とを均一に含む充填型固定床であることを特徴とする反応の実施方法に関する。   The present invention relates to a method for carrying out a reaction in a reaction system mediated by a catalyst, in which an exothermic or endothermic reaction is rate-limiting. Specifically, in a steam reforming reaction of hydrocarbons or oxygen-containing hydrocarbons, or a decomposition reaction of methanol or a method of synthesizing methanol, the catalyst layer is a packed fixed bed uniformly containing a heat conductive medium and a catalyst. It is related with the execution method of reaction characterized by these.

触媒の介在する反応系において、発熱反応が律速である場合には、触媒層から充分に除熱を行うことが、また吸熱反応が律速である場合には、触媒層へ充分な熱供給を行うことが、反応器内の熱伝導効率を高めて反応を効率よく進行させる上で重要であり、反応器の形状や触媒層の構造に関する工夫が提案されている(例えば、特許文献1参照)。この特許文献1では、触媒反応器内に3次元の立体構造又は3次元網目状構造の伝熱促進媒体を装填し、この伝熱促進媒体の空隙に触媒粒子を充填する方法が示されている。しかしながら、触媒層の体積が同じであれば充填できる実触媒量がより少なくならざるを得ず、また構造が複雑であり、余分な空隙を生じずに触媒を充填することが難しいという問題を有する。また、無機酸化物を主成分とする触媒層中に熱伝導性に優れたセラミックス粒子を混在させた排気ガス浄化用触媒装置が提案されている(例えば、特許文献2参照)。ここで、好ましく用いられるセラミックス粒子として炭化ケイ素が挙げられているが、価格的に高価であるという問題があり、また熱伝導率の点からは銅、アルミニウム、銀などの金属に比較すると劣っている。   When the exothermic reaction is rate-limiting in the reaction system in which the catalyst is interposed, it is necessary to sufficiently remove heat from the catalyst layer, and when the endothermic reaction is rate-limiting, sufficient heat is supplied to the catalyst layer. This is important in increasing the heat conduction efficiency in the reactor and allowing the reaction to proceed efficiently, and a device for the shape of the reactor and the structure of the catalyst layer has been proposed (for example, see Patent Document 1). Patent Document 1 discloses a method in which a heat transfer promoting medium having a three-dimensional structure or a three-dimensional network structure is loaded in a catalyst reactor, and catalyst particles are filled in the voids of the heat transfer promoting medium. . However, if the volume of the catalyst layer is the same, the amount of the actual catalyst that can be filled is inevitably smaller, and the structure is complicated, and it is difficult to fill the catalyst without generating extra voids. . In addition, an exhaust gas purifying catalyst device has been proposed in which ceramic particles having excellent thermal conductivity are mixed in a catalyst layer containing an inorganic oxide as a main component (see, for example, Patent Document 2). Here, although silicon carbide is mentioned as a ceramic particle that is preferably used, there is a problem that it is expensive in price, and inferior to metals such as copper, aluminum, and silver in terms of thermal conductivity. Yes.

吸熱反応としては、例えば、炭化水素若しくは含酸素炭化水素類の水蒸気改質反応、又はメタノールの分解反応などが挙げられ、発熱反応としては例えばメタノールの合成反応が挙げられる。これらにおいても触媒層における熱伝導を高めてより効率よく反応を進行させる反応方法が求められている。
特開2001−353445号公報 特開平10−43598号公報
Examples of the endothermic reaction include a steam reforming reaction of hydrocarbons or oxygen-containing hydrocarbons, or a decomposition reaction of methanol, and an exothermic reaction includes, for example, a synthesis reaction of methanol. In these cases, there is a demand for a reaction method in which the heat conduction in the catalyst layer is increased and the reaction proceeds more efficiently.
JP 2001-353445 A Japanese Patent Laid-Open No. 10-43598

本発明の目的は、従来技術における上記したような課題を解決し、より簡便な構造のもとで触媒層における熱伝導を改善し、より効率よく反応を進行させることができる、工業的により有利な反応の実施方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems in the prior art, improve the heat conduction in the catalyst layer under a simpler structure, and allow the reaction to proceed more efficiently. It is to provide a method for carrying out the reaction.

本発明者等は、上記したような課題を有する反応系の反応方法について鋭意研究した結果、炭化水素若しくは含酸素炭化水素類の水蒸気改質反応、又はメタノールの分解反応若しくはメタノールの合成反応において、触媒層が熱伝導性媒体と触媒とを均一に含む充填型固定床であることを特徴とする反応の実施方法により、簡便にしてより効率良く反応を進行させることが可能になることを見出し、本発明を完成するに至った。   As a result of earnest research on the reaction method of the reaction system having the above-described problems, the present inventors, in the steam reforming reaction of hydrocarbons or oxygenated hydrocarbons, or the decomposition reaction of methanol or the synthesis reaction of methanol, The method for carrying out the reaction, characterized in that the catalyst layer is a packed fixed bed that uniformly contains a heat conductive medium and a catalyst, and found that the reaction can be made easier and more efficient. The present invention has been completed.

すなわち、本発明は、炭化水素若しくは含酸素炭化水素類の水蒸気改質反応、又はメタノールの分解反応若しくはメタノールの合成反応において、触媒層が熱伝導性媒体と触媒とを均一に含む充填型固定床であることを特徴とする、(1)から(8)に示す反応の実施方法に関する。
(1)炭化水素若しくは含酸素炭化水素類の水蒸気改質反応、又はメタノールの分解反応若しくはメタノールの合成反応において、触媒層が熱伝導性媒体と触媒とを均一に含む充填型固定床であることを特徴とする反応の実施方法。
(2)含酸素炭化水素類がメタノール又はジメチルエーテルである、(1)に記載の反応の実施方法。
(3)触媒層が熱伝導性媒体と触媒とを均一に混合し成型した成型体からなる充填型固定床である、(1)又は(2)に記載の反応の実施方法。
(4)熱伝導性媒体が黒鉛である、(1)から(3)の何れかに記載の反応の実施方法。
(5)黒鉛が触媒との総量に対して5〜30wt%含まれる、(4)に記載の反応の実施方法。
(6)熱伝導性媒体が金属である、(1)から(3)の何れかに記載の反応の実施方法。
(7)金属として、鉄、ニッケル、銅、銀、アルミニウム、又はこれらから選ばれる一つ以上の金属を含む合金のうちの何れか一種以上を用いる、(6)に記載の反応の実施方法。
(8)金属が触媒との総量に対して5〜70wt%含まれる、(6)又は(7)に記載の反応の実施方法。
That is, the present invention provides a packed fixed bed in which a catalyst layer uniformly contains a heat conductive medium and a catalyst in a steam reforming reaction of hydrocarbons or oxygen-containing hydrocarbons, or a decomposition reaction of methanol or a synthesis reaction of methanol. The present invention relates to a method for carrying out the reactions shown in (1) to (8).
(1) In the steam reforming reaction of hydrocarbons or oxygen-containing hydrocarbons, or the decomposition reaction of methanol or the synthesis reaction of methanol, the catalyst layer is a packed fixed bed that uniformly contains a heat conductive medium and a catalyst. A method for carrying out the reaction characterized by
(2) The method for carrying out the reaction according to (1), wherein the oxygen-containing hydrocarbon is methanol or dimethyl ether.
(3) The method for carrying out the reaction according to (1) or (2), wherein the catalyst layer is a packed fixed bed comprising a molded body obtained by uniformly mixing and molding a heat conductive medium and a catalyst.
(4) The method for carrying out the reaction according to any one of (1) to (3), wherein the heat conductive medium is graphite.
(5) The method for carrying out the reaction according to (4), wherein 5 to 30 wt% of graphite is contained with respect to the total amount with the catalyst.
(6) The method for carrying out the reaction according to any one of (1) to (3), wherein the heat conductive medium is a metal.
(7) The method for carrying out the reaction according to (6), wherein any one or more of iron, nickel, copper, silver, aluminum, or an alloy containing one or more metals selected from these is used as the metal.
(8) The method for carrying out the reaction according to (6) or (7), wherein the metal is contained in an amount of 5 to 70 wt% based on the total amount with the catalyst.

本発明によれば、熱伝導性に優れた媒体と触媒を混合するという簡便な方法で、より効率よく反応を進行させることが可能となる。   According to the present invention, the reaction can proceed more efficiently by a simple method of mixing a catalyst having excellent thermal conductivity and a catalyst.

本発明における触媒層は、熱伝導性媒体と固体触媒とが均一に混合されてなる充填型固定床である。触媒が成型体又は成型体を破砕した粒状品の場合は、触媒の成型体又は粒状品と熱伝導性媒体の成型体とを均一に混合させてなるものである。
熱伝導性媒体の成型体とは、例えば、ペレット状、タブレット状、ブリケット状、トリローブ状、リング状、球形、顆粒状等、触媒成型体又は成型体を粉砕した粒状品と混合して反応器に充填するに支障のない形状なら特に制限はない。
熱伝導性媒体と触媒とを均一に混合し成型した成型体を用いる場合、この成型体は、成型する際に触媒の粉体と熱伝導性媒体の粉体とを均一に混合した後に成型したもの、或いはこれをさらに粒状に破砕したものである。
The catalyst layer in the present invention is a packed fixed bed in which a heat conductive medium and a solid catalyst are uniformly mixed. When the catalyst is a molded body or a granular product obtained by crushing the molded body, the catalyst molded body or the granular product and the molded body of the heat conductive medium are uniformly mixed.
For example, the pellets, tablets, briquettes, trilobes, rings, spheres, granules, etc. are mixed with catalyst molded bodies or granular products obtained by pulverizing the molded bodies. There is no particular limitation as long as the shape does not hinder filling.
When using a molded body in which the thermally conductive medium and the catalyst are uniformly mixed and molded, this molded body is molded after the catalyst powder and the thermal conductive medium powder are uniformly mixed during molding. Or a further crushed product.

熱伝導性媒体と触媒との混合比率については、熱伝導性媒体の比率が高すぎると実触媒量が少なくなるため好ましくなく、低すぎると触媒層の伝熱を改善する効果が低減してしまうため、熱伝導性媒体の種類、反応の種類、また触媒の種類や反応条件により、最も効果的な混合比率を選ぶことができる。
熱伝導性媒体として黒鉛を用いる場合、黒鉛の種類は特に限定されるものではないが、触媒と混合して成型した場合の成型体の強度に悪影響を及ぼさず、また熱伝導率の高い黒鉛ほど好ましい。また黒鉛の混合比率は、触媒と黒鉛の総量に対して重量で5%〜30%であり、10%〜30%がさらに好ましい。
Regarding the mixing ratio of the heat conductive medium and the catalyst, if the ratio of the heat conductive medium is too high, the amount of the actual catalyst decreases, which is not preferable. If it is too low, the effect of improving the heat transfer of the catalyst layer is reduced. Therefore, the most effective mixing ratio can be selected according to the type of heat conductive medium, the type of reaction, the type of catalyst, and the reaction conditions.
When graphite is used as the heat conductive medium, the type of graphite is not particularly limited, but graphite having a higher thermal conductivity does not adversely affect the strength of the molded body when mixed with a catalyst and molded. preferable. The mixing ratio of graphite is 5% to 30% by weight with respect to the total amount of catalyst and graphite, and more preferably 10% to 30%.

熱伝導性媒体として金属を用いる場合、触媒毒となったり副反応を引き起こしたりすることがなく、熱伝導性に優れ価格的にも安価で安全な金属を選択することが好ましい。金属の混合比率は、触媒と金属の総量に対して5〜70wt%が好ましいが、使用する金属種、当該反応方法を導入する反応の種類、反応の条件により、さらに好適な混合比を選ぶことができる。さらに、金属としては、鉄、ニッケル、銅、銀、アルミニウム、又はこれらから選ばれる一つ以上の金属を含む合金のうちの何れか一種以上を用いることが好ましいが、当該反応方法を導入する反応の種類、反応条件に応じ、価格、入手のし易さ、熱伝導率、融点等を考慮して適宜選択すれば良い。   When a metal is used as the thermally conductive medium, it is preferable to select a metal that is excellent in thermal conductivity and inexpensive and safe without causing catalyst poisoning or causing side reactions. The mixing ratio of the metal is preferably 5 to 70 wt% with respect to the total amount of the catalyst and the metal, but a more appropriate mixing ratio should be selected depending on the type of metal used, the type of reaction introducing the reaction method, and the reaction conditions. Can do. Furthermore, as the metal, it is preferable to use any one or more of iron, nickel, copper, silver, aluminum, or an alloy containing one or more metals selected from these, but the reaction introducing the reaction method Depending on the type and reaction conditions, it may be appropriately selected in consideration of price, availability, thermal conductivity, melting point and the like.

当該反応方法を導入する好適な反応例は、炭化水素若しくは含酸素炭化水素類の水蒸気改質反応、又はメタノールの分解反応若しくはメタノールの合成反応である。含酸素炭化水素類には、例えばメタノール等のアルコール、ジメチルエーテル等のエーテル類が含まれる。   A suitable reaction example for introducing the reaction method is a steam reforming reaction of hydrocarbons or oxygen-containing hydrocarbons, a decomposition reaction of methanol, or a synthesis reaction of methanol. Examples of the oxygen-containing hydrocarbons include alcohols such as methanol and ethers such as dimethyl ether.

含酸素炭化水素類がメタノールの場合、メタノールの水蒸気改質反応における水/メタノールの比率は、通常モル比で0.5〜5が選ばれ、さらには1〜3が好適である。比率が高すぎると水を蒸発させるために多大なエネルギーを要すことになり好ましくない。一方、水分比率が低すぎると水素収率が低下するばかりか副生物である一酸化炭素濃度が高くなるため好ましくない。
メタノールの分解反応は一酸化炭素、又は一酸化炭素及び水素が必要な場合に用いられる。用いる触媒により、メタンその他の炭化水素類等が副生する場合はこれらを低減させるため原料中に若干量の水を加えることもあり得る。
ジメチルエーテルの水蒸気改質反応における水/ジメチルエーテルの比率は、通常モル比で2〜10が選ばれ、さらには3〜6が好適である。
メタノール若しくはジメチルエーテルの水蒸気改質反応、又はメタノールの分解反応において、反応の圧力は、常圧から100MPaが好ましく、特に常圧から30MPaが好ましい。高すぎると装置の耐圧性を高くする必要から装置材料の質や量、及び大きさの点で問題となるため好ましくなく、さらには、メタノールや水の露点が高くなり系内で凝縮してしまうため好ましくない。そのため、メタノールの水蒸気改質反応、又はメタノールの分解反応における空間速度に制限はないが、好ましくはメタノールのGHSVで50〜30000/h、さらに好ましくは200〜10000/hである。
ジメチルエーテルの水蒸気改質反応における空間速度に制限はないが、好ましくはジメチルエーテルと水との合計のGHSVで200〜20000/h、さらに好ましくは500〜10000/hである。
When the oxygen-containing hydrocarbons are methanol, the water / methanol ratio in the methanol steam reforming reaction is usually 0.5 to 5 in terms of molar ratio, and more preferably 1 to 3. If the ratio is too high, a large amount of energy is required to evaporate water, which is not preferable. On the other hand, if the water ratio is too low, not only the hydrogen yield decreases but also the concentration of carbon monoxide as a by-product increases, which is not preferable.
The methanol decomposition reaction is used when carbon monoxide or carbon monoxide and hydrogen are required. When methane or other hydrocarbons are by-produced depending on the catalyst used, a small amount of water may be added to the raw material in order to reduce them.
The water / dimethyl ether ratio in the steam reforming reaction of dimethyl ether is usually 2 to 10 in terms of molar ratio, and more preferably 3 to 6.
In the steam reforming reaction of methanol or dimethyl ether or the decomposition reaction of methanol, the pressure of the reaction is preferably from normal pressure to 100 MPa, particularly preferably from normal pressure to 30 MPa. If it is too high, the pressure resistance of the device needs to be increased, which causes problems in terms of the quality, quantity, and size of the material of the device. Further, the dew point of methanol and water is increased, and condensation occurs in the system. Therefore, it is not preferable. Therefore, although there is no restriction | limiting in the space velocity in the steam reforming reaction of methanol, or the decomposition reaction of methanol, Preferably it is 50-30000 / h in GHSV of methanol, More preferably, it is 200-10000 / h.
The space velocity in the steam reforming reaction of dimethyl ether is not limited, but is preferably 200 to 20000 / h, more preferably 500 to 10,000 / h in terms of the total GHSV of dimethyl ether and water.

本発明により、発熱反応においては除熱の効率が改善されることから、触媒への熱負荷を低減することができる。例えば、メタノール合成反応において、本発明により触媒層の発熱ピーク温度を低下させることができることは、平衡的に低温ほど有利であるこの反応には好都合である。また、吸熱反応においては熱の供給効率が改善されることから、同じ反応器設定温度であれば原料の転化率がより高くなる。そして同じ原料の転化率を得るために反応器の温度設定をより低くできるため、触媒への熱負荷を低減することができ、触媒の経時的な劣化をより抑えることが可能である。
反応の種類により異なるが、本発明により、例えばメタノール合成反応や、メタノールの水蒸気改質反応において、条件によっては発熱ピーク或いは吸熱ピーク温度を20〜30℃以上緩和させることができる。例えば、メタノールの水蒸気改質反応について見ると、メタノール−GHSV5000/hの条件下、反応器設定温度290℃で行った実施例2のメタノール転化率に、反応器設定温度310℃で行った比較例2−1、及び比較例2−2のメタノール転化率が及ばない(表1参照)ことなどに示されるように、本発明により、条件によっては反応器設定温度を20℃以上低下させることが可能となる。
また、実施例1〜6に挙げたような、熱伝導性媒体と触媒との合計体積に対するGHSV条件のもとで反応を行った場合に対して、実触媒量を基準とするGHSV条件のもとで反応を行った場合は、さらに高い原料転化率を与えることは言うまでもない。
According to the present invention, the heat removal efficiency is improved in the exothermic reaction, so that the heat load on the catalyst can be reduced. For example, the ability to lower the exothermic peak temperature of the catalyst layer according to the present invention in a methanol synthesis reaction is advantageous for this reaction, which is more advantageous at lower temperatures in equilibrium. Further, since the heat supply efficiency is improved in the endothermic reaction, the conversion rate of the raw material becomes higher at the same reactor set temperature. And since the temperature setting of a reactor can be made lower in order to obtain the conversion rate of the same raw material, the thermal load to a catalyst can be reduced and it is possible to suppress deterioration with time of a catalyst more.
Although depending on the type of reaction, according to the present invention, for example, in the methanol synthesis reaction or methanol steam reforming reaction, the exothermic peak or endothermic peak temperature can be relaxed by 20 to 30 ° C. or more depending on conditions. For example, in the case of methanol steam reforming reaction, the methanol conversion rate of Example 2 performed at the reactor set temperature of 290 ° C. under the condition of methanol-GHSV5000 / h, the comparative example performed at the reactor set temperature of 310 ° C. As shown by the fact that the methanol conversion rate of 2-1 and Comparative Example 2-2 does not reach (see Table 1), the present invention can reduce the reactor set temperature by 20 ° C. or more depending on the conditions. It becomes.
Further, in the case where the reaction was performed under the GHSV condition with respect to the total volume of the heat conductive medium and the catalyst as described in Examples 1 to 6, the GHSV condition based on the actual catalyst amount was used. Needless to say, a higher raw material conversion rate is obtained when the reaction is performed.

本発明において用いる触媒は反応の種類に応じて適宜選択することができる。炭化水素若しくは含酸素炭化水素類の水蒸気改質反応では、例として貴金属系、銅−亜鉛系、ニッケル系等を用いることができる。含酸素炭化水素類がメタノールの場合の水蒸気改質反応では、例えば貴金属系、銅−亜鉛−アルミニウム系、亜鉛−クロム系等を用いることができる。含酸素炭化水素類がジメチルエーテルの場合の水蒸気改質反応では、例として貴金属系、銅−亜鉛−アルミニウム系等を用いることができる。メタノールの分解反応では例えばニッケル系、貴金属系、銅系等を用いることができ、メタノールの合成反応では例えば銅−亜鉛系、銅−亜鉛−アルミニウム系、貴金属系、亜鉛−クロム系等を用いることができる。   The catalyst used in the present invention can be appropriately selected according to the type of reaction. In the steam reforming reaction of hydrocarbons or oxygen-containing hydrocarbons, for example, noble metal, copper-zinc, nickel, etc. can be used. In the steam reforming reaction when the oxygen-containing hydrocarbon is methanol, for example, a noble metal system, a copper-zinc-aluminum system, a zinc-chromium system, or the like can be used. In the steam reforming reaction when the oxygen-containing hydrocarbon is dimethyl ether, for example, a noble metal system, a copper-zinc-aluminum system, or the like can be used. For example, nickel, noble metal, copper or the like can be used in the decomposition reaction of methanol, and copper-zinc, copper-zinc-aluminum, noble metal, zinc-chromium or the like can be used in the methanol synthesis reaction. Can do.

以下、実施例及び比較例により本発明をさらに詳しく説明するが、本発明はこれらの例によって制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited by these examples.

メタノール転化率及びジメチルエーテル転化率は反応器出口ガス組成から次式により求めた。式中の[CO]、[CO2]、[CH3OH]及び[CH3OCH3]は、それぞれ反応器出口ガス中の一酸化炭素、二酸化炭素、メタノール及びジメチルエーテルの濃度(mol%)である。
メタノール転化率(mol%)=([CO]+[CO2])/([CO]+[CO2]+[CH3OH])×100
ジメチルエーテル転化率(mol%)=([CO]+[CO2] +[CH3OH])/([CO]+[CO2] +[CH3OH]+2[CH3OCH3])×100
The methanol conversion rate and dimethyl ether conversion rate were determined from the reactor outlet gas composition according to the following equations. [CO], [CO 2 ], [CH 3 OH] and [CH 3 OCH 3 ] in the formula are the concentrations (mol%) of carbon monoxide, carbon dioxide, methanol and dimethyl ether in the reactor outlet gas, respectively. is there.
Methanol conversion (mol%) = ([CO] + [CO 2 ]) / ([CO] + [CO 2 ] + [CH 3 OH]) × 100
Dimethyl ether conversion (mol%) = ([CO] + [CO 2 ] + [CH 3 OH]) / ([CO] + [CO 2 ] + [CH 3 OH] +2 [CH 3 OCH 3 ]) × 100

触媒は以下に示す4種類の触媒を用いた。
触媒A:銅、亜鉛、アルミナを主成分とする市販のメタノール合成用触媒
触媒B:亜鉛、クロムを主成分とする市販のメタノール合成用触媒
触媒C:銅、ニッケルを主成分とする市販のメタノール分解用触媒
触媒D:銅、亜鉛、アルミナを主成分とする自製のメタノール合成用触媒
The following four types of catalysts were used.
Catalyst A: Commercially available methanol synthesis catalyst based on copper, zinc and alumina Catalyst B: Commercially available methanol synthesis catalyst based on zinc and chromium Catalyst C: Commercially available methanol based on copper and nickel Catalyst for cracking Catalyst D: Self-made catalyst for methanol synthesis mainly composed of copper, zinc and alumina

メタノールの水蒸気改質反応(吸熱反応)
実施例1
触媒Aの粉体を打錠成型により成型した後12〜18meshに破砕した。この破砕した触媒と、熱伝導性媒体として市販の銅粒(12〜16mesh)とを両者の合計量に対する銅粒の量が70wt%となるよう均一に混合し、2mlを内径10mmからなるSUS製の反応器に充填した。これに窒素で希釈した濃度15vol%の水素ガスを通気し、最高温度240℃で触媒の還元処理を行った。続いて水/メタノールのモル比が1.5のメタノール水溶液を蒸発器に導入し気化させた後、破砕した触媒と銅粒からなる2mlの触媒層に対しメタノール−GHSV5000/h、圧力0.9MPaの条件下、反応器設定温度250℃、290℃、310℃の3温度にて反応させて初期活性を調べた。さらに310℃において600時間連続反応させた後、反応器設定温度250℃、290℃、310℃の3温度にて活性を調べた。反応結果を表1に示す。
Methanol steam reforming reaction (endothermic reaction)
Example 1
The catalyst A powder was molded by tableting and then crushed to 12-18 mesh. This crushed catalyst and commercially available copper particles (12 to 16 mesh) as a heat conductive medium are uniformly mixed so that the amount of copper particles is 70 wt% with respect to the total amount of both, and 2 ml is made of SUS having an inner diameter of 10 mm. Was charged to the reactor. Hydrogen gas with a concentration of 15 vol% diluted with nitrogen was passed through this, and the catalyst was reduced at a maximum temperature of 240 ° C. Subsequently, an aqueous methanol solution having a water / methanol molar ratio of 1.5 was introduced into the evaporator and vaporized, and then methanol-GHSV 5000 / h, pressure 0.9 MPa against a 2 ml catalyst layer comprising a crushed catalyst and copper particles. Under these conditions, the reaction was carried out at the reactor set temperatures of 250 ° C., 290 ° C., and 310 ° C. to examine the initial activity. Furthermore, after making it react continuously at 310 degreeC for 600 hours, activity was investigated at 3 temperature of reactor preset temperature 250 degreeC, 290 degreeC, and 310 degreeC. The reaction results are shown in Table 1.

比較例1
触媒Aの粉体を打錠成型した後、12〜18meshに破砕した。銅粒を混合せず、この破砕した触媒のみ2mlを反応器に充填した以外は実施例1と同様にして反応を行った。反応結果を表1に示す。
Comparative Example 1
The powder of Catalyst A was tableted and then crushed to 12-18 mesh. The reaction was carried out in the same manner as in Example 1 except that 2 ml of only the crushed catalyst was charged into the reactor without mixing the copper particles. The reaction results are shown in Table 1.

実施例2
触媒Aの粉体と市販の銅粉を両者の合計量に対する銅粉量が24wt%となるようにして均一に混合した後、打錠成型した。次いで、この打錠成型品を12〜18meshになるように破砕し、2mlを内径10mmからなるSUS製の反応器に充填した。これに窒素で希釈した濃度15vol%の水素ガスを通気し最高温度240℃で触媒の還元処理を行った。続いて水/メタノールのモル比1.5のメタノール水溶液を蒸発器に導入し、破砕品からなる触媒層2mlに対しメタノール−GHSV 5000/h、常圧の条件下、反応器設定温度250℃、290℃、310℃の3温度にて反応させた。結果を表1に示す。
Example 2
The powder of catalyst A and commercially available copper powder were uniformly mixed so that the amount of copper powder relative to the total amount of both was 24 wt%, and then tableted. Next, this tableting product was crushed so as to be 12 to 18 mesh, and 2 ml was filled into a SUS reactor having an inner diameter of 10 mm. A hydrogen gas having a concentration of 15 vol% diluted with nitrogen was passed through this, and the catalyst was reduced at a maximum temperature of 240 ° C. Subsequently, an aqueous methanol solution having a water / methanol molar ratio of 1.5 was introduced into the evaporator, and 2 ml of the catalyst layer made of crushed product was methanol-GHSV 5000 / h under normal pressure, a reactor set temperature of 250 ° C., The reaction was performed at three temperatures of 290 ° C. and 310 ° C. The results are shown in Table 1.

比較例2−1
銅粉を混合せず、触媒Aの粉体のみを打錠成型した後、12〜18meshに破砕した。この破砕した触媒2mlを反応器に充填した以外は実施例2と同様にして反応を行った。結果を表1に示す。
Comparative Example 2-1
The copper powder was not mixed, and only the powder of the catalyst A was tablet-molded and then crushed to 12 to 18 mesh. The reaction was performed in the same manner as in Example 2 except that 2 ml of the crushed catalyst was charged into the reactor. The results are shown in Table 1.

比較例2−2
触媒Aの粉体と市販のアルミナ粉を両者の合計量に対するアルミナ量が15wt%となるようにして均一に混合した後、打錠成型した。次いで、この打錠成型品を12〜18meshになるように破砕し、2mlを反応器に充填した以外は実施例2と同様にして反応を行った。結果を表1に示す。
Comparative Example 2-2
Catalyst A powder and commercially available alumina powder were uniformly mixed so that the amount of alumina relative to the total amount of both was 15 wt%, and then tableted. Next, this tablet-molded product was crushed to 12 to 18 mesh and reacted in the same manner as in Example 2 except that 2 ml was charged in the reactor. The results are shown in Table 1.

実施例3
触媒Aの粉体と市販の黒鉛を両者の合計量に対する黒鉛量が15wt%となるようにして均一に混合した後、打錠成型した。次いで、この打錠成型品20mlを内径25mmからなるSUS製の反応器に充填した。これに窒素で希釈した濃度15vol%の水素ガスを通気し最高温度240℃で触媒の還元処理を行った。続いて水/メタノールのモル比が1.5のメタノール水溶液を蒸発器に導入し、打錠成型品からなる触媒層20mlに対しメタノール−GHSV 2500/h、圧力0.9MPaの条件下、反応器設定温度250℃、290℃、310℃の3温度にて反応させた。結果を表1に示す。なお、この打錠成型品の熱伝導率は1.95W/m・K(200℃、レーザーフラッシュ法)であった。
Example 3
The powder of catalyst A and commercially available graphite were uniformly mixed so that the amount of graphite relative to the total amount of both was 15 wt%, and then tableted. Next, 20 ml of this tableting molded product was filled into a SUS reactor having an inner diameter of 25 mm. A hydrogen gas having a concentration of 15 vol% diluted with nitrogen was passed through this, and the catalyst was reduced at a maximum temperature of 240 ° C. Subsequently, an aqueous methanol solution having a water / methanol molar ratio of 1.5 was introduced into the evaporator, and the reactor was subjected to the conditions of methanol-GHSV 2500 / h and pressure 0.9 MPa with respect to 20 ml of the catalyst layer made of a tablet-molded product. The reaction was carried out at three temperatures of set temperatures of 250 ° C, 290 ° C and 310 ° C. The results are shown in Table 1. The heat conductivity of this tablet-molded product was 1.95 W / m · K (200 ° C., laser flash method).

比較例3
黒鉛を混合せず、触媒Aの粉体のみを打錠成型した成型品20mlを反応器に充填した以外は実施例3と同様にして反応を行った。反応結果を表1に示す。なお、この打錠成型品の熱伝導率は0.379W/m・K(200℃、レーザーフラッシュ法)であった。
Comparative Example 3
The reaction was carried out in the same manner as in Example 3 except that 20 ml of a molded product in which only the powder of catalyst A was tablet-molded was not mixed and the reactor was filled. The reaction results are shown in Table 1. In addition, the heat conductivity of this tableting molded product was 0.379 W / m · K (200 ° C., laser flash method).

表1
メタノール転化率(CO濃度)/mol%
反応器設定温度(℃) 250 290 310
実施例1 反応初期 55(0.2) 89(0.8) 98(1.6)
反応600時間後 51(0.1) 85(0.7) 97(1.5)
比較例1 反応初期 51(0.1) 82(0.6) 93(1.2)
反応600時間後 49(0.1) 78(0.5) 90(1.0)
実施例2 反応初期 74(0.1) 98(0.8)100(1.4)
比較例2−1 反応初期 71(0.1) 92(0.6) 95(1.0)
比較例2−2 反応初期 70(0.1) 91(0.6) 94(0.9)
実施例3 反応初期 28(0.1) 48(0.2) 60(0.3)
比較例3 反応初期 25(0.1) 42(0.2) 52(0.3)
Table 1
Methanol conversion (CO concentration) / mol%
Reactor set temperature (° C.) 250 290 310
Example 1 Initial reaction 55 (0.2) 89 (0.8) 98 (1.6)
After 600 hours of reaction 51 (0.1) 85 (0.7) 97 (1.5)
Comparative Example 1 Initial reaction 51 (0.1) 82 (0.6) 93 (1.2)
After 600 hours of reaction 49 (0.1) 78 (0.5) 90 (1.0)
Example 2 Initial reaction 74 (0.1) 98 (0.8) 100 (1.4)
Comparative Example 2-1 Initial reaction 71 (0.1) 92 (0.6) 95 (1.0)
Comparative Example 2-2 Early reaction 70 (0.1) 91 (0.6) 94 (0.9)
Example 3 Initial reaction time 28 (0.1) 48 (0.2) 60 (0.3)
Comparative Example 3 Initial Reaction 25 (0.1) 42 (0.2) 52 (0.3)

実施例4
触媒Bの粉体と市販の黒鉛を両者の合計量に対する黒鉛量が15wt%となるように均一に混合した後、打錠成型した。次いで、この打錠成型品を12〜18meshになるように破砕し、2mlを反応器に充填した。これに窒素で希釈した濃度15vol%の水素ガスを通気し最高温度240℃で触媒の還元処理を行った。続いて水/メタノールのモル比1.5のメタノール水溶液を蒸発器に導入し、破砕品からなる触媒層2mlに対しメタノール−GHSV 5000/h、常圧の条件下、反応器設定温度370℃、400℃、430℃の3温度にて反応させた。結果を表2に示す。
Example 4
The powder of catalyst B and commercially available graphite were uniformly mixed so that the amount of graphite relative to the total amount of both was 15 wt%, and then tableted. Subsequently, this tableting molded product was crushed to 12 to 18 mesh, and 2 ml was charged into the reactor. A hydrogen gas having a concentration of 15 vol% diluted with nitrogen was passed through this, and the catalyst was reduced at a maximum temperature of 240 ° C. Subsequently, an aqueous methanol solution having a water / methanol molar ratio of 1.5 was introduced into the evaporator, and 2 ml of the catalyst layer made of crushed product was methanol-GHSV 5000 / h under normal pressure, a reactor set temperature of 370 ° C., The reaction was performed at three temperatures of 400 ° C and 430 ° C. The results are shown in Table 2.

比較例4
黒鉛を混合せず、触媒Bの粉体のみを打錠成型した後、12〜18meshに破砕したもの2mlを反応器に充填した以外は実施例4と同様にして反応を行った。結果を表2に示す。
表2
メタノール転化率(CO濃度)/mol%
反応器設定温度(℃) 370 400 430
実施例4 反応初期 54(0.3) 92(0.9) 99(1.7)
比較例4 反応初期 52(0.3) 85(0.7) 96(1.6)
Comparative Example 4
The reaction was carried out in the same manner as in Example 4 except that the graphite was not mixed and only the powder of the catalyst B was tablet-molded, and then 2 ml of crushed to 12-18 mesh was charged into the reactor. The results are shown in Table 2.
Table 2
Methanol conversion (CO concentration) / mol%
Reactor set temperature (° C.) 370 400 430
Example 4 Initial Reaction 54 (0.3) 92 (0.9) 99 (1.7)
Comparative Example 4 Initial reaction 52 (0.3) 85 (0.7) 96 (1.6)

メタノールの分解反応
実施例5
触媒Cの粉体と市販の黒鉛を両者の合計量に対する黒鉛量が20wt%となるようにして均一に混合した後、打錠成型した。次いで、この打錠成型品を12〜18meshになるように破砕し、2mlを反応器に充填した。これに窒素で希釈した濃度15vol%の水素ガスを通気し最高温度250℃で触媒の還元処理を行った。続いてメタノールを蒸発器に導入し、破砕品からなる触媒層2mlに対しメタノール−GHSV 5000/h、常圧の条件下、反応器設定温度 300℃、330℃、360℃の3温度にて反応させた。結果を表3に示す。
Decomposition reaction of methanol Example 5
The powder of catalyst C and commercially available graphite were uniformly mixed so that the amount of graphite relative to the total amount of both was 20 wt%, and then tableted. Subsequently, this tableting molded product was crushed to 12 to 18 mesh, and 2 ml was charged into the reactor. Hydrogen gas diluted with nitrogen and having a concentration of 15 vol% was passed through the catalyst, and the catalyst was subjected to reduction treatment at a maximum temperature of 250 ° C. Subsequently, methanol was introduced into the evaporator, and the reaction was performed at 3 reactor temperatures of 300 ° C., 330 ° C. and 360 ° C. under conditions of methanol-GHSV 5000 / h and normal pressure for 2 ml of the catalyst layer made of crushed products. I let you. The results are shown in Table 3.

比較例5
黒鉛を混合せず、触媒Cの粉体のみを打錠成型した後、12〜18meshに破砕したもの2mlを反応器に充填した以外は実施例5と同様にして反応を行った。結果を表3に示す。
Comparative Example 5
The reaction was carried out in the same manner as in Example 5 except that graphite was not mixed and only the powder of catalyst C was tablet-molded, and then 2 ml of crushed to 12-18 mesh was charged into the reactor. The results are shown in Table 3.

表3
メタノール転化率(CO濃度)/mol%
反応器設定温度(℃) 300 330 360
実施例5 反応初期 66(26) 90(33) 99(33)
比較例5 反応初期 58(29) 80(30) 95(32)
Table 3
Methanol conversion (CO concentration) / mol%
Reactor set temperature (° C.) 300 330 360
Example 5 Initial reaction 66 (26) 90 (33) 99 (33)
Comparative Example 5 Initial reaction 58 (29) 80 (30) 95 (32)

ジメチルエーテルの水蒸気改質反応
実施例6
触媒Dの粉体を打錠成型により成型した後、12〜18meshに破砕した。この破砕した触媒と、熱伝導性媒体として市販の銅粒(12〜16mesh)を両者の合計量に対する銅粒の量が70wt%となるよう均一に混合し、4mlを反応器に充填した。これに窒素にて濃度が5vol%〜100vol%になるように調製した水素ガスを通気し最高温度240℃で触媒の還元処理を行った。続いて水/ジメチルエーテルのモル比が5であるジメチルエーテルと水の混合ガスを反応系内に導入し、熱伝導性媒体である銅粒と破砕した触媒とからなる4mlの触媒層に対して、水とジメチルエーテルとの合計のGHSV 3150/h、常圧の条件下で、反応器設定温度320℃、340℃、360℃の3温度にて反応させた。結果を表4に示す。
Steam reforming reaction of dimethyl ether Example 6
The catalyst D powder was molded by tableting and then crushed to 12-18 mesh. The crushed catalyst and commercially available copper particles (12 to 16 mesh) as a heat conductive medium were uniformly mixed so that the amount of copper particles relative to the total amount of both was 70 wt%, and 4 ml was charged into the reactor. Hydrogen gas prepared so as to have a concentration of 5 vol% to 100 vol% with nitrogen was passed through this, and the catalyst was reduced at a maximum temperature of 240 ° C. Subsequently, a mixed gas of dimethyl ether and water having a water / dimethyl ether molar ratio of 5 was introduced into the reaction system, and 4 ml of the catalyst layer consisting of copper particles as a heat conductive medium and a crushed catalyst was added to water. And dimethyl ether total GHSV 3150 / h, under the conditions of normal pressure, the reactor was reacted at three temperatures of 320 ° C., 340 ° C. and 360 ° C. The results are shown in Table 4.

比較例6
触媒Dの粉体を打錠成型により成型した後、12〜18meshに破砕した。銅粒を混合せず、この破砕品2mlのみを反応器に充填し、反応条件をこの2mlの触媒層に対して水とジメチルエーテルとの合計のGHSV 6300/hとした以外は実施例6と同様にして反応を行った。結果を表4に示す。
Comparative Example 6
The catalyst D powder was molded by tableting and then crushed to 12-18 mesh. The mixture was not mixed with copper particles, and only 2 ml of this crushed product was charged into the reactor, and the reaction conditions were the same as in Example 6 except that the total reaction volume was GHSV 6300 / h of water and dimethyl ether with respect to this 2 ml catalyst layer. The reaction was carried out. The results are shown in Table 4.

表4
ジメチルエーテル転化率(CO濃度)/mol%
反応器設定温度(℃) 320 340 360
実施例6 反応初期 35(0) 76(0.8) 98(2.8)
比較例6 反応初期 31(0) 64(0.5) 93(1.2)
Table 4
Dimethyl ether conversion (CO concentration) / mol%
Reactor set temperature (° C.) 320 340 360
Example 6 Initial Reaction 35 (0) 76 (0.8) 98 (2.8)
Comparative Example 6 Initial Reaction 31 (0) 64 (0.5) 93 (1.2)

実施例1〜6及び比較例1〜6において示したように、本発明の方法によれば、同じ反応器設定温度の下で、より高い転化率を得ることができ、より効率よく反応を進行させることが可能となる。また実施例1に示される通りその効果は長時間にわたり持続される。   As shown in Examples 1-6 and Comparative Examples 1-6, according to the method of the present invention, a higher conversion can be obtained under the same reactor set temperature, and the reaction proceeds more efficiently. It becomes possible to make it. Further, as shown in Example 1, the effect is maintained for a long time.

Claims (8)

炭化水素若しくは含酸素炭化水素類の水蒸気改質反応、又はメタノールの分解反応若しくはメタノールの合成反応において、触媒層が熱伝導性媒体と触媒とを均一に含む充填型固定床であることを特徴とする反応の実施方法。   In the steam reforming reaction of hydrocarbons or oxygen-containing hydrocarbons, or the decomposition reaction of methanol or the synthesis reaction of methanol, the catalyst layer is a packed fixed bed uniformly containing a heat conductive medium and a catalyst. How to carry out the reaction. 含酸素炭化水素類がメタノール又はジメチルエーテルである、請求項1に記載の反応の実施方法。   The method for carrying out the reaction according to claim 1, wherein the oxygen-containing hydrocarbon is methanol or dimethyl ether. 触媒層が熱伝導性媒体と触媒とを均一に混合し成型した成型体からなる充填型
固定床である、請求項1又は2に記載の反応の実施方法。
The method for carrying out the reaction according to claim 1 or 2, wherein the catalyst layer is a packed fixed bed made of a molded body obtained by uniformly mixing and molding a heat conductive medium and a catalyst.
熱伝導性媒体が黒鉛である、請求項1から3の何れかに記載の反応の実施方法。   The method for carrying out the reaction according to claim 1, wherein the heat conductive medium is graphite. 黒鉛が触媒との総量に対して5〜30wt%含まれる、請求項4に記載の反応の実施方法。   The method for carrying out the reaction according to claim 4, wherein the graphite is contained in an amount of 5 to 30 wt% based on the total amount with the catalyst. 熱伝導性媒体が金属である、請求項1から3の何れかに記載の反応の実施方法。   The method for carrying out the reaction according to claim 1, wherein the heat conductive medium is a metal. 金属として、鉄、ニッケル、銅、銀、アルミニウム、又はこれらから選ばれる一つ以上の金属を含む合金のうちの何れか一種以上を用いる、請求項6に記載の反応の実施方法。   The method for carrying out a reaction according to claim 6, wherein any one or more of iron, nickel, copper, silver, aluminum, or an alloy containing one or more metals selected from these is used as the metal. 金属が触媒との総量に対して5〜70wt%含まれる、請求項6又は7に記載の
反応の実施方法。
The method for carrying out a reaction according to claim 6 or 7, wherein the metal is contained in an amount of 5 to 70 wt% based on the total amount of the catalyst.
JP2005022000A 2005-01-28 2005-01-28 Method for carrying out the catalytic reaction Active JP4802505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022000A JP4802505B2 (en) 2005-01-28 2005-01-28 Method for carrying out the catalytic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022000A JP4802505B2 (en) 2005-01-28 2005-01-28 Method for carrying out the catalytic reaction

Publications (2)

Publication Number Publication Date
JP2006206396A true JP2006206396A (en) 2006-08-10
JP4802505B2 JP4802505B2 (en) 2011-10-26

Family

ID=36963642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022000A Active JP4802505B2 (en) 2005-01-28 2005-01-28 Method for carrying out the catalytic reaction

Country Status (1)

Country Link
JP (1) JP4802505B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007356A (en) * 2006-06-28 2008-01-17 Kansai Electric Power Co Inc:The Dimethyl ether reformer
KR20150048341A (en) * 2013-10-28 2015-05-07 케이솔 주식회사 Polymer catalyst for boiler heating unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947281A (en) * 1972-04-27 1974-05-07
JPS60235635A (en) * 1984-05-07 1985-11-22 Mitsubishi Heavy Ind Ltd Endothermic reactor
JPH04119901A (en) * 1990-09-11 1992-04-21 Ube Ind Ltd Reforming tube and reformer
JP2001151502A (en) * 1999-11-26 2001-06-05 Daikin Ind Ltd Fuel reforming device
JP2004067979A (en) * 2002-08-07 2004-03-04 Fc Tekku:Kk Apparatus and process for manufacturing methane-rich gas from methanol
JP2004107110A (en) * 2002-09-13 2004-04-08 Honda Motor Co Ltd Hydrogen generation system
JP2004269332A (en) * 2003-03-11 2004-09-30 Nissan Motor Co Ltd Fuel reformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947281A (en) * 1972-04-27 1974-05-07
JPS60235635A (en) * 1984-05-07 1985-11-22 Mitsubishi Heavy Ind Ltd Endothermic reactor
JPH04119901A (en) * 1990-09-11 1992-04-21 Ube Ind Ltd Reforming tube and reformer
JP2001151502A (en) * 1999-11-26 2001-06-05 Daikin Ind Ltd Fuel reforming device
JP2004067979A (en) * 2002-08-07 2004-03-04 Fc Tekku:Kk Apparatus and process for manufacturing methane-rich gas from methanol
JP2004107110A (en) * 2002-09-13 2004-04-08 Honda Motor Co Ltd Hydrogen generation system
JP2004269332A (en) * 2003-03-11 2004-09-30 Nissan Motor Co Ltd Fuel reformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007356A (en) * 2006-06-28 2008-01-17 Kansai Electric Power Co Inc:The Dimethyl ether reformer
KR20150048341A (en) * 2013-10-28 2015-05-07 케이솔 주식회사 Polymer catalyst for boiler heating unit
KR101632475B1 (en) 2013-10-28 2016-06-21 케이솔 주식회사 Polymer catalyst for boiler heating unit

Also Published As

Publication number Publication date
JP4802505B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
AU2011276182B2 (en) Process for the preparation of ethanol and higher alcohols
KR101529906B1 (en) Process for operating hts reactor
JP2761609B2 (en) An improved method for the conversion of methane to synthesis gas.
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
KR20170060067A (en) Methods of producing ethylene and synthesis gas by combining the oxidative coupling of methane and dry reforming of methane reactions
CN107107017A (en) The method that methane is converted into synthesis gas
JP4273211B2 (en) Method for producing dimethyl ether from biomass
US9745235B2 (en) Method for hydrogenation of CO2 in adiabatic metal reactors
JPWO2012067222A1 (en) Method for producing methanol
JP4802505B2 (en) Method for carrying out the catalytic reaction
JPH08127544A (en) Production of methane from carbon dioxide and hydrogen
EA034701B1 (en) Water gas shift process
JP4391521B2 (en) Method for producing a hydrogen-rich stream
Feng et al. A mini review on recent progress of steam reforming of ethanol
JP2615433B2 (en) Catalyst for producing methane from carbon dioxide and method for producing methane
JP2006298782A (en) Method for producing dimethyl ether using synthesis gas by dimethyl ether synthesis catalyst
TW200946450A (en) Process and apparatus for production of hydrogen
JP4378976B2 (en) Hydrogen production catalyst and hydrogen production method
JP4681265B2 (en) Syngas production method and synthesis gas production reactor.
JP2005238007A (en) Catalyst and method for producing hydrogen
Park et al. Behavior of Exothermic Heat Generated in Synthetic Natural Gas Synthesis with Morphology of Nickel-Based Pellet-Type Catalysts
JPS632938B2 (en)
JP2003154270A (en) Hydrogen production catalyst and method for producing hydrogen using the same
JP2004121925A (en) Catalyst for steam-reforming dimethyl ether and method of producing hydrogen-containing gas by using the catalyst
JP2003160304A (en) Method for producing hydrogen-containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110513

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R151 Written notification of patent or utility model registration

Ref document number: 4802505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3