JP2006205252A - Tube end plugging method and cylinder device - Google Patents

Tube end plugging method and cylinder device Download PDF

Info

Publication number
JP2006205252A
JP2006205252A JP2005024244A JP2005024244A JP2006205252A JP 2006205252 A JP2006205252 A JP 2006205252A JP 2005024244 A JP2005024244 A JP 2005024244A JP 2005024244 A JP2005024244 A JP 2005024244A JP 2006205252 A JP2006205252 A JP 2006205252A
Authority
JP
Japan
Prior art keywords
tube
lid member
mandrel
tube member
rotary tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005024244A
Other languages
Japanese (ja)
Inventor
Makoto Nishimura
誠 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005024244A priority Critical patent/JP2006205252A/en
Publication of JP2006205252A publication Critical patent/JP2006205252A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a cover member to be smoothly friction stir welded to a tube member without thickening the cover member. <P>SOLUTION: In the method for plugging a tube end, a cover member 11 is abutted on one end of a tube member 10 and the abutted part S is friction-stir welded by a rotary tool 6. The cover member 11 is formed like a cup and the tubular edge 14 is abutted on one end of the tube member 10. Then, a pressure receiving part 16 at one end of a mandrel 12 inserted into the tube member 10 is fitted to the tubular edge 14. The inner diameter of the tubular edge 14 is made slightly smaller than that of the tube member 11 to prevent the tube member 10 from being damaged on the inner face at the time of attaching/detaching of the mandrel 12. In addition, pressurizing force of the rotary tool 6 is received by the pressure receiving part 16 of the mandrel 12 to prevent deformation of abutted end part between the tube member 10 and the cover member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、管部材の一端に蓋部材を突合せて、その突合せ部を摩擦撹拌接合する管端部の閉塞方法および該方法によって製造された有底チューブを備えたシリンダ装置に関する。   The present invention relates to a method of closing a tube end portion in which a lid member is butted against one end of a tube member, and the butted portion is friction stir welded, and a cylinder device including a bottomed tube manufactured by the method.

例えば、モノチューブ式油圧緩衝器(シリンダ装置)に用いられる有底チューブは、図 11に符号1にて示すように、ピストンおよびフリーピストンが摺動するチューブ本体(管部材)2の一端側開口を別体のエンドキャップ(蓋部材)3により閉塞した構造となっている。このような有底チューブ1において、チューブ本体2に対するエンドキャップ3の接合には、一般にアーク溶接が採用されていた(図中、4は溶接部である)。しかし、このような接合構造では、溶接に際して生じたスパッタが異物(コンタミネーション)として有底チューブ1内に入り込む虞れがあることに加え、溶接に際してチューブ本体2が熱変形を起こす虞れがあり、ブラッシングによる清掃作業や歪取り作業などの面倒な後処理が必要になる。なお、同図中、5は、車体への取付けに用いられる取付環(アイ)であり、この取付環5は、別途アーク溶接(溶接部6)によりエンドキャップ3に接合される。   For example, a bottomed tube used in a monotube type hydraulic shock absorber (cylinder device) has an opening at one end of a tube body (tube member) 2 on which a piston and a free piston slide, as indicated by reference numeral 1 in FIG. Is closed by a separate end cap (lid member) 3. In such a bottomed tube 1, arc welding is generally employed for joining the end cap 3 to the tube body 2 (4 in the figure is a welded portion). However, in such a joining structure, in addition to the possibility that spatter generated during welding may enter the bottomed tube 1 as foreign matter (contamination), the tube body 2 may be thermally deformed during welding. In addition, troublesome post-processing such as cleaning work by brushing and distortion removing work is required. In the figure, reference numeral 5 denotes an attachment ring (eye) used for attachment to the vehicle body, and this attachment ring 5 is joined to the end cap 3 by arc welding (welded portion 6) separately.

そこで最近、上記チューブ本体2に対するエンドキャップ3の接合に摩擦撹拌接合(FSW)を採用することが種々検討されている。この摩擦撹拌接合は、回転工具のピン部を2つの部材の突合せ部に押込み、その時発生する摩擦熱によって材料を軟化および撹拌して接合するもので、上記したスパッタの発生が皆無になることに加え、熱変形も抑えられることから、面倒な後処理が不要になる。   Recently, various studies have been made to adopt friction stir welding (FSW) for joining the end cap 3 to the tube body 2. In this friction stir welding, the pin part of the rotary tool is pushed into the abutting part of the two members, and the material is softened and stirred by the frictional heat generated at that time, so that the above-mentioned spatter is eliminated. In addition, since heat deformation is also suppressed, troublesome post-processing is not required.

ところで、摩擦撹拌接合においては、被接合材の突合せ部に回転工具から大きな加圧力が作用するため、単にチューブ本体2にエンドキャップ3を突合せて摩擦撹拌接合すると、前記加圧力によってチューブ本体2が変形してしまう虞れがある。特にチューブ本体2が薄肉であったり、アルミニウム合金からなる場合に、チューブ本体2に大きな変形が生じ、摩擦撹拌接合の利用は実質断念せざるを得ない状況になる。このため、従来は、図12に示すように、エンドキャップ3を段付き形状として、その小径凸部3aをチューブ本体2に嵌入し、チューブ本体2の先端をエンドキャップ3の段差面3bに突合せて、その突合せ部を摩擦撹拌接合するようにしていた。この場合、回転工具6のピン部7および肩部8から加えられる回転工具6の加圧力は、エンドキャップ3の小径凸部3aによって受圧され、チューブ本体2の変形が防止されるようになる。なお、特許文献1には、パイプ状部材同士またはパイプ状部材と軸状部材との摩擦撹拌接合ではあるが、パイプ状部材の一方または軸状部材に前記と同様の小径凸部を設けている。
特開2003−236682号公報
By the way, in friction stir welding, a large pressing force is applied from the rotary tool to the abutting portion of the materials to be joined. Therefore, when the end cap 3 is simply abutted against the tube main body 2 and the friction stir welding is performed, the tube main body 2 is caused by the pressing force. There is a risk of deformation. In particular, when the tube body 2 is thin or made of an aluminum alloy, the tube body 2 is greatly deformed, and the use of friction stir welding has to be abandoned. For this reason, conventionally, as shown in FIG. 12, the end cap 3 has a stepped shape, the small-diameter convex portion 3a is fitted into the tube body 2, and the tip of the tube body 2 is butted against the step surface 3b of the end cap 3. Thus, the butt portion is friction stir welded. In this case, the pressing force of the rotary tool 6 applied from the pin portion 7 and the shoulder portion 8 of the rotary tool 6 is received by the small-diameter convex portion 3a of the end cap 3, and the deformation of the tube body 2 is prevented. In Patent Document 1, although the friction stir welding is performed between the pipe-shaped members or between the pipe-shaped member and the shaft-shaped member, one of the pipe-shaped members or the shaft-shaped member is provided with a small-diameter convex portion similar to the above. .
JP 2003-236682 A

しかしながら、上記したようにエンドキャップ3に小径凸部3aを設ける対策によれば、該小径凸部3aを、回転工具6の肩部8の押圧範囲をバックアップできる十分なる大きさに形成しなければならないため、エンドキャップ3の板厚Tはかなり厚くなり、エンドキャップ3の重量増加牽いては有底チューブ1の重量増加が避けられないようになり、特に、チューブ本体2、エンドキャップ3等を含めた有底チューブ1の全体をアルミ化したものでは、アルミ化によるせっかくの軽量化利点が減殺されてしまう。   However, according to the measures for providing the end cap 3 with the small-diameter convex portion 3a as described above, the small-diameter convex portion 3a must be formed to a size that can backup the pressing range of the shoulder portion 8 of the rotary tool 6. Therefore, the plate thickness T of the end cap 3 becomes considerably thick, and increasing the weight of the end cap 3 inevitably increases the weight of the bottomed tube 1. In particular, the tube body 2, the end cap 3, etc. In the case where the entire bottomed tube 1 including the aluminum tube is made of aluminum, the advantages of weight reduction due to the aluminum formation are diminished.

本発明は、上記した従来技術の問題点に鑑みてなされたもので、その課題とするところは、蓋部材の板厚を厚くすることなく該蓋部材を管状部材に対して円滑に摩擦撹拌接合できる管端部の閉塞方法を提供し、併せて該閉塞方法により製造された有底チューブを備えたシリンダ装置を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and the problem is that the lid member is smoothly friction stir welded to the tubular member without increasing the plate thickness of the lid member. Another object of the present invention is to provide a cylinder end device having a bottomed tube manufactured by the closing method.

上記課題を解決するため、本発明に係る管端部の閉塞方法は、管部材の一端に蓋部材を突合せて、その突合せ部を摩擦撹拌接合する管端部の閉塞方法において、前記蓋部材をカップ形状としてその筒状縁部を前記管部材の一端に突合せると共に、該筒状縁部に、前記管部材に挿入したマンドレルの一端部を嵌合させ、前記マンドレルに回転工具の加圧力を受圧させながら摩擦撹拌接合を行うことを特徴とする。このように行う管端部の閉塞方法においては、内部のマンドレルに回転工具の加圧力を受圧させることで、蓋部材はもとより管部材の変形が抑制され、したがって、蓋部材の板厚を、製品として必要な強度を満足する規定厚さにすることができる。   In order to solve the above-mentioned problems, a tube end portion closing method according to the present invention is a tube end portion closing method in which a lid member is butted against one end of a tube member, and the butted portion is friction stir welded. As a cup shape, the cylindrical edge is butted against one end of the tube member, and one end of a mandrel inserted into the tube member is fitted to the cylindrical edge, and the pressure of the rotary tool is applied to the mandrel. Friction stir welding is performed while receiving pressure. In the tube end portion closing method performed in this way, the internal mandrel is subjected to pressure applied by the rotary tool, so that deformation of the tube member as well as the cover member is suppressed. It is possible to obtain a specified thickness that satisfies the required strength.

本方法において、上記蓋部材の筒状縁部に対するマンドレルの嵌合クリアランスは、0.01〜0.05mmに設定するのが望ましい。これは、あまりクリアランスが小さいと蓋部材の筒状縁部に対するマンドレルの嵌入が困難になり、逆にクリアランスが大きすぎると、マンドレルとの隙間によって蓋部材および管部材の初期変形が進み、摩擦撹拌接合が不安定になるためである。   In this method, the mandrel fitting clearance with respect to the cylindrical edge of the lid member is preferably set to 0.01 to 0.05 mm. This is because if the clearance is too small, it will be difficult to fit the mandrel into the cylindrical edge of the lid member. Conversely, if the clearance is too large, the initial deformation of the lid member and tube member will proceed due to the gap with the mandrel, and friction stirring will occur. This is because the bonding becomes unstable.

本方法において、上記蓋部材の筒状縁部の内径は、管部材の内径よりも小さくするのが望ましい。このようにすることで、管部材とマンドレルとの隙間も拡大し、マンドレルを管部材に挿入および離脱させる際、マンドレルが管部材に接触することを防止でき、管部材の内面に傷が付くことがなくなる。前記したモノチューブ式油圧緩衝器のようなシリンダ装置に有底チューブを組込んだ場合、前記管部材の内面はピストンやフリーピストンの摺動面となるので、前記したように内面に傷が付くことがなくなる点は、シリンダ装置の性能確保の上で極めて重要となる。   In this method, it is desirable that the inner diameter of the cylindrical edge portion of the lid member is smaller than the inner diameter of the tube member. By doing so, the gap between the tube member and the mandrel is also enlarged, and when the mandrel is inserted into and removed from the tube member, the mandrel can be prevented from coming into contact with the tube member, and the inner surface of the tube member can be damaged. Disappears. When a bottomed tube is incorporated in a cylinder device such as the monotube type hydraulic shock absorber described above, the inner surface of the pipe member becomes a sliding surface of the piston or free piston, so that the inner surface is damaged as described above. This point is extremely important in securing the performance of the cylinder device.

ここで、上記したように蓋部材の筒状縁部の内径を、管部材の内径よりも小さく設定する場合は、該蓋部材の筒状縁部の肉厚を管部材の肉厚と同等にしても、管部材の肉厚よりも厚くしても、あるいは予め管部材の一端部を絞って、その絞り部分の内径を蓋部材の筒状縁部の内径と同等にしてもよい。   Here, as described above, when the inner diameter of the cylindrical edge portion of the lid member is set smaller than the inner diameter of the tube member, the thickness of the cylindrical edge portion of the lid member is made equal to the thickness of the tube member. Alternatively, it may be thicker than the wall thickness of the tube member, or one end portion of the tube member may be previously squeezed so that the inner diameter of the throttle portion is equal to the inner diameter of the cylindrical edge portion of the lid member.

上記課題を解決するため、本発明に係るシリンダ装置は、上記した方法により管端部が閉塞された、アルミニウム合金製の有底チューブを用いたことを特徴とする。このシリンダ装置においては、有底チューブを構成する蓋部材の板厚が薄くなっているので、アルミ化による軽量化利点を最大限に発揮させることができる。この場合、蓋部材に、被取付部材に取付けるための取付環を摩擦圧接するようにしてもよく、これにより各接合部の強度が高まって強度的な信頼性も向上する。   In order to solve the above-mentioned problems, the cylinder device according to the present invention is characterized by using a bottomed tube made of an aluminum alloy whose tube end is closed by the above-described method. In this cylinder apparatus, since the plate | board thickness of the cover member which comprises a bottomed tube is thin, the weight reduction advantage by aluminumization can be exhibited to the maximum. In this case, an attachment ring for attaching to the attached member may be friction-welded to the lid member, thereby increasing the strength of each joint and improving the strength reliability.

本発明に係る管端部の閉塞方法によれば、蓋部材の板厚を厚くすることなく該蓋部材を管状部材に対して円滑に摩擦撹拌接合できるので、得られる有底チューブの重量増加が最小限に抑えられる。また、蓋部材の筒状縁部の内径を管部材の内径よりも小さくした場合は、管部材の内面に傷が付くことがないので、得られる有底チューブは品質的に優れたものとなり、シリンダ装置に向けて有用となる。   According to the tube end closing method according to the present invention, the lid member can be smoothly friction stir welded to the tubular member without increasing the thickness of the lid member, so that the weight of the obtained bottomed tube is increased. Minimized. Also, if the inner diameter of the cylindrical edge of the lid member is made smaller than the inner diameter of the tube member, the inner surface of the tube member will not be damaged, so the obtained bottomed tube will be excellent in quality, Useful for cylinder devices.

また、本発明に係るシリンダ装置によれば、アルミ化による軽量化利点が最大限に発揮されることはもちろん、接合部の強度も十分となる。また、蓋部材に、被取付部材に取付けるための取付環を摩擦圧接した場合は、各接合部の強度が高まって強度的な信頼性が著しく向上する。   In addition, according to the cylinder device of the present invention, the advantage of weight reduction due to aluminum is maximized, and the strength of the joint is sufficient. Moreover, when the attachment ring for attaching to a to-be-attached member is friction-welded to a cover member, the intensity | strength of each junction part increases and strength reliability improves remarkably.

以下、本発明を実施するための最良の形態を添付図面に基づいて詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings.

図1〜4は、本発明の第1の実施形態としての管端部の閉塞方法を示したものである。本第1の実施形態は、前記図11に示したモノチューブ式油圧緩衝器の有底チューブ1を摩擦撹拌接合を利用して製造しようとするもので、その製造に際しては、前記チューブ本体2として供される管部材10と前記エンドキャップ3として供される蓋部材11とを用意すると共に、管部材10を通して蓋部材11に嵌合可能なマンドレル12を用意する。   1 to 4 show a tube end closing method as a first embodiment of the present invention. In the first embodiment, the bottomed tube 1 of the monotube type hydraulic shock absorber shown in FIG. 11 is to be manufactured by using friction stir welding. A tube member 10 to be provided and a lid member 11 to be provided as the end cap 3 are prepared, and a mandrel 12 that can be fitted to the lid member 11 through the tube member 10 is prepared.

本第1の実施形態において、上記管部材10は、製造すべき有底チューブ1のチューブ本体2に要求される規格どおりの寸法形状を有している。一方、上記蓋部材11は、深さの浅いカップ形状をなしており、平板部13の周縁部に前記管部材10に突合される、座高の低い筒状縁部14を有している。この蓋部材11の筒状縁部14は、その肉厚が管部材10の肉厚と同等に設定される一方で、その内径が管部材10の内径よりもわずか小径に設定されている。したがって、蓋部材11の筒状縁部14を管部材10に同心に突合せた状態で、両者の突合せ部Sの内外には、前記内径の差の半分に相当する大きさの段差δ(0.1〜0.5mm)が形成されるようになる(図2)。また、この筒状縁部14の高さは、後述の回転工具6のピン部7の先端径の半分よりもわずか大きく設定されている。なお、蓋部材11の平板部13の背面の中心部には、円錐形状の凸部13aが形成されている。   In the first embodiment, the pipe member 10 has a dimensional shape conforming to a standard required for the tube body 2 of the bottomed tube 1 to be manufactured. On the other hand, the lid member 11 has a cup shape with a shallow depth, and has a cylindrical edge portion 14 with a low seating height that abuts the tube member 10 at the peripheral edge portion of the flat plate portion 13. The cylindrical edge portion 14 of the lid member 11 is set to have a thickness equal to the thickness of the tube member 10, while its inner diameter is set to be slightly smaller than the inner diameter of the tube member 10. Therefore, in the state where the cylindrical edge portion 14 of the lid member 11 is concentrically butted against the tube member 10, there is a step δ (0. 1 to 0.5 mm) is formed (FIG. 2). Further, the height of the cylindrical edge portion 14 is set to be slightly larger than half the tip diameter of the pin portion 7 of the rotary tool 6 described later. A conical convex portion 13 a is formed at the center of the back surface of the flat plate portion 13 of the lid member 11.

上記管部材10および蓋部材11は、ここではアルミニウム合金からなっている。この場合、仮に、本有底チューブ1が適用されるモノチューブ式油圧緩衝器のピストン径(チューブ本体2の内径)が40mmである場合、前記管部材10の肉厚は3mm程度に、前記蓋部材11の平板部13の板厚(平均板厚)は6mm程度にそれぞれ設定される   Here, the tube member 10 and the lid member 11 are made of an aluminum alloy. In this case, if the piston diameter (inner diameter of the tube main body 2) of the monotube hydraulic shock absorber to which the bottomed tube 1 is applied is 40 mm, the thickness of the tube member 10 is about 3 mm, and the lid The plate thickness (average plate thickness) of the flat plate portion 13 of the member 11 is set to about 6 mm.

上記マンドレル12は、断面円形をなす本体部15の先端部に該本体部15よりわずか大径をなす受圧部16を設けている。このマンドレル12の受圧部16は、管部材10に対して所定のクリアランス(0.1〜0.5mm)で挿入できるように、かつ前記蓋部材11の筒状縁部14にわずかのクリアランス(0.01〜0.05mm)で嵌合できるようにその外径が設定されている。マンドレル12の受圧部16はまた、管部材10に突合された蓋部材11の平板部13に先端を当接させた状態で、前記回転工具6の肩部8の押圧範囲をバックアップできる必要最小限の長さに設定されている。   The mandrel 12 is provided with a pressure receiving portion 16 having a slightly larger diameter than the main body portion 15 at the distal end portion of the main body portion 15 having a circular cross section. The pressure receiving portion 16 of the mandrel 12 can be inserted into the tube member 10 with a predetermined clearance (0.1 to 0.5 mm) and has a slight clearance (0 in the cylindrical edge portion 14 of the lid member 11). The outer diameter is set so that it can be fitted at 0.01 to 0.05 mm). The pressure receiving portion 16 of the mandrel 12 is also the minimum necessary to back up the pressing range of the shoulder portion 8 of the rotary tool 6 in a state where the tip is in contact with the flat plate portion 13 of the lid member 11 abutted against the tube member 10. Is set to the length of

本第1の実施形態において、摩擦撹拌接合に用いる回転工具6は、前出図12に示したものと同じものであり、段付きロッド9の先端に前記肩部8を介して小径のピン部7を同心に設けている。回転工具6は、そのロッド9が、図示を略す回転及び昇降ユニットに支持されることで、軸回りに回転および軸方向移動するようになっている。回転工具6は、ここでは管部材10および蓋部材11の材料であるアルミニウム合金よりも十分に硬さの高い硬質材料から形成されており、その耐摩耗性は十分となっている。なお、一例として、回転工具6のピン部7の先端径、根元径はそれぞれ3mm程度、4mm程度に設定され、また、肩部8の直径(ショルダ径)は10mm程度に設定される。   In the first embodiment, the rotary tool 6 used for the friction stir welding is the same as that shown in FIG. 12, and a pin portion having a small diameter is connected to the tip of the stepped rod 9 via the shoulder portion 8. 7 is provided concentrically. The rotary tool 6 is configured to rotate and move in the axial direction about an axis by the rod 9 being supported by a rotation and lifting unit (not shown). The rotary tool 6 is formed of a hard material that is sufficiently harder than the aluminum alloy that is the material of the tube member 10 and the lid member 11, and has sufficient wear resistance. As an example, the tip diameter and the root diameter of the pin portion 7 of the rotary tool 6 are set to about 3 mm and about 4 mm, respectively, and the diameter (shoulder diameter) of the shoulder portion 8 is set to about 10 mm.

摩擦撹拌接合に際しては、図1に示されるように、管部材10に蓋部材11を同心に突合せて、所定のスラスト力で両者を位置固定した後、管部材10にマンドレル12を挿入し、その先端側の受圧部16を蓋部材11の筒状縁部14に嵌入させると共に、蓋部材11の平板部13に当接させる。この時、マンドレル12は、その本体部15はもちろんその受圧部16も、管部材10の内径より0.2〜1.0mm程度小径になっているので、管部材10の内面に接触することなく(傷を付けることなく)円滑に挿入することができる。   In the friction stir welding, as shown in FIG. 1, the lid member 11 is concentrically butted against the tube member 10, and both are fixed in position by a predetermined thrust force, and then the mandrel 12 is inserted into the tube member 10. The pressure receiving portion 16 on the distal end side is fitted into the cylindrical edge portion 14 of the lid member 11 and is brought into contact with the flat plate portion 13 of the lid member 11. At this time, since the mandrel 12 has not only the main body portion 15 but also the pressure receiving portion 16 thereof having a diameter of about 0.2 to 1.0 mm smaller than the inner diameter of the tube member 10, the mandrel 12 does not contact the inner surface of the tube member 10. It can be inserted smoothly (without scratching).

回転工具6は、同じく図1に示されるように、管部材10および蓋部材11の突合せ部Sの外側の待機位置に、その軸線Cを、管部材10および蓋部材11の共通の軸線に対して直交させて位置決めされている。上記準備完了後、回転工具6を所定の回転数で回転させながら前記待機位置から突合せ部Sに向けて移動させる。すると、図3に示されるように、ピン部7が回転しながら突合せ部Sに押込まれ、このピン部7の回転、押込みによって摩擦熱が発生する。そして、この摩擦熱により突合せ部Sの材料が軟化および攪拌され、ピン部7は、回転工具6の肩部8が筒状縁部13の外面に当接するまで押込まれる。この時、突合せ部Sの片側の管部材10の端部が、蓋部材11の筒状縁部14より段差δ分だけ盛上がっているので(図2)、該端部は、回転工具6の肩部8に押されて局部的に変形し、マンドレル12の受圧部16に押えられる。一方、蓋部材11の筒状縁部14はマンドレル12の受圧部16にほぼ接する状態となっているので、該筒状縁部14は、ほとんど変形を起こすことなく受圧部16に押えられる。   Similarly, as shown in FIG. 1, the rotary tool 6 has its axis C set at the standby position outside the abutting portion S of the tube member 10 and the lid member 11 with respect to the common axis of the tube member 10 and the lid member 11. Are positioned orthogonally. After completion of the preparation, the rotary tool 6 is moved from the standby position toward the abutting portion S while rotating at a predetermined rotational speed. Then, as shown in FIG. 3, the pin portion 7 is pushed into the butting portion S while rotating, and frictional heat is generated by the rotation and pushing of the pin portion 7. The material of the butt portion S is softened and agitated by this frictional heat, and the pin portion 7 is pushed in until the shoulder portion 8 of the rotary tool 6 contacts the outer surface of the cylindrical edge portion 13. At this time, the end portion of the tube member 10 on one side of the butting portion S is raised by the step δ from the cylindrical edge portion 14 of the lid member 11 (FIG. 2). It is pressed by the shoulder 8 and deformed locally and is pressed by the pressure receiving portion 16 of the mandrel 12. On the other hand, since the cylindrical edge portion 14 of the lid member 11 is substantially in contact with the pressure receiving portion 16 of the mandrel 12, the cylindrical edge portion 14 is pressed by the pressure receiving portion 16 with almost no deformation.

その後、回転工具6の回転を継続しながら、管部材10と、蓋部材11とマンドレル12とを一体的に所定方向へ所定速度で回転させる。すると、回転工具6が、管部材10と蓋部材11との突合せ部Sに沿って相対移動し、この相対移動により回転工具6の移動方向の前側の材料が摩擦熱により流動化すると共に攪拌されてピン部7の移動跡へ流入し、これにより周方向へ延びる摩擦接合部17が形成される。しかしてこの間、突合せ部Sの片側の管部材10の端部は回転工具6の肩部8によって絞り込まれ、これによって回転工具6の加圧力がマンドレル12の受圧部16によって均等に受圧される。この結果、管部材10および蓋部材11の突合せ端部は、変形し易いアルミニウム合金から形成されているにも拘わらず、不必要に変形を起こすことがなく、これにより所望の寸法形状を有するアルミニウム合金製の有底チューブ1(図5)が完成する。本第1の実施形態においては特に、チューブ本体2として提供される管本体10に何らの寸法形状的な変更を加える必要がないので、コスト的に有利である。   Thereafter, the tube member 10, the lid member 11, and the mandrel 12 are integrally rotated at a predetermined speed in a predetermined direction while continuing the rotation of the rotary tool 6. Then, the rotary tool 6 relatively moves along the abutting portion S between the tube member 10 and the lid member 11, and the material on the front side in the moving direction of the rotary tool 6 is fluidized by frictional heat and stirred by this relative movement. Thus, the frictional joint 17 that flows into the movement trace of the pin portion 7 and extends in the circumferential direction is formed. During this time, the end of the tube member 10 on one side of the butting portion S is squeezed by the shoulder 8 of the rotary tool 6, whereby the pressure applied by the rotary tool 6 is evenly received by the pressure receiving portion 16 of the mandrel 12. As a result, the abutting end portions of the tube member 10 and the lid member 11 are formed of an aluminum alloy that is easily deformed, but are not unnecessarily deformed, whereby aluminum having a desired dimensional shape is obtained. The bottomed tube 1 (FIG. 5) made of an alloy is completed. In the first embodiment, in particular, it is not necessary to make any dimensional changes to the tube body 10 provided as the tube body 2, which is advantageous in terms of cost.

このようにして完成した有底チューブ1は、図5に示されるように、そのエンドキャップ3として提供される蓋部材11の平板部13の板厚(平均板厚)が、強度上必要とする規定の板厚(ここでは、6mm程度)となっているので、重量増加を来すことはなく、アルミ化による軽量化利点が最大限に発揮される。また、摩擦接合部17は、溶融を伴うことなく形成されるので、強度は十分となり、得られる有底チューブ1は強度的な信頼性も高いものとなる。なお、有底チューブ1の底部側には、回転工具6の肩部8の押えにより絞り形状の縮径部19が形成されるが、この範囲は、ピストン(フリーピストン)の摺動範囲外となっているので、機能が損われることはない。   As shown in FIG. 5, the bottomed tube 1 thus completed requires the plate thickness (average plate thickness) of the flat plate portion 13 of the lid member 11 provided as the end cap 3 in terms of strength. Since it has a prescribed plate thickness (here, about 6 mm), it does not increase in weight, and the advantage of weight reduction due to aluminum is maximized. In addition, since the friction bonding portion 17 is formed without melting, the strength is sufficient, and the obtained bottomed tube 1 has high strength reliability. In addition, on the bottom side of the bottomed tube 1, a reduced-diameter portion 19 having a drawing shape is formed by pressing the shoulder portion 8 of the rotary tool 6, but this range is outside the sliding range of the piston (free piston). Therefore, the function is not lost.

ところで、モノチューブ式油圧緩衝器として完成させるには、前記したように有底チューブ1のエンドキャップ3に取付環5を接合する必要がある(図11)。上記第1実施形態において、エンドキャップ3として提供される蓋部材11の背面に円錐形状の凸部13aを設けたのは、前記取付環5の接合に摩擦圧接を利用することを意図してのことである。摩擦圧接の方式には、ブレーキ式、イナーシャ式、両式を併用するハイブリッド式などがあるが、何れの方式を採用する場合でも、前記円錐形状の凸部13aで集中的に摩擦熱が発生し、エンドキャップ3に取付環5を簡単かつ確実に接合することができる。図6は、摩擦圧接後の状態を示したもので、エンドキャップ3と取付環5との接合部19は、熱影響部の少ない健全な組織となっている。したがって、このように摩擦圧接を利用して取付環5が接合された有底チューブ1は、上記したチューブ本体2に対するエンドキャップ3の摩擦撹拌接合と相俟って、強度的な信頼性が著しく高いものとなる。しかも、アーク溶接を採用する場合のように、コンタミネーションや熱変形の問題が生じることもないので、得られる油圧緩衝器は、品質および機能ともに著しく優れたものとなる。   By the way, in order to complete as a monotube type hydraulic shock absorber, it is necessary to join the attachment ring 5 to the end cap 3 of the bottomed tube 1 as described above (FIG. 11). In the first embodiment, the conical convex portion 13 a is provided on the back surface of the lid member 11 provided as the end cap 3 because the friction welding is used for joining the mounting ring 5. That is. The friction welding method includes a brake method, an inertia method, and a hybrid method using both methods. However, in any case, frictional heat is generated intensively at the conical convex portion 13a. The attachment ring 5 can be easily and reliably joined to the end cap 3. FIG. 6 shows a state after the friction welding, and the joint portion 19 between the end cap 3 and the mounting ring 5 has a healthy structure with few heat affected portions. Therefore, the bottomed tube 1 to which the mounting ring 5 is joined by using friction welding in this way, combined with the friction stir welding of the end cap 3 to the tube main body 2 described above, is extremely reliable in strength. It will be expensive. Moreover, unlike the case where arc welding is employed, there is no problem of contamination or thermal deformation, so that the obtained hydraulic shock absorber is remarkably excellent in both quality and function.

図7および図8は、本発明の第2の実施形態としての管端部の閉塞方法を示したものである。なお、本第2の実施形態の基本形態は上記第1の実施形態と同じであるので、ここでは、同一部部分に同一符号を付し、重複する説明は省略する。本第2の実施形態の特徴とするところは、上記蓋部材11の筒状縁部14の内径に変更を加えることなく、該筒状縁部14の肉厚を管部材10の肉厚よりも厚くし、筒状縁部14の外周面と管部材10の外周面とを面一に合せた点にある(図7)。この場合、管部材10と蓋部材11との突合せ部Sの内側だけに段差δが形成されることになる。   7 and 8 show a tube end portion closing method according to the second embodiment of the present invention. In addition, since the basic form of the second embodiment is the same as that of the first embodiment, the same reference numerals are given to the same parts, and duplicate descriptions are omitted. The feature of the second embodiment is that the thickness of the cylindrical edge portion 14 is made larger than the thickness of the tube member 10 without changing the inner diameter of the cylindrical edge portion 14 of the lid member 11. The thickness is increased, and the outer peripheral surface of the cylindrical edge portion 14 and the outer peripheral surface of the tube member 10 are flush with each other (FIG. 7). In this case, the step δ is formed only inside the butted portion S between the tube member 10 and the lid member 11.

本第2の実施形態における摩擦撹拌接合のやり方は第1の実施形態と同じであり、図3に示したように、回転工具6のピン部7を所定の回転数で回転させながら突合せ部Sに押込むとともに、回転工具6の肩部8で突合せ部Sをマンドレル12の受圧部16に押える。この時、筒状縁部14の外周面と管部材10の外周面とが面一になっているので、ピン部7は曲げ力を受けることなく円滑に突合せ部Sに押込まれる。一方、突合せ部Sの片側の管部材10の端部の内側が、段差δ分だけマンドレル12の受圧部16から浮いているので(図7)、該端部は、回転工具6の肩部8に押されて局部的に変形し、マンドレル12の受圧部16に押えられる。一方、蓋部材11の筒状縁部14は厚肉となっているので、回転工具6の肩部8が筒状縁部14に食込み、筒状縁部14の外周面に段差δ´が生じる(図8)。その後は、管部材10と、蓋部材11とマンドレル12とが一体的に回転することで、回転工具6が管部材10と蓋部材11との突合せ部Sに沿って相対移動し、これによって周方向へ延びる摩擦接合部17が形成される。しかしてこの間、マンドレル12の受圧部16によって回転工具6の加圧力が受圧されるので、管部材10および蓋部材11は、第1の実施形態と同様に不必要な変形を起こすことなく摩擦撹拌接合される。なお、得られた有底チューブ1の底部側には、回転工具6の肩部8の食込みにより溝形状の縮径部18´が形成されるが(図8)、この範囲は、ピストン(フリーピストン)の摺動範囲外となっているので、機能が損われることはない。   The manner of the friction stir welding in the second embodiment is the same as that of the first embodiment, and as shown in FIG. 3, the butting portion S while rotating the pin portion 7 of the rotary tool 6 at a predetermined rotational speed. The butting portion S is pressed against the pressure receiving portion 16 of the mandrel 12 by the shoulder portion 8 of the rotary tool 6. At this time, since the outer peripheral surface of the cylindrical edge portion 14 and the outer peripheral surface of the tube member 10 are flush with each other, the pin portion 7 is smoothly pushed into the butt portion S without receiving a bending force. On the other hand, the inner side of the end portion of the tube member 10 on one side of the butting portion S floats from the pressure receiving portion 16 of the mandrel 12 by the step δ (FIG. 7). To be locally deformed and pressed by the pressure receiving portion 16 of the mandrel 12. On the other hand, since the cylindrical edge portion 14 of the lid member 11 is thick, the shoulder portion 8 of the rotary tool 6 bites into the cylindrical edge portion 14 and a step δ ′ is generated on the outer peripheral surface of the cylindrical edge portion 14. (FIG. 8). Thereafter, the tube member 10, the lid member 11, and the mandrel 12 rotate integrally, so that the rotary tool 6 relatively moves along the abutting portion S between the tube member 10 and the lid member 11, and thereby the peripheral member is rotated. A friction joint 17 extending in the direction is formed. During this time, since the pressure of the rotary tool 6 is received by the pressure receiving portion 16 of the mandrel 12, the tube member 10 and the lid member 11 are frictionally agitated without causing unnecessary deformation as in the first embodiment. Be joined. A groove-shaped diameter-reduced portion 18 ′ is formed on the bottom side of the obtained bottomed tube 1 by the biting of the shoulder portion 8 of the rotary tool 6 (FIG. 8). Since it is outside the sliding range of the piston), the function is not impaired.

図9および図10は、本発明の第3の実施形態としての管端部の閉塞方法を示したものである。なお、本第3の実施形態の基本形態は上記第1の実施形態と同じであるので、ここでは、同一部部分に同一符号を付し、重複する説明は省略する。本第3の実施形態の特徴とするところは、予め上記管部材10の突合せ端部を絞って、その絞り部20を蓋部材11の筒状縁部14に突合せるようにした点にある。   FIG. 9 and FIG. 10 show a tube end closing method as a third embodiment of the present invention. In addition, since the basic form of the third embodiment is the same as that of the first embodiment, the same reference numeral is given to the same part portion, and the duplicate description is omitted. The feature of the third embodiment is that the butt end portion of the tube member 10 is squeezed in advance and the squeezed portion 20 is butted against the cylindrical edge portion 14 of the lid member 11.

本第3の実施形態における摩擦撹拌接合のやり方は第1の実施形態と同じであり、図3に示したように、回転工具6のピン部7を所定の回転数で回転させながら突合せ部Sに押込むとともに、回転工具6の肩部8で突合せ部Sをマンドレル12の受圧部16に押える。この時、管部材10および蓋部材11の突合せ端部は、相互に段差を生じることなくマンドレル12の受圧部16に接しているので(図9)、ピン部7は曲げ力を受けることなく円滑に突合せ部Sに押込まれ、かつ肩部8は、それぞれの突合せ端部を均等にマンドレル12の受圧部16に押える。その後は、管部材10と、蓋部材11とマンドレル12とが一体的に回転することで、回転工具6が管部材10と蓋部材11との突合せ部Sに沿って相対移動し、これによって周方向へ延びる摩擦接合部17が形成される。しかしてこの間、マンドレル12の受圧部16によって回転工具6の加圧力が受圧されるので、管部材10および蓋部材11は、第1の実施形態と同様に不必要な変形を起こすことなく摩擦撹拌接合される。また、管部材10および蓋部材11の突合せ端部は同じ肉厚となっているので、回転工具6に曲げ力が作用することはなく、円滑に摩擦撹拌接合は進行する。なお、得られた有底チューブ1の底部側には、絞り形状の縮径部18″が形成されるが(図10)、この範囲は、ピストン(フリーピストン)の摺動範囲外となっているので、機能が損われることはない。   The manner of the friction stir welding in the third embodiment is the same as that of the first embodiment, and as shown in FIG. 3, the butting portion S while rotating the pin portion 7 of the rotary tool 6 at a predetermined rotational speed. The butting portion S is pressed against the pressure receiving portion 16 of the mandrel 12 by the shoulder portion 8 of the rotary tool 6. At this time, the butted end portions of the tube member 10 and the lid member 11 are in contact with the pressure receiving portion 16 of the mandrel 12 without causing a step (FIG. 9), so that the pin portion 7 is smooth without receiving bending force. The shoulder 8 is pressed against the pressure receiving portion 16 of the mandrel 12 evenly. Thereafter, the tube member 10, the lid member 11, and the mandrel 12 rotate integrally, so that the rotary tool 6 relatively moves along the abutting portion S between the tube member 10 and the lid member 11, and thereby the peripheral member is rotated. A friction joint 17 extending in the direction is formed. During this time, since the pressure of the rotary tool 6 is received by the pressure receiving portion 16 of the mandrel 12, the tube member 10 and the lid member 11 are frictionally agitated without causing unnecessary deformation as in the first embodiment. Be joined. Further, since the butt end portions of the tube member 10 and the lid member 11 have the same thickness, the bending force does not act on the rotary tool 6, and the friction stir welding proceeds smoothly. In addition, although the diameter-reduced portion 18 ″ having a narrow shape is formed on the bottom side of the obtained bottomed tube 1 (FIG. 10), this range is outside the sliding range of the piston (free piston). Therefore, the function is not impaired.

なお、上記した各実施形態では、モノチューブ式油圧緩衝器の有底チューブの製造に適用したが、本発明は、モノチューブ式油圧緩衝器以外の各種シリンダ装置の有底チューブはもとより、エンドキャップを必要とする、各種機器の有底チューブの製造に適用できることはもちろんである。   In each of the above-described embodiments, the present invention is applied to the manufacture of a bottomed tube of a monotube hydraulic shock absorber. However, the present invention applies not only to the bottomed tubes of various cylinder devices other than the monotube hydraulic shock absorber, Of course, it can be applied to the manufacture of bottomed tubes for various devices.

本発明に係る管端部の閉塞方法の第1の実施形態を示したもので、摩擦撹拌接合の準備状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows 1st Embodiment of the block | closing method of the pipe end part which concerns on this invention, and shows the preparation state of friction stir welding. 図1のA部拡大断面図である。It is the A section expanded sectional view of FIG. 第1の実施形態における摩擦撹拌接合の実施状態を示す断面図である。It is sectional drawing which shows the implementation state of the friction stir welding in 1st Embodiment. 図3のB部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a B part in FIG. 3. 第1の実施形態で得られた有底チューブの構造を示す断面図である。It is sectional drawing which shows the structure of the bottomed tube obtained by 1st Embodiment. エンドキャップに取付環を摩擦圧接した後の有底チューブの構造を示す断面図である。It is sectional drawing which shows the structure of a bottomed tube after carrying out friction welding of the attachment ring to an end cap. 本発明に係る管端部の閉塞方法の第2の実施形態を示したもので、摩擦撹拌接合の準備状態を示す要部断面図である。FIG. 7 is a cross-sectional view of a main part showing a second embodiment of the tube end closing method according to the present invention and showing a preparation state of friction stir welding. 第2の実施形態における摩擦撹拌接合の実施状態を示す要部断面図である。It is principal part sectional drawing which shows the implementation state of the friction stir welding in 2nd Embodiment. 本発明に係る管端部の閉塞方法の第3の実施形態を示したもので、摩擦撹拌接合の準備状態を示す要部断面図である。FIG. 7 is a cross-sectional view of a main part showing a third embodiment of the tube end closing method according to the present invention and showing a preparation state of friction stir welding. 第3の実施形態における摩擦撹拌接合の実施状態を示す要部断面図である。It is principal part sectional drawing which shows the implementation state of the friction stir welding in 3rd Embodiment. 本管端部の閉塞方法の実施対象であるモノチューブ式油圧緩衝器に用いられる、従来の有底チューブの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional bottomed tube used for the monotube hydraulic buffer which is the implementation object of the obstruction | occlusion method of a main pipe end part. 有底チューブを製造するめの、従来の摩擦撹拌接合の実施状態を示す断面図である。It is sectional drawing which shows the implementation state of the conventional friction stir welding for manufacturing a bottomed tube.

符号の説明Explanation of symbols

6 回転工具
7 ピン部
8 肩部
10 管部材
11 蓋部材
12 マンドレル
14 蓋部材の筒状縁部
16 マンドレルの受圧部
S 突合せ部

6 Rotating tool 7 Pin portion 8 Shoulder portion 10 Tube member 11 Lid member 12 Mandrel 14 Cylindrical edge portion of lid member 16 Pressure receiving portion of mandrel S Butt portion

Claims (8)

管部材の一端に蓋部材を突合せて、その突合せ部を摩擦撹拌接合する管端部の閉塞方法において、前記蓋部材をカップ形状としてその筒状縁部を前記管部材の一端に突合せると共に、該筒状縁部に、前記管部材に挿入したマンドレルの一端部を嵌合させ、前記マンドレルに回転工具の加圧力を受圧させながら摩擦撹拌接合を行うことを特徴とする管端部の閉塞方法。   In the tube end portion closing method in which the lid member is butted against one end of the tube member, and the butted portion is friction stir welded, the lid member is cup-shaped and its tubular edge is butted against one end of the tube member, One end of a mandrel inserted into the tubular member is fitted to the cylindrical edge, and friction stir welding is performed while the mandrel receives pressure from a rotary tool. . 蓋部材の縁部に対するマンドレルの嵌合クリアランスを、0.01〜0.05mmに設定することを特徴とする請求項1に記載の管端部の閉塞方法。   The tube end portion closing method according to claim 1, wherein the fitting clearance of the mandrel with respect to the edge portion of the lid member is set to 0.01 to 0.05 mm. 蓋部材の筒状縁部の内径を、管部材の内径よりも小さくすることを特徴とする請求項1または2に記載の管端部の閉塞方法。   The tube end portion closing method according to claim 1 or 2, wherein an inner diameter of the cylindrical edge portion of the lid member is made smaller than an inner diameter of the tube member. 蓋部材の筒状縁部の肉厚を、管部材の肉厚と同等にすることを特徴とする請求項3に記載の管端部の閉塞方法。   The tube end portion closing method according to claim 3, wherein the thickness of the cylindrical edge portion of the lid member is made equal to the thickness of the tube member. 蓋部材の筒状縁部の肉厚を、管部材の肉厚よりも厚くすることを特徴とする請求項3に記載の管端部の閉塞方法。   The tube end portion closing method according to claim 3, wherein the thickness of the cylindrical edge portion of the lid member is made thicker than the thickness of the tube member. 予め管部材の一端部を絞って、その絞り部分の内径を蓋部材の筒状縁部の内径と同等にすることを特徴とする請求項3に記載の管端部の閉塞方法。   The method for closing a pipe end according to claim 3, wherein one end of the pipe member is squeezed in advance, and the inner diameter of the throttle part is made equal to the inner diameter of the cylindrical edge of the lid member. 請求項1乃至6の何れか1項に記載の方法により管端部が閉塞された、アルミニウム合金製の有底チューブを用いたことを特徴とするシリンダ装置。   A cylinder device using a bottomed tube made of an aluminum alloy, the tube end portion of which is closed by the method according to any one of claims 1 to 6. 蓋部材に、被取付部材に取付けるための取付環を摩擦圧接したことを特徴とする請求項7に記載のシリンダ装置。

The cylinder device according to claim 7, wherein an attachment ring for attaching to the attached member is friction-welded to the lid member.

JP2005024244A 2005-01-31 2005-01-31 Tube end plugging method and cylinder device Pending JP2006205252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024244A JP2006205252A (en) 2005-01-31 2005-01-31 Tube end plugging method and cylinder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024244A JP2006205252A (en) 2005-01-31 2005-01-31 Tube end plugging method and cylinder device

Publications (1)

Publication Number Publication Date
JP2006205252A true JP2006205252A (en) 2006-08-10

Family

ID=36962622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024244A Pending JP2006205252A (en) 2005-01-31 2005-01-31 Tube end plugging method and cylinder device

Country Status (1)

Country Link
JP (1) JP2006205252A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670483B (en) * 2009-10-21 2011-06-15 哈尔滨工业大学 Fill type stirring friction plug repair welding method and welding tool thereof
JP2012533722A (en) * 2009-07-16 2012-12-27 ロッキード マーティン コーポレーション Spiral tube bundle assembly device for heat exchanger
JP2013059811A (en) * 2012-11-27 2013-04-04 Nippon Light Metal Co Ltd Joining method
CN105014230A (en) * 2015-08-07 2015-11-04 江苏通宇钢管集团有限公司 Aluminum alloy pipe end seal-welding device and welding method
CN105014231A (en) * 2015-08-07 2015-11-04 江苏通宇钢管集团有限公司 Aluminum alloy pipe end compound sealing device and method
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213284A (en) * 1985-07-09 1987-01-22 ダナ、コ−パレイシヤン Friction welding method, manufacture of axle assembly and metallic part
JP2000117430A (en) * 1998-10-16 2000-04-25 Tokai Rubber Ind Ltd Butted joint structure
JP2004042049A (en) * 2002-07-08 2004-02-12 Sumitomo Light Metal Ind Ltd Manufacturing method of fluid-pressure forming tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213284A (en) * 1985-07-09 1987-01-22 ダナ、コ−パレイシヤン Friction welding method, manufacture of axle assembly and metallic part
JP2000117430A (en) * 1998-10-16 2000-04-25 Tokai Rubber Ind Ltd Butted joint structure
JP2004042049A (en) * 2002-07-08 2004-02-12 Sumitomo Light Metal Ind Ltd Manufacturing method of fluid-pressure forming tube

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096621A (en) * 2009-07-16 2017-06-01 ロッキード マーティン コーポレーション Helical tube bundle arrangements for heat exchangers
JP2012533722A (en) * 2009-07-16 2012-12-27 ロッキード マーティン コーポレーション Spiral tube bundle assembly device for heat exchanger
JP2015099011A (en) * 2009-07-16 2015-05-28 ロッキード マーティン コーポレーション Helical tube bundle arrangement for heat exchanger
KR101744065B1 (en) * 2009-07-16 2017-06-07 록히드 마틴 코포레이션 Helical tube bundle arrangements for heat exchangers
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
CN101670483B (en) * 2009-10-21 2011-06-15 哈尔滨工业大学 Fill type stirring friction plug repair welding method and welding tool thereof
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
JP2013059811A (en) * 2012-11-27 2013-04-04 Nippon Light Metal Co Ltd Joining method
CN105014231A (en) * 2015-08-07 2015-11-04 江苏通宇钢管集团有限公司 Aluminum alloy pipe end compound sealing device and method
CN105014230A (en) * 2015-08-07 2015-11-04 江苏通宇钢管集团有限公司 Aluminum alloy pipe end seal-welding device and welding method

Similar Documents

Publication Publication Date Title
JP2006205252A (en) Tube end plugging method and cylinder device
JP3709972B2 (en) Aluminum alloy spot joining method and apparatus
JP4686289B2 (en) Friction stir welding method for hollow workpieces
JP4986532B2 (en) Friction stir welding method
JP2007229719A (en) Tube end sealing method
JP2004106037A (en) Method for bonding metal
JP6052232B2 (en) Joining method
JP5007872B2 (en) Single cylinder hydraulic shock absorber and bracket mounting method for single cylinder hydraulic shock absorber
US6598778B2 (en) Aluminum-based metal link for vehicles and a method for producing same
JP2004042049A (en) Manufacturing method of fluid-pressure forming tube
JP2007313541A (en) Method for manufacturing clad tube
JP3963215B2 (en) Method for joining pipe-shaped members
JP2012192437A (en) Friction agitating joining tool
JP2002066767A (en) Hollow structural angle for friction stirring joining
JP7317362B2 (en) Friction stir welding tool and friction stir welding method
JP4014258B2 (en) Metal pipe and manufacturing method thereof
JP2011115801A (en) Friction stir welding method, and friction stir welding member
JP4453506B2 (en) Friction spot welding method
JP2007044756A (en) Backing fixture, and friction stir welding method for hollow material to be welded
JP3045700B2 (en) Friction stir welding method and welding tool used for it
JP4452577B2 (en) Friction stir welding method
US20070132941A1 (en) Method for securing two parts of eyeglasses
JP2006095593A (en) Method for manufacturing cylindrical body
JP2554165Y2 (en) Steering rack shaft
JP2012132436A (en) Compressor casing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A521 Written amendment

Effective date: 20080201

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A977 Report on retrieval

Effective date: 20100219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120523