JP2006204076A - Three-dimensional multiple-string multiple-step motor generator - Google Patents

Three-dimensional multiple-string multiple-step motor generator Download PDF

Info

Publication number
JP2006204076A
JP2006204076A JP2005039783A JP2005039783A JP2006204076A JP 2006204076 A JP2006204076 A JP 2006204076A JP 2005039783 A JP2005039783 A JP 2005039783A JP 2005039783 A JP2005039783 A JP 2005039783A JP 2006204076 A JP2006204076 A JP 2006204076A
Authority
JP
Japan
Prior art keywords
stage
generator
rotor
diameter
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039783A
Other languages
Japanese (ja)
Inventor
Yoshiji Kondo
由次 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005039783A priority Critical patent/JP2006204076A/en
Publication of JP2006204076A publication Critical patent/JP2006204076A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous and moderate energy generating method and device that turns a natural phenomenon that as intense atomic power as the 38th power of 1:10 is suddenly generated exceeding the law of energy universality in a closed system into gravity, a weak force, electromagnetic force, and nuclear force. <P>SOLUTION: By making a four-dimensional motor under the electromagnetic force multiple steps in one-dimensional direction, high-speed revolutions of N-step power by multiplying the product of the revolutions of each step multiplied by time by each step is obtained. A second step is released from a stator to form the multiple steps by an output shaft rotor that rotates freely. In this multiple steps, power generation of efficiency N that doubles rotations in the positive rotating direction of an output shaft is used together with power generation generated by multi-step internal self-induction generation from the second step onward. A first step driving motor rotates a rotor of the second step generator by a first rotation. A second step stator is released from the stator to make it work as an output shaft rotor and perform differential speed power generation. Generated torque rotates a rotor of a multiple-step regression generator so that N-step times power generation is achieved with the same energy supplied when generating power by a differential speed with the multiple-step stators. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

発電機Generator

従来の発電機は、効率二分の一×力率×回転数×トルクで交流発電エネルギーを表す。熱力学にも従い、エネルギー普遍則を超える事が出来ない、と言れている。物性物理に於いても、エネルギーの弱い順から、重力、弱い力、電磁気力、核力と有り、重力からいきなり核力を表す事が可能ですが、重力から力の弱い順番に、穏やかなエネルギーとしてエネルギー普遍を超えて発生させる事はできないとされている。各四つの次元がそれぞれ閉じているとされている。思考方法も技術の根幹であるとする捕らえかたをすれば、錬金術としての経験主義を絶対視し、手探りでしか物の判断をしてはいけないと言う、真理を見つめる目に蓋がかぶさっている状態である。エネルギーを数理で表すことを考慮すると、数理も、基数一は何でも良いとする微分、積分の便法が絶対であり、基数一が定まらない、大きくなったり小さくなったりする、いいかげんな算術が絶対だとされている。小さな狭い世界である、人間の考える事が絶対であるとする人間中心主義の基、このエネルギー普遍則が、自然の核力を越す、膨大な永久エネルギーを表す現実の前には、一人よがりなうぬ惚れた、人間の卑屈としか写らない。Conventional generators represent AC power generation energy with half the efficiency × power factor × rotational speed × torque. According to thermodynamics, it is said that the universal energy law cannot be exceeded. In physical physics, there is gravity, weak force, electromagnetic force, nuclear force in order of weak energy, and it is possible to express nuclear force suddenly from gravity, but gentle energy from gravity to weak force in order. It is said that it cannot be generated beyond the universal energy. Each of the four dimensions is said to be closed. If you think that the way of thinking is also the foundation of the technology, you must absolutely view empiricalism as an alchemy, and you should only judge things by frustration. It is in a state. Considering the energy expressed in mathematics, the mathematical, the basic method of differentiation and integration that the radix 1 is good is absolute, the radix 1 is not fixed, it becomes large or small Is said to be absolute. In a small and narrow world, the basis of anthropocentrism that human thinking is absolute, this universal law of energy surpasses the nuclear power of nature. It can only be seen as a drowning human being.

発明が解決しょうとする課題Problems to be solved by the invention

本発明は、閉じた系のエネルギー普変則を超える、重力から核力に至るエネルギーの発生を、激しい原子力の利用ではなく、穏やかな自然のエネルギー発生方法として、電磁起力方向と時間である回転方向を、四次元時空として併せ持つモータを三次元連動多段とし、三次元連動多段モータに拠り自在にコントロールすることを課題としている。本発明は第一の回転をする駆動モータにより回転させられる発電機に係る。駆動モータ単体では回転を上げると、効率が良くなる一次関数としての特性がある。しかし発電機と連動すると発電機が回転数とトルクの積の二次関数であるため、駆動モータは二次関数として働き、其の一次関数の特性をいかす事が出来ない。本発明は駆動モータの回転が上がると効率があがる特性を、発電機を回転させるときにも、其の特性を生かせるようにする事を課題としている。又発電機が発電する際に起きる力、トルクを減じる事を課題としている。In the present invention, the generation of energy from gravity to nuclear force that exceeds the energy law of the closed system is not a vigorous use of nuclear power, but as a gentle natural energy generation method. The problem is to make the motor that has both directions as four-dimensional space-time into a three-dimensional interlocking multistage, and to control it freely according to the three-dimensional interlocking multistage motor. The present invention relates to a generator that is rotated by a drive motor that performs a first rotation. The drive motor alone has a characteristic as a linear function that improves the efficiency when the rotation is increased. However, when the generator is linked to the generator, the generator is a quadratic function of the product of the rotation speed and the torque, so the drive motor works as a quadratic function and cannot take advantage of the characteristics of the linear function. It is an object of the present invention to make use of the characteristics that increase the efficiency when the rotation of the drive motor is increased, even when the generator is rotated. Another problem is to reduce the force and torque generated when the generator generates electricity.

課題を解決する為の手段Means to solve the problem

閉じた系内のことであるエネルギー普遍則を、普遍則を超える核力にまで至る、穏やかなエネルギーを発生させると言う課題を解決する方法として、縦、横、高さの三次元方向と時間であるプラスとマイナス回転方向を併せ持つ電磁起力により可動するモータを三次元方向に多連多段に用いて行う。駆動モーターは、回転数が二倍になると、トルクは二分の一になり、消費エネルギーも二分の一に成る。回転数とトルクの積がエネルギーとすると、其の積は一であるが、実際のエネルギーは二分の一である。エネルギー普遍則を超える、切り口が此処には存在する。他方、海面の水と、同じ水でも山の湖水の水とでは、山の水の方が、位置のエネルギーを内在している。同じことがモーターにも言え、直径が一の発電機と直径が二の発電機では、直径一×コイル数一×回転数一×起力一×発電一とすると、直径二×コイル数二×回転数一×起力二×発電二であれば位置のエネルギーは無いのですが、現実は、直径二×コイル数二×回転数一×起力(二×二×二)×発電(二×二)となり、位置のエネルギーを内包している。此処にもエネルギー普遍則を超える切り口が存在する。本発明は、課題を解決する為の一方の手段として、駆動モーターのこの優れた能力を引出すために、発電機を一次元方向に連動多段とし、中間の発電機固定子を固定から開放し、出力軸回転子とすることを多段と定め、回転子と出力軸回転子の差速によリ発生する電磁起力により、投入する第一の回転数をN段倍数とすると、発電はN段倍の発電をする。従来の発電機の発電は回転とトルクの積である二次関数に従うに対し、この一次元多段発電機は、各段の差速により回転は段数倍上がれど、トルクは同じと言う一次関数に従い、駆動モータの一次関数に従う特性と合致する。これにより回転が上がれば上がるほど効率が良いと言う駆動モータと一次元多段モータの連動は、従来の発電を駆動エネルギー一×発電一とすると、投入駆動エネルギー一×N段数倍と成る。本発明は課題を解決する為の他方の手段として、直径が倍になるとトルク効率が二倍になる、という駆動モータの特性と、逆に直径を二分の一にするとトルクが半減する発電機の効率を生かすために、連動する発電機の直径を小さくすることを解決手段とするが、直径を小さくすれば長さが長くなると言う相対する問題を、大口径駆動モータと同じ程度の大きさの筒を大口径固定子とする、の中かあるいは外に、小口径発電機を詰め、小口径発電機の固定子を大口径固定子に固定する。それぞれの小口径発電機の軸に歯車を具備し、大口径固定子の中心を回転軸とする歯車と連動させ、二次元方向多連とすることで、位置の効率、である直径比としての効率のよい発電機を提供する、其の上に小口径発電機を一次元方向多段とすることで、駆動モータの二次関数での効率の良さを具現する。As a method of solving the problem of generating a gentle energy that leads to the nuclear power exceeding the universal law, the energy universal law that is in a closed system, the three-dimensional direction and time of vertical, horizontal, and height. A motor that is movable by electromagnetic force having both positive and negative rotation directions is used in a multi-stage manner in a three-dimensional direction. When the rotational speed of the drive motor is doubled, the torque is halved and the energy consumption is also halved. If the product of rotational speed and torque is energy, the product is one, but the actual energy is half. There is a cut here that exceeds the universal energy law. On the other hand, the water of the mountain contains the energy of the position in the water of the sea surface and the water of the same lake water. The same can be said for a motor. For a generator with one diameter and a generator with two diameters, if the diameter is 1 x the number of coils x 1 the number of revolutions x 1 the starting force x 1 the power generation, the diameter is 2 x the number of coils is 2 x If the number of revolutions is 1 x force 2 x power generation 2 there is no energy at the position, but in reality the diameter 2 x number of coils 2 x speed 1 x force (2 x 2 x 2) x power generation (2 x 2) and includes the energy of the position. Here too, there are cuts beyond the universal energy law. The present invention, as one means for solving the problem, in order to draw out this excellent ability of the drive motor, the generator is multi-stage interlocked in a one-dimensional direction, the intermediate generator stator is released from fixing, If it is determined that the output shaft rotor is multistage, and the first rotational speed to be input is an N stage multiple due to the electromagnetic force generated by the differential speed between the rotor and the output shaft rotor, the power generation is N stages. Double power generation. While the power generation of the conventional generator follows a quadratic function that is the product of rotation and torque, this one-dimensional multi-stage generator increases the number of stages by the differential speed of each stage, but the linear function says that the torque is the same. And conforms to the characteristic according to the linear function of the drive motor. Thus, the linkage between the drive motor and the one-dimensional multi-stage motor, which says that the higher the rotation is, the better the efficiency is, when the conventional power generation is the drive energy 1 × power generation one, the input drive energy 1 × N times the number of stages. The present invention, as the other means for solving the problem, is the characteristics of the drive motor that the torque efficiency is doubled when the diameter is doubled, and conversely the generator whose torque is halved when the diameter is halved. In order to make the best use of the efficiency, the solution is to reduce the diameter of the generator to be linked. However, if the diameter is reduced, the relative problem of increasing the length is the same as that of a large-diameter drive motor. A small-diameter generator is packed inside or outside the cylinder having a large-diameter stator, and the stator of the small-diameter generator is fixed to the large-diameter stator. Each small-diameter generator shaft is equipped with a gear, interlocked with a gear having a large-diameter stator as the rotation axis, and in a two-dimensional direction, the position efficiency, as the diameter ratio By providing a high-efficiency generator on top of which a small-diameter generator is multi-staged in a one-dimensional direction, the efficiency of the quadratic function of the drive motor is realized.

多段モータの第Iの回転を提供する一段目駆動モータ回転子に二段目発電機回転子を装着し、発電機の固定子を固定から開放し、これの名前を出力軸回転子とし、多段目発電機回転子に取り付け、多段目出力軸回転子を、固定子を具備する最終段、これを回帰段と名付ける、この回帰段回転子に取り付ける。一段目駆動モータを除いた残り、これを一次元多段モータ発電機と名付ける。この発電機の特徴は、発電機発生電力が、トルクと回転数の積である二次関数に対して、各段の回転子と出力軸回転子との間のトルクも同じ、差速も同じであり、発電量も同じである。即ち、回転を段数倍上げても、トルクは上がらないと言う一次関数に従う。歯車との違いは、歯車は回転が上がるとトルクが逆数として相対して下がる、下がったトルク側を基準とすると、二次関数である。一次関数に従う一段目駆動モータは一たび、多段モータ発電機とペアーを組むと、効率がN段倍化するのである。一次元多段モータは一段目を駆動モータとし回転子と出力軸回転子を備えた二段目と三段目を一ブロックとし、最終段、固定子と回転子を具備する発電機、回帰段に繋ぐ。第一の回転と各ブロックと回帰段はカプラーでジョイントした。他方モータのトルクは直径により効率が変わる、例えば直径一×回転(四)×コイル数一×起力(四)×電力(四×四)のモータがある。これに対し、直径四×回転一×コイル数四×起力(四×四×四)×電力(四×四)のモータがある。この直径比で、電力が同じとした時、トルクが四倍に変わる。駆動モータとした時は、直径が大きい方が良く、発電機としたときには直径が小さい方が良い。駆動モータと発電機の組み合わせである多段モータに於いては、大口径駆動モータに小口径発電機の組み合わせで効率が良くなる。本発明の実施形態としては、小口径発電機が長くなる欠点を防ぐため、二次元多連とした。駆動モータ直径を大口径とし、駆動モーターと同じ程度の大口径筒状固定子に複数の小口径発電機固定子を円周上に並べ、それぞれの小口径発電機回転子には、歯車を装着し、大口径筒状固定子の蓋中心に入力用回転軸を具備し、回転軸に回転軸と連動する平歯車を装着し、この平歯車に、複数の小口径発電機回転子の先に装着した歯車を連動させる。これを二次元多連モータ発電機とした。其の上に小口径発電機の先に回帰モータ発電機を装着し、三次元多連多段モータ発電機とした。実施図は大口径固定子の中に小口径発電機が装着されているが、外側でも機能は変わらなく、逆に配線はし易い。The first stage drive motor rotor that provides the first rotation of the multi-stage motor is mounted with the second-stage generator rotor, the generator stator is released from the fixed state, and the name of this is the output shaft rotor. The multistage output shaft rotor is attached to the first generator rotor, and the multistage output shaft rotor is attached to the final stage equipped with a stator, and this is called the regression stage. The rest, excluding the first stage drive motor, is named a one-dimensional multi-stage motor generator. The feature of this generator is that the generator generated power is the same as the torque between the rotor of each stage and the output shaft rotor, and the differential speed is the same with respect to the quadratic function in which the power generated by the generator is the product of the torque and the rotational speed. And the amount of power generation is the same. That is, it follows a linear function that the torque does not increase even if the rotation is increased by the number of stages. The difference from a gear is that it is a quadratic function when the rotation of the gear is increased, and the torque decreases relative to the reciprocal as a reference. Once the first stage drive motor according to the linear function is paired with the multistage motor generator, the efficiency is multiplied by N stages. A one-dimensional multi-stage motor has a first stage as a drive motor, a second stage and a third stage with a rotor and an output shaft rotor as one block, a final stage, a generator with a stator and a rotor, and a return stage. Connect. The first rotation, each block and the regression stage were jointed with a coupler. On the other hand, the efficiency of the motor torque varies depending on the diameter. For example, there is a motor of one diameter × rotation (four) × one number of coils × electromotive force (four) × power (four × four). On the other hand, there is a motor of diameter 4 × rotation 1 × number of coils 4 × motive force (4 × 4 × 4) × power (4 × 4). When the power is the same at this diameter ratio, the torque changes by a factor of four. When a drive motor is used, a larger diameter is better, and when a generator is used, a smaller diameter is better. In a multi-stage motor that is a combination of a drive motor and a generator, the efficiency is improved by combining a large-diameter drive motor with a small-diameter generator. As an embodiment of the present invention, a two-dimensional multiple is used in order to prevent the disadvantage that the small-diameter generator becomes long. The drive motor diameter is a large diameter, multiple small-diameter generator stators are arranged on the circumference of a large-diameter cylindrical stator that is the same size as the drive motor, and a gear is attached to each small-diameter generator rotor. In addition, an input rotary shaft is provided at the center of the lid of the large-diameter cylindrical stator, and a spur gear that is linked to the rotary shaft is attached to the rotary shaft, and a plurality of small-diameter generator rotors are attached to the spur gear. Interlocks the gears installed. This was used as a two-dimensional multiple motor generator. On top of that, a regression motor generator was attached to the tip of a small-diameter generator to obtain a three-dimensional multi-stage multi-stage motor generator. In the embodiment, a small-diameter generator is mounted in a large-diameter stator, but the function does not change even on the outside, and conversely, wiring is easy.

本発明の実施例は図を用いて説明する。図1は多段モータ発電機の最小単位を表す回転軸方向に平行な断面図である。三相交流モータとして表す。一段目駆動モータ、図示しない、より二段目発電機c回転子に入力されたトルク一×回転数二はd出力軸回転子との間の差速一で発電一を成し、電気a伝導ロータからbカーボンブラシを経て固定側に発電した電気として供給される。c回転子は励磁磁鉄に巻きつけられたコイルで構成される電機子である。d出力軸回転子はアウターロータであり内側に永久磁石が装着されている。二段目発電機発電時に発生する起力一は、三段目、f回帰モータ発電機回転子に、トルク一×回転数一として伝えられ、e回帰モータ発電機固定子との間で差速が生まれ、発電一を発生する。従来の発電機は回転を二倍にするとトルクも二倍になる二次関数に従うが、多段モータ発電機は回転をN倍にしてもトルクは同じで、N倍にならなく一次関数に従う。一方、一般的に駆動モータは回転をN倍にすると、トルクがN分の一に下がり、投入エネルギーもN分の一に下がると言う一次関数の駆動力を示す。駆動モータと多段発電機は互いに一次間数であり、良く合致している。図3は二次元多連モータの回転方向を表す横断面図である。図3の二次元多連モータはA大口径筒固定子の内側にD小口径発電機固定子が八機固定してある。八機のc小口径発電機回転子C軸にはE歯車が回転軸と連動するFキーを経て取り付けてある。A大口径筒固定子の前後には、ボルトで一体化したG・H蓋を具備し、G蓋の円盤中心には回転するI入力用軸がJベアリングを経て挿入装着されている。このI入力軸先端には、駆動モータと連結するKカプラーが取り付けてある。G蓋の内側には、I入力軸と連動するL大口径筒平歯車が装着され、L大口径筒平歯車は八機のE小口径発電機平歯車と連動する、ギア比は一対八に設定してある。図2は二次元多連モータ発電機と三次元多連多段モータ発電機の回転軸の断面図である。駆動モーターと小口径発電機との口径差は一対四とする。口径とは回転子の直径とする。駆動モーターの係数を、個数一機×回転数一×直径起力比四×コイル数四×起力四×(入力電力数四×四)=六十四・回転・起力とする。起力とは口径の位置で、電磁気力が回転子と固定子の差速により発生する、力、反発力か吸引力を言う。他方小口径発電機を考慮すると、個数一機×回転数八×直径起力比一×コイル数一×起力八×(発電六十四)=六十四・回転・起力となる。これにより駆動モータ入力エネルギーより小口径発電機の方は四倍効率が良くなる。次に大口径四駆動モータと小口径一駆動モータの静止時起力の関係を考慮してみましょう。一方は、口径四×直径比四=十六起力。他方は、口径一×直径比一×=起力一。口径四と口径一とを歯車として考えると、一機の口径四駆動回転子に外接する口径一発電機回転子は十六機駆動させることが出来る。これは発電機と駆動モータのトルクが回転数に対して逆比であることを考慮していない。発電機発電時トルクと駆動モータ駆動時トルクが同じ時の回転数、差速三万回転を歯車比として駆動モータを静止状態とすれば、合理性はある。実際は発電時トルクと駆動時トルクが同じ状態の回転数差速は、この小口径モータ発電機で最高回転数は三万回転であり、歯車比は、八×三千七百五十×八分の一機と、八の四段歯車になるが、駆動モータ瞬間最大静止トルク状態であるからこれを持続すると、コイルが焼け切ってしまうだろう。図2は八機の小口径発電機を大口径駆動モータと歯車比一対八で連動させた物の断面図である。これにより、発電効率は直径比四倍だけあがる。次にc小口径発電機固定子を外し、d出力軸回転子とし、g出力軸回転子出力軸とf回帰モータ発電機回転子を連動させ、e回帰モータ発電機固定子との間で差速発電を発生させる。e回帰モータ発電機固定子はA大口径筒状固定子に固定されている。これを駆動モータ、多段発電機、回帰モータ発電機と、起力と回転数とエネルギーの関係で考慮してみましょう。駆動モータ回転数一×起力(投入電力十六×直径比四)=エネルギー六十四。発電機モータ回転数八×モータ機数八×起力八×(八分の一で駆動モーターとの回転数とあわせる)=エネルギー六十四。効率は四倍にあがる。次に段階を進めD小口径発電機固定子を外し、d出力軸回転子とし、f回帰モータ発電機回転子に連動する、この際の起力は多段発電機の起力と同じである。回転数は二分の一に下がるので、駆動モータの回転を二倍に上げた。これにより回帰モータ発電機は、多段モーター段とまったく同じ発電をした。工業試験所でのデーターも同じであった。これにより発電機二段の発電エネルギーは百二十八となった。駆動モータは回転が二倍、起力は同じ六十四、投入電力も同じ十六。効率は八倍と成った。多段モータに歯車比八×四の歯車を設定し発電機を四段としても稼動した。Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view parallel to the rotation axis direction that represents the minimum unit of a multi-stage motor generator. Expressed as a three-phase AC motor. The first stage drive motor, not shown in the figure, more than one torque inputted to the second stage generator c rotor x 2 revolutions, the power is generated at the speed difference with the d output shaft rotor. It is supplied as electricity generated from the rotor through the b carbon brush to the fixed side. The c rotor is an armature composed of a coil wound around exciting magnetic iron. The d output shaft rotor is an outer rotor, and a permanent magnet is mounted inside. The first force generated at the time of second-stage generator power generation is transmitted to the third-stage, f-regression motor generator rotor as torque one × rotation number one, and the differential speed with the e-return motor generator stator. Is born and generates electricity. The conventional generator follows a quadratic function that doubles the torque when the rotation is doubled. However, the torque of the multi-stage motor generator is the same even when the rotation is multiplied by N, and follows the linear function instead of N times. On the other hand, in general, when the drive motor is rotated N times, the torque decreases to 1 / N and the input energy also decreases to 1 / N. The drive motor and the multi-stage generator are in the first order number and are in good agreement. FIG. 3 is a cross-sectional view showing the rotation direction of the two-dimensional multiple motor. The two-dimensional multiple motor shown in FIG. 3 has eight D-small-diameter generator stators fixed inside an A-large-diameter cylindrical stator. E gears are attached to the eight c-small-diameter generator rotor C-axis via an F key that is linked to the rotation axis. Before and after the large-diameter cylindrical stator, a G / H lid integrated with bolts is provided, and a rotating I input shaft is inserted and mounted via a J bearing at the center of the G lid disk. A K coupler connected to the drive motor is attached to the tip of the I input shaft. Inside the G lid, an L large-diameter cylindrical spur gear that is linked to the I input shaft is mounted. The L large-diameter cylindrical spur gear is linked to eight E small-diameter generator spur gears, and the gear ratio is one to eight. It is set. FIG. 2 is a cross-sectional view of the rotation shafts of the two-dimensional multi-unit motor generator and the three-dimensional multi-unit multi-stage motor generator. The difference in aperture between the drive motor and the small aperture generator is one to four. The diameter is the diameter of the rotor. The coefficient of the drive motor is as follows: number of machines x number of revolutions x diameter force ratio 4 x number of coils 4 x force 4 x (input power number 4 x 4) = 64 · rotation and force. The electromotive force is the position of the caliber, and means the force, repulsive force or attractive force generated by the differential speed between the rotor and the stator. On the other hand, if a small-diameter generator is considered, the number of machines x the number of revolutions 8 x the ratio of diameter force x 1 number of coils x power of force x (sixty-four power generation) = sixty-four rotations. As a result, the small-diameter generator is four times more efficient than the drive motor input energy. Next, let's consider the relationship between the stationary force of the large-diameter four-drive motor and the small-diameter one-drive motor. On the other hand, caliber 4 × diameter ratio 4 = 16 force. The other is one aperture × one diameter ratio × = one force. Considering the four calibers and the one caliber as gears, a single caliber generator rotor circumscribing one caliber four-drive rotor can be driven by sixteen. This does not take into account that the torques of the generator and the drive motor have an inverse ratio to the rotational speed. There is reasonableness if the drive motor is brought into a stationary state with a gear ratio of the rotation speed when the generator power generation torque and the drive motor drive torque are the same, and the differential speed of 30,000 revolutions. Actually, the differential speed with the same torque at the time of power generation and torque at the time of driving is the maximum speed of 30,000 revolutions with this small-diameter motor generator, and the gear ratio is 8 x 37,750 x 50 minutes One machine and eight four-stage gears, but since the drive motor instantaneous maximum static torque state, if this is continued, the coil will burn out. FIG. 2 is a cross-sectional view of an eight-machine small-diameter generator interlocked with a large-diameter drive motor in a gear ratio of one to eight. As a result, the power generation efficiency is increased by four times the diameter ratio. Next, remove the c small-diameter generator stator, set it as the d output shaft rotor, link the g output shaft rotor output shaft and the f regression motor generator rotor, and make a difference between the e regression motor generator stator. Generate fast power generation. e The return motor generator stator is fixed to the A large-diameter cylindrical stator. Let's consider this in terms of the driving force, multistage generator, regression motor generator, and the relationship between starting force, rotation speed and energy. Drive motor speed 1 x electromotive force (input power 16 x diameter ratio 4) = energy 64. Generator motor rotation speed 8 x motor machine number 8 x power generation force x (combine with the rotation speed with the drive motor in one-eighth) = energy 64. Efficiency is quadrupled. Next, the stage is advanced and the D small-diameter generator stator is removed to form the d output shaft rotor, which is interlocked with the f-regression motor generator rotor. The starting force at this time is the same as that of the multistage generator. Since the number of rotations was reduced by half, the rotation of the drive motor was doubled. As a result, the regression motor generator generated exactly the same power as the multi-stage motor stage. The data at the industrial laboratory was the same. As a result, the energy generated in the second stage of the generator became 128. The drive motor rotates twice, the starting force is the same, and the input power is the same. The efficiency was 8 times. A multi-stage motor with a gear ratio of 8 x 4 was set, and the generator was operated with four stages.

発明の効果The invention's effect

従来の駆動モータを高速回転に至らせればトルクはなくなり、消費エネルギーも各種損を除いて、無くなる一次関数に従う。駆動モータは高速回転の出るモータ、例えばピストンエンジンとタービンエンジンと比較すると、高速回転の出易いタービンエンジンのほうが効率は良い。しかしエンジン単体で使用しても、ひとたび仕事をさせると、例えば、発電機を駆動し高速回転に至らせると、回転と供にトルクも上がると言う、二次関数にしたがう物体の加速度運動エネルギーにより、この駆動モータの異四次元に至る中間子としての特性を生かすことが出来ない。本発明の一部である一次元多段モータ発電機は、二次関数に従う発電機を、駆動モータにつなぎ、回転子を回転させ発電させるまでは従来のタコジェネレータと変わりは無い。固定子を外し、出力軸回転子とし、これを多段モータとし、最終段の発電機、これを回帰モータ発電機とする、の回転子につなぎ電磁気力で連動すると、回転を上げながら、トルクは同じとする一次関数に従わせることが可能と成った。自分の能力だけではなく、相手の能力、良いところを見つけ、互いに手を取り合って協力しあう事にょリ、一+一は二と言う、この閉じた四次元時空を越す、次高四次元のエネルギーを取り出す事が可能となった。解り易く言えば、多段モータ発電機は、其の駆動トルクが何段でも互いのモータ同士同じであり、それぞれの回転差速も同じであり、発電も同じであり、違うのは、投入する第一の回転数が段数倍とすることが出来ることである。この発電機を駆動するモータは駆動モータ自身の持つ、回転をN段倍上げてもトルクを一定にすると、投入エネルギーは変わらなく一定であると言う性能を、一次元多段モータ発電機に繋ぐことにより引出すことが可能となった。これにより投入エネルギーは同じで、発電が従来の発電機の多段倍発電することが可能となった。他方、海の水と山上の湖水の水とでは同じ水でも、位置エネルギーが違う、これと同じ様なことがモータにも言え、直径が発電機の四倍の駆動モータでは四倍のコイル数に四×四周波数である十六倍の投入電力と直径比四のトルク効率で、六十四の駆動力を得る。これを発電機の回転数に置き換えても、遠心力による破戒限界があり、又一次元方向に長くしても、シャフトのブレ、縄跳びの回転する縄のように芯ぶれが起こり、限界がある、これを二次元円盤方向に多連とし、それぞれを歯車で連携させることにより、駆動モータと同じ直径で、長さも同じ長さで、効率が従来の発電機を一とする直径比N倍の発電機を具現させた。其の上で発電機を一次元方向多段とすることにより、N×N段倍の発電を具現させた。If the conventional drive motor is rotated at a high speed, the torque disappears, and the energy consumption follows a linear function that disappears except for various losses. The drive motor is more efficient than a motor that produces high-speed rotation, for example, a turbine engine that easily produces high-speed rotation compared to a piston engine and a turbine engine. However, even if the engine is used alone, once the work is done, for example, if the generator is driven to reach a high speed rotation, the torque will increase with the rotation, the acceleration kinetic energy of the object according to the quadratic function The characteristics of this drive motor as a meson that reaches different four dimensions cannot be utilized. The one-dimensional multi-stage motor generator that is a part of the present invention is the same as a conventional tachometer generator until a generator that follows a quadratic function is connected to a drive motor and the rotor is rotated to generate power. When the stator is removed and the output shaft rotor is used as a multi-stage motor, and the last stage generator is connected to the rotor, which is the regression motor generator. It became possible to follow the same linear function. Not only your own ability, but also the other person's ability, find a good place, collaborate and cooperate with each other, 1 + 1 say 2, cross this closed four-dimensional space-time, next high four-dimensional It became possible to extract energy. To put it simply, multi-stage motor generators have the same drive torque regardless of their driving torque, the same rotational differential speed, the same power generation, and the difference is that One rotation speed can be set to be the number of stages. The motor that drives this generator is connected to the one-dimensional multi-stage motor generator that the drive motor itself has a constant torque even if the rotation is increased by N stages, and the input energy remains constant. It became possible to withdraw. As a result, the input energy was the same, and it was possible to generate electricity multiple times as much as conventional generators. On the other hand, even if the water in the sea and the lake water on the mountain are the same water, the potential energy is different. The same thing can be said for the motor, and in the drive motor whose diameter is four times that of the generator, the number of coils is four times as large. In addition, a driving force of 64 is obtained with an input power of 16 times that is 4 × 4 frequencies and a torque efficiency of a diameter ratio of 4. Even if this is replaced with the number of rotations of the generator, there is a limit of crushing due to centrifugal force, and even if it is lengthened in one dimension, there is a limit due to runout of shafts such as shaft wobbling and jumping rope. By making this multiple in the two-dimensional disk direction and linking them with gears, the diameter is the same as the drive motor, the length is the same, and the efficiency is N times the diameter ratio of a conventional generator Realized a generator. On top of that, N × N stage power generation was realized by making the generator multi-stage in one dimension.

は本発明の同軸一次元多段モータ発電機とする二段目と最終段目の断面図。These are sectional drawings of the second stage and the final stage of the coaxial one-dimensional multistage motor generator of the present invention. は発明の三次元多連多段モータ回転面の断面図。FIG. 3 is a cross-sectional view of a rotation surface of a three-dimensional multi-stage motor of the invention. 本発明の三次元多連多段モータ軸方向の断面図。Sectional drawing of the three-dimensional multi-stage multistage motor axial direction of this invention.

符号の説明Explanation of symbols

a 電導ロータ b カーボンブラシ c 小口径発電機回転子
d 出力軸回転子 e 回帰モータ発電機固定子 f 回帰モータ発電機回転子
g 出力軸回転子出力軸 d 出力軸回転子 A 大口径筒固定子
E 小口径発電機平歯車 L 大口径筒平歯車 C 軸
D 小口径発電機固定子 E 小口径発電機平歯車 F キー
G 蓋 H 蓋 I 入力用軸 J ベアリング K カプラ
L 大口径平歯車
a Conductive rotor b Carbon brush c Small-diameter generator rotor d Output shaft rotor e Regression motor generator stator f Regression motor generator rotor g Output shaft rotor output shaft d Output shaft rotor A Large bore cylinder stator E Small-diameter generator spur gear L Large-diameter cylindrical spur gear C Axis D Small-diameter generator stator E Small-diameter generator spur gear F Key G Lid H Lid I Input shaft J Bearing K Coupler L Large-diameter spur gear

Claims (5)

四つのそれぞれが閉じた系である、重力、弱い力、電磁起力、核力のゲージ場のひとつ重力場内でのエネルギー普遍を、普遍を超える重力から核力にいたる連続した穏やかな自然のエネルギー発生方法として、電磁気力である三次元方向と回転する時間を入れた四次元を多段に用いて、閉じた系を超えるエネルギーを発生させる方法及び其の装置である四次元多段モータ。Each of the four closed systems, gravity, weak force, electromagnetic force, and nuclear force, the energy universality within the gravitational field, the continuous and gentle natural energy from the gravitational force beyond the universal to the nuclear force. As a generation method, a method of generating energy exceeding a closed system using a four-dimensional structure including a three-dimensional direction of electromagnetic force and a rotation time in multiple stages, and a four-dimensional multi-stage motor which is an apparatus therefor. 一段目駆動モータで二段目発電機の回転子を第一の回転で回転させ、発電させると供に、二段目発電機の固定子を外し、発電の際に発生する起力で三段目回転子を回転させる、二段目固定子であった本体を出力軸回転子と名前を付け、出力軸回転子で次段の発電機回転子を回転させ、次段の固定子との間で差速発電させることを特徴とする多段モータ発電方法及び発電機。The first-stage drive motor rotates the rotor of the second-stage generator in the first rotation to generate power, and at the same time, the stator of the second-stage generator is removed, and the force generated during power generation generates a third stage. Name the main body that was the second stage stator that rotates the second rotor as the output shaft rotor, rotate the next generator rotor with the output shaft rotor, and between the next stage stator A multi-stage motor power generation method and a generator, characterized in that differential power generation is performed at 上記請求項2の二段目発電機の回転子と出力軸回転子を二分の一多段ブロックとし、二段目出力軸回転子が三段目二分の一多段ブロック回転子を動かし三段目出力軸回転子との間で差速を起こす、二段目と三段目、これを一単位多段ブロックとする、多段連動し、連なり、最後の段、これを回帰段と呼ぶ、での発電機回転子と発電機固定子と電磁気力で連動する一次元多段モータ発電機。The rotor and the output shaft rotor of the second stage generator according to claim 2 are set to a half multistage block, and the second stage output shaft rotor moves the third stage half of the multistage block rotor to form a third stage. In the second stage and the third stage, this is a single unit multistage block, multistage interlocking, connected, the last stage, this is called the regression stage. A one-dimensional multi-stage motor generator that interlocks with the generator rotor, generator stator, and electromagnetic force. 大口径の筒の中かあるいは外に、周上に固定された複数の小口径の発電機が、大口径の筒蓋円盤円周上に軸方向を円盤に垂直方向とし、並列に連なり。小口径の発電機回転子はそれぞれ歯車を具備し。大口径円盤中心に具備する軸を入力軸とする歯車と連動することを特徴とする二次元多連モータ発電機。A plurality of small-diameter generators fixed on the circumference inside or outside the large-diameter cylinder are arranged in parallel with the axis direction perpendicular to the disk on the circumference of the large-diameter cylinder lid disk. Each small-diameter generator rotor has a gear. A two-dimensional multi-motor generator that is linked to a gear having an input shaft as an axis provided at the center of a large-diameter disk. 請求項4の小口径発電機が請求項2多段モータ発電機であるか、請求項3の一次元多段モータ発電機であることを特徴とする、請求項4の二次元多連モータ発電機を一次元方向に多段にする三次元多連多段モータ発電機。The two-dimensional multiple motor generator according to claim 4, wherein the small-diameter generator according to claim 4 is a multi-stage motor generator according to claim 2 or a one-dimensional multi-stage motor generator according to claim 3. A three-dimensional multi-stage motor generator with multiple stages in one dimension.
JP2005039783A 2005-01-19 2005-01-19 Three-dimensional multiple-string multiple-step motor generator Pending JP2006204076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039783A JP2006204076A (en) 2005-01-19 2005-01-19 Three-dimensional multiple-string multiple-step motor generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039783A JP2006204076A (en) 2005-01-19 2005-01-19 Three-dimensional multiple-string multiple-step motor generator

Publications (1)

Publication Number Publication Date
JP2006204076A true JP2006204076A (en) 2006-08-03

Family

ID=36961573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039783A Pending JP2006204076A (en) 2005-01-19 2005-01-19 Three-dimensional multiple-string multiple-step motor generator

Country Status (1)

Country Link
JP (1) JP2006204076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039016A (en) * 2018-07-11 2018-12-18 张万斌 A kind of electromagnetic force generator group

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039016A (en) * 2018-07-11 2018-12-18 张万斌 A kind of electromagnetic force generator group

Similar Documents

Publication Publication Date Title
US8358044B2 (en) Electric machine apparatus with integrated, high torque density magnetic gearing
CN202918118U (en) Planetary motor
CN105471210B (en) Permanent magnet motor
WO2011112241A1 (en) Liner hydraulic and generator coupling system and method of use thereof
Shah et al. A magnetic gear box for application with a contra-rotating tidal turbine
CN106523600B (en) A kind of fixed shaft type birotor driving device
JP2008199689A (en) Regression motor wheel of large-diameter driving and small-diameter power generation
TWI675530B (en) Electric machine with adjustable speed magnetic gear and motor, generator, and electric vehicle with the same
JP2006204076A (en) Three-dimensional multiple-string multiple-step motor generator
JP2006211882A (en) Three-dimensional multiple-throw multiple-stage drive power generation motor
CN102723806A (en) Planetary motor
Chirilă et al. High-performance magnetic gears topologies
CN210309905U (en) Driving motor assembly for electric vehicle
CN103683805A (en) Stator-free unidirectional-rotation kinetic energy and electricity generating device
US20200263545A1 (en) Electric turbomachine
CN202931167U (en) Stator-free equidirectionally-rotating kinetic and electric energy generating device
JP2007215388A (en) Warp motor car
KR20170140936A (en) generator
JP2009089448A (en) Three-dimensional tandem multi-stage motor
JP6572421B2 (en) Axial type magnetic geared electric
RU2451321C2 (en) Method to convert direction and value of angular velocity and reversing electromechanical gear
JP2006197783A (en) Triple motor
KR102644703B1 (en) Superconducting magnetic gear device using superconducing coil, generating appartus using the same
Raj et al. Magnetic gearing system
Macyszyn et al. Two-stage precession type gear: design, geometric and kinematic analysis