JP2006203423A - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP2006203423A
JP2006203423A JP2005011485A JP2005011485A JP2006203423A JP 2006203423 A JP2006203423 A JP 2006203423A JP 2005011485 A JP2005011485 A JP 2005011485A JP 2005011485 A JP2005011485 A JP 2005011485A JP 2006203423 A JP2006203423 A JP 2006203423A
Authority
JP
Japan
Prior art keywords
receiving
ultrasonic sensor
pedestal
ultrasonic
conversion means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005011485A
Other languages
Japanese (ja)
Inventor
Tomoki Ito
知樹 伊藤
Makiko Sugiura
杉浦  真紀子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005011485A priority Critical patent/JP2006203423A/en
Publication of JP2006203423A publication Critical patent/JP2006203423A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide, at a low cost, an ultrasonic sensor capable of measuring the position and distance of an object to be detected with high precision while avoiding influence of a reverberation sound and an attenuated sound. <P>SOLUTION: A reception section 10 comprises a pedestal 11 and receiving elements 12a to 12d which are in the same size shape and have the same constitution. The receiving elements 12a to 12d which are in the flat plate rectangular shape are arranged radially at equal angles of 45° around the center axis C of the pedestal 11 when the disk-like pedestal 11 is viewed from above. Further, the receiving elements 12a to 12d have their lengthwise one-end portions fitted and fixed on the top surface of the pedestal along the peripheral edge of the pedestal 11 at equal angles of 45° with respect to the top surface of the pedestal 11 while normals (n) of reception surfaces S of the receiving elements 12a to 12d cross one another at one point P on the center axis C of the pedestal 11 when the pedestal 11 is laterally viewed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は超音波センサに係り、詳しくは、受信した超音波を電気信号に変換するか又は電気信号を超音波に変換して発信する超音波センサに関するものである。   The present invention relates to an ultrasonic sensor, and more particularly to an ultrasonic sensor that converts a received ultrasonic wave into an electric signal or converts an electric signal into an ultrasonic wave and transmits the ultrasonic signal.

従来より、音響測深機や魚群探知機などの垂直ソナー、船舶が目標物の方向および自船からの距離を測定するための水平ソナー、臓器を画像化して診断するための超音波診断装置など、様々な分野に超音波センサが広く利用されている。   Conventionally, vertical sonar such as acoustic sounding instrument and fish finder, horizontal sonar for measuring the direction of the target and distance from the ship, ultrasonic diagnostic equipment for imaging and diagnosing organs, etc. Ultrasonic sensors are widely used in various fields.

また、近年、自動車(車両)に超音波センサを搭載し、その超音波センサから発信した人体に無害な超音波の反射を受信することにより、自動車の周囲にある物体の2次元あるいは3次元の位置測定および距離測定を行い、自動車の周囲を監視して安全走行に役立てる技術の開発がすすめられている。
例えば、自動車の後部に超音波センサを搭載し、自動車の後方に存在する物体(人間や障害物など)を検知する装置(一般に「バックソナー」と呼ばれる)を用い、当該物体との衝突を回避してバックでの駐車を支援する自動駐車支援システムが実用化されている。
In recent years, an ultrasonic sensor is mounted on an automobile (vehicle), and the reflection of ultrasonic waves that are harmless to the human body transmitted from the ultrasonic sensor is received. The development of technologies that measure position and distance, monitor the surroundings of automobiles, and use them for safe driving has been promoted.
For example, an ultrasonic sensor is installed at the rear of the car, and a device (generally called “back sonar”) that detects objects (humans, obstacles, etc.) located behind the car is used to avoid collision with the object. An automatic parking assistance system that supports parking in the back has been put into practical use.

このような検出対象物の位置測定および距離測定に使用される超音波センサ(超音波探触子)として、例えば、有機高分子を介して連結された複数の圧電体素子からなる複合圧電体と、この複合圧電体の一方の面上に互いに間隙を保って複数個配列されたアレイ電極とを備え、上記アレイ電極の間隙部にあたる上記複合圧電体の部分には上記有機高分子より音波減衰係数の大きい充填材を充填したものが開示されている(特許文献1参照)。
特開平5−347797号公報(第2〜4頁 図1〜図3)
As an ultrasonic sensor (ultrasonic probe) used for position measurement and distance measurement of such a detection target, for example, a composite piezoelectric body composed of a plurality of piezoelectric elements connected via an organic polymer, and A plurality of array electrodes arranged on one surface of the composite piezoelectric body with a gap between each other, and the portion of the composite piezoelectric material corresponding to the gap portion of the array electrode has a sound wave attenuation coefficient from the organic polymer. A material filled with a large filler is disclosed (see Patent Document 1).
JP-A-5-347797 (pages 2 to 4 and FIGS. 1 to 3)

特許文献1の技術を含め、従来の超音波センサにおいて、受信(受音)した超音波を電気信号に変換する受信部は、同一寸法形状の複数個の振動板(特許文献1のアレイ電極)を同一平面上にて1方向に整然と並べて配置する1次元配置、または、同一寸法形状の複数個の振動板を同一平面上にて縦横2方向に整然と並べて配置する2次元配置のいずれかの構造をとる。
そして、外部から入力した電気信号を超音波に変換して発信(発音)する超音波センサの発信部が、検出対象物に対して超音波を発信し、その超音波が検出対象物に反射した反射音を受信部の各振動板で受信する。
In a conventional ultrasonic sensor including the technique of Patent Document 1, a receiving unit that converts received (sound received) ultrasonic waves into an electric signal includes a plurality of diaphragms having the same size and shape (array electrodes of Patent Document 1). Either a one-dimensional arrangement in which the diaphragms are arranged in one direction on the same plane, or a two-dimensional arrangement in which a plurality of diaphragms having the same size are arranged in two vertical and horizontal directions on the same plane. Take.
And the transmission part of the ultrasonic sensor which converts the electric signal inputted from the outside into the ultrasonic wave and transmits (sounds) transmits the ultrasonic wave to the detection object, and the ultrasonic wave is reflected on the detection object. The reflected sound is received by each diaphragm of the receiving unit.

そこで、受信部が複数個の振動板(受音板)で受信した超音波のタイミングのずれを検出し、その受信した超音波のタイミングのずれと発信部が発射した超音波とを比較することにより、検出対象物の2次元あるいは3次元の位置測定、超音波センサと検出対象物との距離測定などを行うことができる。   Therefore, the reception unit detects a difference in timing of ultrasonic waves received by a plurality of diaphragms (sound receiving plates), and compares the received ultrasonic wave timing difference with the ultrasonic waves emitted by the transmission unit. Thus, it is possible to perform two-dimensional or three-dimensional position measurement of the detection target, distance measurement between the ultrasonic sensor and the detection target, and the like.

また、従来の超音波センサの発信部は、通常、1個の振動板(発音板)から検出対象物に対して超音波を発信する。
尚、複数個の振動板から超音波を発信するタイプも提案されているが、そのタイプの発信部は、受信部と同様に、同一寸法形状の複数個の振動板を同一平面上に1次元配置または2次元配置した構造をとる。
そして、発信部が複数個の振動板を備える理由は、超音波の発信出力を増大することにある。
Moreover, the transmission part of the conventional ultrasonic sensor normally transmits an ultrasonic wave from a single diaphragm (sound generating plate) to the detection target.
A type of transmitting ultrasonic waves from a plurality of diaphragms has also been proposed, but the type of transmitting unit is similar to the receiving unit in that a plurality of diaphragms of the same size and shape are arranged in one dimension on the same plane. It takes an arrangement or a two-dimensional arrangement.
The reason why the transmission unit includes a plurality of diaphragms is to increase the transmission output of ultrasonic waves.

ところで、検出対象物から反射した超音波は周囲の物体に何度も跳ね返って空間に残り、その空間に残った音からなる残響音(反射音)が発生することがある。
また、入力した電気信号の停止と同時に発信部の振動板の振動を停止させることは困難であり、振動板の振動は減衰しながら停止するため、発信部の発信した超音波には減衰音が生じる。
By the way, the ultrasonic wave reflected from the detection target may bounce back to surrounding objects many times and remain in the space, and a reverberant sound (reflected sound) composed of the sound remaining in the space may be generated.
In addition, it is difficult to stop the vibration of the diaphragm of the transmitter simultaneously with the stop of the input electric signal. Since the vibration of the diaphragm stops while attenuating, the ultrasonic wave transmitted from the transmitter has a damped sound. Arise.

この残響音および減衰音により、前記した超音波のタイミングのずれを正確に検出することが難しくなる。そのため、従来の超音波センサでは、以下の方策をとる必要がある。
(ア)受信部が受信した超音波から残響音および減衰音を取り除くため、受信部の生成した電気信号を処理する複雑な信号処理回路を設ける。
(イ)残響音および減衰音が消えてその影響を回避できるくらいの長周期のパルス波または連続波からなる超音波を発信部から発信させるため、発信部が入力する電気信号を処理する複雑な信号処理回路を設ける。
(ウ)減衰音を速やかに低減するため、発信部に特別な制振構造を設ける。
Due to the reverberant sound and the attenuated sound, it is difficult to accurately detect the deviation in the timing of the ultrasonic waves. Therefore, it is necessary to take the following measures in the conventional ultrasonic sensor.
(A) In order to remove reverberation sound and attenuation sound from the ultrasonic wave received by the receiving unit, a complicated signal processing circuit for processing the electrical signal generated by the receiving unit is provided.
(B) Since the resonating sound and the attenuation sound disappear and the ultrasonic wave consisting of a long-period pulse wave or continuous wave that can avoid the influence is transmitted from the transmitting unit, the electrical signal input by the transmitting unit is complicated. A signal processing circuit is provided.
(C) A special damping structure is provided in the transmission unit in order to quickly reduce the attenuation sound.

しかし、複雑な信号処理回路や特別な制振構造を設けるとなると、超音波センサの製品コストが増大するという問題があった。
また、近年、残響音および減衰音の影響を回避し、検出対象物の位置および距離の測定精度を向上させるために、発信部から発信される超音波の指向性を任意に制御することが要求されている。
However, if a complicated signal processing circuit or a special damping structure is provided, there is a problem that the product cost of the ultrasonic sensor increases.
In recent years, in order to avoid the effects of reverberant sound and attenuated sound and to improve the accuracy of measurement of the position and distance of the detection target, it is required to arbitrarily control the directivity of the ultrasonic waves transmitted from the transmitter. Has been.

本発明は上記問題を解決するため又は上記要求を満足するためになされたものであって、以下の目的を有するものである。
(1)残響音および減衰音の影響を回避して検出対象物の位置および距離の高精度な測定が可能な超音波センサを低コストに提供する。
(2)発信する超音波の指向性を任意に制御可能な超音波センサを低コストに提供する。
The present invention has been made to solve the above-described problems or to satisfy the above-described requirements, and has the following objects.
(1) An ultrasonic sensor capable of measuring the position and distance of a detection target object with high accuracy while avoiding the influence of reverberant sound and attenuated sound is provided at low cost.
(2) An ultrasonic sensor capable of arbitrarily controlling the directivity of transmitted ultrasonic waves is provided at a low cost.

請求項1に記載の発明は、受信した超音波を電気信号に変換するか又は電気信号を超音波に変換して発信する複数個の変換手段を備え、各変換手段が立体的に配置されたことを技術的特徴とする。   The invention according to claim 1 is provided with a plurality of conversion means for converting received ultrasonic waves into electric signals or converting electric signals into ultrasonic waves and transmitting the three-dimensional conversion means. This is a technical feature.

請求項2に記載の発明は、請求項1に記載の超音波センサにおいて、
前記変換手段を3個以上の複数個備え、各変換手段は、超音波を受信するための受信面または超音波を発信するための発信面が、それぞれ等角度で放射状に配置されていることを技術的特徴とする。
The invention described in claim 2 is the ultrasonic sensor according to claim 1,
Each of the conversion means includes a plurality of three or more conversion means, and each conversion means has a receiving surface for receiving ultrasonic waves or a transmitting surface for transmitting ultrasonic waves arranged radially at equal angles. Technical features.

請求項3に記載の発明は、請求項2に記載の超音波センサにおいて、
前記各変換手段は、各変換手段の一端部を含む平面に対して前記受信面または前記発信面が45゜の角度を成すように配置されていることを技術的特徴とする。
The invention according to claim 3 is the ultrasonic sensor according to claim 2,
Each of the converting means is technically characterized in that the receiving surface or the transmitting surface is disposed at an angle of 45 ° with respect to a plane including one end of each converting means.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の超音波センサにおいて、
前記各変換手段を覆う保護カバーを備えたことを技術的特徴とする。
The invention according to claim 4 is the ultrasonic sensor according to any one of claims 1 to 3,
A technical feature is that a protective cover for covering each of the conversion means is provided.

請求項5に記載の発明は、請求項4に記載の超音波センサにおいて、
前記保護カバーの裏面側は前記各変換手段に密着していることを技術的特徴とする。
The invention according to claim 5 is the ultrasonic sensor according to claim 4,
A technical feature is that the back side of the protective cover is in close contact with each of the converting means.

請求項6に記載の発明は、請求項4に記載の超音波センサにおいて、
前記保護カバーの裏面側と前記各変換手段との間には空隙が設けられていることを技術的特徴とする。
The invention according to claim 6 is the ultrasonic sensor according to claim 4,
A technical feature is that a gap is provided between the back surface side of the protective cover and each of the conversion means.

請求項7に記載の発明は、請求項1〜6のいずれか1項に記載の超音波センサにおいて、
前記変換手段は、圧電式または静電容量式であることを技術的特徴とする。
The invention according to claim 7 is the ultrasonic sensor according to any one of claims 1 to 6,
The conversion means is technically characterized by being of a piezoelectric type or a capacitance type.

(請求項1)
請求項1の発明において、受信した超音波を電気信号に変換する受信素子として各変換手段を機能させ、各変換手段から受信部を構成する場合には、受信部とは別に設けた超音波センサの発信部が、検出対象物に対して超音波を発信し、その超音波が検出対象物に反射した反射音を受信部の各受信素子(変換手段)で受信する。
そして、受信部が各受信素子(変換手段)で受信した超音波の音圧差を検出し、その受信した超音波の音圧差と発信部が発射した超音波とを比較することにより、検出対象物の2次元あるいは3次元の位置測定、超音波センサと検出対象物との距離測定などを行うことができる。
(Claim 1)
According to the first aspect of the present invention, in a case where each converting means is made to function as a receiving element for converting the received ultrasonic wave into an electric signal, and the receiving section is constituted by each converting means, an ultrasonic sensor provided separately from the receiving section The transmitting unit transmits ultrasonic waves to the detection target, and the reflected sound reflected by the detection target is received by each receiving element (conversion unit) of the receiving unit.
The receiving unit detects the sound pressure difference between the ultrasonic waves received by each receiving element (conversion means), and compares the received sound pressure difference between the received ultrasonic waves and the ultrasonic wave emitted by the transmitting unit, thereby detecting the object to be detected. 2D or 3D position measurement, distance measurement between an ultrasonic sensor and a detection target can be performed.

ところで、縦波は、その進行方向と同一方向に圧力を発生させ、その進行方向と垂直方向には圧力を発生させないという特性がある。
超音波は縦波であるため、変換手段が超音波を受信するための受信面に対する超音波の入射角が0゜の場合に受信面が受ける音圧が最大となり、入射角が90゜に近づくほど音圧が低下して、入射角が90゜の場合に音圧がゼロになる。
By the way, the longitudinal wave has a characteristic that pressure is generated in the same direction as the traveling direction and no pressure is generated in the direction perpendicular to the traveling direction.
Since the ultrasonic wave is a longitudinal wave, when the incident angle of the ultrasonic wave with respect to the receiving surface for receiving the ultrasonic wave by the converting means is 0 °, the sound pressure received by the receiving surface becomes maximum, and the incident angle approaches 90 °. The sound pressure decreases so that the sound pressure becomes zero when the incident angle is 90 °.

変換手段は、受信面が受ける音圧が大きいほど、生成する電気信号のレベルが増大する。つまり、変換手段が受信した超音波を変換して生成する電気信号のレベルは、各変換手段の受信面に対する超音波の入射角に依存する。
ここで、変換手段が生成する電気信号のレベルは、変換手段の受信感度に対応し、電気信号のレベルが高いほど受信感度も高くなる。言い換えると、変換手段における超音波の受信感度は、受信面が受ける音圧に対応し、受信面に対する超音波の入射角に依存する。
The level of the electric signal generated by the conversion means increases as the sound pressure received by the receiving surface increases. That is, the level of the electric signal generated by converting the ultrasonic wave received by the converting means depends on the incident angle of the ultrasonic wave with respect to the receiving surface of each converting means.
Here, the level of the electric signal generated by the conversion means corresponds to the reception sensitivity of the conversion means, and the higher the electric signal level, the higher the reception sensitivity. In other words, the ultrasonic wave reception sensitivity in the conversion means corresponds to the sound pressure received by the reception surface and depends on the incident angle of the ultrasonic wave with respect to the reception surface.

従って、請求項1の発明において、各変換手段を受信素子として機能させた場合には、各受信素子(変換手段)を立体的に配置することで、各受信素子の受信感度の入射角依存性を利用し、各受信素子で受信した超音波の音圧差に基づいて、検出対象物の位置測定および距離測定を正確に行うことができる。   Therefore, in the first aspect of the invention, when each converting means functions as a receiving element, the receiving sensitivity of each receiving element depends on the incident angle by arranging each receiving element (converting means) in a three-dimensional manner. The position measurement and the distance measurement of the detection target can be accurately performed based on the sound pressure difference between the ultrasonic waves received by the receiving elements.

そして、請求項1の発明では、従来技術(同一寸法形状の複数個の振動板を同一平面上に1次元配置または2次元配置した構造)のように、複数個の振動板で受信した超音波のタイミングのずれに基づいて前記測定を行うのではなく、各受信素子(変換手段)で受信した超音波の音圧差に基づいて前記測定を行うため、残響音および減衰音の影響を回避して測定精度を向上させることができる。   In the first aspect of the invention, ultrasonic waves received by a plurality of diaphragms as in the prior art (a structure in which a plurality of diaphragms having the same size and shape are arranged one-dimensionally or two-dimensionally on the same plane). The measurement is performed based on the difference in sound pressure between the ultrasonic waves received by each receiving element (conversion means), instead of performing the measurement based on the timing difference of Measurement accuracy can be improved.

さらに、請求項1の発明によれば、従来技術のように複雑な信号処理回路や特別な制振構造を設ける必要がないため、超音波センサの製品コストを低下させることができる。
ここで、受信部を構成する各受信素子(変換手段)は、必要な前記測定精度および指向性に応じて立体的に配置すればよく、その受信素子の個数および配置状態はカット・アンド・トライで実験的に最適値を見つけて設定すればよい。
Furthermore, according to the invention of claim 1, since it is not necessary to provide a complicated signal processing circuit or a special damping structure as in the prior art, the product cost of the ultrasonic sensor can be reduced.
Here, each receiving element (conversion means) constituting the receiving unit may be arranged three-dimensionally according to the required measurement accuracy and directivity, and the number and arrangement of the receiving elements are cut and tried. Find and set the optimal value experimentally.

また、請求項1の発明において、外部から入力した電気信号を超音波に変換して発信する発信素子として各変換手段を機能させ、各変換手段から発信部を構成する場合には、発信部を構成する発信素子の個数は超音波の発信出力(音響出力)に対応し、その発信素子の個数を増やすほど発信出力を大きくすることができる。   Further, in the first aspect of the present invention, when each converting means is made to function as a transmitting element that converts an electrical signal inputted from the outside into an ultrasonic wave and transmits the ultrasonic signal, The number of transmitting elements to be configured corresponds to the transmission output (acoustic output) of ultrasonic waves, and the transmission output can be increased as the number of transmitting elements is increased.

そして、発信部を構成する発信素子(変換手段)の配置状態を適宜設定することにより、超音波の発信方向の指向性を適宜設定することができる。
ここで、発信部を構成する各発信素子(変換手段)は、必要な発信出力および指向性に応じて立体的に配置すればよく、その発信素子の個数および配置状態はカット・アンド・トライで実験的に最適値を見つけて設定すればよい。
And the directivity of the transmission direction of an ultrasonic wave can be set suitably by setting suitably the arrangement state of the transmitting element (conversion means) which constitutes a transmitting part.
Here, each transmitting element (conversion means) constituting the transmitting unit may be three-dimensionally arranged according to the required transmitting output and directivity, and the number and arrangement of the transmitting elements are cut and tried. Find and set the optimal value experimentally.

(請求項2)
請求項2の発明によれば、前記変換手段を3個以上の複数個設け、各変換手段の受信面または発信面を等角度で放射状に配置することにより、請求項1の発明の作用・効果を確実に得ることが可能になる。
(Claim 2)
According to the invention of claim 2, the operation and effect of the invention of claim 1 is provided by providing a plurality of three or more conversion means, and arranging the reception surface or the transmission surface of each conversion means radially at an equal angle. Can be obtained reliably.

(請求項3)
請求項3の発明によれば、各変換手段の一端部を含む平面に対して受信面または発信面が45゜の角度を成すように配置することにより、請求項2の発明の作用・効果を更に確実に得ることが可能になる。
(Claim 3)
According to the invention of claim 3, the operation and effect of the invention of claim 2 can be achieved by arranging the receiving surface or the transmitting surface at an angle of 45 ° with respect to the plane including one end of each converting means. Furthermore, it becomes possible to obtain reliably.

(請求項4:第2実施形態に該当)
請求項4の発明によれば、各変換手段を覆う保護カバーを設けることにより、各変換手段を周辺環境から保護して超音波センサの耐候性を高めると共に、各変換手段の破損を防止できる。
(Claim 4: corresponds to the second embodiment)
According to the invention of claim 4, by providing the protective cover for covering each conversion means, each conversion means can be protected from the surrounding environment and the weather resistance of the ultrasonic sensor can be improved, and each conversion means can be prevented from being damaged.

(請求項5:第2実施形態の第1構造例に該当)
請求項5の発明によれば、保護カバーの裏面側を各変換手段に密着させることにより、保護カバーと各変換手段の間で振動が直接伝達されることから、保護カバーを設けることによる各変換手段の受信感度または発信感度の低下を回避できる。
(Claim 5: corresponds to the first structural example of the second embodiment)
According to the invention of claim 5, since the vibration is directly transmitted between the protective cover and each converting means by bringing the back side of the protective cover into close contact with each converting means, each conversion by providing the protective cover. A decrease in the reception sensitivity or transmission sensitivity of the means can be avoided.

ここで、保護カバーには、空気,塵埃,液体などを透過させない高い耐候性に加えて、超音波の高い伝達性と、各変換手段の振動を阻害しない程度の低い剛性とが要求される。このような要求を満たす材料として、例えば、各種金属(アルミニウム合金など)の薄膜、各種合成樹脂膜、ゴム膜などがある。   Here, in addition to high weather resistance that does not allow air, dust, liquid, or the like to pass through, the protective cover is required to have high ultrasonic transmission and low rigidity that does not impede vibration of each conversion means. Examples of materials that satisfy such requirements include thin films of various metals (such as aluminum alloys), various synthetic resin films, and rubber films.

(請求項6:第2実施形態の第2構造例に該当)
請求項6の発明によれば、保護カバーの裏面側と各変換手段との間に空隙を設けることにより、超音波センサに外力が加わっても、その外力は保護カバーに印加されるだけで、各変換手段には外力が直接印加されないため、各変換手段の破損を確実に防止できる。
(Claim 6: corresponds to the second structural example of the second embodiment)
According to the invention of claim 6, by providing a gap between the back side of the protective cover and each conversion means, even if an external force is applied to the ultrasonic sensor, the external force is only applied to the protective cover, Since no external force is directly applied to each conversion means, it is possible to reliably prevent damage to each conversion means.

ここで、保護カバーには、空気,塵埃,液体などを透過させない高い耐候性に加えて、超音波により振動しやすく、超音波を屈折させずに透過させる性質が要求される。
また、保護カバーと各変換手段との空隙に液体,ゾル,ゲルのいずれかの充填材料を充填した場合には、その充填材料の音響インピーダンスを保護カバーの音響インピーダンスに近づけることにより、保護カバーと各変換手段との間の振動の伝達を確実に行うことが可能になり、各変換手段の受信感度または発信感度の低下を回避できる。
Here, in addition to high weather resistance that does not allow air, dust, liquid, or the like to pass through, the protective cover is required to have a property of being easily vibrated by ultrasonic waves and allowing ultrasonic waves to pass through without being refracted.
When the gap between the protective cover and each conversion means is filled with a filling material of liquid, sol, or gel, the acoustic impedance of the filling material is brought close to the acoustic impedance of the protective cover, It becomes possible to reliably transmit vibration between the respective conversion means, and it is possible to avoid a decrease in reception sensitivity or transmission sensitivity of each conversion means.

(請求項7)
請求項7の発明によれば、圧電式または静電容量式の超音波センサを得ることができる。
(Claim 7)
According to the seventh aspect of the present invention, a piezoelectric or capacitive ultrasonic sensor can be obtained.

(用語の説明)
尚、上述した[課題を解決するための手段]に記載した構成要素と、後述する[発明を実施するための最良の形態]に記載した構成部材との対応関係は以下のようになっている。
「変換手段」は、受信素子(発信素子)12a〜12fに該当する。
請求項3の「各変換手段の一端部を含む平面」は、台座11の表面に該当する。
(Explanation of terms)
The correspondence between the constituent elements described in [Means for Solving the Problems] described above and the constituent members described in [Best Mode for Carrying Out the Invention] described below is as follows. .
“Conversion means” corresponds to the receiving elements (transmitting elements) 12a to 12f.
The “plane including one end of each conversion means” in claim 3 corresponds to the surface of the base 11.

以下、本発明を具体化した各実施形態について図面を参照しながら説明する。
尚、各実施形態において、第1実施形態と同一の構成部材については符号を等しくすると共に、同一内容の箇所については重複説明を省略してある。
Hereinafter, embodiments embodying the present invention will be described with reference to the drawings.
In each embodiment, the same constituent members as those in the first embodiment are denoted by the same reference numerals, and duplicate descriptions are omitted for portions having the same contents.

(第1実施形態)
図1は、第1実施形態における超音波センサの受信部10の斜視図である。
図2(A)は、受信部10の平面図である。図2(B)は、受信部10の正面図である。
(First embodiment)
FIG. 1 is a perspective view of the receiving unit 10 of the ultrasonic sensor according to the first embodiment.
FIG. 2A is a plan view of the receiving unit 10. FIG. 2B is a front view of the receiving unit 10.

受信部10は、台座11と、4個の同一寸法形状で同一構成の受信素子(変換手段)12a〜12dとから構成されている。
平板矩形状の各受信素子12a〜12dは、円盤形状の台座11を上方向から見て、台座11の中心軸Cから45゜の等角度で放射状に配置されている。
The receiving unit 10 includes a pedestal 11 and four receiving elements (conversion means) 12a to 12d having the same size and the same configuration.
The flat rectangular receiving elements 12 a to 12 d are arranged radially at an equal angle of 45 ° from the central axis C of the base 11 when the disk-shaped base 11 is viewed from above.

また、各受信素子12a〜12dは、台座11を横方向から見て、各受信素子12a〜12dの受信面Sの法線nが台座11の中心軸C(前記放射状の中心軸)上の1つの点Pにて交わると共に、各受信素子12a〜12dの受信面Sが台座11の表面(各受信素子12a〜12dの一端部を含む平面)に対して45゜の等角度を成すように、各受信素子12a〜12dの長手方向の一端部が台座11の周縁に沿って台座11の表面上に取付固定されている。
つまり、各受信素子12a〜12dは、円盤形状の台座11を上方向から見て、一直線上に配置された各受信素子12a,12dおよび各受信素子12b,12cの受信面Sが90゜の等角度を成すように配置されている。
In each receiving element 12a to 12d, the normal n of the receiving surface S of each receiving element 12a to 12d is 1 on the center axis C (the radial center axis) of the base 11 when the base 11 is viewed from the lateral direction. And intersecting at two points P, and the receiving surfaces S of the receiving elements 12a to 12d form an equiangular angle of 45 ° with respect to the surface of the base 11 (a plane including one end of each receiving element 12a to 12d). One end in the longitudinal direction of each receiving element 12 a to 12 d is fixedly mounted on the surface of the base 11 along the periphery of the base 11.
That is, each of the receiving elements 12a to 12d has the receiving surface 12 of each receiving element 12a, 12d and each receiving element 12b, 12c arranged in a straight line when the disk-shaped pedestal 11 is viewed from above, and so on. They are arranged at an angle.

[受信素子の構造]
図3〜図5は、各受信素子12a〜12dの第1〜第3構造例を示す概略縦断面図である。尚、図3〜図5では高さ方向(板厚方向)を誇張して図示してある。
[Receiver structure]
3 to 5 are schematic longitudinal sectional views showing first to third structural examples of the receiving elements 12a to 12d. 3 to 5 exaggerate the height direction (plate thickness direction).

<第1構造例>
図3に示す第1構造例において、圧電式の各受信素子12a〜12dは、下部電極21、受信電極22、複合圧電体23などから構成されている。
平板矩形状の各電極21,22は平行に配置され、各電極21,22間には複合圧電体23が挟設されている。
複合圧電体23は、複数個の柱状の圧電体素子24と、有機高分子層25とから構成されている。
<First structure example>
In the first structural example shown in FIG. 3, each of the piezoelectric receiving elements 12a to 12d includes a lower electrode 21, a receiving electrode 22, a composite piezoelectric body 23, and the like.
The flat rectangular electrodes 21 and 22 are arranged in parallel, and a composite piezoelectric body 23 is sandwiched between the electrodes 21 and 22.
The composite piezoelectric body 23 includes a plurality of columnar piezoelectric elements 24 and an organic polymer layer 25.

各圧電体素子24は、その上下端部が各電極21,22に接続されている。
有機高分子層25は、各圧電体素子24の間隙に充填され、各圧電体素子24を互いに結合する。つまり、各圧電体素子24は有機高分子層25中に埋め込まれている。
尚、各圧電体素子24は、強誘電体(例えば、PZTなど)からなる。
また、有機高分子層25は、例えば、シリコンゴム、エポキシ樹脂、ポリウレタン樹脂などからなる。
Each piezoelectric element 24 has upper and lower ends connected to the electrodes 21 and 22.
The organic polymer layer 25 is filled in the gaps between the piezoelectric elements 24 and couples the piezoelectric elements 24 to each other. That is, each piezoelectric element 24 is embedded in the organic polymer layer 25.
Each piezoelectric element 24 is made of a ferroelectric material (for example, PZT).
The organic polymer layer 25 is made of, for example, silicon rubber, epoxy resin, polyurethane resin, or the like.

そして、受信電極22の表面が超音波の受信面Sとなり、超音波により受信電極22が振動すると、その振動は複合圧電体23に伝達され、複合圧電体23が振動すると圧電効果により電気信号が生成され、その電気信号は各電極21,22に接続された配線(図示略)を介して出力される。
つまり、第1構造例の各受信素子12a〜12dでは、各電極21,22および複合圧電体23の積層構造から振動板(受音板)が構成され、その振動板の受信した超音波が電気信号に変換される。
Then, the surface of the reception electrode 22 becomes an ultrasonic reception surface S, and when the reception electrode 22 vibrates due to the ultrasonic wave, the vibration is transmitted to the composite piezoelectric body 23, and when the composite piezoelectric body 23 vibrates, an electrical signal is generated due to the piezoelectric effect. The generated electrical signal is output via wiring (not shown) connected to the electrodes 21 and 22.
That is, in each of the receiving elements 12a to 12d of the first structure example, a diaphragm (sound receiving plate) is configured from the laminated structure of the electrodes 21 and 22 and the composite piezoelectric body 23, and the ultrasonic waves received by the diaphragm are electrically Converted to a signal.

<第2構造例>
図4に示す第2構造例において、圧電式の各受信素子12a〜12dは、下部電極21、受信電極22、誘電体層31などから構成されている。
各電極21,22間には、強誘電体(例えば、PZTなど)からなる誘電体層31が挟設されている。
<Second structure example>
In the second structural example shown in FIG. 4, each of the piezoelectric receiving elements 12 a to 12 d includes a lower electrode 21, a receiving electrode 22, a dielectric layer 31, and the like.
A dielectric layer 31 made of a ferroelectric material (for example, PZT) is sandwiched between the electrodes 21 and 22.

そして、受信電極22の表面が超音波の受信面Sとなり、超音波により受信電極22が振動すると、その振動は誘電体層31に伝達され、誘電体層31が振動すると圧電効果により電気信号が生成され、その電気信号は各電極21,22に接続された配線(図示略)を介して出力される。
つまり、第2構造例の各受信素子12a〜12dでは、各電極21,22および誘電体層31の積層構造から振動板(受音板)が構成され、その振動板の受信した超音波が電気信号に変換される。
The surface of the receiving electrode 22 becomes an ultrasonic receiving surface S. When the receiving electrode 22 vibrates due to the ultrasonic wave, the vibration is transmitted to the dielectric layer 31, and when the dielectric layer 31 vibrates, an electric signal is generated by the piezoelectric effect. The generated electrical signal is output via wiring (not shown) connected to the electrodes 21 and 22.
In other words, in each of the receiving elements 12a to 12d of the second structure example, a diaphragm (sound receiving plate) is configured from the laminated structure of the electrodes 21 and 22 and the dielectric layer 31, and the ultrasonic waves received by the diaphragm are electrically Converted to a signal.

<第3構造例>
図5に示す第3構造例において、静電容量式(コンデンサ式)の各受信素子12a〜12dは、下部電極21、受信電極22、保持部材41などから構成されている。
各電極21,22の両端部間には保持部材41が挟設され、各電極21,22は間隙Kを設けて対向されている。
下部電極21は振動不能に固定されて固定電極を構成し、受信電極22は振動可能で可動電極を構成する。
<Third structure example>
In the third structural example shown in FIG. 5, each of the capacitance type (capacitor type) receiving elements 12 a to 12 d includes a lower electrode 21, a receiving electrode 22, a holding member 41, and the like.
A holding member 41 is sandwiched between both ends of each electrode 21, 22, and each electrode 21, 22 is opposed with a gap K therebetween.
The lower electrode 21 is fixed so as not to vibrate to constitute a fixed electrode, and the receiving electrode 22 is capable of vibrating to constitute a movable electrode.

そして、受信電極22の表面が超音波の受信面Sとなり、超音波により受信電極22が振動すると、各電極21,22間の距離が変化し、各電極21,22間の静電容量も変化する。そこで、配線(図示略)を介して各電極21,22に接続された変換回路(図示略)を用い、各電極21,22間の静電容量の変化を電気信号に変換する。
つまり、第3構造例の各受信素子12a〜12dでは、受信電極22から振動板(受音板)が構成され、その振動板の受信した超音波が電気信号に変換される。
When the surface of the reception electrode 22 becomes an ultrasonic reception surface S and the reception electrode 22 vibrates due to the ultrasonic wave, the distance between the electrodes 21 and 22 changes, and the capacitance between the electrodes 21 and 22 also changes. To do. Therefore, a change in capacitance between the electrodes 21 and 22 is converted into an electrical signal using a conversion circuit (not shown) connected to the electrodes 21 and 22 via wiring (not shown).
That is, in each of the receiving elements 12a to 12d of the third structural example, a diaphragm (sound receiving plate) is configured from the receiving electrode 22, and ultrasonic waves received by the diaphragm are converted into an electric signal.

[第1実施形態の作用・効果]
第1実施形態によれば、以下の作用・効果を得ることができる。
[Operations and effects of the first embodiment]
According to the first embodiment, the following actions and effects can be obtained.

[1]
受信部10とは別に設けられた超音波センサの発信部(図示略)が、検出対象物に対して超音波を発信し、その超音波が検出対象物に反射した反射音を受信部10の各受信素子12a〜12dで受信する。
[1]
A transmitting unit (not shown) of an ultrasonic sensor provided separately from the receiving unit 10 transmits an ultrasonic wave to the detection target, and the reflected sound reflected from the detection target by the ultrasonic wave is received by the receiving unit 10. The signals are received by the receiving elements 12a to 12d.

そして、受信部10が各受信素子12a〜12dで受信した超音波の音圧差を検出し、その受信した超音波の音圧差と発信部が発射した超音波とを比較することにより、検出対象物の2次元あるいは3次元の位置測定、超音波センサと検出対象物との距離測定などを行うことができる。
尚、超音波センサの発信部には、どのような型式(例えば、圧電式や静電容量式など)を用いてもよい。
And the receiving part 10 detects the sound pressure difference of the ultrasonic wave which each receiving element 12a-12d received, and compares the sound pressure difference of the received ultrasonic wave with the ultrasonic wave which the transmission part emitted, and a detection target object 2D or 3D position measurement, distance measurement between an ultrasonic sensor and a detection target can be performed.
Note that any type (for example, a piezoelectric type or a capacitance type) may be used for the transmitter of the ultrasonic sensor.

[2]
図6は、受信素子12a〜12dの受信面Sに対する超音波の入射角θを説明するための説明図である。
受信面Sに対する超音波の入射角θとは、受信面Sの法線nと超音波の進入方向とがなす角度である。
[2]
FIG. 6 is an explanatory diagram for explaining the incident angle θ of the ultrasonic wave with respect to the receiving surface S of the receiving elements 12a to 12d.
The incident angle θ of the ultrasonic wave with respect to the receiving surface S is an angle formed by the normal line n of the receiving surface S and the direction in which the ultrasonic wave enters.

図7は、受信素子12a〜12dの受信面Sに対する超音波の入射角θと、受信面Sが受ける音圧との関係を示す特性図である。尚、音圧は、最大値を「1」として表示してある。
縦波は、その進行方向と同一方向に圧力を発生させ、その進行方向と垂直方向には圧力を発生させないという特性がある。
超音波は縦波であるため、受信素子12a〜12dの受信面Sに対する超音波の入射角θが0゜の場合に受信面Sが受ける音圧が最大となり、入射角θが90゜に近づくほど音圧が低下して、入射角θが90゜の場合に音圧がゼロになる。
FIG. 7 is a characteristic diagram showing the relationship between the incident angle θ of the ultrasonic wave with respect to the receiving surface S of the receiving elements 12a to 12d and the sound pressure received by the receiving surface S. Note that the maximum value of the sound pressure is displayed as “1”.
The longitudinal wave has a characteristic that pressure is generated in the same direction as the traveling direction, and no pressure is generated in the direction perpendicular to the traveling direction.
Since the ultrasonic wave is a longitudinal wave, when the incident angle θ of the ultrasonic wave with respect to the receiving surface S of the receiving elements 12a to 12d is 0 °, the sound pressure received by the receiving surface S becomes the maximum, and the incident angle θ approaches 90 °. As the sound pressure decreases, the sound pressure becomes zero when the incident angle θ is 90 °.

各受信素子12a〜12dは、受信面Sが受ける音圧が大きいほど受信電極22の撓みも大きくなるため、生成する電気信号のレベルが増大する。
つまり、各受信素子12a〜12dが受信した超音波を変換して生成する電気信号のレベルは、各受信素子12a〜12dの受信面Sに対する超音波の入射角θに依存する。
In each of the receiving elements 12a to 12d, the greater the sound pressure received by the receiving surface S, the greater the bending of the receiving electrode 22, so that the level of the electric signal to be generated increases.
That is, the level of the electric signal generated by converting the ultrasonic wave received by each receiving element 12a to 12d depends on the incident angle θ of the ultrasonic wave with respect to the receiving surface S of each receiving element 12a to 12d.

ここで、各受信素子12a〜12dが生成する電気信号のレベルは、各受信素子12a〜12dの受信感度に対応し、電気信号のレベルが高いほど受信感度も高くなる。
言い換えると、各受信素子12a〜12dにおける超音波の受信感度は、受信面Sが受ける音圧に対応し、受信面Sに対する超音波の入射角θに依存する。
Here, the level of the electric signal generated by each of the receiving elements 12a to 12d corresponds to the receiving sensitivity of each of the receiving elements 12a to 12d. The higher the level of the electric signal, the higher the receiving sensitivity.
In other words, the reception sensitivity of the ultrasonic waves in each of the receiving elements 12a to 12d corresponds to the sound pressure received by the reception surface S and depends on the incident angle θ of the ultrasonic waves with respect to the reception surface S.

[3]
図1および図2に示すように各受信素子12a〜12dを配置することで、各受信素子12a〜12dの受信感度の入射角依存性を利用し、各受信素子12a〜12dで受信した超音波の音圧差に基づいて、検出対象物の位置測定および距離測定を正確に行うことができる。
[3]
As shown in FIG. 1 and FIG. 2, by arranging the receiving elements 12a to 12d, the ultrasonic waves received by the receiving elements 12a to 12d using the incident angle dependency of the receiving sensitivity of the receiving elements 12a to 12d are used. Based on the sound pressure difference, the position measurement and distance measurement of the detection object can be accurately performed.

ところで、検出対象物から反射した超音波は周囲の物体に何度も跳ね返って空間に残り、その空間に残った音からなる残響音(反射音)が発生することがある。
また、入力した電気信号の停止と同時に発信部の振動板の振動を停止させることは困難であり、振動板の振動は減衰しながら停止するため、発信部の発信した超音波には減衰音が生じる。
By the way, the ultrasonic wave reflected from the detection target may bounce back to surrounding objects many times and remain in the space, and a reverberant sound (reflected sound) composed of the sound remaining in the space may be generated.
In addition, it is difficult to stop the vibration of the diaphragm of the transmitter simultaneously with the stop of the input electric signal. Since the vibration of the diaphragm stops while attenuating, the ultrasonic wave transmitted from the transmitter has a damped sound. Arise.

しかし、第1実施形態の受信部10は、従来技術(同一寸法形状の複数個の振動板を同一平面上に1次元配置または2次元配置した構造)のように、複数個の振動板で受信した超音波のタイミングのずれに基づいて前記測定を行うのではなく、各受信素子12a〜12dで受信した超音波の音圧差に基づいて前記測定を行うため、残響音および減衰音の影響を回避して測定精度を向上させることができる。
そして、第1実施形態によれば、従来技術のように複雑な信号処理回路や特別な制振構造を設ける必要がないため、超音波センサの製品コストを低下させることができる。
However, the receiving unit 10 of the first embodiment receives signals with a plurality of diaphragms as in the prior art (a structure in which a plurality of diaphragms having the same size and shape are arranged one-dimensionally or two-dimensionally on the same plane). The measurement is not performed based on the difference in the timing of the ultrasonic waves, but the measurement is performed based on the sound pressure difference between the ultrasonic waves received by the receiving elements 12a to 12d, thereby avoiding the influence of reverberation sound and attenuation sound. Thus, the measurement accuracy can be improved.
And according to 1st Embodiment, since it is not necessary to provide a complicated signal processing circuit and a special damping structure like the prior art, the product cost of an ultrasonic sensor can be reduced.

(第2実施形態)
図8は、第2実施形態における超音波センサの受信部50の斜視図である。
受信部50において、第1実施形態の受信部10と異なるのは、各受信素子12a〜12dを覆う略円錐形状の保護カバー51が台座11の表面上に取付固定されている点だけである。
このように、各受信素子12a〜12dを覆う保護カバー51を設けることにより、各受信素子12a〜12dを周辺環境から保護して受信部50の耐候性を高めると共に、各受信素子12a〜12dの破損を防止できる。
(Second Embodiment)
FIG. 8 is a perspective view of the receiving unit 50 of the ultrasonic sensor according to the second embodiment.
The receiving unit 50 is different from the receiving unit 10 of the first embodiment only in that a substantially conical protective cover 51 that covers the receiving elements 12 a to 12 d is attached and fixed on the surface of the base 11.
As described above, by providing the protective cover 51 that covers the receiving elements 12a to 12d, the receiving elements 12a to 12d are protected from the surrounding environment to improve the weather resistance of the receiving unit 50, and the receiving elements 12a to 12d Damage can be prevented.

図9は、保護カバー51の第1構造例を説明するための一部縦断面図である。
保護カバー51の裏面側は各受信素子12a〜12dに密着している。
そのため、超音波によって保護カバー51が振動すると、その保護カバー51の振動は各受信素子12a〜12dに直接伝達されることから、保護カバー51を設けることによる各受信素子12a〜12dの受信感度の低下を回避できる。
FIG. 9 is a partial longitudinal sectional view for explaining a first structural example of the protective cover 51.
The back side of the protective cover 51 is in close contact with the receiving elements 12a to 12d.
Therefore, when the protective cover 51 is vibrated by ultrasonic waves, the vibration of the protective cover 51 is directly transmitted to the receiving elements 12a to 12d. Therefore, the reception sensitivity of the receiving elements 12a to 12d by providing the protective cover 51 is improved. Decrease can be avoided.

ここで、保護カバー51には、空気,塵埃,液体などを透過させない高い耐候性に加えて、超音波の高い伝達性と、各受信素子12a〜12dの振動を阻害しない程度の低い剛性とが要求される。このような要求を満たす材料として、例えば、各種金属(アルミニウム合金など)の薄膜、各種合成樹脂膜、ゴム膜などがある。   Here, in addition to high weather resistance that does not allow air, dust, liquid, or the like to pass through, the protective cover 51 has high ultrasonic transmission and low rigidity that does not hinder the vibration of each of the receiving elements 12a to 12d. Required. Examples of materials that satisfy such requirements include thin films of various metals (such as aluminum alloys), various synthetic resin films, and rubber films.

図10は、保護カバー51の第2構造例を説明するための一部縦断面図である。
保護カバー51の裏面側と各受信素子12a〜12dとの間には、空隙Lが設けられている。
そのため、受信部50に外力が加わっても、その外力は保護カバー51に印加されるだけで、各受信素子12a〜12dには外力が直接印加されないため、各受信素子12a〜12dの破損を確実に防止できる。
ここで、保護カバー51には、空気,塵埃,液体などを透過させない高い耐候性に加えて、超音波により振動しやすく、超音波を屈折させずに透過させる性質が要求される。
FIG. 10 is a partial longitudinal sectional view for explaining a second structure example of the protective cover 51.
A gap L is provided between the back surface side of the protective cover 51 and each of the receiving elements 12a to 12d.
Therefore, even if an external force is applied to the receiving unit 50, the external force is only applied to the protective cover 51, and the external force is not directly applied to the receiving elements 12a to 12d. Therefore, the receiving elements 12a to 12d are reliably damaged. Can be prevented.
Here, in addition to high weather resistance that does not allow air, dust, liquid, or the like to pass through, the protective cover 51 is required to have a property of being easily vibrated by ultrasonic waves and transmitting ultrasonic waves without being refracted.

また、保護カバー51と各受信素子12a〜12dとの空隙Lに液体,ゾル,ゲルのいずれかの充填材料を充填した場合には、その充填材料の音響インピーダンスを保護カバー51の音響インピーダンスに近づけることにより、保護カバー51の振動を当該充填材料を介して各受信素子12a〜12dへ確実に伝達させることが可能になり、各受信素子12a〜12dの受信感度の低下を回避できる。   Further, when the gap L between the protective cover 51 and each of the receiving elements 12a to 12d is filled with any filling material of liquid, sol, or gel, the acoustic impedance of the filling material is brought close to the acoustic impedance of the protective cover 51. Thus, it is possible to reliably transmit the vibration of the protective cover 51 to the receiving elements 12a to 12d through the filling material, and it is possible to avoid a decrease in receiving sensitivity of the receiving elements 12a to 12d.

尚、物質の音響インピーダンスは、その物質の密度と伝搬音速との積である。そして、物質間の音響インピーダンスが異なるほど、その物質間における音波の伝搬特性は悪化する。つまり、空隙Lの充填材料と保護カバー51の音響インピーダンスが異なるほど、超音波は保護カバー51で反射して充填材料に伝搬し難くなる。   The acoustic impedance of a substance is the product of the density of the substance and the propagation sound velocity. And as the acoustic impedance between substances differs, the propagation characteristic of the sound wave between the substances deteriorates. That is, as the acoustic impedance between the filling material of the gap L and the protective cover 51 is different, the ultrasonic wave is more likely to be reflected by the protective cover 51 and propagate to the filling material.

そのため、保護カバー51として合成樹脂膜を用いる場合には、当該合成樹脂の微粒子を液体中に分散させたゾルや、当該合成樹脂からなる高分子ゲルを充填材料として用いればよい。また、充填材料は各受信素子12a〜12dを侵さないものである必要がある。このような要求を満たす充填材料として、例えば、シリコンゲル、フッ素ゲルなどがある。   Therefore, when a synthetic resin film is used as the protective cover 51, a sol in which fine particles of the synthetic resin are dispersed in a liquid or a polymer gel made of the synthetic resin may be used as a filling material. Further, the filling material needs to be a material that does not attack the receiving elements 12a to 12d. Examples of the filling material that satisfies such requirements include silicon gel and fluorine gel.

(第3実施形態)
図11は、第3実施形態における超音波センサの受信部60の斜視図である。
図12(A)は、受信部60の平面図である。図12(B)は、受信部60の正面図である。
(Third embodiment)
FIG. 11 is a perspective view of the receiving unit 60 of the ultrasonic sensor according to the third embodiment.
FIG. 12A is a plan view of the receiving unit 60. FIG. 12B is a front view of the receiving unit 60.

受信部60は、台座11と、6個の同一寸法形状で同一構成の受信素子12a〜12fから構成されている。
平板矩形状の各受信素子12a〜12fは、円盤形状の台座11を上方向から見て、台座11の中心軸Cから30゜の等角度で放射状に配置されている。
The receiving unit 60 includes a base 11 and six receiving elements 12a to 12f having the same configuration with the same size and shape.
The flat rectangular receiving elements 12a to 12f are arranged radially at an equal angle of 30 ° from the central axis C of the pedestal 11 when the disk-shaped pedestal 11 is viewed from above.

また、各受信素子12a〜12fは、台座11を横方向から見て、各受信素子12a〜12fの受信面Sの法線nが台座11の中心軸C上の1つの点Pにて交わると共に、各受信素子12a〜12fの受信面Sが台座11の表面に対して45゜の等角度を成すように、各受信素子12a〜12fの長手方向の一端部が台座11の周縁に沿って台座11の表面上に取付固定されている。
つまり、各受信素子12a〜12fは、円盤形状の台座11を上方向から見て、一直線上に配置された各受信素子12a,12e、各受信素子12b,12f、各受信素子12c,12dの受信面Sが90゜の等角度を成すように配置されている。
In addition, each receiving element 12a to 12f sees the pedestal 11 from the lateral direction, and the normal line n of the receiving surface S of each receiving element 12a to 12f intersects at one point P on the central axis C of the pedestal 11. The longitudinal ends of the receiving elements 12a to 12f extend along the periphery of the pedestal 11 so that the receiving surfaces S of the receiving elements 12a to 12f form an equal angle of 45 ° with respect to the surface of the pedestal 11. 11 is fixedly mounted on the surface.
That is, each of the receiving elements 12a to 12f is received by each of the receiving elements 12a and 12e, each of the receiving elements 12b and 12f, and each of the receiving elements 12c and 12d arranged in a straight line when the disk-shaped base 11 is viewed from above. The surfaces S are arranged so as to form an equal angle of 90 °.

このように、第3実施形態の受信部60において、第1実施形態の受信部10と異なるのは、2個の受信素子12e,12fを追加すると共に、各受信素子12a〜12dの平面配置を変更した点だけである。
第3実施形態によれば、各受信素子12e,12fを追加した分だけ、超音波の受信方向の指向性を広くすると共に、各受信素子12a〜12fの受信感度の入射角依存性を用いた検出対象物の位置および距離の測定精度を向上させることが可能になるため、第1実施形態の前記作用・効果を更に高めることができる。
As described above, the receiving unit 60 of the third embodiment is different from the receiving unit 10 of the first embodiment in that two receiving elements 12e and 12f are added and the planar arrangement of the receiving elements 12a to 12d is increased. Only the changes.
According to the third embodiment, the directivity in the reception direction of the ultrasonic wave is widened by the addition of the receiving elements 12e and 12f, and the incident angle dependence of the receiving sensitivity of the receiving elements 12a to 12f is used. Since it becomes possible to improve the measurement accuracy of the position and distance of the detection object, the above-mentioned operation and effect of the first embodiment can be further enhanced.

(第4実施形態)
図13は、第4実施形態における超音波センサの受信部70の斜視図である。
図14(A)は、受信部70の平面図である。図14(B)は、受信部70の正面図である。
(Fourth embodiment)
FIG. 13 is a perspective view of the receiving unit 70 of the ultrasonic sensor according to the fourth embodiment.
FIG. 14A is a plan view of the receiving unit 70. FIG. 14B is a front view of the receiving unit 70.

受信部70は、台座11と、3個の同一寸法形状で同一構成の受信素子12a〜12cから構成されている。
平板矩形状の各受信素子12a〜12cは、円盤形状の台座11を上方向から見て、台座11の中心軸Cから60゜の等角度で放射状に配置されている。
The receiving unit 70 includes a base 11 and three receiving elements 12a to 12c having the same configuration with the same size and shape.
The flat rectangular receiving elements 12 a to 12 c are arranged radially at an equal angle of 60 ° from the central axis C of the pedestal 11 when the disk-shaped pedestal 11 is viewed from above.

また、各受信素子12a〜12cは、台座11を横方向から見て、各受信素子12a〜12cの受信面Sの法線nが台座11の中心軸C上の1つの点Pにて交わると共に、各受信素子12a〜12cの受信面Sが台座11の表面に対して45゜の等角度を成すように、各受信素子12a〜12cの長手方向の一端部が台座11の周縁に沿って台座11の表面上に取付固定されている。   Each receiving element 12a to 12c sees the pedestal 11 from the lateral direction, and the normal line n of the receiving surface S of each receiving element 12a to 12c intersects at one point P on the central axis C of the pedestal 11. The longitudinal ends of the receiving elements 12 a to 12 c extend along the periphery of the pedestal 11 so that the receiving surfaces S of the receiving elements 12 a to 12 c form an equal angle of 45 ° with the surface of the pedestal 11. 11 is fixedly mounted on the surface.

このように、第4実施形態の受信部70において、第1実施形態の受信部10と異なるのは、1個の受信素子12dを省くと共に、各受信素子12a〜12cの平面配置を変更した点だけである。
第4実施形態によれば、受信素子12dを省いた分だけ、第1実施形態の前記作用・効果が若干低下するものの、超音波センサの製品コストを削減することができる。
Thus, the receiving unit 70 of the fourth embodiment differs from the receiving unit 10 of the first embodiment in that one receiving element 12d is omitted and the planar arrangement of each receiving element 12a to 12c is changed. Only.
According to the fourth embodiment, the product cost of the ultrasonic sensor can be reduced, although the operation and effect of the first embodiment are slightly reduced by the amount that the receiving element 12d is omitted.

[別の実施形態]
ところで、本発明は上記各実施形態に限定されるものではなく、以下のように具体化してもよく、その場合でも、上記各実施形態と同等もしくはそれ以上の作用・効果を得ることができる。
[Another embodiment]
By the way, the present invention is not limited to the above-described embodiments, and may be embodied as follows. Even in this case, operations and effects equivalent to or more than those of the above-described embodiments can be obtained.

[別例1]
各受信素子12a〜12fは、台座11を上方向から見て、台座11の中心軸Cからそれぞれ適宜な角度で放射状に配置してもよく、適宜な形状(例えば、渦巻き状など)に配置してもよい。
また、各受信素子12a〜12fは、台座11を横方向から見て、台座11の表面に対して適宜な等角度を成すように配置してもよく、台座11の表面に対して各受信素子12a〜12fが別々の角度を成すように配置してもよい。
そして、各受信素子の個数は4個(第1実施形態),6個(第3実施形態),3個(第4実施形態)に限らず、3個以上の適宜な個数にしてもよい。
[Example 1]
Each of the receiving elements 12a to 12f may be arranged radially at an appropriate angle from the center axis C of the pedestal 11 when the pedestal 11 is viewed from above, or arranged in an appropriate shape (for example, a spiral shape). May be.
Each of the receiving elements 12a to 12f may be disposed so as to form an appropriate equiangular angle with respect to the surface of the pedestal 11 when the pedestal 11 is viewed from the lateral direction. You may arrange | position so that 12a-12f may form a separate angle.
The number of receiving elements is not limited to four (first embodiment), six (third embodiment), and three (fourth embodiment), but may be an appropriate number of three or more.

すなわち、受信部を構成する各受信素子は、必要な前記測定精度および指向性に応じて立体的に配置すればよく、その受信素子の個数および配置状態はカット・アンド・トライで実験的に最適値を見つけて設定すればよい。   That is, each receiving element constituting the receiving unit may be arranged three-dimensionally according to the required measurement accuracy and directivity, and the number and arrangement state of the receiving elements are experimentally optimal by cut-and-try. Find and set the value.

[別例2]
上記各実施形態は超音波センサの受信部に適用したものであるが、本発明は電気信号を超音波に変換して発信する超音波センサの発信部に適用してもよい。
すなわち、受信部10,50,60,70の各受信素子12a〜12fを、発信部の各発信素子として機能させてもよい。この場合、各受信素子12a〜12fの受信面Sは、発信素子から超音波を発信する発信面となる。
[Example 2]
Although each said embodiment is applied to the receiving part of an ultrasonic sensor, you may apply this invention to the transmission part of the ultrasonic sensor which converts an electric signal into an ultrasonic wave and transmits.
That is, the receiving elements 12a to 12f of the receiving units 10, 50, 60, and 70 may function as the transmitting elements of the transmitting unit. In this case, the receiving surface S of each receiving element 12a-12f becomes a transmitting surface which transmits an ultrasonic wave from a transmitting element.

例えば、各発信素子を図3に示す第1構造例(圧電式)にした場合には、各電極21,22に印加される電気信号に応じて、複合圧電体23が圧電効果により振動して電極22から超音波が発信する。
また、各発信素子を図4に示す第2構造例(圧電式)にした場合には、各電極21,22に印加される電気信号に応じて、誘電体層31が圧電効果により振動して電極22から超音波が発信する。
また、各発信素子を図5に示す第3構造例(コンデンサ式)にした場合には、各電極21,22に印加される電気信号に応じて、各電極21,22間に静電引力が発生し、その静電引力により電極22が振動して超音波が発生する。
For example, when each transmitting element is the first structural example (piezoelectric type) shown in FIG. 3, the composite piezoelectric body 23 vibrates due to the piezoelectric effect according to the electric signal applied to each electrode 21, 22. Ultrasound is transmitted from the electrode 22.
When each transmitting element is the second structural example (piezoelectric type) shown in FIG. 4, the dielectric layer 31 vibrates due to the piezoelectric effect according to the electric signal applied to each electrode 21, 22. Ultrasound is transmitted from the electrode 22.
When each transmitting element is the third structural example (capacitor type) shown in FIG. 5, an electrostatic attractive force is generated between the electrodes 21 and 22 in accordance with an electric signal applied to the electrodes 21 and 22. The electrode 22 is vibrated by the electrostatic attractive force, and an ultrasonic wave is generated.

ところで、発信部を構成する発信素子の個数は超音波の発信出力(音響出力)に対応し、その発信素子の個数を増やすほど発信出力を大きくすることができる。
また、発信部を構成する発信素子の配置状態を適宜設定することにより、超音波の発信方向の指向性を適宜設定することができる。
By the way, the number of transmitting elements constituting the transmitting unit corresponds to the transmission output (acoustic output) of ultrasonic waves, and the transmission output can be increased as the number of transmitting elements is increased.
Moreover, the directivity of the transmission direction of an ultrasonic wave can be appropriately set by appropriately setting the arrangement state of the transmitting elements constituting the transmitting unit.

従って、各受信素子12a〜12fを発信部の各発信素子として機能させた場合も、前記[別例1]と同様に、発信部を構成する各発信素子は、必要な発信出力および指向性に応じて立体的に配置すればよく、その発信素子の個数および配置状態はカット・アンド・トライで実験的に最適値を見つけて設定すればよい。   Therefore, when each receiving element 12a-12f is functioned as each transmitting element of the transmitting unit, each transmitting element constituting the transmitting unit has the necessary transmitting output and directivity as in [Another Example 1]. Accordingly, the three-dimensional arrangement may be performed, and the number and arrangement state of the transmitting elements may be set by experimentally finding an optimum value by cut-and-try.

例えば、発信部の各発信素子を受信部10,60,70の各受信素子12a〜12fと同様に配置した場合には、台座11を底面とする半球状の広い指向性が得られる。
また、各受信部10,60,70と同一構成の2個の発信部を用い、各発信部の台座11を裏面側同士貼り合わせて組み立てれば、完全な球状の無指向性が得られる。
図15は、受信部10と同一構成の2個の発信部80a,80bを用い、各発信部80a,80bの台座11を裏面側同士貼り合わせて組み立てた構成例を示す斜視図である。
For example, when the transmitting elements of the transmitting unit are arranged in the same manner as the receiving elements 12a to 12f of the receiving units 10, 60, 70, wide hemispherical directivity with the base 11 as the bottom surface is obtained.
Further, if two transmitters having the same configuration as each of the receivers 10, 60, 70 are used and the bases 11 of the transmitters are bonded to each other and assembled together, a complete spherical omnidirectionality can be obtained.
FIG. 15 is a perspective view illustrating a configuration example in which two transmitting units 80a and 80b having the same configuration as the receiving unit 10 are used and the bases 11 of the transmitting units 80a and 80b are bonded to each other on the back side.

本発明を具体化した第1実施形態における超音波センサの受信部10の斜視図。The perspective view of the receiving part 10 of the ultrasonic sensor in 1st Embodiment which actualized this invention. 図2(A)は受信部10の平面図。図2(B)は受信部10の正面図。FIG. 2A is a plan view of the receiving unit 10. FIG. 2B is a front view of the receiving unit 10. 受信部10を構成する受信素子12a〜12dの第1構造例を示す概略縦断面図。FIG. 2 is a schematic longitudinal sectional view showing a first structural example of receiving elements 12a to 12d constituting the receiving unit 10. 受信部10を構成する受信素子12a〜12dの第2構造例を示す概略縦断面図。FIG. 4 is a schematic longitudinal sectional view showing a second structure example of receiving elements 12a to 12d constituting the receiving unit 10. 受信部10を構成する受信素子12a〜12dの第3構造例を示す概略縦断面図。FIG. 4 is a schematic longitudinal sectional view showing a third structure example of receiving elements 12a to 12d constituting the receiving unit 10. 受信素子12a〜12dの受信面Sに対する超音波の入射角θを説明するための説明図。Explanatory drawing for demonstrating the incident angle (theta) of the ultrasonic wave with respect to the receiving surface S of receiving element 12a-12d. 受信素子12a〜12dの受信面Sに対する超音波の入射角θと、受信面Sが受ける音圧との関係を示す特性図。The characteristic view which shows the relationship between the incident angle (theta) of the ultrasonic wave with respect to the receiving surface S of the receiving elements 12a-12d, and the sound pressure which the receiving surface S receives. 本発明を具体化した第2実施形態における超音波センサの受信部50の斜視図。The perspective view of the receiving part 50 of the ultrasonic sensor in 2nd Embodiment which actualized this invention. 第2実施形態の保護カバー51の第1構造例を説明するための一部縦断面図。The partial longitudinal cross-sectional view for demonstrating the 1st structural example of the protective cover 51 of 2nd Embodiment. 第2実施形態の保護カバー51の第2構造例を説明するための一部縦断面図。The partial longitudinal cross-sectional view for demonstrating the 2nd structural example of the protective cover 51 of 2nd Embodiment. 本発明を具体化した第3実施形態における超音波センサの受信部60の斜視図。The perspective view of the receiving part 60 of the ultrasonic sensor in 3rd Embodiment which actualized this invention. 図12(A)は受信部60の平面図。図12(B)は受信部60の正面図。FIG. 12A is a plan view of the receiving unit 60. FIG. 12B is a front view of the receiving unit 60. 本発明を具体化した第4実施形態における超音波センサの受信部70の斜視図。The perspective view of the receiving part 70 of the ultrasonic sensor in 4th Embodiment which actualized this invention. 図14(A)は受信部70の平面図。図14(B)は受信部70の正面図。FIG. 14A is a plan view of the receiving unit 70. FIG. 14B is a front view of the receiving unit 70. 本発明を具体化した別例2における超音波センサの発信部80a,80bの斜視図。The perspective view of the transmission parts 80a and 80b of the ultrasonic sensor in the another example 2 which actualized this invention.

符号の説明Explanation of symbols

10,50,60,70…超音波センサの受信部(発信部)
11…台座
12a〜12f…受信素子(発信素子)
S…受信面(発信面)
51…保護カバー
L…空隙
10, 50, 60, 70... Ultrasonic sensor receiver (transmitter)
11. Pedestal 12a-12f. Receiving element (transmitting element)
S ... Receiving surface (transmitting surface)
51 ... Protective cover L ... Gap

Claims (7)

受信した超音波を電気信号に変換するか又は電気信号を超音波に変換して発信する複数個の変換手段を備え、各変換手段が立体的に配置されたことを特徴とする超音波センサ。   An ultrasonic sensor comprising a plurality of conversion means for converting received ultrasonic waves into electric signals or converting electric signals into ultrasonic waves for transmission, and each conversion means is arranged three-dimensionally. 請求項1に記載の超音波センサにおいて、
前記変換手段を3個以上の複数個備え、
各変換手段は、超音波を受信するための受信面または超音波を発信するための発信面が、それぞれ等角度で放射状に配置されていることを特徴とする超音波センサ。
The ultrasonic sensor according to claim 1,
A plurality of three or more conversion means,
An ultrasonic sensor characterized in that each conversion means has a receiving surface for receiving ultrasonic waves or a transmitting surface for transmitting ultrasonic waves arranged radially at equal angles.
請求項2に記載の超音波センサにおいて、
前記各変換手段は、各変換手段の一端部を含む平面に対して前記受信面または前記発信面が45゜の角度を成すように配置されていることを特徴とする超音波センサ。
The ultrasonic sensor according to claim 2,
The ultrasonic sensor, wherein each of the conversion means is arranged such that the reception surface or the transmission surface forms an angle of 45 ° with respect to a plane including one end of each conversion means.
請求項1〜3のいずれか1項に記載の超音波センサにおいて、
前記各変換手段を覆う保護カバーを備えたことを特徴とする超音波センサ。
The ultrasonic sensor according to any one of claims 1 to 3,
An ultrasonic sensor comprising a protective cover for covering each of the conversion means.
請求項4に記載の超音波センサにおいて、
前記保護カバーの裏面側は前記各変換手段に密着していることを特徴とする超音波センサ。
The ultrasonic sensor according to claim 4,
The ultrasonic sensor according to claim 1, wherein the back surface side of the protective cover is in close contact with the conversion means.
請求項4に記載の超音波センサにおいて、
前記保護カバーの裏面側と前記各変換手段との間には空隙が設けられていることを特徴とする超音波センサ。
The ultrasonic sensor according to claim 4,
An ultrasonic sensor, wherein a gap is provided between a back surface side of the protective cover and each of the conversion means.
請求項1〜6のいずれか1項に記載の超音波センサにおいて、
前記変換手段は、圧電式または静電容量式であることを特徴とする超音波センサ。
The ultrasonic sensor according to any one of claims 1 to 6,
The ultrasonic sensor is characterized in that the conversion means is a piezoelectric type or a capacitance type.
JP2005011485A 2005-01-19 2005-01-19 Ultrasonic sensor Pending JP2006203423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011485A JP2006203423A (en) 2005-01-19 2005-01-19 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011485A JP2006203423A (en) 2005-01-19 2005-01-19 Ultrasonic sensor

Publications (1)

Publication Number Publication Date
JP2006203423A true JP2006203423A (en) 2006-08-03

Family

ID=36961042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011485A Pending JP2006203423A (en) 2005-01-19 2005-01-19 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP2006203423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060508A (en) * 2008-09-05 2010-03-18 Furukawa Co Ltd Object positioning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060508A (en) * 2008-09-05 2010-03-18 Furukawa Co Ltd Object positioning apparatus

Similar Documents

Publication Publication Date Title
JP4645436B2 (en) Ultrasonic sensor
JP4513596B2 (en) Ultrasonic sensor
JP2007306043A (en) Ultrasonic sensor
JP2007024770A (en) Device for detecting obstruction
JP4618165B2 (en) Ultrasonic sensor
JP2009031031A (en) Ultrasonic sensor
US20020089262A1 (en) Cylindrical transducer apparatus
JP4702255B2 (en) Ultrasonic sensor
JP4835366B2 (en) Ultrasonic sensor
WO2004098234A1 (en) Ultrasonic sensor
JP2008085462A (en) Ultrasonic sensor
JP4609326B2 (en) Ultrasonic sensor
CN112893067B (en) Multi-cell transducer
US20140092709A1 (en) Pvdf sonar transducer system
JP2006200976A (en) Ultrasonic sensor
JP2009088869A (en) Ultrasonic sensor
JP4860797B2 (en) Ultrasonic sensor and obstacle detection device
JP7099267B2 (en) Ultrasonic devices and ultrasonic sensors
JP2006203423A (en) Ultrasonic sensor
JP3908344B2 (en) Device for measuring the distance of an object
US20190257930A1 (en) Multi frequency piston transducer
WO2023106211A1 (en) Ultrasonic sensor and object detection device
WO2017141402A1 (en) Ultrasonic transmission/reception apparatus, wall member, and method for attaching ultrasonic sensor to wall member
KR102206704B1 (en) Measurement system for mechanical property based on ultrasonic-transducer of pzt array
JP7367322B2 (en) Object position detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105