JP2006203242A - Method for manufacturing ceramic laminate - Google Patents

Method for manufacturing ceramic laminate Download PDF

Info

Publication number
JP2006203242A
JP2006203242A JP2006074827A JP2006074827A JP2006203242A JP 2006203242 A JP2006203242 A JP 2006203242A JP 2006074827 A JP2006074827 A JP 2006074827A JP 2006074827 A JP2006074827 A JP 2006074827A JP 2006203242 A JP2006203242 A JP 2006203242A
Authority
JP
Japan
Prior art keywords
unfired
firing
laminate
dielectric layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074827A
Other languages
Japanese (ja)
Other versions
JP3886522B2 (en
Inventor
Etsuro Yasuda
悦朗 安田
Atsuhiro Sumiya
篤宏 角谷
Hitoshi Shindo
仁志 進藤
Toshiatsu Nagaya
年厚 長屋
Takashi Yamamoto
孝史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2006074827A priority Critical patent/JP3886522B2/en
Publication of JP2006203242A publication Critical patent/JP2006203242A/en
Application granted granted Critical
Publication of JP3886522B2 publication Critical patent/JP3886522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramic laminate without the need for strictly controlling an oxygen partial pressure in a firing atmosphere. <P>SOLUTION: A method for manufacturing a ceramic laminate which is formed by alternately laminating a dielectric layer and an electrode layer comprises the steps of: preparing an unfired laminate which is formed by alternately laminating a unfired dielectric layer containing a PZT-based dielectric material and a unfired electrode layer containing an electrode material; feeding the unfired laminate into a firing chamber; evacuating the firing chamber; introducing atmospheric gas into the firing chamber as to meet a predetermined oxygen partial pressure; and firing the laminate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,誘電層と電極層とを交互に積層したセラミック積層体の製造方法に関する。   The present invention relates to a method for manufacturing a ceramic laminate in which dielectric layers and electrode layers are alternately laminated.

ディーゼルエンジン等のインジェクタ駆動素子,各種位置決め装置における変位素子として,電極を同時焼成したピエゾアクチュエータが開発されている。上記ピエゾアクチュエータは誘電層と電極層とを交互に積層したセラミック積層体に一対の外部電極を設けた構成を有し,上記セラミック積層体は,未焼成誘電層と未焼成電極層とを交互に積層した未焼成積層体を焼成することにより製造する。   Piezo-actuators with simultaneously fired electrodes have been developed as injector drive elements for diesel engines and displacement elements for various positioning devices. The piezoelectric actuator has a configuration in which a pair of external electrodes is provided on a ceramic laminate in which dielectric layers and electrode layers are alternately laminated. The ceramic laminate has alternating unfired dielectric layers and unfired electrode layers. It manufactures by baking the laminated | stacked unbaking laminated body.

セラミック積層体の誘電層として従来から用いられてきたPZT系材料は焼成温度が1100℃程度必要である。そのため,PZT系材料を用いた誘電層のセラミック積層体に対して,電極層はPdなどの高価な貴金属を用いざるを得なかった。そこでコストを下げるため,950℃以下で焼成できるPZT系材料を開発し,電極層にCu等の卑金属を用いたセラミック積層体が提案されていた。(特許文献1)
特開2002−260951
A PZT material that has been conventionally used as a dielectric layer of a ceramic laminate requires a firing temperature of about 1100 ° C. For this reason, an expensive noble metal such as Pd has to be used for the electrode layer with respect to the ceramic laminate of the dielectric layer using the PZT material. In order to reduce the cost, a PZT material that can be fired at 950 ° C. or lower has been developed, and a ceramic laminate using a base metal such as Cu for the electrode layer has been proposed. (Patent Document 1)
JP2002260951

しかし、特許文献1に示す従来技術では,Cu等の卑金属はPd等の貴金属と比較して酸化されやすい。従って,大気中で焼成した際は酸化されてCu酸化物となり,比抵抗が高くなって所望の電気的特性が得難くなるという問題があった。また,CuがCu酸化物になる際には体積膨張を伴うため,電極層が剥離するなどの問題が生じることもあった。   However, in the prior art disclosed in Patent Document 1, a base metal such as Cu is more easily oxidized than a noble metal such as Pd. Therefore, when fired in the atmosphere, it is oxidized to Cu oxide, and there is a problem that it becomes difficult to obtain desired electrical characteristics due to high specific resistance. Further, when Cu becomes a Cu oxide, there is a problem that the electrode layer is peeled off due to volume expansion.

一方,焼成雰囲気内の酸素分圧が低い場合,Cuの酸化は防止できるが,電極層と該電極層と隣接する誘電層との界面の接合が不十分となり,電極層と誘電層との間に剥がれが生じることがあった。または,誘電層が還元され金属Pbが生成し,電極層のCuと反応し電極層が溶け出す問題もあった。電極層が溶け出した場合,セラミック積層体の電極層がアイランド状となる等して,誘電層に対する電圧印加電極としての機能を果たせなくなるおそれもあった。   On the other hand, if the oxygen partial pressure in the firing atmosphere is low, Cu oxidation can be prevented, but the interface between the electrode layer and the dielectric layer adjacent to the electrode layer becomes insufficient, and the gap between the electrode layer and the dielectric layer is insufficient. Sometimes peeling occurred. Another problem is that the dielectric layer is reduced to produce metal Pb, which reacts with Cu in the electrode layer to melt out the electrode layer. When the electrode layer is melted, the electrode layer of the ceramic laminate may have an island shape, which may prevent the dielectric layer from functioning as a voltage application electrode.

これらの問題を防ぐため,未焼成積層体の焼成は,複雑な組成のガス系を利用する等して焼成雰囲気内の酸素分圧を厳密に制御する必要があった。すなわち,焼成雰囲気は誘電層のPZT等が還元されず,電極層のCu等が酸化されない酸素分圧に制御する必要がある。   In order to prevent these problems, it is necessary to strictly control the oxygen partial pressure in the firing atmosphere, for example, by using a gas system having a complicated composition when firing the unfired laminate. That is, the firing atmosphere must be controlled to an oxygen partial pressure that does not reduce PZT or the like of the dielectric layer and does not oxidize Cu or the like of the electrode layer.

上記条件を満たすには,種々のガスを使用し,エリンガム図表から導出した,Cuが酸化されずPZTが還元されない温度と酸素分圧の,図3において網掛けとした領域内に焼成雰囲気を制御する必要がある。つまり,温度に対応した酸素分圧で焼成する必要があり,製造行程が非常に複雑で,制御が面倒かつ手間が必要であった。また,電極層のコスト削減を図っても,製造工程がコストアップするなどの問題もあった。さらに制御が面倒であることから,不良のセラミック積層体が発生しやすく,歩留まり率の悪い製造方法であった。   In order to satisfy the above conditions, various gases are used, and the firing atmosphere is controlled within the shaded region in FIG. There is a need to. In other words, it was necessary to perform firing at an oxygen partial pressure corresponding to the temperature, the manufacturing process was very complicated, control was troublesome, and labor was required. Even if the cost of the electrode layer is reduced, there is a problem that the manufacturing process increases. Further, since the control is troublesome, a defective ceramic laminate is likely to be generated, and the manufacturing method has a low yield rate.

なお,上述の問題は,アクチュエーターに使用するセラミック積層体に限らず,セラミックコンデンサや多層基板等に用い,誘電層が主としてPbOを含み,電極層がCu等の酸化されやすい卑金属電極を含むセラミック積層体についても当てはまる。   The above problems are not limited to ceramic laminates used for actuators, but are used for ceramic capacitors, multilayer substrates, etc., and ceramic laminates that include PbO as the dielectric layer and electrode layers that easily oxidize such as Cu. The same applies to the body.

本発明は,かかる従来の問題点に鑑みてなされたもので,焼成雰囲気における酸素分圧の制御を厳密に行う必要のないセラミック積層体の製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method for manufacturing a ceramic laminate that does not require strict control of the oxygen partial pressure in a firing atmosphere.

本発明は、誘電層と電極層とを交互に積層したセラミック積層体を製造するに当たり,PZT系誘電材料を含む未焼成誘電層と電極材料を含む未焼成電極層とを交互に積層した未焼成積層体を準備し,該未焼成積層体を焼成容器に導入し,該焼成容器内を真空となし,所定の酸素分圧となるよう雰囲気ガスを導入し,その後焼成を行うことを特徴とするセラミック積層体の製造方法にある。   In producing a ceramic laminate in which dielectric layers and electrode layers are alternately laminated, the present invention provides an unfired in which unfired dielectric layers containing PZT-based dielectric materials and unfired electrode layers containing electrode materials are alternately laminated. A laminate is prepared, the unfired laminate is introduced into a firing container, the inside of the firing container is evacuated, an atmospheric gas is introduced so as to have a predetermined oxygen partial pressure, and then firing is performed. It exists in the manufacturing method of a ceramic laminated body.

焼成容器内を一度真空にした後,所定の酸素分圧となるように雰囲気ガスを導入するため,酸素分圧の調整が容易である。さらに,焼成容器内の焼成雰囲気は外部との気体交換が生じ難いため,電極層の酸化に伴う酸素の吸収,誘電層の還元に伴う酸素の放出によって,未焼成積層体周辺の焼成雰囲気は自ずと電極層が酸化せず,誘電層が還元しない酸素分圧の雰囲気となる。   Since the atmosphere gas is introduced so that a predetermined oxygen partial pressure is obtained after the inside of the firing container is once evacuated, it is easy to adjust the oxygen partial pressure. Furthermore, because the firing atmosphere in the firing container is unlikely to cause gas exchange with the outside, the firing atmosphere around the unfired laminate is naturally due to the absorption of oxygen accompanying the oxidation of the electrode layer and the release of oxygen accompanying the reduction of the dielectric layer. The atmosphere becomes an oxygen partial pressure in which the electrode layer is not oxidized and the dielectric layer is not reduced.

本発明によれば,焼成雰囲気における酸素分圧の制御を厳密に行う必要のないセラミック積層体の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the ceramic laminated body which does not need to strictly control the oxygen partial pressure in a baking atmosphere can be provided.

本発明において,セラミック積層体の誘電層はPZT系誘電材料を含む未焼成誘電層からなり,PZT系誘電材料とはジルコン酸チタン酸鉛が組成の主たる部分を占め,その他に,Aサイトがバリウム,ストロンチウムの2価の金属イオン,Ag,Na,Kの1価の金属イオンで置換されていてもよい。   In the present invention, the dielectric layer of the ceramic laminate is an unfired dielectric layer containing a PZT-based dielectric material, and the PZT-based dielectric material occupies the main part of the composition of lead zirconate titanate. , Strontium divalent metal ions, and Ag, Na, K monovalent metal ions.

Bサイトは,強誘電ペロブスカイトのセラミックのBサイトのZr及びTiの4価の正のイオンの部分的な置換に,以下の金属正イオンの組み合わせが使用されている部品を用いることが好ましい。   As the B site, it is preferable to use a component in which the following combination of metal positive ions is used for partial substitution of Zr and Ti tetravalent positive ions at the B site of the ferroelectric perovskite ceramic.

(a)1価と5価の金属の正イオンの組み合わせ,MI 1/4V 3/4(MI=Na,K。MV=Nb,Ta),(b)2価と5価の金属正イオンの組み合わせ,MII 1/3V 2/3(MII=Mg,Zn,Ni,Co。MV=Nb,Ta),(c)3価と5価の金属正イオンの組み合わせ,MIIIV(MIII=Fe,In,Sc,比較的重いランタニド元素。MV=Nb,Ta),(d)MIII 2/3V1/3(MIII=Fe,In,Sc,比較的重いランタニド元素。MVI=W),(e)MII 1/2VI 1/2(MII=Mg,Co,Ni。MVI=W),
また,セラミック積層体の電極層は電極材料を含む未焼成電極層からなり,該電極材料としては,卑金属電極材料であるCu,合金ガラスフリットを添加したCu,銅合金等を用いることができる。特にCuを含む材料は低温焼成が可能で,安価な電気の良導体であるため,本発明にかかるセラミック積層体の電極材料として好ましい。
(A) Combination of monovalent and pentavalent metal positive ions, M I 1/4 M V 3/4 (M I = Na, K, M V = Nb, Ta), (b) Divalent and pentavalent M II 1/3 M V 2/3 (M II = Mg, Zn, Ni, Co. M V = Nb, Ta), (c) Trivalent and pentavalent metal positive ions Combination, M III M V (M III = Fe, In, Sc, relatively heavy lanthanide element. M V = Nb, Ta), (d) M III 2/3 M V I 1/3 (M III = Fe, In, Sc, relatively heavy lanthanide element (M VI = W), (e) M II 1/2 M VI 1/2 (M II = Mg, Co, Ni. M VI = W),
The electrode layer of the ceramic laminate is an unfired electrode layer containing an electrode material. As the electrode material, Cu as a base metal electrode material, Cu to which an alloy glass frit is added, a copper alloy, or the like can be used. In particular, a material containing Cu is preferable as an electrode material of the ceramic laminate according to the present invention because it can be fired at a low temperature and is an inexpensive good electrical conductor.

また,本発明における焼成雰囲気としては,N2,N2−H2,CO−CO2等の単体のガスや複数種類のガスに酸素を含むものを用いることができる。 In addition, as the firing atmosphere in the present invention, a single gas such as N 2 , N 2 —H 2 , CO—CO 2, or a gas containing oxygen in plural kinds of gases can be used.

また,本発明にかかるセラミック積層体はコンデンサとして用いる他,誘電層として圧電効果を持つ材料で構成し,誘電層に交互に正負の電圧を印加するように構成することで圧電体素子として用いることができる。   In addition to being used as a capacitor, the ceramic laminate according to the present invention is made of a material having a piezoelectric effect as a dielectric layer, and is used as a piezoelectric element by alternately applying positive and negative voltages to the dielectric layer. Can do.

また,上記焼成容器内の酸素分圧は1.013×10-1〜1.013×10-5Paであることが好ましい。 Moreover, it is preferable that the oxygen partial pressure in the said baking container is 1.013 * 10 < -1 > -1.013 * 10 < -5 > Pa.

上記酸素分圧に調整することで電極層は酸化され難く,誘電層は還元され難い焼成雰囲気を得ることができる。酸素分圧が1.013×10-5Pa未満である場合は雰囲気内の酸素量が少ないために還元雰囲気での焼成となり,誘電層の還元が生じるおそれがある。1.013×10-1Paを越えた場合は,反対に酸素が多すぎて電極層が酸化が生じるおそれがある。 By adjusting to the oxygen partial pressure, it is possible to obtain a firing atmosphere in which the electrode layer is hardly oxidized and the dielectric layer is hardly reduced. When the oxygen partial pressure is less than 1.013 × 10 −5 Pa, since the amount of oxygen in the atmosphere is small, firing in a reducing atmosphere may occur, and the dielectric layer may be reduced. On the other hand, when it exceeds 1.013 × 10 −1 Pa, the electrode layer may be oxidized due to excessive oxygen.

[実施例]
以下に,図面を用いて本発明の実施例について説明する。
[Example]
Embodiments of the present invention will be described below with reference to the drawings.

(参考実施例1)
本発明の参考となるセラミック積層体の製造方法について,図1〜図4を用いて説明する。図1に示す誘電層11と電極層12,13とを交互に積層したセラミック積層体1を製造するに当たり,PZT系誘電材料を含む未焼成誘電層と電極材料を含む未焼成電極層とを交互に積層した未焼成積層体2を準備し,該未焼成積層体2を誘電層還元防止剤21と電極層酸化防止剤22とを導入した焼成雰囲気において焼成する。
(Reference Example 1)
The manufacturing method of the ceramic laminated body used as the reference of this invention is demonstrated using FIGS. In manufacturing the ceramic laminate 1 in which the dielectric layer 11 and the electrode layers 12 and 13 shown in FIG. 1 are alternately laminated, the unfired dielectric layer containing the PZT-based dielectric material and the unfired electrode layer containing the electrode material are alternately used. An unsintered laminate 2 is prepared, and the unsintered laminate 2 is fired in a firing atmosphere into which a dielectric layer reduction inhibitor 21 and an electrode layer antioxidant 22 are introduced.

以下,詳細に説明する。本例は,図1,図2に示すごとく,側面101,102に側面電極14とリード線141,142を設け,断面が長方形の誘電層11からなる積層型圧電体素子として機能するセラミック積層体1である。なお,図1において電極層12,13の記載は適宜省略した。誘電層11は圧電材料より構成され,誘電層11と隣接する2つの電極層12,13が誘電層11に電圧を印加して,セラミック積層体1を積層方向に伸縮させる。電極層12,13への通電は側面電極14とリード線141,142とより行い,上記リード線141,142は図示を省略した電源に接続する。   This will be described in detail below. In this example, as shown in FIGS. 1 and 2, a ceramic laminated body which functions as a laminated piezoelectric element having a side electrode 14 and lead wires 141 and 142 on the side faces 101 and 102 and having a dielectric layer 11 having a rectangular cross section. 1. In FIG. 1, the electrode layers 12 and 13 are omitted as appropriate. The dielectric layer 11 is made of a piezoelectric material, and two electrode layers 12 and 13 adjacent to the dielectric layer 11 apply a voltage to the dielectric layer 11 to expand and contract the ceramic laminate 1 in the laminating direction. The electrode layers 12 and 13 are energized by the side electrode 14 and the lead wires 141 and 142, and the lead wires 141 and 142 are connected to a power source (not shown).

セラミック積層体1は,図2に示すごとく,側面101に電極層12が露出し,反対側の側面102に電極未形成部120を有する誘電層11と,側面101に電極未形成部130を有し,反対側の側面102に電極層13が露出する誘電層11とを交互に積層して構成する。側面101に露出した電極層12の端面を覆うように側面電極14を設け,該側面電極14にリード線141を設ける。側面102に対しても同様に側面電極14とリード線142とを設ける。   As shown in FIG. 2, the ceramic laminate 1 has the dielectric layer 11 having the electrode layer 12 exposed on the side surface 101, the electrode non-formed portion 120 on the opposite side surface 102, and the electrode non-formed portion 130 on the side surface 101. Then, the dielectric layers 11 from which the electrode layers 13 are exposed are alternately laminated on the opposite side surface 102. A side electrode 14 is provided so as to cover the end surface of the electrode layer 12 exposed on the side surface 101, and a lead wire 141 is provided on the side electrode 14. Similarly, the side electrode 14 and the lead wire 142 are provided on the side surface 102.

次に,セラミック積層体1の製造方法の詳細について説明する。950℃で焼成可能なPZT系誘電材料を含む原料粉をボールミルで混合し,700〜850℃で5時間仮焼した後,パールミルで粉砕する。得られた粉砕粉に950℃で焼成が可能となるように低融点添加物を混合し,樹脂,有機溶剤を添加してスラリー化する。得たスラリーからドクターブレード法にてグリーンシートを得て,このグリーンシートを未焼成誘電層として用いる。   Next, the detail of the manufacturing method of the ceramic laminated body 1 is demonstrated. Raw material powder containing a PZT-based dielectric material that can be fired at 950 ° C. is mixed with a ball mill, calcined at 700 to 850 ° C. for 5 hours, and then pulverized with a pearl mill. The obtained pulverized powder is mixed with a low melting point additive so that it can be fired at 950 ° C., and a resin and an organic solvent are added to form a slurry. A green sheet is obtained from the obtained slurry by a doctor blade method, and this green sheet is used as an unfired dielectric layer.

Cu,CuO,CuO2(これら銅や銅化合物が電極材料となる)を1種から2種,3種所定量混ぜ,また共紛として誘電層と同組成の粉をペースト化した。上記未焼成誘電層2に対しこの電極ペーストを所定のパターンにスクリーン印刷し,未焼成電極層を形成する。 A predetermined amount of Cu, CuO, CuO 2 (these copper and copper compounds are used as electrode materials) were mixed in a predetermined amount, and a powder having the same composition as that of the dielectric layer was made into a paste. The electrode paste is screen printed on the unfired dielectric layer 2 in a predetermined pattern to form an unfired electrode layer.

このように未焼成誘電層の上に未焼成電極層を設けたものを20枚積層圧着した。次いで,積層方向と垂直方向の面が所定の大きさとなるように切断した。これにより20層のグリーンチップを得た。続いて,上記グリーンチップをさらに20層積み重ねてチップ間を圧着し,未焼成積層体2とした。   20 sheets of the unfired dielectric layer thus provided with the unfired electrode layer were laminated and pressure-bonded. Subsequently, it cut | disconnected so that the surface of a lamination direction and a perpendicular direction might become a predetermined | prescribed magnitude | size. As a result, a 20-layer green chip was obtained. Subsequently, another 20 layers of the green chips were stacked and the chips were pressure-bonded to form an unfired laminate 2.

次いで,CuO,Cu2Oを含むものは未焼成積層体2を大気中,温度500℃,5時間で脱バインダ処理した。その後,未焼成積層体2に対し電極還元焼成を温度330℃×12時間で行った。さらに電極が酸化されているため,300℃の近辺でH2を用い,電極還元を行う。また,CuO,Cu2Oを含まないものは,窒素雰囲気中で脱バインダ処理を行い,電極還元工程は省略する。 Subsequently, the binder containing CuO and Cu 2 O was subjected to a binder removal treatment in the unfired laminated body 2 at a temperature of 500 ° C. for 5 hours. Thereafter, electrode reduction baking was performed on the green laminate 2 at a temperature of 330 ° C. for 12 hours. Furthermore, since the electrode is oxidized, electrode reduction is performed using H 2 in the vicinity of 300 ° C. For those not containing CuO and Cu 2 O, the binder removal treatment is performed in a nitrogen atmosphere, and the electrode reduction step is omitted.

次いで,焼成雰囲気に誘電層還元防止剤21と電極層酸化防止剤22とを導入して950℃×2時間で焼成を行った。この焼成の際の状況を図4を用いて説明する。図4に示すごとく,図示を略した焼成炉内にこうばち31を置いて,該こうばち31の中に同図に示すようにマグネシア板32を載置する。マグネシア板32の上に小型で薄い別のマグネシア板33を載せて,さらにその上に未焼成積層体2を載せる。さらに未焼成積層体2の上に気孔率20%の薄いマグネシア板34を複数枚積層する。また,未焼成積層体2の隣に,同図に示すように,円柱型の誘電層還元防止剤21と電極層酸化防止剤22とを配置する。また,誘電層還元防止剤21はPZTよりなり,電極層酸化防止剤22はCuよりなる。   Next, the dielectric layer reduction inhibitor 21 and the electrode layer antioxidant 22 were introduced into the firing atmosphere, and firing was performed at 950 ° C. × 2 hours. The situation at the time of firing will be described with reference to FIG. As shown in FIG. 4, a beak 31 is placed in a firing furnace (not shown), and a magnesia plate 32 is placed in the beak 31 as shown in FIG. Another small and thin magnesia plate 33 is placed on the magnesia plate 32, and the unfired laminate 2 is placed thereon. Further, a plurality of thin magnesia plates 34 having a porosity of 20% are laminated on the green laminate 2. Further, as shown in the figure, a cylindrical dielectric layer reduction inhibitor 21 and an electrode layer antioxidant 22 are arranged next to the unfired laminate 2. The dielectric layer reduction inhibitor 21 is made of PZT, and the electrode layer antioxidant 22 is made of Cu.

図4に示すこうばち31に蓋を閉めて焼成炉内で焼成する。焼成炉内は雰囲気ガスとしてCO2,CO,O2などからなるガスを導入する。そして,上記焼成の際は,誘電層還元防止剤21のPZTはこうばち31内に酸素を放出しながら金属鉛を生成するなどして変質する。こうばち31内の酸素分圧が所定の値に達するまでこの反応は継続する。また,電極層酸化防止剤22のCuはこうばち31内の酸素を吸収しながら酸化する。これによってこうばち31内の酸素分圧が所定の値に達するまでこの反応は継続する。 The lid is closed on the edge 31 shown in FIG. A gas composed of CO 2 , CO, O 2 or the like is introduced as an atmospheric gas into the firing furnace. At the time of firing, the PZT of the dielectric layer reduction inhibitor 21 is altered by, for example, producing metallic lead while releasing oxygen into the scab 31. This reaction continues until the oxygen partial pressure in the raft 31 reaches a predetermined value. Further, Cu in the electrode layer antioxidant 22 is oxidized while absorbing oxygen in the beak 31. As a result, this reaction continues until the oxygen partial pressure in the scab 31 reaches a predetermined value.

従って,こうばち31内は焼成により自ずから酸素分圧が制御され,誘電層還元防止剤21も電極層酸化防止剤22もこれ以上還元も酸化もしなくなる状態の酸素分圧に達する。そして,こうばち31と蓋との間は密着しているわけではなく,両者の隙間からこうばち31内と焼成炉内との間でガス交換が行われる。しかしながら,隙間はそれほど大きくないため,こうばち31内の酸素分圧と焼成炉内の酸素分圧とは一致せず,上述したように自生雰囲気となる。よって,未焼成積層体2は未焼成電極層の酸化も未焼成誘電層の還元も生じ難い。このようにして未焼成積層体2の焼成が終了し,セラミック積層体1を得る。この後,側面電極14をセラミック積層体1に接合し,またリード線141,142を接合して,圧電体素子として機能するよう構成する。   Accordingly, the oxygen partial pressure is naturally controlled by firing in the scab 31 and reaches the oxygen partial pressure in a state where neither the dielectric layer reduction inhibitor 21 nor the electrode layer antioxidant 22 is reduced or oxidized any more. And the beak 31 and the lid are not in close contact with each other, and gas is exchanged between the beak 31 and the firing furnace through the gap between the two. However, since the gap is not so large, the oxygen partial pressure in the kerchief 31 does not coincide with the oxygen partial pressure in the firing furnace, and as described above, a self-generated atmosphere is obtained. Therefore, the unsintered laminate 2 is less likely to cause oxidation of the unsintered electrode layer and reduction of the unsintered dielectric layer. In this way, the firing of the unfired laminate 2 is finished, and the ceramic laminate 1 is obtained. Thereafter, the side electrode 14 is joined to the ceramic laminate 1, and the lead wires 141 and 142 are joined to function as a piezoelectric element.

次に,本例にかかる作用効果について説明する。本例の未焼成積層体2の焼成において,焼成雰囲気は誘電層のPZT等が還元されず,電極層のCu等が酸化されない酸素分圧に制御する必要がある。この酸素分圧は図3に示すエリンガム図表から導出した所定の範囲(同図において網掛けで示した領域である)である。   Next, the function and effect of this example will be described. In firing the unfired laminate 2 of this example, the firing atmosphere must be controlled to an oxygen partial pressure that does not reduce PZT or the like of the dielectric layer and does not oxidize Cu or the like of the electrode layer. This oxygen partial pressure is a predetermined range derived from the Ellingham chart shown in FIG. 3 (the area shown by shading in the figure).

本例ではこうばち31内に未焼成積層体2と共にPZTよりなる誘電層還元防止剤21,Cuよりなる電極層酸化防止剤22を導入した。すなわち,仮に酸素分圧が高い焼成雰囲気では電極層の酸化が進行するおそれがあるが,電極層酸化防止剤22は電極層よりも酸化しやすい物質で,雰囲気中の酸素を獲得して自分自身が酸化する。この反応に伴い焼成雰囲気内の酸素分圧は低下し,自ずから電極層が酸化し難くなる状態に酸素分圧が低下する。   In this example, a dielectric layer reduction inhibitor 21 made of PZT and an electrode layer antioxidant 22 made of Cu were introduced into the beak 31 together with the unfired laminate 2. That is, there is a possibility that the oxidation of the electrode layer may proceed in a firing atmosphere with a high oxygen partial pressure, but the electrode layer antioxidant 22 is a substance that is more easily oxidized than the electrode layer, and acquires oxygen in the atmosphere to itself. Is oxidized. With this reaction, the oxygen partial pressure in the firing atmosphere decreases, and the oxygen partial pressure decreases to a state in which the electrode layer is not easily oxidized.

また,仮に酸素分圧が低い焼成雰囲気では,同様に誘電層の還元が進行するおそれがあるが,誘電層還元防止剤21は誘電層よりも還元されやすい物質で,誘電層より先に還元され,酸素を焼成雰囲気に放出する。この反応に伴い焼成雰囲気内の酸素分圧は上昇し,自ずから誘電層が還元され難くなる状態に酸素分圧が上昇する。   Also, in a firing atmosphere with a low oxygen partial pressure, the reduction of the dielectric layer may proceed in the same manner. However, the dielectric layer reduction inhibitor 21 is a substance that is more easily reduced than the dielectric layer, and is reduced before the dielectric layer. , Release oxygen into the firing atmosphere. Along with this reaction, the oxygen partial pressure in the firing atmosphere rises, and the oxygen partial pressure rises to a state where the dielectric layer is not easily reduced.

このように本例によれば,焼成雰囲気は自ずから適切な酸素分圧に到達するため,電極層の酸化も誘電層の還元も生じ難い。   As described above, according to this example, since the firing atmosphere naturally reaches an appropriate oxygen partial pressure, neither the oxidation of the electrode layer nor the reduction of the dielectric layer is likely to occur.

なお,本例ではこうばち31内に誘電層還元防止剤21と電極層酸化防止剤22の双方を導入したが,焼成炉内に導入する雰囲気ガスが還元性であれば誘電層還元防止剤21のみを導入しても本例と同様の効果を得ることができる。導入するガスが酸化性であれば電極層酸化防止剤22のみでよい。   In this example, both the dielectric layer reduction inhibitor 21 and the electrode layer antioxidant 22 are introduced into the beak 31. However, if the atmospheric gas introduced into the firing furnace is reducible, the dielectric layer reduction inhibitor. Even if only 21 is introduced, the same effect as this example can be obtained. If the gas to be introduced is oxidizing, only the electrode layer antioxidant 22 is required.

(参考実施例2)
本例は,図5に示すごとく,未焼成積層体2の四箇所の表面を該未焼成積層体2と反応し難いMgOよりなるマグネシア板351,352,34で覆って焼成を行う。マグネシア板351,352,34で覆うことにより,未焼成積層体2の周辺はガスが滞留しやすくなる。そのため,未焼成積層体2の表面に露出した未焼成誘電層や未焼成電極層が還元されたり酸化した結果の自生した所定の酸素分圧の雰囲気が,焼成の継続される間,維持される。
(Reference Example 2)
In this example, as shown in FIG. 5, the four surfaces of the unfired laminate 2 are covered with magnesia plates 351, 352, and 34 made of MgO, which hardly react with the unfired laminate 2, and firing is performed. By covering with the magnesia plates 351, 352, 34, gas tends to stay around the unfired laminate 2. Therefore, an atmosphere having a predetermined oxygen partial pressure generated as a result of reduction or oxidation of the unfired dielectric layer or the unfired electrode layer exposed on the surface of the unfired laminate 2 is maintained while the firing is continued. .

そのため,結果として参考実施例1のこうばち内と同様に未焼成積層体周囲に自生雰囲気が形成され,誘電層が還元され難く,電極層が酸化され難く,良好なセラミック積層体を得ることができる。その他詳細は参考実施例1と同様であり,参考実施例1と同様の作用効果を有する。   Therefore, as a result, a self-generated atmosphere is formed around the unfired laminate as in the scab of Reference Example 1, the dielectric layer is hardly reduced, the electrode layer is hardly oxidized, and a good ceramic laminate is obtained. Can do. Other details are the same as those in Reference Example 1, and have the same effects as Reference Example 1.

また,本例と同様の焼成において,マグネシアの板でなくて,マグネシアの粉末で未焼成積層体を覆ってもよい。この場合も未焼成積層体の周辺のガスが滞留し,未焼成積層体2の表面に露出した未焼成誘電層や未焼成電極層が還元されたり酸化した結果の自生した所定の酸素分圧の雰囲気が,焼成の継続される間,維持される。よって,結果として参考実施例1のこうばち内と同様に未焼成積層体周囲に形成され,誘電層が還元され難く,電極層が酸化され難く,良好なセラミック積層体を得ることができる。   In the same firing as in this example, the unfired laminate may be covered with magnesia powder instead of the magnesia plate. Also in this case, the gas around the unsintered laminate stays, and the unsintered dielectric layer and the unsintered electrode layer exposed on the surface of the unsintered laminate 2 have a predetermined oxygen partial pressure generated as a result of reduction or oxidation. The atmosphere is maintained for the duration of the firing. Therefore, as a result, as in the scab of Reference Example 1, it is formed around the unfired laminated body, the dielectric layer is hardly reduced, the electrode layer is hardly oxidized, and a good ceramic laminated body can be obtained.

また,マグネシアの代わりにPZT,PbZrO3,PbTiO3のいずれか一種以上よりなる粉末で被覆して焼成することできる。この場合,上記粉末が還元することで周囲に酸素を放出する。このような粉末により被覆された未焼成積層体の近傍は,自ずと電極層が酸化せず,誘電層が還元しない酸素分圧の雰囲気となる。よって,結果として参考実施例1のこうばち内と同様の雰囲気が未焼成積層体周囲に形成され,誘電層が還元され難く,電極層が酸化され難く,良好なセラミック積層体を得ることができる。 Further, it can be baked coated with PZT, PbZrO 3, or powder of one or more of PbTiO 3 in place of the magnesia. In this case, oxygen is released to the surroundings when the powder is reduced. In the vicinity of the unfired laminate covered with such a powder, an oxygen partial pressure atmosphere is formed in which the electrode layer is not oxidized and the dielectric layer is not reduced. Therefore, as a result, an atmosphere similar to that in the scab of Reference Example 1 is formed around the unfired laminated body, the dielectric layer is hardly reduced, the electrode layer is hardly oxidized, and a good ceramic laminated body can be obtained. it can.

(参考実施例3)
本例は,図6に示すごとく,未焼成積層体2を誘電層還元防止剤及び電極層酸化防止剤に通した雰囲気ガスを導入した焼成雰囲気において焼成する方法について説明する。
(Reference Example 3)
In this example, as shown in FIG. 6, a method of firing the unfired laminate 2 in a firing atmosphere in which an atmospheric gas passed through a dielectric layer reduction inhibitor and an electrode layer antioxidant is introduced will be described.

以下,詳細に説明する。図6に本例にかかる焼成について説明する。雰囲気ガス導入口41とCu粉よりなる電極層酸化防止剤22を配置する第1保持部42,誘電層還元防止剤21を配置する第2保持部43とを有し,焼成容器であるこうばち31への導入口44を備えた雰囲気ガス通路4を用いて,雰囲気ガスをこうばち31に導入する。こうばち31は蓋310で閉じてある。なお,上記こうばち31は未焼成積層体2と反応し難いマグネシウム製である。なお,上記第1保持部42,第2保持部43はこうばち31内の同一の温度とすることが好ましい。   This will be described in detail below. FIG. 6 illustrates firing according to this example. An atmosphere gas inlet 41, a first holding part 42 for arranging the electrode layer antioxidant 22 made of Cu powder, and a second holding part 43 for arranging the dielectric layer anti-oxidation agent 21 are provided. Atmospheric gas is introduced into the raft 31 using the atmospheric gas passage 4 having an inlet 44 to the rachi 31. The edge 31 is closed with a lid 310. The beak 31 is made of magnesium which does not easily react with the unfired laminate 2. The first holding part 42 and the second holding part 43 are preferably set to the same temperature in the beak 31.

参考実施例1と同様の要領で組成も同じ未焼成積層体2を準備する。未焼成積層体2をこうばち31に入れて蓋310を閉じる。こうばち31を図示を略した焼成炉に設置して,こうばち31の内部に雰囲気ガス通路4を用いて雰囲気ガスを導入するように構成する。こうばち31と蓋310との間は厳密に閉じているわけでなく若干のガス交換が生じる。しかし,こうばち31内の雰囲気が大きく変動するほどのガス交換はおこなわれない。つまりこうばち31内は自生雰囲気となる。   In the same manner as in Reference Example 1, an unfired laminate 2 having the same composition is prepared. The unfired laminated body 2 is put in the edge 31 and the lid 310 is closed. The beak 31 is installed in a firing furnace (not shown) and the atmosphere gas is introduced into the beak 31 using the atmosphere gas passage 4. The gap between the edge 31 and the lid 310 is not strictly closed, and some gas exchange occurs. However, gas exchange is not performed to such an extent that the atmosphere in the beak 31 greatly fluctuates. In other words, the inside of the beak 31 is a self-generated atmosphere.

本例の焼成では,まず焼成炉の炉内温度をあげてこうばち31ごと未焼成積層体2を加熱する。所定の温度に達した後,雰囲気ガス通路4から雰囲気ガスを導入するが,雰囲気ガスの温度は未焼成積層体2とほぼ同じ温度となるように予め加熱しておく。そして,雰囲気ガス導入口41より雰囲気ガスG0が導入され,第1保持部42において電極層酸化防止剤22を通過して雰囲気ガスG1となる。その後,第2保持部43において誘電層還元防止剤21を通過して雰囲気ガスG2となる。このG2がこうばち31への導入口44より導入される。   In the firing of this example, first, the temperature inside the firing furnace is raised and the unfired laminated body 2 is heated together with the edge 31. After reaching the predetermined temperature, the atmospheric gas is introduced from the atmospheric gas passage 4, and is heated in advance so that the temperature of the atmospheric gas is substantially the same as that of the unfired laminate 2. And atmospheric gas G0 is introduce | transduced from the atmospheric gas inlet 41, passes the electrode layer antioxidant 22 in the 1st holding | maintenance part 42, and becomes atmospheric gas G1. Thereafter, it passes through the dielectric layer reduction inhibitor 21 in the second holding part 43 and becomes atmospheric gas G2. This G2 is introduced from the inlet 44 to the raft 31.

ところで雰囲気ガスG1の酸素分圧の値によってG1やG2の状態は変化するが,雰囲気ガスG0の酸素分圧が高かろうと低かろうと余分の酸素は電極層酸化防止剤22において除去され,足りない酸素は誘電層還元防止剤21から補われる。こうして,誘電層が還元され難く,電極層が酸化され難く,良好なセラミック積層体を得ることができる。その他詳細は参考実施例1と同様の構成と作用効果を有する。   The state of G1 and G2 changes depending on the value of the oxygen partial pressure of the atmospheric gas G1, but excess oxygen is removed by the electrode layer antioxidant 22 regardless of whether the oxygen partial pressure of the atmospheric gas G0 is high or low. Oxygen is supplemented from the dielectric layer reduction inhibitor 21. Thus, the dielectric layer is difficult to be reduced and the electrode layer is difficult to be oxidized, and a good ceramic laminate can be obtained. Other details have the same configuration and operational effects as in the first embodiment.

(実施例1)
本発明は,未焼成積層体を焼成する際に密閉された焼成容器を利用する。即ち,未焼成積層体を焼成容器に導入し,該焼成容器内を真空とする。その後,焼成容器内が所定の酸素分圧となるよう雰囲気ガスを導入して,焼成容器を加熱して未焼成積層体を焼成する。
Example 1
The present invention utilizes a fired container that is sealed when the green laminate is fired. That is, the unfired laminate is introduced into a firing container, and the inside of the firing container is evacuated. Thereafter, an atmospheric gas is introduced so that the inside of the firing container has a predetermined oxygen partial pressure, and the firing container is heated to fire the unfired laminate.

本発明では,焼成容器内を一度真空にした後,所定の酸素分圧となるように雰囲気ガスを導入するため,酸素分圧の調整が容易である。さらに,焼成容器内の焼成雰囲気は外部とのガス交換が生じ難いため,電極層の酸化に伴う酸素の吸収,誘電層の還元に伴う酸素の放出によって,未焼成積層体周辺の焼成雰囲気は自ずと電極層が酸化せず,誘電層が還元しない酸素分圧の雰囲気となる。こうして,誘電層が還元され難く,電極層が酸化され難く,良好なセラミック積層体を得ることができる。その他詳細は参考実施例1と同様の構成と作用効果を有する。   In the present invention, after the inside of the firing container is once evacuated, the atmospheric gas is introduced so as to have a predetermined oxygen partial pressure, so that the oxygen partial pressure can be easily adjusted. Furthermore, because the firing atmosphere in the firing container is unlikely to cause gas exchange with the outside, the firing atmosphere around the unfired laminate is naturally due to the absorption of oxygen accompanying the oxidation of the electrode layer and the release of oxygen accompanying the reduction of the dielectric layer. The atmosphere becomes an oxygen partial pressure in which the electrode layer is not oxidized and the dielectric layer is not reduced. Thus, the dielectric layer is difficult to be reduced and the electrode layer is difficult to be oxidized, and a good ceramic laminate can be obtained. Other details have the same configuration and operational effects as in the first embodiment.

参考実施例1における,セラミック積層体の斜視図。The perspective view of the ceramic laminated body in the reference example 1. FIG. 参考実施例1における,セラミック積層体の展開図。The expanded view of the ceramic laminated body in the reference example 1. FIG. 参考実施例1における,エリンガム図表から導出した,Cuが酸化されずPZTが還元されない温度と酸素分圧の領域を示す線図。The diagram which shows the area | region of the temperature and oxygen partial pressure which were derived from the Ellingham chart in Reference Example 1, and Cu is not oxidized but PZT is not reduced. 参考実施例1における,焼成の説明図。Explanatory drawing of baking in the reference example 1. FIG. 参考実施例2における,未焼成積層体の4面を囲った焼成の説明図。Explanatory drawing of baking which enclosed 4 surfaces of the unbaking laminated body in the reference example 2. FIG. 参考実施例3における,未焼成積層体に雰囲気ガスを導入して焼成する説明図。Explanatory drawing which introduce | transduces and bakes atmospheric gas in the unbaking laminated body in the reference Example 3. FIG.

符号の説明Explanation of symbols

1...セラミック積層体,
11...誘電層,
12,13...電極層,
2...未焼成積層体,
21...誘電層還元防止剤,
22...電極層酸化防止剤
1. . . Ceramic laminate,
11. . . Dielectric layer,
12,13. . . Electrode layer,
2. . . Unfired laminate,
21. . . Dielectric layer reduction inhibitor,
22. . . Electrode layer antioxidant

Claims (3)

誘電層と電極層とを交互に積層したセラミック積層体を製造するに当たり,PZT系誘電材料を含む未焼成誘電層と電極材料を含む未焼成電極層とを交互に積層した未焼成積層体を準備し,該未焼成積層体を焼成容器に導入し,該焼成容器内を真空となし,所定の酸素分圧となるよう雰囲気ガスを導入し,その後焼成を行うことを特徴とするセラミック積層体の製造方法。 When manufacturing a ceramic laminate in which dielectric layers and electrode layers are alternately laminated, an unfired laminate in which unfired dielectric layers containing PZT-based dielectric materials and unfired electrode layers containing electrode materials are alternately laminated is prepared. The unfired laminate is introduced into a firing container, the inside of the firing container is evacuated, an atmospheric gas is introduced so as to have a predetermined oxygen partial pressure, and then firing is performed. Production method. 請求項1において,前記誘電層は,Cu,合成ガラスフリットを添加したCu,銅合金のうち少なくとも1種以上よりなる電極材料を含有することを特徴とするセラミック積層体の製造方法。 2. The method for manufacturing a ceramic laminate according to claim 1, wherein the dielectric layer contains an electrode material made of at least one of Cu, Cu to which a synthetic glass frit is added, and a copper alloy. 請求項1又は2において,上記焼成容器内の酸素分圧は1.013×10-1〜1.013×10-5Paであることを特徴とするセラミック積層体の製造方法。
3. The method for manufacturing a ceramic laminate according to claim 1, wherein the oxygen partial pressure in the firing container is 1.013 × 10 −1 to 1.013 × 10 −5 Pa.
JP2006074827A 2006-03-17 2006-03-17 Method for manufacturing ceramic laminate Expired - Fee Related JP3886522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074827A JP3886522B2 (en) 2006-03-17 2006-03-17 Method for manufacturing ceramic laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074827A JP3886522B2 (en) 2006-03-17 2006-03-17 Method for manufacturing ceramic laminate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002103421A Division JP3884669B2 (en) 2002-04-05 2002-04-05 Method for manufacturing ceramic laminate

Publications (2)

Publication Number Publication Date
JP2006203242A true JP2006203242A (en) 2006-08-03
JP3886522B2 JP3886522B2 (en) 2007-02-28

Family

ID=36960882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074827A Expired - Fee Related JP3886522B2 (en) 2006-03-17 2006-03-17 Method for manufacturing ceramic laminate

Country Status (1)

Country Link
JP (1) JP3886522B2 (en)

Also Published As

Publication number Publication date
JP3886522B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP7227690B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP7131897B2 (en) Ceramic electronic component and manufacturing method thereof
JP5726237B2 (en) Multilayer component manufacturing method
JP6570478B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2023038331A (en) Multilayer ceramic capacitor
JP7241472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2019102766A (en) Ceramic electronic component and manufacturing method thereof
JP2022072584A (en) Ceramic electronic component and method of manufacturing the same
JP2019201161A (en) Multilayer ceramic capacitor and manufacturing method thereof
US20160233409A1 (en) Method for Producing a Piezoelectric Multilayer Component and a Piezoelectric Multilayer Component
JP3884669B2 (en) Method for manufacturing ceramic laminate
JP7197985B2 (en) Ceramic capacitor and manufacturing method thereof
JP4748291B2 (en) Laminate displacement element
JP4225033B2 (en) Ceramic laminate and manufacturing method thereof
JP2022143334A (en) Ceramic electronic component and manufacturing method thereof
JP7437871B2 (en) Multilayer ceramic capacitor and its manufacturing method
JP3886522B2 (en) Method for manufacturing ceramic laminate
JP2005136260A (en) Laminated piezoelectric ceramic element and method for manufacturing same
US11104114B2 (en) Method for producing a multi-layered structural element, and a multi-layered structural element produced according to said method
JP2018182107A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2007134561A (en) Method for forming multilayer piezoelectric element
KR20210045925A (en) Ceramic electronic device and manufacturing method of the same
JP2007227482A (en) Laminated ceramic element manufacturing method, and setter
JP4993056B2 (en) Manufacturing method and oxygen supply method of multilayer piezoelectric element
JP2007080948A (en) Manufacturing method of laminated ceramic element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees