JP2006202718A - Fuel battery system - Google Patents

Fuel battery system Download PDF

Info

Publication number
JP2006202718A
JP2006202718A JP2005213459A JP2005213459A JP2006202718A JP 2006202718 A JP2006202718 A JP 2006202718A JP 2005213459 A JP2005213459 A JP 2005213459A JP 2005213459 A JP2005213459 A JP 2005213459A JP 2006202718 A JP2006202718 A JP 2006202718A
Authority
JP
Japan
Prior art keywords
load
fuel cell
predetermined value
catalyst layer
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213459A
Other languages
Japanese (ja)
Other versions
JP5023447B2 (en
Inventor
Yoshitaka Ono
義隆 小野
Ryoichi Shimoi
亮一 下井
Hiroyuki Tanaka
裕行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005213459A priority Critical patent/JP5023447B2/en
Priority to PCT/US2005/046173 priority patent/WO2006069070A2/en
Publication of JP2006202718A publication Critical patent/JP2006202718A/en
Application granted granted Critical
Publication of JP5023447B2 publication Critical patent/JP5023447B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04641Other electric variables, e.g. resistance or impedance of the individual fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel battery system with high durability through restraint of degradation of an oxidant electrode catalyst layer accompanying a load cycle. <P>SOLUTION: When it is detected that a load state of a fuel battery stack 1 shifts from a high load to a low load below a given value, and a voltage of a unit cell goes beyond a given unit cell voltage, three-way valves 6a to 6d are changed over to a fuel bypass piping 10 and an oxidant bypass piping 11, respectively, to supply fuel gas and oxidant gas not humidified to the fuel battery stack 1. With this, a moisture content of the oxidant electrode catalyst layer can be suppressed below a given value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池システムに関する。   The present invention relates to a fuel cell system.

燃料電池は、水素ガスなどの燃料ガスと酸素を有する酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。すなわち、燃料電池車両は、高圧水素タンク、液体水素タンク、水素吸蔵合金タンクなどの水素貯蔵装置を車両に搭載し、そこから供給される水素と、酸素を含む空気とを燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギで駆動輪につながるモータを駆動するものであり、排出物質は水だけであるという究極のクリーン車両である。   In a fuel cell, a fuel gas such as hydrogen gas and an oxidizing gas containing oxygen are electrochemically reacted through an electrolyte, and electric energy is directly taken out between electrodes provided on both surfaces of the electrolyte. In particular, a polymer electrolyte fuel cell using a polymer electrolyte has attracted attention as a power source for electric vehicles because of its low operating temperature and easy handling. That is, a fuel cell vehicle is equipped with a hydrogen storage device such as a high-pressure hydrogen tank, a liquid hydrogen tank, or a hydrogen storage alloy tank in the vehicle, and reacts by supplying hydrogen supplied therefrom and air containing oxygen to the fuel cell. This is the ultimate clean vehicle that drives the motor connected to the drive wheels with the electric energy extracted from the fuel cell, and the only exhaust material is water.

固体高分子型燃料電池において、起動と停止とを繰り返すと、運転を継続した場合に比べて燃料電池の劣化が進みやすいと言うことが知られている。   In a polymer electrolyte fuel cell, it is known that when starting and stopping are repeated, the deterioration of the fuel cell is more likely to proceed than when the operation is continued.

このような燃料電池の起動/停止の繰り返しによる劣化を抑制するために、燃料電池の運転停止時に、燃料電池と負荷装置との間の接続を切断してから所定時間経過するまで、カソードへの酸化剤ガスの供給及びアノードへの燃料ガスの供給を継続させ、酸化剤ガスの供給を停止した後に、燃料ガスの供給を停止することにより、燃料電池セルの電圧が0.9[V]以上となる時間を10分以内とする技術が知られている(例えば、特許文献1)。
特開2004−172106号公報(第14頁、図6)
In order to suppress such deterioration due to repeated start / stop of the fuel cell, when the fuel cell is stopped, the connection between the fuel cell and the load device is disconnected until a predetermined time elapses. The supply of the oxidant gas and the supply of the fuel gas to the anode are continued. After the supply of the oxidant gas is stopped, the supply of the fuel gas is stopped, so that the voltage of the fuel cell is 0.9 [V] or more. A technique for reducing the time to be within 10 minutes is known (for example, Patent Document 1).
Japanese Patent Laying-Open No. 2004-172106 (page 14, FIG. 6)

しかしながら、上記従来技術は、燃料電池システムの運転停止時の手順であり、かつ負荷を零にする際の過渡時について考慮していないため、触媒層の劣化を十分に抑制することができないという問題点があった。   However, the above prior art is a procedure at the time of stopping the operation of the fuel cell system, and does not consider the transient time when the load is made zero, so that the problem that the deterioration of the catalyst layer cannot be sufficiently suppressed. There was a point.

図23は、従来の燃料電池システム制御方法における(a)負荷、(b)単位セル電圧、(c)供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。従来の燃料電池システム制御方法によると、高負荷から低負荷移行時には、発電時の生成水が減少することにより徐々に酸化剤極触媒層の含水量が減少する。これは燃料ガスもしくは酸化剤ガス流量も負荷の減少と同時に減少させているため、酸化剤極触媒層の含水量減少速度が流路残留ガスへの自発的な蒸発速度に支配されることによる。また、低負荷から高負荷状態に移行するまでの間、生成水が少ないことにより、酸化剤極触媒層の含水量が低い。このため、高負荷から低負荷移行時かつ単位セル電圧が高電圧(例えば約0.95V)となったときの酸化剤極触媒層内の含水量を十分減少できず、酸化剤触媒層劣化が促進されていた。   FIG. 23 is a time chart showing the time variation of each value of (a) load, (b) unit cell voltage, (c) supply gas flow rate, and (d) oxidant electrode catalyst layer water content in a conventional fuel cell system control method. It is a chart. According to the conventional fuel cell system control method, when the load changes from a high load to a low load, the water content of the oxidant electrode catalyst layer gradually decreases due to a decrease in generated water during power generation. This is because the flow rate of the fuel gas or the oxidant gas is decreased at the same time as the load is decreased, so that the water content decrease rate of the oxidant electrode catalyst layer is governed by the spontaneous evaporation rate to the channel residual gas. In addition, since the amount of generated water is small until shifting from a low load to a high load state, the water content of the oxidant electrode catalyst layer is low. For this reason, the water content in the oxidant electrode catalyst layer cannot be sufficiently reduced when the unit cell voltage becomes a high voltage (for example, about 0.95 V) at the time of shifting from a high load to a low load, and the oxidant catalyst layer is deteriorated. Has been promoted.

また、運転停止時のみならず、負荷サイクルを繰り返す場合においても一定負荷運転よりも触媒層の劣化が進行するという問題点があった。 In addition, not only when the operation is stopped, but also when the duty cycle is repeated, there is a problem that the deterioration of the catalyst layer proceeds more than the constant load operation.

上記問題点を解決するために、本発明は、電解質膜の両面に燃料極及び酸化剤極の触媒層とガス拡散電極をそれぞれ配置してなる膜電極接合体と、前記燃料極及び酸化剤極にそれぞれ燃料ガス及び酸化剤ガスをそれぞれ供給するためのガス流路を備えたセパレータによって前記膜電極接合体を狭持してなる単位セルを複数積層した燃料電池スタックを備えた燃料電池システムにおいて、前記燃料電池スタックの負荷状態が高負荷から所定値以下の低負荷へ移行することが検知され、かつ前記燃料電池スタックの単位セルの電圧が所定の単位セル電圧以上となるときに、前記酸化剤極触媒層の含水量を所定値以下とする制御を行うことを要旨とする。   In order to solve the above problems, the present invention provides a membrane electrode assembly in which a catalyst layer of a fuel electrode and an oxidant electrode and a gas diffusion electrode are disposed on both surfaces of an electrolyte membrane, and the fuel electrode and the oxidant electrode. In a fuel cell system including a fuel cell stack in which a plurality of unit cells each having a membrane electrode assembly sandwiched by separators each having a gas flow path for supplying a fuel gas and an oxidant gas are respectively stacked. When the load state of the fuel cell stack is detected to shift from a high load to a low load of a predetermined value or less, and the voltage of the unit cell of the fuel cell stack becomes equal to or higher than a predetermined unit cell voltage, the oxidant The gist is to control the water content of the electrode catalyst layer to a predetermined value or less.

また、本発明は、電解質膜の両面に燃料極及び酸化剤極の触媒層とガス拡散電極をそれぞれ配置してなる膜電極接合体と、前記燃料極及び酸化剤極にそれぞれ燃料ガス及び酸化剤ガスをそれぞれ供給するためのガス流路を備えたセパレータによって前記膜電極接合体を狭持してなる単位セルを複数積層した燃料電池スタックを備えた燃料電池システムにおいて、前記燃料電池スタックの負荷が増加することが検知され、かつ前記燃料電池スタックの単位セルの電圧が所定の単位セル電圧以上となるときに、前記酸化剤極触媒層の含水量を所定値以下とする制御を行うことを要旨とする。   The present invention also provides a membrane electrode assembly in which a catalyst layer of a fuel electrode and an oxidant electrode and a gas diffusion electrode are disposed on both surfaces of an electrolyte membrane, and a fuel gas and an oxidant on the fuel electrode and the oxidant electrode, respectively. In a fuel cell system including a fuel cell stack in which a plurality of unit cells each having a membrane electrode assembly sandwiched by separators each having a gas flow path for supplying gas are stacked, the load of the fuel cell stack is When the increase is detected and the voltage of the unit cell of the fuel cell stack is equal to or higher than a predetermined unit cell voltage, the water content of the oxidant electrode catalyst layer is controlled to be a predetermined value or less. And

本発明者らの実験によれば、燃料電池運転時に一定負荷運転を行った場合と、高負荷から低負荷もしくは無負荷、さらに低負荷から高負荷を繰り返す運転を行った場合、後者の負荷変動を伴う運転を行った場合の酸化剤極触媒層劣化がより進行することが明らかとなった。この劣化メカニズムとしては、触媒層内の触媒粒子、例えば白金粒子の凝集・イオン化等に伴う、電気化学反応面積の低下が挙げられ、触媒層の含水量が高いほど上記現象は加速されることが確認された。尚、触媒白金の溶出は電極電位が高電位(約0.85V〜1.1V)の電位範囲で負荷サイクルが加えられたときに顕著であることが確認されており、特に酸化剤極は燃料電池負荷変動時に燃料極と比較して大きな電位変動を伴い、かつ電極電位が高いため上記劣化が顕著となる傾向にある。   According to the experiments of the present inventors, when the constant load operation is performed during fuel cell operation, and when the operation is repeated from high load to low load or no load, and further from low load to high load, the latter load fluctuation It has been clarified that the deterioration of the oxidant electrode catalyst layer further proceeds when the operation involving is performed. This deterioration mechanism includes a decrease in the electrochemical reaction area accompanying aggregation / ionization of catalyst particles, for example, platinum particles in the catalyst layer, and the above phenomenon may be accelerated as the water content of the catalyst layer increases. confirmed. It has been confirmed that the elution of catalytic platinum is remarkable when a duty cycle is applied in a potential range where the electrode potential is high (approximately 0.85 V to 1.1 V). When the battery load fluctuates, there is a large potential fluctuation as compared with the fuel electrode, and the electrode potential is high, so that the above-described deterioration tends to be remarkable.

これらの知見を踏まえた発明者らの実験によれば、上記高負荷から低負荷移行時、低負荷から高負荷移行時かつ所定の単位セル電圧以上となったときに酸化剤極触媒層内の含水量を所定値以下とすることにより、該酸化剤極触媒層における電気化学反応面積の減少を抑制可能であることを発見した。   According to the experiments conducted by the inventors based on these findings, when the transition from the high load to the low load, the transition from the low load to the high load, and when the voltage exceeds a predetermined unit cell voltage, It has been found that the reduction of the electrochemical reaction area in the oxidant electrode catalyst layer can be suppressed by setting the water content to a predetermined value or less.

本発明によれば、酸化剤極触媒層の含水量を所定値以下とするにより、高負荷から低負荷移行時或いは低負荷から高負荷移行時、かつ酸化剤極が高電位となる際の触媒層劣化を抑制することが可能となる。よって負荷サイクルに伴う酸化剤極触媒層の劣化を抑制し、耐久性の高い燃料電池を提供することができるという効果がある。   According to the present invention, by setting the water content of the oxidant electrode catalyst layer to a predetermined value or less, the catalyst at the time of transition from a high load to a low load or at the time of transition from a low load to a high load and when the oxidant electrode becomes a high potential. It becomes possible to suppress layer degradation. Therefore, there is an effect that it is possible to provide a highly durable fuel cell by suppressing deterioration of the oxidant electrode catalyst layer accompanying the duty cycle.

次に、図面を参照して本発明の実施の形態を詳細に説明する。尚、以下に説明する各実施例は、特に限定されないが、起動/停止を繰り返す燃料電池車両の電源に好適な燃料電池システムである。   Next, embodiments of the present invention will be described in detail with reference to the drawings. Each embodiment described below is not particularly limited, but is a fuel cell system suitable for a power source of a fuel cell vehicle that repeatedly starts and stops.

また、本発明における単位セル電圧は、特定の単位セルの電圧値としてもよいし、燃料電池スタック内部の複数の単位セルについてそれぞれ単位セル電圧を検出し、これら複数値から算出した代表値(例えば、平均値、最頻値、中央値など)、或いは燃料電池スタックの出力電圧値をセル積層数で除した平均値を単位セル電圧値としてもよい。また、燃料電池の高負荷とは、上記単位セル電圧が約0.75[V]以下の負荷状態とする。   Further, the unit cell voltage in the present invention may be a voltage value of a specific unit cell, or a unit cell voltage is detected for each of a plurality of unit cells inside the fuel cell stack, and a representative value (for example, calculated from these multiple values) The average value obtained by dividing the output voltage value of the fuel cell stack by the number of stacked cells may be used as the unit cell voltage value. The high load of the fuel cell is a load state in which the unit cell voltage is about 0.75 [V] or less.

図1は、本発明に係る燃料電池システムの実施例1の構成を示すシステム構成図である。同図において、燃料電池システムは、白金等の触媒を有する固体高分子電解質型の燃料電池スタック1と、燃料電池スタック1のアノード(燃料極)1a及びカソード(酸化剤極)1bに導線3で接続された負荷装置2と、燃料ガスとして高圧水素を貯蔵する燃料ガスタンク4と、酸化剤として空気を供給する酸化剤ブロア5と、三方弁6a,6b,6c,6dと、燃料ガスに加湿する加湿器7aと、酸化剤ガスに加湿する加湿器7bと、燃料供給配管8と、酸化剤供給配管9と、加湿器7aをバイパスして加湿しない燃料ガスを供給する燃料バイパス配管10と、加湿器7bをバイパスして加湿しない酸化剤ガスを供給する酸化剤バイパス配管11と、燃料ガスタンク4から供給する燃料ガスの流量を制御する燃料流量制御装置12と、酸化剤ブロア5から供給する酸化剤ガスの流量を制御する酸化剤流量制御装置13とを備えている。   FIG. 1 is a system configuration diagram showing the configuration of Embodiment 1 of the fuel cell system according to the present invention. In the figure, a fuel cell system includes a solid polymer electrolyte type fuel cell stack 1 having a catalyst such as platinum, and an anode (fuel electrode) 1 a and a cathode (oxidant electrode) 1 b of the fuel cell stack 1 with conductors 3. The connected load device 2, a fuel gas tank 4 for storing high-pressure hydrogen as a fuel gas, an oxidant blower 5 for supplying air as an oxidant, three-way valves 6a, 6b, 6c and 6d, and humidifying the fuel gas Humidifier 7a, humidifier 7b for humidifying oxidant gas, fuel supply pipe 8, oxidant supply pipe 9, fuel bypass pipe 10 for supplying fuel gas that bypasses humidifier 7a and is not humidified, and humidifier An oxidant bypass pipe 11 that supplies an oxidant gas that bypasses the vessel 7b and does not humidify, a fuel flow rate control device 12 that controls the flow rate of the fuel gas supplied from the fuel gas tank 4, and an acid And an oxidant flow controller 13 for controlling the flow rate of the oxidant gas supplied from the agent blower 5.

燃料電池スタック1は、電解質膜の両面に燃料極及び酸化剤極の触媒層とガス拡散電極をそれぞれ配置してなる膜電極接合体と、燃料極及び酸化剤極にそれぞれ燃料ガス及び酸化剤ガスをそれぞれ供給するためのガス流路を備えたセパレータによって膜電極接合体を狭持してなる単位セルを複数積層して構成されている。   The fuel cell stack 1 includes a membrane electrode assembly in which a catalyst layer of a fuel electrode and an oxidant electrode and a gas diffusion electrode are arranged on both surfaces of an electrolyte membrane, and a fuel gas and an oxidant gas on the fuel electrode and the oxidant electrode, respectively. A plurality of unit cells each having a membrane electrode assembly sandwiched by separators each having a gas flow path for supplying the gas are configured.

通常運転時には、燃料電池スタック1に供給される燃料ガスもしくは酸化剤ガスは、各々加湿装置7a、7bを通過することにより設定された相対湿度まで加湿されるが、三方弁6a〜6dの切替によりバイパス配管10、11を介して加湿しない燃料ガスおよび酸化剤ガスを燃料電池スタック1に供給可能となっていることが本実施例の特徴である。   During normal operation, the fuel gas or oxidant gas supplied to the fuel cell stack 1 is humidified to the set relative humidity by passing through the humidifiers 7a and 7b, respectively, but by switching the three-way valves 6a to 6d A feature of this embodiment is that fuel gas and oxidant gas that are not humidified can be supplied to the fuel cell stack 1 via the bypass pipes 10 and 11.

尚、本実施例においては、燃料ガス及び酸化剤ガス共に加湿装置を有するが、どちらか一方のみが有している場合であっても、基本的な概念は変わらない。   In this embodiment, both the fuel gas and the oxidant gas have a humidifier, but the basic concept remains the same even if only one of them has.

次に、図2の制御フローチャート、図3のタイムチャートを参照して本実施例の動作を説明する。図3は、負荷が高負荷から低負荷へ移行し、且つ単位セル電圧が判定基準を超えた場合に、酸化剤極触媒層の含水率を所定値以下に低下させる場合の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)バイパス配管通過供給ガス流量、(e)酸化剤極触媒層含水量の各値の時間変化を示す。   Next, the operation of this embodiment will be described with reference to the control flowchart of FIG. 2 and the time chart of FIG. FIG. 3 shows (a) a load when the moisture content of the oxidant electrode catalyst layer is reduced to a predetermined value or lower when the load shifts from a high load to a low load and the unit cell voltage exceeds the criterion. (B) Unit cell voltage, (c) Humidifier passage supply gas flow rate, (d) Bypass pipe passage supply gas flow rate, and (e) Oxidant electrode catalyst layer water content time change are shown.

図2において、まず、S10で、酸化剤極触媒層の含水量制御を開始するか否かを燃料電池の負荷及びセル電圧に基づいて判定する。S10の判定は、燃料電池の負荷が高負荷から所定値以下の低負荷へ移行し、かつ燃料電池スタック1中の単位セル電圧が所定電圧以上となる場合に含水量制御を開始すると判定し、S12へ移る。そうでない場合は、何もせずに終了する。S12では、三方弁6a〜6dをバイパス配管10,11側へ切り替えることにより、加湿装置7a、7bを介さずに燃料ガス、酸化剤ガスを燃料電池スタック1へ供給するように制御する。   In FIG. 2, first, in S10, it is determined whether or not to start the water content control of the oxidant electrode catalyst layer based on the load and cell voltage of the fuel cell. The determination of S10 determines that the moisture content control is started when the load of the fuel cell shifts from a high load to a low load of a predetermined value or less and the unit cell voltage in the fuel cell stack 1 is equal to or higher than the predetermined voltage. Move on to S12. If not, exit without doing anything. In S <b> 12, the three-way valves 6 a to 6 d are switched to the bypass pipes 10 and 11, thereby controlling the fuel gas and the oxidant gas to be supplied to the fuel cell stack 1 without passing through the humidifiers 7 a and 7 b.

次いで、S14で、酸化剤極触媒層内含水量は所定値以下か否かを判定する。所定値以下でなければ、S12へ戻る。S14の判定で、所定値以下であれば、S16へ進み、三方弁6a〜6dを加湿器7a,7b側へ切り替えて、制御を終了する。   Next, in S14, it is determined whether or not the water content in the oxidizer electrode catalyst layer is equal to or less than a predetermined value. If not less than the predetermined value, the process returns to S12. If it is determined at S14 that the value is equal to or smaller than the predetermined value, the process proceeds to S16, the three-way valves 6a to 6d are switched to the humidifiers 7a and 7b, and the control is terminated.

次に、図4を参照して、本実施例における酸化剤極触媒層内含水量の所定値の決め方を説明する。図4は、負荷変動運転中の酸化剤極相対湿度をパラメータとし、燃料電池の負荷変動を所定回数行ったときの、酸化剤極の電気化学反応面積低下率変化を示す。図4に示すように、酸化剤極相対湿度が高くなると、負荷変動運転に伴う酸化剤極電位変動による酸化剤極電気化学反応面積減少がより加速される。ここで、供給ガス相対湿度と触媒層含水量には密接な関係が有るが、その関係は材料(高分子膜、触媒、担体カーボン、触媒層内の電解質)により固有の傾向を有する。また、触媒層内に存在する電解質の量によっても固有の傾向を有する。従って本試験結果は用いた高分子膜や触媒等の組合せによる固有な結果であることは明らかである。   Next, with reference to FIG. 4, how to determine the predetermined value of the water content in the oxidant electrode catalyst layer in the present embodiment will be described. FIG. 4 shows changes in the rate of decrease in the electrochemical reaction area of the oxidizer electrode when the load variation of the fuel cell is performed a predetermined number of times using the oxidizer electrode relative humidity during the load fluctuation operation as a parameter. As shown in FIG. 4, when the oxidant electrode relative humidity increases, the oxidant electrode electrochemical reaction area decrease due to the oxidant electrode potential fluctuation accompanying the load fluctuation operation is further accelerated. Here, there is a close relationship between the supply gas relative humidity and the water content of the catalyst layer, but the relationship has an inherent tendency depending on the material (polymer membrane, catalyst, carrier carbon, electrolyte in the catalyst layer). In addition, there is an inherent tendency depending on the amount of electrolyte present in the catalyst layer. Therefore, it is clear that this test result is a result inherent to the combination of the polymer membrane and catalyst used.

さて、含水量を設定するに際し、本試験のような供給ガス相対湿度をパラメータとした試験を前もって行い、それ以上供給ガス相対湿度を下げたとしても性能低下もしくは電気化学反応面積減少が大きく変化しなくなるような最大の供給ガス相対湿度を調査する。次に、上述した材料固有の供給ガス相対湿度と触媒層含水量の関係から所望の触媒層含水量が算出される。ここで、例えば該所望の触媒層含水量へ短時間で移行させるために、該関係における供給ガス相対湿度とは異なる供給ガス相対湿度にて触媒層含水量を制御することができる。   When setting the water content, a test using the relative humidity of the supplied gas as a parameter is performed in advance, and even if the relative humidity of the supplied gas is further reduced, the performance deterioration or electrochemical reaction area decrease greatly changes. Investigate the maximum supply gas relative humidity that would be lost. Next, the desired catalyst layer water content is calculated from the relationship between the above-described material-specific relative humidity of the supply gas and the catalyst layer water content. Here, for example, in order to shift to the desired catalyst layer water content in a short time, the catalyst layer water content can be controlled at a supply gas relative humidity different from the supply gas relative humidity in the relationship.

次に、図2と図5とを参照して、本実施例において、負荷増加時に単位セル電圧が判定基準を超えていれば、酸化剤極触媒層の含水量を所定値以下とする制御を行う場合を説明する。図5は、(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)バイパス通過供給ガス流量、(e)酸化剤極触媒層含水量の各値の時間変化を示す。   Next, referring to FIG. 2 and FIG. 5, in this embodiment, if the unit cell voltage exceeds the criterion when the load is increased, control is performed so that the water content of the oxidant electrode catalyst layer is not more than a predetermined value. The case where it performs is demonstrated. FIG. 5 shows the time of each value of (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) bypass passage supply gas flow rate, and (e) oxidant electrode catalyst layer water content. Showing change.

図2において、まず、S10で酸化剤極触媒層の含水量制御を開始するか否かを燃料電池の負荷及びセル電圧に基づいて判断する。S10の判定は、燃料電池の負荷が定常状態から増加し、かつ燃料電池スタック1中の単位セル電圧が所定値以上である場合において、所定の高負荷に達するまでは含水量の制御を開始すると判定しS12へと移行する。そうでない場合は制御を終了させ、スタックを通常通り発電させる。   In FIG. 2, first, in S10, it is determined based on the load and cell voltage of the fuel cell whether or not to start the water content control of the oxidant electrode catalyst layer. The determination in S10 is that when the load of the fuel cell is increased from the steady state and the unit cell voltage in the fuel cell stack 1 is equal to or higher than a predetermined value, the control of the water content is started until the predetermined high load is reached. Determine and shift to S12. Otherwise, control is terminated and the stack is generated normally.

S12では、三方弁6a〜6dをバイパス配管10、11側へ切り替えることにより加湿器7a、7bを介さず燃料ガス、酸化剤ガスを燃料電池スタック1へ供給するように制御する。   In S12, control is performed so that the fuel gas and the oxidant gas are supplied to the fuel cell stack 1 without passing through the humidifiers 7a and 7b by switching the three-way valves 6a to 6d to the bypass pipes 10 and 11 side.

その後、所定値以上の高負荷へと移行し、かつ燃料電池スタック1中の単位セル電圧が所定値以下となると同時にS16へと進み、三方弁6a〜6dを加湿器7a、7b側へ切り替えて制御を終了する。   Thereafter, the load shifts to a high load equal to or higher than a predetermined value, and at the same time the unit cell voltage in the fuel cell stack 1 becomes equal to or lower than the predetermined value, the process proceeds to S16, and the three-way valves 6a to 6d are switched to the humidifiers 7a and 7b. End control.

一般に、燃料電池の高負荷発電直後の酸化剤極触媒層は、生成水により含水量が高くなっているが、上記制御により酸化剤極触媒層の含水量を所定値以下とすることができる。   In general, the oxidant electrode catalyst layer immediately after high-load power generation of the fuel cell has a high water content due to the produced water, but the water content of the oxidant electrode catalyst layer can be reduced to a predetermined value or less by the above control.

以上説明した本実施例によれば、酸化剤極触媒層の含水量を所定値以下とするにより、高負荷から低負荷移行時、かつ酸化剤極が高電位となる際の触媒層劣化を抑制することが可能となる。よって負荷サイクルに伴う酸化剤極触媒層の劣化を抑制し、耐久性の高い燃料電池を提供することができるという効果がある。   According to the present embodiment described above, the moisture content of the oxidant electrode catalyst layer is set to a predetermined value or less, thereby suppressing deterioration of the catalyst layer when shifting from a high load to a low load and when the oxidant electrode is at a high potential. It becomes possible to do. Therefore, there is an effect that it is possible to provide a highly durable fuel cell by suppressing deterioration of the oxidant electrode catalyst layer accompanying the duty cycle.

また本実施例によれば、低加湿ガスを供給することにより酸化剤極触媒層の含水量を所定値以下とすることが可能となる。よって負荷サイクルに伴う酸化剤極触媒層の劣化を抑制し、耐久性の高い燃料電池を提供することができるという効果がある。   Further, according to the present embodiment, the moisture content of the oxidant electrode catalyst layer can be reduced to a predetermined value or less by supplying the low humidified gas. Therefore, there is an effect that it is possible to provide a highly durable fuel cell by suppressing deterioration of the oxidant electrode catalyst layer accompanying the duty cycle.

図6は、本発明に係る燃料電池システムの実施例2の構成を示すシステム構成図である。同図において、燃料電池システムは、固体高分子電解質型の燃料電池スタック1と、燃料電池スタック1のアノード(燃料極)1a及びカソード(酸化剤極)1bに導線3で接続された負荷装置2と、燃料ガスとして高圧水素を貯蔵する燃料ガスタンク4と、酸化剤として空気を供給する酸化剤ブロア5と、燃料ガスに加湿する加湿器7aと、酸化剤ガスに加湿する加湿器7bと、燃料供給配管8と、酸化剤供給配管9と、燃料ガスタンク4から供給する燃料ガスの流量を制御する燃料流量制御装置12と、酸化剤ブロア5から供給する酸化剤ガスの流量を制御する酸化剤流量制御装置13とを備えている。   FIG. 6 is a system configuration diagram showing the configuration of Embodiment 2 of the fuel cell system according to the present invention. In the figure, a fuel cell system includes a solid polymer electrolyte fuel cell stack 1, and a load device 2 connected to an anode (fuel electrode) 1a and a cathode (oxidant electrode) 1b of the fuel cell stack 1 by a conductor 3. A fuel gas tank 4 that stores high-pressure hydrogen as a fuel gas, an oxidant blower 5 that supplies air as an oxidant, a humidifier 7a that humidifies the fuel gas, a humidifier 7b that humidifies the oxidant gas, Supply pipe 8, oxidant supply pipe 9, fuel flow rate control device 12 that controls the flow rate of fuel gas supplied from the fuel gas tank 4, and oxidant flow rate that controls the flow rate of oxidant gas supplied from the oxidant blower 5 And a control device 13.

燃料電池スタック1に供給される燃料ガスもしくは酸化剤ガスは、各々加湿装置7a、7bを通過することにより設定された相対湿度に加湿される。尚、本実施例においては燃料ガス及び酸化剤ガス共に加湿装置を有するが、どちらか一方のみが有している場合であっても、基本的な概念は変わらない。   The fuel gas or oxidant gas supplied to the fuel cell stack 1 is humidified to the set relative humidity by passing through the humidifiers 7a and 7b, respectively. In this embodiment, both the fuel gas and the oxidant gas have a humidifier, but even if only one of them has the basic concept, the basic concept remains the same.

次に、図7の制御フローチャート、図8のタイムチャートを参照して本実施例の動作を説明する。図8は、負荷が高負荷から低負荷へ移行し、且つ単位セル電圧が判定基準を超えた場合に、酸化剤極触媒層の含水率を所定値以下に低下させる場合の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示す。   Next, the operation of this embodiment will be described with reference to the control flowchart of FIG. 7 and the time chart of FIG. FIG. 8 shows (a) a load when the moisture content of the oxidant electrode catalyst layer is reduced to a predetermined value or lower when the load shifts from a high load to a low load and the unit cell voltage exceeds the criterion. (B) Unit cell voltage, (c) Humidifier passage supply gas flow rate, (d) Oxidant electrode catalyst layer water content each time change is shown.

図7において、まず、S20で、酸化剤極触媒層の含水量制御を開始するか否かを燃料電池の負荷及びセル電圧に基づいて判定する。S20の判定は、燃料電池の負荷が高負荷から所定値以下の低負荷へ移行し、かつ燃料電池スタック1中の単位セル電圧が所定電圧以上となる場合に含水量制御を開始すると判定し、S22へ移る。そうでない場合は、何もせずに終了する。S22では、燃料ガスおよびまたは酸化剤ガスの供給ガスの流量を所定量増加させて燃料電池スタック1へ供給するように制御する。   In FIG. 7, first, in S20, it is determined based on the load and cell voltage of the fuel cell whether or not to start the water content control of the oxidant electrode catalyst layer. The determination of S20 determines that the moisture content control is started when the load of the fuel cell shifts from a high load to a low load of a predetermined value or less and the unit cell voltage in the fuel cell stack 1 is equal to or higher than a predetermined voltage. Move on to S22. If not, exit without doing anything. In S22, control is performed such that the flow rate of the supply gas of the fuel gas and / or the oxidant gas is increased by a predetermined amount and supplied to the fuel cell stack 1.

次に、図7と図9とを参照して、本実施例において、負荷増加時に単位セル電圧が判定基準を超えていれば、酸化剤極触媒層の含水量を所定値以下とする制御を行う場合を説明する。図9は、(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示す。   Next, referring to FIG. 7 and FIG. 9, in this embodiment, if the unit cell voltage exceeds the criterion when the load is increased, control is performed so that the water content of the oxidant electrode catalyst layer is not more than a predetermined value. The case where it performs is demonstrated. FIG. 9 shows changes over time in the values of (a) load, (b) unit cell voltage, (c) flow rate of gas supplied through the humidifier, and (d) oxidant electrode catalyst layer water content.

図7のS20の判定は、燃料電池の負荷が低負荷(無負荷)から所定値以上の高負荷へと移行し、かつ燃料電池スタック1中の単位セル電圧が所定電圧以上である場合に含水量制御を開始すると判定し、S22へと移る。S22では、所定値以上の高負荷へと移行する前、かつ単位セル電圧が所定電圧以上である間、燃料ガス及び酸化剤ガスの供給ガス流量を所定量増加させて、燃料電池スタック1へ供給するように制御する。   The determination of S20 in FIG. 7 is included when the load of the fuel cell shifts from a low load (no load) to a high load equal to or higher than a predetermined value, and the unit cell voltage in the fuel cell stack 1 is equal to or higher than the predetermined voltage. It determines with starting water quantity control, and moves to S22. In S22, the fuel gas and oxidant gas supply gas flow rates are increased by a predetermined amount before being shifted to a high load of a predetermined value or more and while the unit cell voltage is equal to or higher than the predetermined voltage, and supplied to the fuel cell stack 1. Control to do.

次いで、S24で、酸化剤極触媒層内含水量は所定値以下か否かを判定する。所定値以下でなければ、S22へ戻る。S24の判定で、所定値以下であれば、制御を終了する。   Next, in S24, it is determined whether or not the water content in the oxidant electrode catalyst layer is a predetermined value or less. If not less than the predetermined value, the process returns to S22. If the determination at S24 is less than or equal to the predetermined value, the control is terminated.

一般に、燃料電池の高負荷発電直後の酸化剤極触媒層は、生成水により含水量が高くなっているが、上記制御により酸化剤極触媒層の含水量を所定値以下とすることができる。   In general, the oxidant electrode catalyst layer immediately after high-load power generation of the fuel cell has a high water content due to the produced water, but the water content of the oxidant electrode catalyst layer can be reduced to a predetermined value or less by the above control.

以上説明した本実施例によれば、酸化剤極触媒層の含水量を所定値以下とするにより、高負荷から低負荷移行時、かつ酸化剤極が高電位となる際の触媒層劣化を抑制することが可能となる。よって負荷サイクルに伴う酸化剤極触媒層の劣化を抑制し、耐久性の高い燃料電池を提供することができるという効果がある。   According to the present embodiment described above, the moisture content of the oxidant electrode catalyst layer is set to a predetermined value or less, thereby suppressing deterioration of the catalyst layer when shifting from a high load to a low load and when the oxidant electrode is at a high potential. It becomes possible to do. Therefore, there is an effect that it is possible to provide a highly durable fuel cell by suppressing deterioration of the oxidant electrode catalyst layer accompanying the duty cycle.

また本実施例によれば、低負荷時の供給ガス流量を増加させることにより酸化剤極触媒層の含水量を所定値以下とすることが可能となる。よって負荷サイクルに伴う酸化剤極触媒層の劣化を抑制することが可能となり、耐久性の高い燃料電池を提供することができるという効果がある。   Further, according to the present embodiment, the water content of the oxidant electrode catalyst layer can be reduced to a predetermined value or less by increasing the supply gas flow rate at the time of low load. Therefore, it is possible to suppress deterioration of the oxidant electrode catalyst layer accompanying the duty cycle, and there is an effect that a highly durable fuel cell can be provided.

図10は、本発明に係る燃料電池システムの実施例3の構成を示すシステム構成図である。同図において、燃料電池システムは、固体高分子電解質型の燃料電池スタック1と、燃料電池スタック1のアノード(燃料極)1a及びカソード(酸化剤極)1bに導線3で接続された負荷装置2と、燃料ガスとして高圧水素を貯蔵する燃料ガスタンク4と、酸化剤として空気を供給する酸化剤ブロア5と、燃料ガスに加湿する加湿器7aと、酸化剤ガスに加湿する加湿器7bと、燃料供給配管8と、酸化剤供給配管9と、燃料ガスタンク4から供給する燃料ガスの流量を制御する燃料流量制御装置12と、酸化剤ブロア5から供給する酸化剤ガスの流量を制御する酸化剤流量制御装置13と、燃料電池スタック1と蓄電手段15との接続を開閉するスイッチ14と、燃料電池スタック1が発電した電力を貯蔵可能な蓄電手段15と、要求負荷検知手段16と、スイッチ14の開閉を制御するスイッチ制御手段17と、を備えている。   FIG. 10 is a system configuration diagram showing the configuration of Embodiment 3 of the fuel cell system according to the present invention. In the figure, a fuel cell system includes a solid polymer electrolyte fuel cell stack 1, and a load device 2 connected to an anode (fuel electrode) 1a and a cathode (oxidant electrode) 1b of the fuel cell stack 1 by a conductor 3. A fuel gas tank 4 that stores high-pressure hydrogen as a fuel gas, an oxidant blower 5 that supplies air as an oxidant, a humidifier 7a that humidifies the fuel gas, a humidifier 7b that humidifies the oxidant gas, Supply pipe 8, oxidant supply pipe 9, fuel flow rate control device 12 that controls the flow rate of fuel gas supplied from the fuel gas tank 4, and oxidant flow rate that controls the flow rate of oxidant gas supplied from the oxidant blower 5 A control device 13; a switch 14 for opening and closing the connection between the fuel cell stack 1 and the power storage means 15; a power storage means 15 capable of storing the power generated by the fuel cell stack 1; A detection unit 16, and a switch control means 17 for controlling the opening and closing of the switch 14.

スイッチ14は、機械的なリレーでもよいが、動作速度や耐久性、保守性の点でMOS−FETやIGBTなどの半導体スイッチが好ましい。   The switch 14 may be a mechanical relay, but is preferably a semiconductor switch such as a MOS-FET or IGBT in terms of operation speed, durability, and maintainability.

燃料電池スタック1と蓄電手段15は、スイッチ14を介して接続されており、要求負荷検知手段16に応じて燃料電池スタック1の発電量がスイッチ14を介して蓄電手段15に充電可能となるようにスイッチ制御手段17が制御するようになっている。   The fuel cell stack 1 and the power storage means 15 are connected via a switch 14 so that the amount of power generated by the fuel cell stack 1 can be charged to the power storage means 15 via the switch 14 according to the required load detection means 16. The switch control means 17 controls the operation.

本実施例によれば、要求負荷検知手段16により要求負荷が高負荷から低負荷へ変化したことが検知され、かつ蓄電手段15の蓄電量が減少している場合、スイッチング信号出力手段17はスイッチ14を接続し、継続して燃料電池スタック1は発電を行うことで蓄電手段15を蓄電する。蓄電手段15の蓄電量が所定値に達すると、スイッチ制御手段17はスイッチ14を開放し、燃料電池スタック1からの電流取り出しを終了する。この直前、要求負荷検知手段16により検知された要求負荷から燃料電池スタック1中の単位セル電圧が所定値以上となることが判断された場合、酸化剤極触媒層の含水量を所定値以下とする制御を行う。   According to the present embodiment, when the required load detecting means 16 detects that the required load has changed from a high load to a low load, and the storage amount of the power storage means 15 is decreasing, the switching signal output means 17 is switched 14 is connected, and the fuel cell stack 1 continuously generates power to store the power storage means 15. When the amount of power stored in the power storage means 15 reaches a predetermined value, the switch control means 17 opens the switch 14 and ends the extraction of current from the fuel cell stack 1. Immediately before this, when it is determined from the required load detected by the required load detection means 16 that the unit cell voltage in the fuel cell stack 1 is equal to or higher than a predetermined value, the water content of the oxidant electrode catalyst layer is set to be equal to or lower than the predetermined value. Control.

次に、図11の制御フローチャート、図12のタイムチャートを参照して本実施例の動作を説明する。図12は、負荷が高負荷から低負荷へ移行した時に、燃料電池スタックの発電電力で蓄電手段へ蓄電を行う場合の(a)要求負荷、(b)燃料電池スタック負荷、(c)単位セル電圧、(d)蓄電手段蓄電量、(e)加湿器通過供給ガス流量、(f)酸化剤極触媒層含水量の各値の時間変化を示す。   Next, the operation of this embodiment will be described with reference to the control flowchart of FIG. 11 and the time chart of FIG. FIG. 12 shows (a) required load, (b) fuel cell stack load, and (c) unit cell when power is stored in the power storage means with the generated power of the fuel cell stack when the load shifts from high load to low load. It shows the time change of each value of voltage, (d) power storage means storage amount, (e) humidifier passage supply gas flow rate, and (f) oxidant electrode catalyst layer water content.

図11において、まず、S30で、要求負荷検知手段16により燃料電池に対する要求負荷を検知する。次いで、S32で、高負荷から低負荷への移行、かつ単位セル電圧の代表値が所定値以上か否かを判定する。S32の判定がNoであれば、何もせずに終了する。S32の判定がYesであれば、S34へ移り、スイッチ14を閉じ、燃料電池スタック1が発電した電力を蓄電手段15へ蓄電する。   In FIG. 11, first, in S30, the required load for the fuel cell is detected by the required load detection means 16. Next, in S32, it is determined whether or not the transition from the high load to the low load and the representative value of the unit cell voltage is greater than or equal to a predetermined value. If the determination in S32 is No, the process ends without doing anything. If the determination in S32 is Yes, the process proceeds to S34, the switch 14 is closed, and the power generated by the fuel cell stack 1 is stored in the power storage means 15.

次いで、S36で、蓄電手段15の蓄電量が所定値以上となったか否かを判定し、所定値未満であれば、S34へ戻り蓄電を続ける。S36の判定で、蓄電量が所定値以上となれば、S38へ進み、要求負荷検知手段16で要求負荷を検知する。次いで、S40で、検知された要求負荷に対応する単位セル電圧の計算値が所定値以上であるか否かを判定する。S40で単位セル電圧が所定値以上であれば、S42へ進み、酸化剤極触媒層内含水量を所定値以下とする制御を開始し、S44でスイッチ14を開いて蓄電手段15への蓄電を終了し、制御を終了する。   Next, in S36, it is determined whether or not the amount of electricity stored in the electricity storage means 15 has become equal to or greater than a predetermined value. If it is determined in S36 that the charged amount is equal to or greater than the predetermined value, the process proceeds to S38, and the required load is detected by the required load detection means 16. Next, in S40, it is determined whether or not the calculated value of the unit cell voltage corresponding to the detected required load is greater than or equal to a predetermined value. If the unit cell voltage is equal to or higher than the predetermined value in S40, the process proceeds to S42, and the control for setting the water content in the oxidizer electrode catalyst layer to the predetermined value or less is started. In S44, the switch 14 is opened to End and end control.

次に、図11と図13とを参照して、本実施例において、要求負荷が低負荷から高負荷判定基準以下の負荷へ増加し、かつ単位セル電圧が判定基準を超えていて、かつ蓄電手段15の蓄電量が所定値以下である場合の動作を説明する。   Next, referring to FIGS. 11 and 13, in this embodiment, the required load increases from a low load to a load below the high load criterion, the unit cell voltage exceeds the criterion, and The operation when the amount of electricity stored in the means 15 is not more than a predetermined value will be described.

図13は、(a)要求負荷、(b)燃料電池スタック負荷、(c)単位セル電圧、(d)蓄電手段蓄電量、(e)加湿器通過供給ガス流量、(f)酸化剤極触媒層含水量の各値の時間変化を示す。   FIG. 13 shows (a) required load, (b) fuel cell stack load, (c) unit cell voltage, (d) power storage means storage amount, (e) humidifier passing supply gas flow rate, (f) oxidant electrode catalyst. The time change of each value of layer water content is shown.

要求負荷検知手段16により低負荷(無負荷)から高負荷への要求が検知され、かつ酸化剤極触媒層の含水量が所定値以下で、かつ蓄電手段15の蓄電量が所定値以下である場合、スイッチング信号出力手段17はスイッチ14を接続し、要求負荷に関らず、スタックは所定の高負荷で発電し、要求負荷との電力差を蓄電手段15に蓄電する。蓄電手段15の蓄電量が所定値に達すると、スイッチ制御手段17はスイッチ14を開放し、燃料電池スタックからの電流取り出しを終了する。この間に酸化剤極触媒層の含水量を低下させる制御を行う。そして要求負荷が所定の高負荷以上となると、燃料電池スタックの負荷を要求負荷と同じ負荷とし、燃料電池スタックの発電を行う。   The demand load detection means 16 detects a demand from a low load (no load) to a high load, the water content of the oxidant electrode catalyst layer is not more than a predetermined value, and the electricity storage amount of the electricity storage means 15 is not more than a predetermined value. In this case, the switching signal output means 17 is connected to the switch 14, and the stack generates power at a predetermined high load regardless of the required load, and stores the power difference from the required load in the power storage means 15. When the amount of electricity stored in the electricity storage means 15 reaches a predetermined value, the switch control means 17 opens the switch 14 and ends the extraction of current from the fuel cell stack. During this time, control is performed to reduce the water content of the oxidant electrode catalyst layer. When the required load exceeds a predetermined high load, the load of the fuel cell stack is set to the same load as the required load, and the fuel cell stack is generated.

図11において、S30で要求負荷検知手段により燃料電池に対する要求負荷を検知する。次いで、S32で低負荷(無負荷)から高負荷への移行、かつ単位セル電圧の代表値が所定値以上か所定値以下かを判定する。S32の判定がNoであれば何もせず終了する。S32の判定がYesであれば、S34へ移りスイッチ14を閉じ、燃料電池スタック1が発電した電力を蓄電手段15へ蓄電する。   In FIG. 11, the required load for the fuel cell is detected by the required load detecting means in S30. Next, in S32, it is determined whether the load is changed from a low load (no load) to a high load, and the representative value of the unit cell voltage is greater than or equal to a predetermined value. If the determination in S32 is No, the process ends without doing anything. If the determination in S32 is Yes, the process proceeds to S34, the switch 14 is closed, and the power generated by the fuel cell stack 1 is stored in the power storage means 15.

次いで、所定の高負荷領域に移行する前において、S36の判定で蓄電手段15の蓄電量が所定値以上となれば、S38へ進み、要求負荷検知手段16で要求負荷を検知する。そこで、S40で単位セル電圧が所定値以上であればS42へ進み、酸化剤極触媒層内の含水量を所定値以下とする制御を開始し、S44でスイッチ14を開いて蓄電手段15への蓄電を終了し、制御を開始する。   Next, before shifting to the predetermined high load region, if the amount of power stored in the power storage means 15 is greater than or equal to a predetermined value in the determination in S36, the process proceeds to S38, and the required load detection means 16 detects the required load. Therefore, if the unit cell voltage is equal to or higher than the predetermined value in S40, the process proceeds to S42, and control for setting the water content in the oxidant electrode catalyst layer to be equal to or lower than the predetermined value is started. Power storage is terminated and control is started.

以上説明した本実施例によれば、蓄電手段を有することにより、酸化剤極触媒層の含水量を減少させる制御の開始時機を蓄電手段の蓄電状況から判断し、かつ負荷要求と発電量との差分を蓄電することが可能となる。よって時間的自由度の高い制御において負荷サイクルに伴う酸化剤極触媒層の劣化を抑制し、耐久性の高い燃料電池を提供することができるという効果がある。   According to the present embodiment described above, by having the power storage means, the start timing of the control for reducing the water content of the oxidant electrode catalyst layer is determined from the power storage status of the power storage means, and the load request and the power generation amount The difference can be stored. Therefore, there is an effect that it is possible to provide a highly durable fuel cell by suppressing the deterioration of the oxidant electrode catalyst layer accompanying the duty cycle in the control with a high degree of freedom in time.

図14は、実施例4における高負荷から低負荷への移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。   FIG. 14 shows (a) load, (b) unit cell voltage, (c) humidifier-passed supply gas flow rate, and (d) oxidant electrode catalyst layer water content during transition from high load to low load in Example 4. It is a time chart which shows the time change of each value of.

本実施例は、図1の実施例1、図6の実施例2、図10の実施例3の何れの構成にも適用可能である。   This embodiment can be applied to any configuration of the embodiment 1 in FIG. 1, the embodiment 2 in FIG. 6, and the embodiment 3 in FIG.

燃料電池スタックの負荷が高負荷から低負荷への移行時は、図14(c)のハッチング部(時刻t1からt2まで)に示すように、高負荷時の燃料ガス、酸化剤ガス流量を酸化剤極触媒層の含水量が所定値以下となるまで継続して供給するように制御する。一般に、燃料電池の高負荷発電直後の酸化剤極触媒層は、生成水により含水量が高くなっているが、上記制御により酸化剤極触媒層の含水量を所定値以下とすることができる。尚、燃料ガス・酸化剤ガス共に高負荷時流量を継続しても、酸化剤ガスのみというように、一方の極のみ継続しても良い。   When the load of the fuel cell stack shifts from a high load to a low load, as shown in the hatched portion (from time t1 to t2) in FIG. Control is performed so that the water content in the agent electrode catalyst layer is continuously supplied until the water content becomes a predetermined value or less. In general, the oxidant electrode catalyst layer immediately after high-load power generation of the fuel cell has a high water content due to the produced water, but the water content of the oxidant electrode catalyst layer can be reduced to a predetermined value or less by the above control. It should be noted that both the fuel gas and the oxidant gas may be continued at a high load flow rate, or only one of the electrodes, such as the oxidant gas, may be continued.

図15は、実施例4における低負荷から高負荷への移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。   FIG. 15 shows (a) load, (b) unit cell voltage, (c) humidifier passing supply gas flow rate, and (d) oxidant electrode catalyst layer water content at the time of transition from low load to high load in Example 4. It is a time chart which shows the time change of each value of.

燃料電池スタックの負荷が低負荷(無負荷)から高負荷への移行時は図15のハッチング部(t1からt2まで)に示すように、高負荷時の燃料ガス、酸化剤ガス流量を酸化剤極触媒層の含水量が所定値以下となるまで継続して供給するように制御する。尚、燃料ガス、酸化剤ガス共に共に高負荷時流量を継続しても、酸化剤ガスのみ、燃料ガスのみといったように、一方の極のみ継続しても良い。   When the load of the fuel cell stack shifts from a low load (no load) to a high load, as shown in the hatched portion (from t1 to t2) in FIG. Control is performed so that the water content of the electrode catalyst layer is continuously supplied until the water content becomes a predetermined value or less. It should be noted that both the fuel gas and the oxidant gas may be continued at a high load flow rate, or only one of the electrodes may be continued, such as only the oxidant gas or only the fuel gas.

本実施例によれば、高負荷から低負荷へ移行した際に、継続して少なくとも一方の極に対して高負荷ガス流量にて供給することにより、短時間かつ、特別な装置を要することなく酸化剤極触媒層の含水量を所定値以下とすることが可能となる。よって従来のシステム構成に適用可能であり、かつ負荷サイクルに伴う酸化剤極触媒層の劣化を抑制し、耐久性の高い燃料電池を提供することができるという効果がある。   According to the present embodiment, when shifting from a high load to a low load, by continuously supplying at a high load gas flow rate to at least one of the electrodes, a short time and without requiring a special device. It becomes possible to make the water content of the oxidant electrode catalyst layer below a predetermined value. Therefore, the present invention can be applied to a conventional system configuration, and there is an effect that it is possible to provide a highly durable fuel cell by suppressing deterioration of the oxidant electrode catalyst layer accompanying a duty cycle.

図16は、実施例5における(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)バイパス通過供給ガス流量、(e)水供給量、(f)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。   FIG. 16 shows (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) bypass passage supply gas flow rate, (e) water supply amount, and (f) oxidation in Example 5. It is a time chart which shows the time change of each value of the agent electrode catalyst layer water content.

本実施例では、実施例1または実施例2の酸化剤極触媒層の含水量を所定値以下とする処理を行った後、単位セル電圧は高電圧(例えば約0.95V)、触媒層は含水量が第1所定値以下の状態にあるが、この状態が所定時間継続した場合は、酸化剤極触媒層の含水量が上記第1所定値より大きい第2所定値以上となるまで、高加湿ガスまたは水を燃料極へ供給する。尚、図16に示す各値の時間変化は、実施例1の燃料電池システムに適用した例である。また、上記高加湿ガスまたは水は酸化剤極のみでも、両極に供給しても良い。   In this example, after performing the treatment to reduce the water content of the oxidant electrode catalyst layer of Example 1 or Example 2 to a predetermined value or less, the unit cell voltage is a high voltage (for example, about 0.95 V), and the catalyst layer is If the water content is in a state equal to or lower than the first predetermined value, but this state continues for a predetermined time, the water content in the oxidizer electrode catalyst layer is increased until the water content in the oxidant electrode catalyst layer becomes equal to or higher than the second predetermined value which is greater than the first predetermined value. Supply humidified gas or water to the anode. In addition, the time change of each value shown in FIG. 16 is an example applied to the fuel cell system of Example 1. Further, the highly humidified gas or water may be supplied only to the oxidizer electrode or to both electrodes.

本実施例によれば、酸化剤極触媒層の含水量低減処理を行った後、酸化剤極触媒層の含水量を所定値以上まで増加させることで、該酸化剤極触媒層が低含水量となる状態を継続することに起因する触媒層もしくは電解質膜の劣化を抑制する。よって触媒層もしくは電解質膜の劣化を防止することができるという効果がある。   According to the present embodiment, after the water content reduction treatment of the oxidant electrode catalyst layer, the oxidant electrode catalyst layer has a low water content by increasing the water content of the oxidant electrode catalyst layer to a predetermined value or more. The deterioration of the catalyst layer or the electrolyte membrane caused by continuing the state of becoming is suppressed. Therefore, there is an effect that deterioration of the catalyst layer or the electrolyte membrane can be prevented.

本実施例における燃料電池システムの構成は図10に示した実施例3と同等である。図17は、実施例6における(a)要求負荷、(b)燃料電池スタック負荷、(c)単位セル電圧、(d)蓄電手段蓄電量、(e)加湿器通過供給ガス流量、(f)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。   The configuration of the fuel cell system in the present embodiment is the same as that of the third embodiment shown in FIG. FIG. 17 shows (a) required load, (b) fuel cell stack load, (c) unit cell voltage, (d) power storage amount, (e) humidifier passage supply gas flow rate, and (f) in Example 6. It is a time chart which shows the time change of each value of an oxidizing agent electrode catalyst layer water content.

本実施例によれば、酸化剤極触媒層の含水量を所定値以下とする制御を行った後、単位セル電圧は高電圧(例えば約0.95[V])、触媒層は所定含水量以下の状態にあるが、この状態が所定時間継続した場合、燃料電池スタックは上記第1所定値より大きい第2所定値以上の含水量となるまで、高負荷判定基準以下において発電を継続する。尚、この際、スイッチ制御手段17によりスイッチ14は接続され、蓄電手段15へ蓄電が行われる。   According to this example, after controlling the water content of the oxidant electrode catalyst layer to be a predetermined value or less, the unit cell voltage is a high voltage (for example, about 0.95 [V]), and the catalyst layer has a predetermined water content. In the following state, if this state continues for a predetermined time, the fuel cell stack continues power generation below the high load determination standard until the water content becomes a second predetermined value or more greater than the first predetermined value. At this time, the switch 14 is connected by the switch control means 17 and the power storage means 15 is charged.

本実施例によれば、酸化剤極触媒層の含水量低減処理を行った後、酸化剤極触媒層の含水量を所定値以上まで増加させることで、該酸化剤極触媒層が低含水量となる状態を継続することに起因する触媒層もしくは電解質膜の劣化を抑制する。よって触媒層もしくは電解質膜の劣化を防止することができるという効果がある。   According to the present embodiment, after the water content reduction treatment of the oxidant electrode catalyst layer, the oxidant electrode catalyst layer has a low water content by increasing the water content of the oxidant electrode catalyst layer to a predetermined value or more. The deterioration of the catalyst layer or the electrolyte membrane caused by continuing the state of becoming is suppressed. Therefore, there is an effect that deterioration of the catalyst layer or the electrolyte membrane can be prevented.

図18に示す本実施例における燃料電池システムの構成は、図6に示した実施例2の燃料電池システムに負荷移行時間検知手段18を追加した以外は、何ら変わりはないので、同じ構成要素には、同じ符号を付与して重複する説明を省略する。   The configuration of the fuel cell system in this embodiment shown in FIG. 18 is the same as that of the fuel cell system of Embodiment 2 shown in FIG. 6 except that load transition time detection means 18 is added. Are given the same reference numerals and redundant description is omitted.

図19は、実施例7における(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。図19に示すように、負荷移行時間検知手段18により以下の式(1)に示す時間微分値Dが算出される。   FIG. 19 is a time chart showing changes with time of each value of (a) load, (b) unit cell voltage, (c) humidifier passing supply gas flow rate, and (d) oxidant electrode catalyst layer water content in Example 7. It is. As shown in FIG. 19, the load transition time detection means 18 calculates a time differential value D shown in the following equation (1).

〔数1〕
D=dL/dt (dL:負荷低下代、dt:時間) …(1)
このD値が所定値以下の場合、つまり負荷低下時間が所定時間よりも小さい場合、また高負荷から低負荷移行時かつ燃料電池スタック1中の単位セル電圧が所定の電圧以上となる場合、酸化剤極触媒層の含水量を所定値以下とする制御を行う。
[Equation 1]
D = dL / dt (dL: load reduction allowance, dt: time) (1)
When the D value is less than a predetermined value, that is, when the load drop time is shorter than the predetermined time, or when the unit cell voltage in the fuel cell stack 1 becomes equal to or higher than the predetermined voltage at the time of shifting from a high load to a low load. Control is performed so that the water content of the electrode catalyst layer is not more than a predetermined value.

図20に示すように負荷移行時間検知手段18により、上記式(1)のDが算出される。このDの値が小さい場合、つまり、負荷増加時間が所定時間よりも小さい場合、また、低負荷から高負荷への移行時、かつ燃料電池スタック1中の単位セル電圧が所定の電圧以上である場合、酸化剤極触媒層の含水量を所定値以下とする制御を行う。この低負荷から高負荷への移行時において、酸化剤極触媒層の含水量が所定値以上であった際には低負荷時において一時的に高負荷時以上のガス流量を供給し、瞬時に酸化剤極触媒層の含水量を低下させる。   As shown in FIG. 20, the load transition time detection means 18 calculates D in the above equation (1). When the value of D is small, that is, when the load increase time is smaller than the predetermined time, or when the load is shifted from the low load to the high load, the unit cell voltage in the fuel cell stack 1 is equal to or higher than the predetermined voltage. In this case, the water content of the oxidant electrode catalyst layer is controlled to be a predetermined value or less. During this transition from low load to high load, if the water content of the oxidizer electrode catalyst layer is greater than the specified value, temporarily supply a gas flow rate higher than the high load at the low load and instantly Reduce the water content of the oxidant electrode catalyst layer.

本実施例によれば、高負荷から低負荷への移行時間が短時間である程、酸化剤極電位が高電位となったときの瞬間的な酸化電流値が増加することから、より劣化が進行しやすい条件に限定して酸化剤極触媒層の含水量制御を行うことができるという効果がある。   According to this example, the shorter the transition time from the high load to the low load, the more the oxidation current value when the oxidant electrode potential becomes a high potential increases. There is an effect that it is possible to control the water content of the oxidant electrode catalyst layer by limiting the conditions to easily proceed.

図21に示す本実施例に示す燃料電池システムの構成は、図6に示した実施例2の燃料電池システムにセル抵抗検知手段19を追加した以外は、何ら変わりはないので、同じ構成要素には、同じ符号を付与して重複する説明を省略する。   The configuration of the fuel cell system shown in FIG. 21 is the same as that of the fuel cell system of Example 2 shown in FIG. 6 except that cell resistance detection means 19 is added. Are given the same reference numerals and redundant description is omitted.

図22は、実施例8における(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)対象セル抵抗、(e)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。   FIG. 22 shows values of (a) load, (b) unit cell voltage, (c) humidifier passing supply gas flow rate, (d) target cell resistance, and (e) oxidant electrode catalyst layer water content in Example 8. It is a time chart which shows the time change of.

本実施例においては、酸化剤極触媒層の含水量変化とセル抵抗変化の相関関係をあらかじめ実験的に調査することにより、セル抵抗検知手段19で検知したセル抵抗値を酸化剤極触媒層の含水量の判断基準に利用するものである。このセル抵抗はある単位セルを代表させても、燃料電池スタック中において部分的なスタックにおけるセル抵抗としても良い。尚、セル抵抗検知手段19としては、燃料電池スタック内の特定のセルのアノード・カソード間に交流電圧を印加し、両電極間に流れる交流電流と印加した交流電圧からセル抵抗を求める交流抵抗計が公知である。   In this embodiment, the cell resistance value detected by the cell resistance detecting means 19 is obtained from the oxidant electrode catalyst layer by experimentally investigating the correlation between the moisture content change of the oxidant electrode catalyst layer and the cell resistance change in advance. It is used for criteria for determining water content. This cell resistance may be representative of a certain unit cell or may be a cell resistance in a partial stack in the fuel cell stack. The cell resistance detector 19 is an AC ohmmeter that applies an AC voltage between the anode and cathode of a specific cell in the fuel cell stack, and obtains the cell resistance from the AC current flowing between both electrodes and the applied AC voltage. Is known.

本実施例によれば、セル抵抗検知手段が検知したセル抵抗値に基づいて、酸化剤極触媒層の含水量制御を行うことで制御時間を決定することができる。よって簡易的な方法で触媒層もしくは電解質膜の劣化を防止することができるという効果がある。   According to the present embodiment, the control time can be determined by controlling the water content of the oxidant electrode catalyst layer based on the cell resistance value detected by the cell resistance detecting means. Therefore, there is an effect that the catalyst layer or the electrolyte membrane can be prevented from being deteriorated by a simple method.

本発明に係る燃料電池システムの実施例1の構成を示すシステム構成図である。1 is a system configuration diagram showing the configuration of Example 1 of a fuel cell system according to the present invention. 実施例1の制御内容を説明するフローチャートである。3 is a flowchart for explaining control contents of the first embodiment. 実施例1における高負荷から低負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)バイパス配管通過供給ガス流量、(e)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。(A) Load, (b) Unit cell voltage, (c) Humidifier passage supply gas flow rate, (d) Bypass piping passage supply gas flow rate, (e) Oxidizing agent during transition from high load to low load in Example 1 It is a time chart which shows the time change of each value of a polar catalyst layer water content. 燃料電池の負荷変動運転時における酸化剤ガス相対湿度と酸化剤極電気化学表面積低下率の関係を示す図である。It is a figure which shows the relationship between oxidant gas relative humidity at the time of the load fluctuation | variation operation | movement of a fuel cell, and an oxidant electrode electrochemical surface area reduction rate. 実施例1における低負荷から高負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)バイパス配管通過供給ガス流量、(e)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。(A) Load, (b) Unit cell voltage, (c) Humidifier passage supply gas flow rate, (d) Bypass piping passage supply gas flow rate, (e) Oxidizing agent during transition from low load to high load in Example 1 It is a time chart which shows the time change of each value of a polar catalyst layer water content. 本発明に係る燃料電池システムの実施例2の構成を示すシステム構成図である。It is a system block diagram which shows the structure of Example 2 of the fuel cell system which concerns on this invention. 実施例2の制御内容を説明するフローチャートである。6 is a flowchart for explaining control contents of a second embodiment. 実施例2における高負荷から低負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。Time of each value of (a) load, (b) unit cell voltage, (c) humidifier passing supply gas flow rate, (d) oxidant electrode catalyst layer water content during transition from high load to low load in Example 2 It is a time chart which shows a change. 実施例2における低負荷から高負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。Time of each value of (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) oxidant electrode catalyst layer water content at the time of transition from low load to high load in Example 2 It is a time chart which shows a change. 本発明に係る燃料電池システムの実施例3の構成を示すシステム構成図である。It is a system block diagram which shows the structure of Example 3 of the fuel cell system which concerns on this invention. 実施例3の制御内容を説明するフローチャートである。10 is a flowchart for explaining control contents of a third embodiment. 実施例3における高負荷から低負荷へ移行時の(a)要求負荷、(b)燃料電池スタック負荷、(c)単位セル電圧、(d)蓄電手段蓄電量、(e)加湿器通過供給ガス流量、(f)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。(A) Required load at the time of transition from high load to low load in Example 3, (b) Fuel cell stack load, (c) Unit cell voltage, (d) Power storage means storage amount, (e) Humidifier passing supply gas It is a time chart which shows the time change of each value of flow rate and (f) oxidant electrode catalyst layer water content. 実施例3における低負荷から高負荷へ移行時の(a)要求負荷、(b)燃料電池スタック負荷、(c)単位セル電圧、(d)蓄電手段蓄電量、(e)加湿器通過供給ガス流量、(f)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。(A) Required load at the time of transition from low load to high load in Example 3, (b) Fuel cell stack load, (c) Unit cell voltage, (d) Electric storage means storage amount, (e) Humidifier passing supply gas It is a time chart which shows the time change of each value of flow rate and (f) oxidant electrode catalyst layer water content. 実施例4における高負荷から低負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。Time of each value of (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) oxidant electrode catalyst layer water content at the time of transition from high load to low load in Example 4 It is a time chart which shows a change. 実施例4における低負荷から高負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。Time of each value of (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) oxidant electrode catalyst layer water content at the time of transition from low load to high load in Example 4 It is a time chart which shows a change. 実施例5における(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)バイパス通過供給ガス流量、(e)水供給量、(f)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。(A) Load, (b) Unit cell voltage, (c) Humidifier passage supply gas flow rate, (d) Bypass passage supply gas flow rate, (e) Water supply amount, (f) Oxidant electrode catalyst layer in Example 5 It is a time chart which shows the time change of each value of moisture content. 実施例6における(a)要求負荷、(b)燃料電池スタック負荷、(c)単位セル電圧、(d)蓄電手段蓄電量、(e)加湿器通過供給ガス流量、(f)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。Example 6 (a) Required load, (b) Fuel cell stack load, (c) Unit cell voltage, (d) Amount of electricity stored in power storage means, (e) Humidifier passing supply gas flow rate, (f) Oxidant electrode catalyst It is a time chart which shows the time change of each value of layer water content. 本発明に係る燃料電池システムの実施例7の構成を示すシステム構成図である。It is a system block diagram which shows the structure of Example 7 of the fuel cell system based on this invention. 実施例7における高負荷から低負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。Time of each value of (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) oxidant electrode catalyst layer water content at the time of transition from high load to low load in Example 7 It is a time chart which shows a change. 実施例7における低負荷から高負荷へ移行時の(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。Time of each value of (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) oxidant electrode catalyst layer water content during transition from low load to high load in Example 7 It is a time chart which shows a change. 本発明に係る燃料電池システムの実施例8の構成を示すシステム構成図である。It is a system block diagram which shows the structure of Example 8 of the fuel cell system which concerns on this invention. 実施例8における(a)負荷、(b)単位セル電圧、(c)加湿器通過供給ガス流量、(d)対象セル抵抗、(e)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。In Example 8, (a) load, (b) unit cell voltage, (c) humidifier passage supply gas flow rate, (d) target cell resistance, and (e) oxidant electrode catalyst layer water content time change. It is a time chart which shows. 従来の制御方法における(a)負荷、(b)単位セル電圧、(c)供給ガス流量、(d)酸化剤極触媒層含水量の各値の時間変化を示すタイムチャートである。It is a time chart which shows the time change of each value of (a) load, (b) unit cell voltage, (c) supply gas flow rate, and (d) oxidant electrode catalyst layer water content in the conventional control method.

符号の説明Explanation of symbols

1:燃料電池スタック
2:負荷装置
3:導線
4:燃料ガスタンク
5:酸化剤ブロア
6a〜6d:三方弁
7a,7b:加湿器
8:燃料供給配管
9:酸化剤供給配管
10:燃料バイパス配管
11:酸化剤バイパス配管
12:燃料流量制御装置
13:酸化剤流量制御装置
14:スイッチ
15:蓄電手段
16:要求負荷検知手段
17:スイッチ制御手段
18:負荷移行時間検知手段
19:セル抵抗検知手段
1: Fuel cell stack 2: Load device 3: Conductor 4: Fuel gas tank 5: Oxidant blowers 6a-6d: Three-way valves 7a, 7b: Humidifier 8: Fuel supply pipe 9: Oxidant supply pipe 10: Fuel bypass pipe 11 : Oxidant bypass pipe 12: Fuel flow rate control device 13: Oxidant flow rate control device 14: Switch 15: Power storage means 16: Required load detection means 17: Switch control means 18: Load transition time detection means 19: Cell resistance detection means

Claims (13)

電解質膜の両面に燃料極及び酸化剤極の触媒層とガス拡散電極をそれぞれ配置してなる膜電極接合体と、前記燃料極及び酸化剤極にそれぞれ燃料ガス及び酸化剤ガスをそれぞれ供給するためのガス流路を備えたセパレータによって前記膜電極接合体を狭持してなる単位セルを複数積層した燃料電池スタックを備えた燃料電池システムにおいて、
前記燃料電池スタックの負荷状態が高負荷から所定値以下の低負荷へ移行することが検知され、かつ前記燃料電池スタックの単位セルの電圧が所定の単位セル電圧以上となるときに、前記酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする燃料電池システム。
A membrane electrode assembly in which a catalyst layer of a fuel electrode and an oxidant electrode and a gas diffusion electrode are respectively disposed on both surfaces of the electrolyte membrane, and a fuel gas and an oxidant gas are supplied to the fuel electrode and the oxidant electrode, respectively. In a fuel cell system including a fuel cell stack in which a plurality of unit cells formed by sandwiching the membrane electrode assembly by a separator having a gas flow path are stacked.
When the load state of the fuel cell stack is detected to shift from a high load to a low load of a predetermined value or less, and the voltage of the unit cell of the fuel cell stack becomes equal to or higher than a predetermined unit cell voltage, the oxidant A fuel cell system, wherein the water content of the electrode catalyst layer is controlled to be a predetermined value or less.
電解質膜の両面に燃料極及び酸化剤極の触媒層とガス拡散電極をそれぞれ配置してなる膜電極接合体と、前記燃料極及び酸化剤極にそれぞれ燃料ガス及び酸化剤ガスをそれぞれ供給するためのガス流路を備えたセパレータによって前記膜電極接合体を狭持してなる単位セルを複数積層した燃料電池スタックを備えた燃料電池システムにおいて、
前記燃料電池スタックの負荷が増加することが検知され、かつ前記燃料電池スタックの単位セルの電圧が所定の単位セル電圧以上であるときに、前記酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする燃料電池システム。
A membrane electrode assembly in which a catalyst layer of a fuel electrode and an oxidant electrode and a gas diffusion electrode are respectively disposed on both surfaces of the electrolyte membrane, and a fuel gas and an oxidant gas are supplied to the fuel electrode and the oxidant electrode, respectively. In a fuel cell system including a fuel cell stack in which a plurality of unit cells formed by sandwiching the membrane electrode assembly by a separator having a gas flow path are stacked.
When it is detected that the load of the fuel cell stack increases and the voltage of the unit cell of the fuel cell stack is equal to or higher than a predetermined unit cell voltage, the water content of the oxidant electrode catalyst layer is set to a predetermined value or lower. A fuel cell system characterized by performing control to perform.
燃料電池スタックが発電した電力を貯蔵可能な蓄電手段と、燃料電池システムに対する要求負荷を検知する要求負荷検知手段と、を備え、
前記要求負荷検知手段により検知された要求負荷が高負荷から所定値以下の低負荷へ変化した時に、前記燃料電池スタックが前記低負荷を超える発電を継続して前記蓄電手段に蓄電を行い、該蓄電手段の蓄電量が所定値に達した後、前記要求負荷に基づいて前記燃料電池スタック中の単位セル電圧が所定値以上となると判断された場合、前もって酸化剤極触媒層の含水量を所定値以下とした後、要求負荷へ移行させることを特徴とする請求項1に記載の燃料電池システム。
A power storage means capable of storing the power generated by the fuel cell stack, and a required load detection means for detecting a required load for the fuel cell system,
When the required load detected by the required load detection means changes from a high load to a low load of a predetermined value or less, the fuel cell stack continues to generate power exceeding the low load and stores power in the power storage means, When it is determined that the unit cell voltage in the fuel cell stack is equal to or higher than a predetermined value based on the required load after the storage amount of the storage means reaches a predetermined value, the water content of the oxidant electrode catalyst layer is determined in advance. The fuel cell system according to claim 1, wherein the fuel cell system is shifted to a required load after being less than or equal to the value.
前記要求負荷が高負荷から所定値以下の低負荷へ変化した後の前記蓄電手段へ蓄電中に、前記蓄電手段の蓄電量が所定値に達する前で、かつ酸化剤極触媒層の含水量が所定値以下となる前に、要求負荷が前記所定値以下の範囲で増加した場合、前記蓄電量が所定値に達するまでは、前記酸化剤極触媒層の含水量を所定値以下とする制御を継続することを特徴とする請求項3に記載の燃料電池システム。   During power storage to the power storage means after the required load has changed from a high load to a low load below a predetermined value, before the amount of power stored in the power storage means reaches a predetermined value and the water content of the oxidant electrode catalyst layer is If the required load increases within the predetermined value or less before the predetermined value or less, control is performed so that the water content of the oxidant electrode catalyst layer is equal to or less than the predetermined value until the charged amount reaches the predetermined value. The fuel cell system according to claim 3, wherein the fuel cell system is continued. 燃料極及び酸化剤極の少なくとも一方の極の供給ガス流量を増加させることにより、酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする請求項1乃至請求項4の何れか1項に記載の燃料電池システム。   5. The control for reducing the water content of the oxidant electrode catalyst layer to a predetermined value or less by increasing the supply gas flow rate of at least one of the fuel electrode and the oxidant electrode. The fuel cell system according to any one of the above. 負荷の大きさに応じた供給ガス流量を燃料電池スタックへ供給する制御ガス流量制御手段を備え、
前記高負荷から低負荷への移行時に、燃料極及び酸化剤極の少なくとも一方の極に対して、負荷の大きさに応じたガス流量より増加させたガス流量を所定時間継続して供給することにより、酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする請求項1、3、4の何れか1項に記載の燃料電池システム。
A control gas flow rate control means for supplying a supply gas flow rate according to the size of the load to the fuel cell stack;
At the time of transition from the high load to the low load, a gas flow rate increased from a gas flow rate corresponding to the magnitude of the load is continuously supplied to at least one of the fuel electrode and the oxidant electrode for a predetermined time. 5. The fuel cell system according to claim 1, wherein the water content of the oxidant electrode catalyst layer is controlled to be a predetermined value or less.
燃料極及び酸化剤極の少なくとも一方の極に低加湿ガスを供給することにより、酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする請求項1乃至請求項3の何れか1項に記載の燃料電池システム。   4. The control for reducing the water content of the oxidant electrode catalyst layer to a predetermined value or less by supplying a low humidified gas to at least one of the fuel electrode and the oxidant electrode. The fuel cell system according to any one of the above. 負荷の大きさに応じた供給ガス流量を燃料電池スタックへ供給する制御ガス流量制御手段を備え、
前記負荷増加時に、燃料極及び酸化剤極の少なくとも一方の極に対して、負荷の大きさに応じたガス流量より増加させたガス流量を所定時間継続して供給することにより、酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする請求項2に記載の燃料電池システム。
A control gas flow rate control means for supplying a supply gas flow rate according to the size of the load to the fuel cell stack;
By continuously supplying a gas flow rate increased from a gas flow rate according to the magnitude of the load to at least one of the fuel electrode and the oxidant electrode when the load increases, an oxidant electrode catalyst is provided. The fuel cell system according to claim 2, wherein the water content of the layer is controlled to be a predetermined value or less.
前記燃料電池スタックの単位セル電圧の代表値が約0.75[V]以下となる場合を高負荷とすることを特徴とする請求項1乃至請求項8の何れか1項に記載の燃料電池システム。   The fuel cell according to any one of claims 1 to 8, wherein a high load is applied when a representative value of unit cell voltage of the fuel cell stack is about 0.75 [V] or less. system. 酸化剤極触媒層の含水量が所定値以下であり、かつ単位セル電圧が高電圧となる状態が所定時間経過した場合、再び酸化剤極触媒層の含水量を前記所定値より大きい第2所定値以上とすることを特徴とする請求項1乃至請求項9の何れか1項に記載の燃料電池システム。   When the moisture content of the oxidant electrode catalyst layer is less than or equal to a predetermined value and the state in which the unit cell voltage becomes high voltage has elapsed for a predetermined time, the water content of the oxidant electrode catalyst layer is again set to a second predetermined value greater than the predetermined value. The fuel cell system according to any one of claims 1 to 9, wherein the fuel cell system is equal to or greater than a value. 高負荷から低負荷への所定の負荷量が減少する移行時間を検知する負荷移行時間検知手段を備え、該負荷移行時間検知手段が検知した移行時間が所定値以下であるときに、前記酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする請求項1、3、4の何れか1項に記載の燃料電池システム。   A load transition time detecting means for detecting a transition time during which a predetermined load amount from a high load to a low load decreases, and when the transition time detected by the load transition time detecting means is a predetermined value or less, 5. The fuel cell system according to claim 1, wherein the water content of the electrode catalyst layer is controlled to be a predetermined value or less. 低負荷から高負荷への所定の負荷量が減少する移行時間を検知する負荷移行時間検知手段を備え、該負荷移行時間検知手段が検知した移行時間が所定値以下であるときのみ、前記酸化剤極触媒層の含水量を所定値以下とする制御を行うことを特徴とする請求項2に記載の燃料電池システム。   A load transition time detecting means for detecting a transition time during which a predetermined load amount from a low load to a high load decreases, and the oxidizer is only when the transition time detected by the load transition time detecting means is less than or equal to a predetermined value. The fuel cell system according to claim 2, wherein the water content of the electrode catalyst layer is controlled to be a predetermined value or less. 前記燃料電池スタック中の単位セルの抵抗値を検知するセル抵抗検知手段を備え、
該抵抗値が所定の値以上となった場合、酸化剤極触媒層の含水量を所定値以下とする制御を停止することを特徴とする請求項1乃至請求項12の何れか1項に記載の燃料電池システム。
Cell resistance detection means for detecting the resistance value of the unit cell in the fuel cell stack,
13. The control according to claim 1, wherein when the resistance value is equal to or greater than a predetermined value, the control to reduce the water content of the oxidant electrode catalyst layer to a predetermined value or less is stopped. Fuel cell system.
JP2005213459A 2004-12-20 2005-07-22 Fuel cell system Expired - Fee Related JP5023447B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005213459A JP5023447B2 (en) 2004-12-20 2005-07-22 Fuel cell system
PCT/US2005/046173 WO2006069070A2 (en) 2004-12-20 2005-12-20 Fuel cell system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004368111 2004-12-20
JP2004368111 2004-12-20
JP2005213459A JP5023447B2 (en) 2004-12-20 2005-07-22 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006202718A true JP2006202718A (en) 2006-08-03
JP5023447B2 JP5023447B2 (en) 2012-09-12

Family

ID=36441104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213459A Expired - Fee Related JP5023447B2 (en) 2004-12-20 2005-07-22 Fuel cell system

Country Status (2)

Country Link
JP (1) JP5023447B2 (en)
WO (1) WO2006069070A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029814A1 (en) * 2008-09-10 2010-03-18 日産自動車株式会社 Operation control device and operation control method for fuel cell
JP2013125638A (en) * 2011-12-14 2013-06-24 Honda Motor Co Ltd Operational method of fuel cell
JP2015503205A (en) * 2011-12-09 2015-01-29 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Fuel cell assembly and control method thereof
KR20150079901A (en) * 2012-11-01 2015-07-08 누베라 퓨엘 셀스, 인크. Fuel cell humidification management method & system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2657802C (en) * 2006-08-10 2012-05-22 Nissan Motor Co., Ltd. Fuel cell system
DE102008008870A1 (en) * 2008-02-13 2009-09-03 Daimler Ag Fuel cell supply, fuel cell device with the fuel cell supply and method for operating the fuel cell device
DE102017215574A1 (en) * 2017-09-05 2019-03-07 Audi Ag Method for operating a fuel cell and fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280029A (en) * 2001-03-15 2002-09-27 Nissan Motor Co Ltd Control device for fuel cell system
JP2004265862A (en) * 2003-02-14 2004-09-24 Denso Corp Fuel cell system
JP2004356018A (en) * 2003-05-30 2004-12-16 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP2005532665A (en) * 2002-07-09 2005-10-27 ゼネラル・モーターズ・コーポレーション Low moisture and durable fuel cell membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132179B2 (en) * 2001-03-28 2006-11-07 Ballard Power Systems Inc. Methods and apparatus for improving the cold starting capability of a fuel cell
JP4214761B2 (en) * 2002-01-31 2009-01-28 株式会社デンソー Fuel cell system
US7318971B2 (en) * 2003-02-14 2008-01-15 Denso Corporation Fuel cell system utilizing control of operating current to adjust moisture content within fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280029A (en) * 2001-03-15 2002-09-27 Nissan Motor Co Ltd Control device for fuel cell system
JP2005532665A (en) * 2002-07-09 2005-10-27 ゼネラル・モーターズ・コーポレーション Low moisture and durable fuel cell membrane
JP2004265862A (en) * 2003-02-14 2004-09-24 Denso Corp Fuel cell system
JP2004356018A (en) * 2003-05-30 2004-12-16 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029814A1 (en) * 2008-09-10 2010-03-18 日産自動車株式会社 Operation control device and operation control method for fuel cell
JP2010067434A (en) * 2008-09-10 2010-03-25 Nissan Motor Co Ltd Operation control device and operation control method for fuel cell
JP2015503205A (en) * 2011-12-09 2015-01-29 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Fuel cell assembly and control method thereof
US9318759B2 (en) 2011-12-09 2016-04-19 Audi Ag Fuel cell assembly and method of control
JP2013125638A (en) * 2011-12-14 2013-06-24 Honda Motor Co Ltd Operational method of fuel cell
KR20150079901A (en) * 2012-11-01 2015-07-08 누베라 퓨엘 셀스, 인크. Fuel cell humidification management method & system
JP2015535131A (en) * 2012-11-01 2015-12-07 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Method and system for managing humidification of a fuel cell
KR102218816B1 (en) * 2012-11-01 2021-02-24 누베라 퓨엘 셀스, 엘엘씨 Fuel cell humidification management method & system

Also Published As

Publication number Publication date
JP5023447B2 (en) 2012-09-12
WO2006069070A3 (en) 2006-11-16
WO2006069070A2 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4644064B2 (en) Fuel cell system
KR101719674B1 (en) Fuel cell system
JP5023447B2 (en) Fuel cell system
US20150125772A1 (en) Fuel cell system
US10199668B2 (en) Fuel cell system and performance improvement method of fuel cell system
JP2009129783A (en) Fuel battery system
JP2010055927A (en) Fuel cell system
JP2009129647A (en) Fuel cell system
JP2007323954A (en) Fuel cell system, and control method thereof
WO2020138338A1 (en) Fuel cell activation method and apparatus
JP6052245B2 (en) Fuel cell system
JP5807207B2 (en) Method of operating polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2005158553A (en) Fuel cell system
JP2007035567A (en) Fuel cell system
JP2007172843A (en) Fuel cell system and its starting method
JP5358988B2 (en) Fuel cell system
JP2008077884A (en) Fuel cell system and its operation control method
JP2007066680A (en) Fuel cell system
JP2008218242A (en) Fuel cell system
US8993185B2 (en) Method for determining an average cell voltage for fuel cells
JP2006179199A (en) Fuel cell system
JP2006156181A (en) Low-temperature starting method of fuel cell, and fuel cell system
JP2007157604A (en) Fuel cell system and movable body
JP2008016323A (en) Fuel cell system and operation method of fuel cell
JP2007250216A (en) Fuel cell system and method of operating same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees