JP2006202696A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006202696A
JP2006202696A JP2005015780A JP2005015780A JP2006202696A JP 2006202696 A JP2006202696 A JP 2006202696A JP 2005015780 A JP2005015780 A JP 2005015780A JP 2005015780 A JP2005015780 A JP 2005015780A JP 2006202696 A JP2006202696 A JP 2006202696A
Authority
JP
Japan
Prior art keywords
fuel cell
time
output
soak
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005015780A
Other languages
Japanese (ja)
Other versions
JP4821949B2 (en
Inventor
Satoki Morishita
吏規 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005015780A priority Critical patent/JP4821949B2/en
Publication of JP2006202696A publication Critical patent/JP2006202696A/en
Application granted granted Critical
Publication of JP4821949B2 publication Critical patent/JP4821949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To propose a fuel cell system capable of impressing a high load immediately after the start-up of the system. <P>SOLUTION: The fuel cell system (10) that is a system carrying out an output limit of the fuel cell (20) at the start-up of the system is provided with a storage system (42) storing output limit characteristics (51, 52) of the fuel cell (20), a measurement means (41) measuring a soak standing time of the fuel cell (20), and an output limiting means (40) limiting outputs of the fuel cell (20) based on the soak standing time measured by the measurement means (41) and the output limiting characteristics (51, 52) stored in the storage device (42). Since an output limit can be changed in accordance with the soak standing time of the fuel cell (20), an optimum output limit can be obtained in accordance with inner conditions of the fuel cell (20) changing from time to time in response to the soak standing time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料電池システムに関し、特に、システム起動時の出力制限制御に関する。   The present invention relates to a fuel cell system, and more particularly to output restriction control at system startup.

燃料電池システムは、燃料ガスと酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギーを取り出すことのできる発電システムである。燃料電池車両は、高圧水素タンク等の水素貯蔵源を車両に搭載し、そこから供給される水素と、外気から取り込んだ空気を燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギーでトラクションモータを駆動させている。セルの出力電圧は約1V程度と低いため、燃料電池システムを車両駆動用電源として用いるには、数百セルを直列接続した燃料電池スタックとして構成される。燃料電池システムを運転する際には、局所的に発生する反応ガス不足やフラッディング等の状態悪化を検出して、過電流による燃料電池の損傷を事前に防止し、十分な出力が取り出せるように燃料電池の状態を回復させる必要がある。特許文献1には、セル電圧が所定値より低下した場合に燃料電池の出力を制限するとともに、セル電圧が出力制限前の平均セル電圧を越えて回復した場合に燃料電池の出力制限を解除する技術が提案されている。
特開2004−152604号
The fuel cell system is a power generation system capable of taking out electric energy from electrodes provided on both surfaces of an electrolyte by electrochemically reacting a fuel gas and an oxidizing gas via an electrolyte. A fuel cell vehicle is equipped with a hydrogen storage source such as a high-pressure hydrogen tank in the vehicle, and hydrogen supplied from the vehicle and the air taken from outside air are sent to the fuel cell to react with each other. The motor is driven. Since the output voltage of the cell is as low as about 1V, in order to use the fuel cell system as a power source for driving the vehicle, it is configured as a fuel cell stack in which several hundred cells are connected in series. When operating the fuel cell system, it is necessary to detect local reaction gas shortage and flooding and other deterioration of the fuel cell system in advance to prevent damage to the fuel cell due to overcurrent and to obtain sufficient output. It is necessary to restore the state of the battery. In Patent Document 1, when the cell voltage falls below a predetermined value, the output of the fuel cell is restricted, and when the cell voltage recovers beyond the average cell voltage before the output restriction, the output restriction of the fuel cell is released. Technology has been proposed.
JP 2004-152604 A

しかし、燃料電池車両では、燃料電池を運転停止した状態で一定時間放置し、その後の燃料電池の起動直後に急加速するなどして、燃料電池に急に大きな発電要求をすると、セル電圧が低下する場合がある。セル電圧低下が生じると、燃料電池の破損を防止するため、システム停止する場合もある。このような事情に鑑み、従来では予め設定された出力制限特性をマップデータとして記憶しておき、システム起動後にはこのマップデータに基づいて出力制限を行っているので、燃料電池の内部状態が良好で安定発電できるにも拘らず出力が制限される場合があり、走行性能(ドライバビリティ)が悪化していた。   However, in a fuel cell vehicle, if the fuel cell is suddenly accelerated immediately after starting the fuel cell after it has been stopped for a certain period of time and then suddenly demanded a large power generation, the cell voltage drops. There is a case. When the cell voltage drops, the system may be stopped to prevent the fuel cell from being damaged. In view of such circumstances, conventionally, a preset output restriction characteristic is stored as map data, and after the system is started, output restriction is performed based on this map data. Therefore, the internal state of the fuel cell is good. In some cases, the power output may be limited even though stable power generation is possible, and driving performance (drivability) has deteriorated.

ところで、燃料電池を運転停止して、ある一定時間を越えて長時間ソーク放置すると、セル電圧低下傾向が改善されることが確認されている。この特性を利用すれば、長時間のソーク放置後においては、出力制限することなく燃料電池を運転することができるので、走行性能の改善が見込める。   By the way, it has been confirmed that when the fuel cell is stopped and left soaked for a long time beyond a certain time, the cell voltage decrease tendency is improved. If this characteristic is used, after leaving the soak for a long time, the fuel cell can be operated without limiting the output, so that it is possible to improve the running performance.

そこで、本発明は上述の問題を解決し、システム起動直後から高負荷を印加できる燃料電池システムを提案することを課題とする。   Accordingly, an object of the present invention is to solve the above-described problems and to propose a fuel cell system that can apply a high load immediately after the system is started.

上記の課題を解決するため、本発明の燃料電池システムは、システム起動時に燃料電池の出力制限を行う燃料電池システムであって、燃料電池の出力制限特性を記憶する記憶装置と、燃料電池のソーク放置時間を計測する計測手段と、計測手段が計測したソーク放置時間と記憶装置に記憶された出力制限特性とに基づいて燃料電池の出力を制限する出力制限手段とを備える。燃料電池のソーク放置時間に応じて出力制限を変更できるので、ソーク放置時間に応じて刻々と変化する燃料電池の内部状態に応じて最適な出力制限を実現できる。   In order to solve the above-described problems, a fuel cell system according to the present invention is a fuel cell system that limits the output of a fuel cell at the time of system startup, and includes a storage device that stores output limitation characteristics of the fuel cell, and a soak of the fuel cell Measuring means for measuring the leaving time, and output limiting means for limiting the output of the fuel cell based on the soak leaving time measured by the measuring means and the output limiting characteristic stored in the storage device. Since the output limit can be changed according to the soaking time of the fuel cell, the optimum output limit can be realized according to the internal state of the fuel cell which changes every moment according to the soaking time.

出力制限手段は、ソーク放置時間と出力制限特性とに基づいて、燃料電池の出力制限値を設定するのが好ましい。出力制限値とは、例えば、発電許容電流値又は発電許容電力値などである。   The output limiting means preferably sets the output limit value of the fuel cell based on the soaking time and the output limiting characteristic. The output limit value is, for example, a power generation allowable current value or a power generation allowable power value.

本発明の燃料電池システムは、上述の構成に加えて更に、燃料電池のソーク放置時間とシステム起動時のセル電圧低下代とに基づいて出力制限特性を補正する学習制御手段を備えてもよい。学習制御により、個々の燃料電池の特性に応じた最適な出力制限を実施できる。   In addition to the above-described configuration, the fuel cell system of the present invention may further include learning control means for correcting the output limiting characteristic based on the soaking time of the fuel cell and the cell voltage reduction margin at the time of system startup. Through learning control, it is possible to perform optimum output restriction according to the characteristics of individual fuel cells.

出力制限手段は、燃料電池のソーク放置時間とシステム起動時のセル電圧低下代との関係特性曲線に基づいて燃料電池の出力を制限してもよい。燃料電池のソーク放置時間とシステム起動時のセル電圧低下代との関係特性曲線に基づいて燃料電池の出力を制限することで、個々の燃料電池の特性に応じた最適な出力制限を実施できる。   The output limiting means may limit the output of the fuel cell based on a relational characteristic curve between the soaking time of the fuel cell and the cell voltage drop at the time of starting the system. By limiting the output of the fuel cell based on the relationship characteristic curve between the soaking time of the fuel cell and the cell voltage drop at the time of starting the system, it is possible to implement the optimum output limitation according to the characteristics of the individual fuel cells.

出力制限手段は、燃料電池のソーク放置時間が第1の時間未満のときは燃料電池の出力制限の実行を抑制し、燃料電池のソーク放置時間が第1の時間以上第2の時間未満のときには燃料電池の出力制限を実行し、燃料電池のソーク放置時間が第2の時間以上のときには燃料電池の出力制限の実行を抑制するのが好ましい。ソーク放置時間が第1の時間未満の場合は、アノード側への凝縮水の移動が不十分なため、フラッディングは殆ど生じない。ソーク放置時間が第2の時間以上の場合は、アノード側へ移動した凝縮水は自然乾燥等により大部分が消失するので、フラッディングは殆ど生じない。つまり、ソーク放置時間が第1の時間未満、或いは第2の時間以上の範囲では、システム起動時のセル電圧低下が殆どみられないので、燃料電池の出力制限の実行を抑制するのが好ましい。但し、第2の時間は、第1の時間よりも長い時間とする。   The output restricting means suppresses execution of the output restriction of the fuel cell when the soak leaving time of the fuel cell is less than the first time, and when the soaking time of the fuel cell is not less than the first time and less than the second time. It is preferable to limit the output of the fuel cell, and to suppress the output limitation of the fuel cell when the soaking time of the fuel cell is equal to or longer than the second time. When the soak standing time is less than the first time, the condensed water hardly moves to the anode side, so that almost no flooding occurs. When the soak standing time is equal to or longer than the second time, most of the condensed water moved to the anode side disappears due to natural drying or the like, so that almost no flooding occurs. That is, when the soak leaving time is less than the first time or in the range of the second time or more, almost no decrease in the cell voltage at the time of starting the system is observed, so it is preferable to suppress the output restriction of the fuel cell. However, the second time is longer than the first time.

本発明によれば、燃料電池のソーク放置時間に応じて出力制限を変更できるので、ソーク放置時間に応じて刻々と変化する燃料電池の内部状態に応じて最適な出力制限を実現できる。   According to the present invention, since the output limit can be changed according to the soak leaving time of the fuel cell, the optimum output limit can be realized according to the internal state of the fuel cell that changes every moment according to the soak leaving time.

以下、各図を参照して本発明の実施形態について説明する。
図1は本実施形態に係わる燃料電池電気自動車の電気系統を中心とするシステム構成図である。燃料電池システム10は、主に、複数のセルが直列に積層されてなる燃料電池(セルスタック)20と、燃料電池20のアノードに燃料ガス(水素ガス)を供給する燃料ガス供給装置21と、燃料電池20のカソードに酸化ガス(空気)を供給する酸化ガス供給装置22と、燃料電池20のセル電圧を検出するセル電圧検出装置23と、燃料電池20の発電電力又は車両制動時の回生エネルギーを蓄電する二次電池(蓄電装置)34と、燃料電池20の出力電圧を調整して、燃料電池20と二次電池34との電力供給分配を制御するDC/DCコンバータ33と、燃料電池20又は二次電池34から供給される直流電力を交流電力に変換してトラクションモータ(車両走行モータ)32に供給するインバータ31と、システム全体を制御する制御装置40を備えて構成されている。計測手段41は燃料電池20のソーク放置時間(又は運転停止時間)を計測する手段であり、例えば、制御装置40にシステム停止信号が入力されてから次回のシステム起動信号が入力されるまでの時間を計測する。記憶装置42は燃料電池20の出力制限値(発電許容電流値又は発電許容電力値などの出力制限特性)をマップ値とする2つのマップデータ51,52を記憶している。第1のマップデータ51は、セル電圧が低下し易い状態下で燃料電池20を運転するときを想定した低出力特性の出力制限マップデータである。第2のマップデータ52は、セル電圧が低下し難い状態下で燃料電池20を運転する場合を想定した高出力特性の出力制限マップデータである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram centering on an electric system of a fuel cell electric vehicle according to the present embodiment. The fuel cell system 10 mainly includes a fuel cell (cell stack) 20 in which a plurality of cells are stacked in series, a fuel gas supply device 21 that supplies fuel gas (hydrogen gas) to the anode of the fuel cell 20, An oxidizing gas supply device 22 that supplies an oxidizing gas (air) to the cathode of the fuel cell 20, a cell voltage detection device 23 that detects a cell voltage of the fuel cell 20, and a regenerative energy generated by the fuel cell 20 or when braking the vehicle , A DC / DC converter 33 that controls the power supply distribution between the fuel cell 20 and the secondary battery 34 by adjusting the output voltage of the fuel cell 20, and the fuel cell 20. Or the inverter 31 which converts the direct current power supplied from the secondary battery 34 into alternating current power, and supplies it to the traction motor (vehicle drive motor) 32, and the whole system are controlled. It is configured to include a control device 40. The measuring means 41 is a means for measuring the soaking time (or operation stop time) of the fuel cell 20, for example, the time from when the system stop signal is input to the control device 40 until the next system start signal is input. Measure. The storage device 42 stores two pieces of map data 51 and 52 having the output limit value of the fuel cell 20 (output limit characteristics such as a power generation allowable current value or a power generation allowable power value) as map values. The first map data 51 is output restriction map data having low output characteristics assuming that the fuel cell 20 is operated in a state where the cell voltage tends to decrease. The second map data 52 is output limit map data having a high output characteristic assuming that the fuel cell 20 is operated in a state where the cell voltage is unlikely to decrease.

燃料ガス供給装置21は、例えば、水素ガスを高圧に封入した高圧水素タンク、水素吸蔵合金に水素を貯蔵した水素貯蔵タンク、又は改質原燃料(メタン、エタン、プロパン、ブタンなど)から水素ガスを生成する改質器などによって構成される。酸化ガス供給装置22は、例えば、外気から取り込んだ空気を圧縮するエアコンプレッサなどによって構成される。セル電圧検出装置23は、燃料電池20を構成する各々のセルのセル電圧、又は複数のセルから成るセル群のセル電圧を検出する。本明細書では、単一のセルの出力電圧だけでなく、複数のセルから成るセル群の出力電圧をも含めて、セル電圧と称する。   The fuel gas supply device 21 is, for example, a hydrogen gas from a high-pressure hydrogen tank filled with hydrogen gas at a high pressure, a hydrogen storage tank in which hydrogen is stored in a hydrogen storage alloy, or a reformed raw fuel (methane, ethane, propane, butane, etc.). It is comprised by the reformer etc. which produce | generate. The oxidizing gas supply device 22 is configured by, for example, an air compressor that compresses air taken from outside air. The cell voltage detection device 23 detects the cell voltage of each cell constituting the fuel cell 20 or the cell voltage of a cell group composed of a plurality of cells. In this specification, not only the output voltage of a single cell but also the output voltage of a cell group composed of a plurality of cells is referred to as a cell voltage.

制御装置40は、アクセル開度や車速等を基にシステム全体の要求電力(車両走行電力と補機電力の総和)を求める。次に、燃料電池20と二次電池34の出力電力の配分を決定し、燃料電池20の発電量が目標電力に一致するように燃料ガス供給装置21と酸化ガス供給装置22を制御して燃料電池20への反応ガス供給量を調整するとともに、DC/DCコンバータ33を制御して燃料電池20の運転ポイント(出力電圧、出力電流)を調整する。更に、制御装置40はアクセル開度に応じて目標車速が得られるようにインバータ31を制御し、トラクションモータ32の回転数及び回転トルクを調整する。   The control device 40 obtains the required power of the entire system (the sum of vehicle travel power and auxiliary power) based on the accelerator opening, the vehicle speed, and the like. Next, the distribution of the output power of the fuel cell 20 and the secondary battery 34 is determined, and the fuel gas supply device 21 and the oxidizing gas supply device 22 are controlled so that the power generation amount of the fuel cell 20 matches the target power. While adjusting the supply amount of the reaction gas to the battery 20, the DC / DC converter 33 is controlled to adjust the operation point (output voltage, output current) of the fuel cell 20. Furthermore, the control device 40 controls the inverter 31 so as to obtain the target vehicle speed according to the accelerator opening, and adjusts the rotational speed and rotational torque of the traction motor 32.

図3は燃料電池のソーク放置時間とシステム起動時のセル電圧低下代との関係特性曲線を示している。同図に示すように、ソーク放置時間Tが時間t1以上かつ時間t2未満の範囲では、システム起動時のセル電圧低下代が大きい。セル電圧低下代とは、平均セル電圧と最低セル電圧との電圧差をいう。最低セル電圧とは、システム起動時に急加速等のある程度の負荷をかけたときのセル電圧の最小値をいう。このように、電池運転を暫らく停止してから再び電池運転を開始すると、カソードで生成された凝縮水等は電解質膜を透過してアノード側に移動する。アノード上を被覆する水滴はシステム起動時におけるアノードへの水素供給を妨げるので、反応ガス供給不足が生じ、セル電圧低下を引き起こす(フラッディング)。ところが、ソーク放置時間Tが時間t1未満の場合は、アノード側への凝縮水の移動が不十分なため、フラッディングは殆ど生じない。ソーク放置時間Tが時間t2以上の場合は、アノード側へ移動した凝縮水は自然乾燥等により大部分が消失するので、フラッディングは殆ど生じない。つまり、ソーク放置時間Tが時間t1未満又はt2以上の範囲では、システム起動時のセル電圧低下が殆どみられない。   FIG. 3 shows a relationship characteristic curve between the soaking time of the fuel cell and the cell voltage drop at the time of system startup. As shown in the figure, when the soak leaving time T is in the range of the time t1 or more and less than the time t2, the cell voltage drop at the time of starting the system is large. The cell voltage drop is the voltage difference between the average cell voltage and the lowest cell voltage. The minimum cell voltage refers to the minimum value of the cell voltage when a certain load such as rapid acceleration is applied at the time of system startup. In this way, when the battery operation is stopped for a while and then the battery operation is started again, the condensed water or the like generated at the cathode permeates the electrolyte membrane and moves to the anode side. The water droplets covering the anode hinder the supply of hydrogen to the anode when the system is started up, resulting in insufficient supply of the reaction gas and a decrease in cell voltage (flooding). However, when the soak leaving time T is less than the time t1, the condensate is not sufficiently moved to the anode side, so that almost no flooding occurs. When the soak standing time T is longer than the time t2, most of the condensed water that has moved to the anode side disappears due to natural drying or the like, so that almost no flooding occurs. In other words, when the soak leaving time T is less than the time t1 or in the range of t2 or more, there is almost no decrease in the cell voltage at the system startup.

図4は燃料電池A,Bそれぞれのソーク放置時間とシステム起動時のセル電圧低下代との関係特性曲線を示している。同図に示すように、燃料電池Aはソーク放置時間が僅かでもシステム起動時のセル電圧低下代が大きくなるのに対し、燃料電池Bはソーク放置時間がある程度以上でないとシステム起動時のセル電圧低下が生じない特性を有している。このように、ソーク放置時間とシステム起動時のセル電圧低下代との関係特性は個々の燃料電池毎に異なっているので、出力制限処理についても、個々の燃料電池の特性を反映した適切な処理をするのが望ましい。   FIG. 4 shows a characteristic curve between the soaking time of each of the fuel cells A and B and the cell voltage drop at the time of starting the system. As shown in the figure, the fuel cell A has a large cell voltage drop margin at the time of starting the system even if the soak time is short, whereas the fuel cell B has a cell voltage at the time of starting the system if the soak time is not more than a certain level. It has the characteristic that no deterioration occurs. In this way, since the relationship characteristics between the soak time and the cell voltage drop at system startup are different for each fuel cell, appropriate processing that reflects the characteristics of the individual fuel cells is also applied to the output limiting process. It is desirable to do.

尚、システム起動時の燃料電池20の出力制限とは、燃料電池起動時は燃料電池20に接続する負荷からの発電要求があっても、発電要求値に対応した発電制御の実施を制限することをいう。即ち、システム起動時に燃料電池20が安定的に発電できるまでは、燃料電池20への発電要求を制限又は無視することで、速やかに安定的に発電できる状態へ移行させる制御をいう。   The output limitation of the fuel cell 20 at the time of starting the system is to limit the execution of power generation control corresponding to the power generation request value even when there is a power generation request from a load connected to the fuel cell 20 at the time of fuel cell startup. Say. In other words, until the fuel cell 20 can stably generate power at the time of starting the system, it refers to control for quickly shifting to a state where power generation can be stably performed by limiting or ignoring the power generation request to the fuel cell 20.

図2は燃料電池20の出力制限処理を記述した制御ルーチンを示している。本制御ルーチンは、システム起動時に制御装置40によって一定のインターバルで繰り返し実行される。本制御ルーチンが呼び出されると、制御装置40は、燃料電池20のソーク放置時間Tがt1≦T<t2であるか否か、つまり、システム起動時にある程度の高負荷をかけたときに、セル電圧が低下し易い状態であるか否かを判定する(S1)。t1≦T<t2である場合には(S1;YES)、セル電圧が低下し易い状態にあるので、第1のマップデータ51に基づいて出力制限値を定め、燃料電池20の出力電流及び出力電力が出力許容値を超えないように、燃料電池20の運転ポイントを調整する(S2)。次いで、制御部40はセル電圧が低下しているか否かを判定し(S3)、セル電圧が低下している場合には(S3;YES)、燃料電池20の出力制限が不十分なので、出力制限値が低めになるように、第1のマップデータ51を補正(マップ調整)する(S4)。セル電圧が低下していない場合には(S3;NO)、燃料電池20の出力制限は十分なので、本制御ルーチンを抜ける。一方、T<t1又はt2≦Tである場合には(S1;NO)、セル電圧が低下し難い状態にあるので、第2のマップデータ52に基づいて出力制限値を定め、燃料電池20の運転ポイント(出力電圧、出力電流)を調整する(S5)。   FIG. 2 shows a control routine describing the output limiting process of the fuel cell 20. This control routine is repeatedly executed at regular intervals by the control device 40 when the system is activated. When this control routine is called, the control device 40 determines whether or not the soak leaving time T of the fuel cell 20 is t1 ≦ T <t2, that is, when a certain high load is applied at the time of starting the system. It is determined whether or not it is in a state where it is easy to decrease (S1). If t1 ≦ T <t2 (S1; YES), the cell voltage is likely to decrease. Therefore, the output limit value is determined based on the first map data 51, and the output current and output of the fuel cell 20 are determined. The operating point of the fuel cell 20 is adjusted so that the electric power does not exceed the output allowable value (S2). Next, the control unit 40 determines whether or not the cell voltage has decreased (S3). If the cell voltage has decreased (S3; YES), the output restriction of the fuel cell 20 is insufficient, so that the output is performed. The first map data 51 is corrected (map adjustment) so that the limit value becomes lower (S4). If the cell voltage has not decreased (S3; NO), the output limit of the fuel cell 20 is sufficient, and the control routine is exited. On the other hand, when T <t1 or t2 ≦ T (S1; NO), since the cell voltage is difficult to decrease, an output limit value is determined based on the second map data 52, and the fuel cell 20 The operation point (output voltage, output current) is adjusted (S5).

制御装置40は、燃料電池20の出力を制限する出力制限手段(S2,S5)として機能するとともに、本制御ルーチンを繰り返し実行することで、第1のマップデータ51を最適な出力制限マップデータに補正する学習制御手段(S4)としても機能する。   The control device 40 functions as output limiting means (S2, S5) for limiting the output of the fuel cell 20, and by repeatedly executing this control routine, the first map data 51 is converted into optimum output limit map data. It also functions as a learning control means (S4) for correction.

本実施例によれば、ソーク放置時間に応じて燃料電池20の出力制限を行うので、ソーク放置時間に応じて刻々と変化する燃料電池20の内部状態に応じて最適な出力制限を実現できる。また、本実施例によれば、出力制限処理ルーチンを繰り返し実行することで、燃料電池20の特性に適合する最適な出力制限マップデータを得ることが出来るので、システム起動直後から高負荷走行が可能になり、運転性能の向上を実現できる。   According to the present embodiment, since the output restriction of the fuel cell 20 is performed according to the soak leaving time, the optimum output restriction can be realized according to the internal state of the fuel cell 20 that changes every moment according to the soak leaving time. Further, according to the present embodiment, it is possible to obtain optimum output restriction map data suitable for the characteristics of the fuel cell 20 by repeatedly executing the output restriction processing routine, so that it is possible to travel at a high load immediately after the system is started. Therefore, the driving performance can be improved.

本実施形態の燃料電池電気自動車のシステム構成図である。1 is a system configuration diagram of a fuel cell electric vehicle according to an embodiment. 出力制限処理ルーチンを記述したフローチャートである。It is a flowchart describing an output restriction processing routine. ソーク放置時間とセル電圧低下代との関係特性曲線である。It is a characteristic curve between a soak leaving time and a cell voltage reduction allowance. ソーク放置時間とセル電圧低下代との関係特性曲線の比較図である。It is a comparison figure of the relational characteristic curve of soak leaving time and cell voltage drop margin.

符号の説明Explanation of symbols

10…燃料電池システム 20…燃料電池 21…燃料ガス供給装置 22…酸化ガス供給装置 23…セル電圧検出装置 31…インバータ 32…トラクションモータ 33…DC/DCコンバータ 34…二次電池 40…制御装置 41…計測手段 42…記憶装置 51…第1のマップデータ 52…第2のマップデータ DESCRIPTION OF SYMBOLS 10 ... Fuel cell system 20 ... Fuel cell 21 ... Fuel gas supply apparatus 22 ... Oxidation gas supply apparatus 23 ... Cell voltage detection apparatus 31 ... Inverter 32 ... Traction motor 33 ... DC / DC converter 34 ... Secondary battery 40 ... Control apparatus 41 ... Measuring means 42 ... Storage device 51 ... First map data 52 ... Second map data

Claims (5)

システム起動時に燃料電池の出力制限を行う燃料電池システムであって、燃料電池の出力制限特性を記憶する記憶装置と、燃料電池のソーク放置時間を計測する計測手段と、前記計測手段が計測したソーク放置時間と前記記憶装置に記憶された出力制限特性とに基づいて前記燃料電池の出力を制限する出力制限手段とを備える、燃料電池システム。   A fuel cell system for limiting the output of a fuel cell at system startup, a storage device for storing output limitation characteristics of the fuel cell, measuring means for measuring the soaking time of the fuel cell, and the soak measured by the measuring means A fuel cell system comprising: an output limiting unit that limits the output of the fuel cell based on a standing time and an output limiting characteristic stored in the storage device. 請求項1に載の燃料電池システムであって、前記出力制限手段は、前記ソーク放置時間と前記出力制限特性とに基づいて、前記燃料電池の出力制限値を設定する、燃料電池システム。   2. The fuel cell system according to claim 1, wherein the output limiting unit sets an output limit value of the fuel cell based on the soak leaving time and the output limiting characteristic. 3. 請求項1又は請求項2に記載の燃料電池システムであって、燃料電池のソーク放置時間とシステム起動時のセル電圧低下代とに基づいて前記出力制限特性を補正する学習制御手段を更に備える、燃料電池システム。   The fuel cell system according to claim 1 or 2, further comprising learning control means for correcting the output limiting characteristic based on a soaking time of the fuel cell and a cell voltage reduction margin at the time of starting the system. Fuel cell system. 請求項1乃至請求項3のうち何れか1項に記載の燃料電池システムであって、前記出力制限手段は、燃料電池のソーク放置時間とシステム起動時のセル電圧低下代との関係特性曲線に基づいて前記燃料電池の出力を制限する、燃料電池システム。   The fuel cell system according to any one of claims 1 to 3, wherein the output limiting means has a relational characteristic curve between a soaking time of the fuel cell and a cell voltage reduction margin at the time of starting the system. A fuel cell system that limits the output of the fuel cell based on the fuel cell system. 請求項1に記載の燃料電池システムであって、前記出力制限手段は、前記ソーク放置時間が第1の時間未満のときは前記出力制限の実行を抑制し、前記ソーク放置時間が第1の時間以上第2の時間未満のときには前記出力制限を実行し、前記ソーク放置時間が第2の時間以上のときには前記出力制限の実行を抑制する、燃料電池システム。   2. The fuel cell system according to claim 1, wherein the output restriction unit suppresses execution of the output restriction when the soak leaving time is less than a first time, and the soak leaving time is a first time. The fuel cell system that executes the output restriction when the time is less than the second time and suppresses the output restriction when the soak leaving time is the second time or more.
JP2005015780A 2005-01-24 2005-01-24 Fuel cell system Expired - Fee Related JP4821949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015780A JP4821949B2 (en) 2005-01-24 2005-01-24 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015780A JP4821949B2 (en) 2005-01-24 2005-01-24 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006202696A true JP2006202696A (en) 2006-08-03
JP4821949B2 JP4821949B2 (en) 2011-11-24

Family

ID=36960494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015780A Expired - Fee Related JP4821949B2 (en) 2005-01-24 2005-01-24 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4821949B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010857A2 (en) 2007-07-18 2009-01-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and control method for fuel cell
US8092946B2 (en) 2008-01-30 2012-01-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of the system
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
JP5459223B2 (en) * 2008-12-26 2014-04-02 トヨタ自動車株式会社 Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178785A (en) * 2001-12-10 2003-06-27 Toyota Motor Corp Control equipment of fuel cell
JP2004022460A (en) * 2002-06-19 2004-01-22 Nissan Motor Co Ltd Starting control apparatus of fuel cell vehicle
JP2004172026A (en) * 2002-11-22 2004-06-17 Toyota Motor Corp Operation control of fuel cell system
JP2004170297A (en) * 2002-11-21 2004-06-17 Rikogaku Shinkokai Method for measuring moisture distribution between conductive member and cell and apparatus for measuring moisture distribution of polymer membrane
JP2004213944A (en) * 2002-12-27 2004-07-29 Toyota Motor Corp Fuel cell system and its control method
JP2004349068A (en) * 2003-05-21 2004-12-09 Nissan Motor Co Ltd Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178785A (en) * 2001-12-10 2003-06-27 Toyota Motor Corp Control equipment of fuel cell
JP2004022460A (en) * 2002-06-19 2004-01-22 Nissan Motor Co Ltd Starting control apparatus of fuel cell vehicle
JP2004170297A (en) * 2002-11-21 2004-06-17 Rikogaku Shinkokai Method for measuring moisture distribution between conductive member and cell and apparatus for measuring moisture distribution of polymer membrane
JP2004172026A (en) * 2002-11-22 2004-06-17 Toyota Motor Corp Operation control of fuel cell system
JP2004213944A (en) * 2002-12-27 2004-07-29 Toyota Motor Corp Fuel cell system and its control method
JP2004349068A (en) * 2003-05-21 2004-12-09 Nissan Motor Co Ltd Fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010857A2 (en) 2007-07-18 2009-01-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and control method for fuel cell
WO2009010857A3 (en) * 2007-07-18 2010-03-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system and start control method for fuel cell
US8298712B2 (en) 2007-07-18 2012-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and control method for fuel cell
US8092946B2 (en) 2008-01-30 2012-01-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of the system
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
JP5459223B2 (en) * 2008-12-26 2014-04-02 トヨタ自動車株式会社 Fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JP4821949B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4905847B2 (en) Fuel cell system
JP5120594B2 (en) Fuel cell system and operation method thereof
JP5077295B2 (en) On-vehicle fuel cell system
US10714776B2 (en) Fuel cell system and control method for fuel cell system
JP5395116B2 (en) Fuel cell system and control method thereof
JP5233312B2 (en) Fuel cell system
JP5083709B2 (en) Fuel cell system
US9184456B2 (en) Fuel cell system and method for limiting current thereof
US8519657B2 (en) Fuel cell drive system
JP4407750B2 (en) Fuel cell system and control method thereof.
JP2009158256A (en) Fuel cell system and fuel cell vehicle
JP4821949B2 (en) Fuel cell system
JP2005253270A (en) Control device for fuel cell vehicle
JP4615379B2 (en) Fuel cell system
US7977002B2 (en) Fuel cell system and mobile article
JP5225702B2 (en) Fuel cell system and control method thereof
JP2006202695A (en) Fuel cell system and fuel cell vehicle
JP4734821B2 (en) Fuel cell control system
JP4904719B2 (en) Fuel cell system, control method thereof, and vehicle equipped with the same
JP2014002844A (en) Fuel cell system
JP2006158006A (en) Controller for fuel cell vehicle
JP5329291B2 (en) Fuel cell module control program
JP2010257751A (en) Method of controlling fuel cell system
JP2007234311A (en) Fuel cell system
JP2009044835A (en) Fuel cell vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees