JP2006202589A - Electron source and manufacturing method of the same, electro-optical device, and electronic apparatus - Google Patents

Electron source and manufacturing method of the same, electro-optical device, and electronic apparatus Download PDF

Info

Publication number
JP2006202589A
JP2006202589A JP2005012409A JP2005012409A JP2006202589A JP 2006202589 A JP2006202589 A JP 2006202589A JP 2005012409 A JP2005012409 A JP 2005012409A JP 2005012409 A JP2005012409 A JP 2005012409A JP 2006202589 A JP2006202589 A JP 2006202589A
Authority
JP
Japan
Prior art keywords
signal line
electron source
electron
electrodes
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005012409A
Other languages
Japanese (ja)
Other versions
JP4442436B2 (en
Inventor
Hiroshi Yasuda
博史 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005012409A priority Critical patent/JP4442436B2/en
Publication of JP2006202589A publication Critical patent/JP2006202589A/en
Application granted granted Critical
Publication of JP4442436B2 publication Critical patent/JP4442436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron source with a difference in the level of the formation face of an element electrode taken into consideration, hardly generating wire disconnection, and to provide a manufacturing method of the same, an electro-optical device, and an electronic apparatus. <P>SOLUTION: The electron source 1 is composed of a lower layer insulation part 21 formed into a laminar shape with a thickness almost the same as that of a first signal wire 16, and having a reversed pattern of the first signal wire 16; and an upper layer insulation part 22 formed into a laminar shape with a thickness almost the same as that of the element electrodes 14, 15, having reversed patterns of the element electrodes 14, 15. The electron source 1 is formed into lamination structure in which the first signal wire 16 and the lower layer insulation part 21 form a first layer, the element electrodes 14, 15 and the upper layer insulation part 22 form a second layer, and a conductive thin film 12 and a second signal wire 17 are formed on the second layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面伝導型の電子放出素子を備える電子源、およびその製造方法、並びに、電子源を備える電気光学装置、電子機器に関する。   The present invention relates to an electron source including a surface conduction electron-emitting device, a manufacturing method thereof, an electro-optical device including the electron source, and an electronic apparatus.

従来、電子放出素子として、熱電子放出型のものと冷陰極電子放出型のものが知られている。そして、冷陰極電子放出型の電子放出素子として、電界によって電子を放出させる電界放出型のものや、電極に電流を流して電極表面の伝導帯から電子を放出させる表面伝導型のものが知られている。
このうち表面伝導型の電子放出素子としては、導電性薄膜に通電フォーミングによって電子放出部が形成されたものが知られている。通電フォーミングにより、導電性薄膜には局所的に破壊された微小な亀裂(狭小ギャップ)が形成され、この状態で導電性薄膜に電流を流すと、この亀裂から真空準位の電子が漏れ出す性質を利用して、電子放出部とするものである。電子放出素子の駆動は導電性薄膜に接続された一対の素子電極に電気信号を印加することによって行われ、例えば、特許文献1には、電子放出素子と素子電極に電気信号を印加する電気配線とをマトリクス型に配した電子源が開示されている。
特許文献1に係る電子源は、下部信号線が形成された基板の全面に絶縁層を形成し、さらに当該絶縁層にコンタクトホールを形成した後、一対の素子電極、上部信号線、導電性薄膜を順次形成して製造される。
Conventionally, thermionic emission type and cold cathode electron emission type are known as electron emission elements. As a cold cathode electron emission type electron-emitting device, a field emission type that emits electrons by an electric field, and a surface conduction type that emits electrons from the conduction band of the electrode surface by passing a current through the electrode are known. ing.
Among these, a surface conduction electron-emitting device is known in which an electron-emitting portion is formed on a conductive thin film by energization forming. Due to energization forming, a locally broken micro crack (narrow gap) is formed in the conductive thin film, and when current is passed through the conductive thin film in this state, the electrons at the vacuum level leak out from the crack. Is used as an electron emission portion. The electron-emitting device is driven by applying an electrical signal to a pair of device electrodes connected to the conductive thin film. For example, Patent Document 1 discloses an electrical wiring for applying an electrical signal to an electron-emitting device and a device electrode. Are disclosed in a matrix type.
In an electron source according to Patent Document 1, an insulating layer is formed on the entire surface of a substrate on which a lower signal line is formed, and a contact hole is further formed in the insulating layer, and then a pair of element electrodes, an upper signal line, and a conductive thin film Are manufactured sequentially.

特開平6−342636号公報JP-A-6-342636

しかしながら上述の製造方法では、コンタクトホールの段差をまたいで形成される素子電極を均一な膜厚で形成することが困難なため、局所的に薄くなった素子電極が断線を生じる虞もある。コンタクトホールを導電性材料で埋めてから素子電極を形成する方法も考えられるが、これでは下部信号線と素子電極との間の接続部抵抗を増大させてしまうことになる。   However, in the above-described manufacturing method, it is difficult to form the element electrode formed across the step of the contact hole with a uniform film thickness. Therefore, the locally thinned element electrode may be disconnected. A method of forming the device electrode after filling the contact hole with a conductive material is also conceivable, but this increases the resistance of the connection between the lower signal line and the device electrode.

本発明は、上述の課題を解決するためになされたもので、素子電極の形成面の段差に配慮され、素子電極の断線を生じにくい電子源および電子源の製造方法、並びに電気光学装置、電子機器を提供することを目的としている。   The present invention has been made in order to solve the above-described problems. An electron source, an electron source manufacturing method, an electro-optical device, an electron, and an electron source, in which an element electrode forming surface is considered and a disconnection of the element electrode is unlikely to occur. The purpose is to provide equipment.

本発明は、電子放出部を有する導電性薄膜と、前記導電性薄膜に電気機械的に接続する一対の素子電極と、前記一対の素子電極にそれぞれ対応して配線された第1および第2の信号線と、を備える電子源の製造方法であって、基板の一面に、第1の信号線を形成する工程と、前記基板の一面に、前記第1の信号線の膜厚に相当するスペーサとして機能する下層絶縁部を形成する工程と、前記下層絶縁部上および前記第1の信号線上に、前記一対の素子電極を形成する工程と、を備えることを特徴とする。
この発明の電子源の製造方法によれば、下層絶縁部によって第1の信号線の膜厚による段差が補償され、素子電極の形成面が平坦化されるので、素子電極の断線が生じにくくなる。
The present invention provides a conductive thin film having an electron emission portion, a pair of element electrodes that are electromechanically connected to the conductive thin film, and first and second wirings corresponding to the pair of element electrodes, respectively. A method of manufacturing an electron source including a signal line, the step of forming a first signal line on one surface of a substrate, and a spacer corresponding to the film thickness of the first signal line on one surface of the substrate And a step of forming the pair of element electrodes on the lower layer insulating portion and the first signal line.
According to the method for manufacturing an electron source of the present invention, the step due to the film thickness of the first signal line is compensated by the lower insulating layer and the formation surface of the element electrode is flattened, so that the element electrode is less likely to be disconnected. .

また、前記電子源の製造方法において、前記下層絶縁部上および前記第1の信号線上に、前記一対の素子電極の膜厚に相当するスペーサとして機能すると共に、前記第1および第2の信号線間を電気的に絶縁する上層絶縁部を形成する工程と、前記上層絶縁部上および前記第2の素子電極上に、前記第2の信号線を形成する工程と、を有することを特徴とする。また、好ましくは、前記上層絶縁部上および前記第2の素子電極上に、前記導電性薄膜を形成する工程をさらに有することを特徴とする。   In the method of manufacturing an electron source, the first and second signal lines function as spacers corresponding to the film thickness of the pair of element electrodes on the lower insulating layer and the first signal line. A step of forming an upper insulating portion that electrically insulates the substrate, and a step of forming the second signal line on the upper insulating portion and on the second element electrode. . Preferably, the method further includes the step of forming the conductive thin film on the upper insulating portion and the second element electrode.

この発明の電子源の製造方法によれば、上層絶縁部によって素子電極の膜厚による段差が補償されると共に、下層絶縁部によって素子電極の膜厚による段差が補償される。かくして、第2の信号線の形成面が平坦化され、第2の信号線の断線が生じにくくなる。また、導電性薄膜の形成面が平坦化され、導電性薄膜の断線が生じにくくなる。   According to the method of manufacturing an electron source of the present invention, the step due to the film thickness of the element electrode is compensated for by the upper insulating layer, and the step due to the film thickness of the element electrode is compensated by the lower insulating layer. Thus, the formation surface of the second signal line is flattened, and disconnection of the second signal line is less likely to occur. Moreover, the formation surface of the conductive thin film is flattened, and disconnection of the conductive thin film is less likely to occur.

また、前記電子源の製造方法において、前記下層絶縁部は、液滴吐出法を用いてパターン形成されることを特徴とする。
この発明の製造方法の電子源によれば、下層絶縁部のパターン形成が容易である。
In the method for manufacturing an electron source, the lower insulating layer is patterned using a droplet discharge method.
According to the electron source of the manufacturing method of the present invention, it is easy to form the pattern of the lower insulating layer.

本発明の電子源は、電子放出部を有する導電性薄膜と、前記導電性薄膜に電気機械的に接続する一対の素子電極と、前記一対の素子電極のそれぞれに対応して配線され、前記一対の素子電極の一面側に形成された第1の信号線および前記一対の素子電極の他面側に形成された第2の信号線と、前記第1の信号線の膜厚に相当するスペーサとして機能する下層絶縁部と、を備えることを特徴とする。
この発明の電子源によれば、下層絶縁部によって第1の信号線の膜厚による段差が補償され、素子電極の形成面が平坦化されるので、素子電極の断線が生じにくくなる。
The electron source of the present invention includes a conductive thin film having an electron emission portion, a pair of element electrodes that are electromechanically connected to the conductive thin film, and a wiring corresponding to each of the pair of element electrodes. As a spacer corresponding to the film thickness of the first signal line formed on one side of the element electrode, the second signal line formed on the other side of the pair of element electrodes, and the first signal line And a functioning lower insulating layer.
According to the electron source of the present invention, the step due to the film thickness of the first signal line is compensated by the lower insulating portion, and the formation surface of the element electrode is flattened, so that the element electrode is less likely to be disconnected.

本発明の電気光学装置は、前記電子源を備えることを特徴とする。
この発明の電気光学装置は、表示部の画素に対応して電子放出部が配された電子源を備え、例えば、陽極に塗布された蛍光体に放出電子が当たって表示がなされる。この電気光学装置は、下層絶縁部および上層絶縁部により、信号線や素子電極の膜厚に依存したパターン形成面の段差が補償され、信号線、素子電極等の断線を生じにくいため、信頼性に優れている。
The electro-optical device of the present invention includes the electron source.
The electro-optical device according to the present invention includes an electron source in which an electron emission portion is arranged corresponding to a pixel of the display portion. For example, the emission electron hits a phosphor applied to the anode to perform display. In this electro-optical device, the lower layer insulating portion and the upper layer insulating portion compensate for the step on the pattern forming surface depending on the film thickness of the signal line and the element electrode, and the signal line, the element electrode, etc. are less likely to be disconnected. Is excellent.

本発明の電子機器は、前記電子源を備えることを特徴とする。
この発明の電子機器は、下層絶縁部および上層絶縁部により、信号線や素子電極の膜厚に依存したパターン形成面の段差が補償され、信号線、素子電極等の断線を生じにくいため、信頼性に優れている。
The electronic device of the present invention includes the electron source.
In the electronic device according to the present invention, the lower layer insulating portion and the upper layer insulating portion compensate for the step on the pattern formation surface depending on the film thickness of the signal line and the element electrode, and the signal line and the element electrode are not easily disconnected. Excellent in properties.

以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。
なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。また、以下の説明で参照する図では、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材の縮尺やアスペクト比は実際のものとは異なるように表している。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.
Note that the embodiments described below are preferred specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these forms. In the drawings referred to in the following description, the scale and aspect ratio of each layer and each member are shown to be different from the actual ones so that each layer and each member can be recognized on the drawing. .

(第1実施形態)
(電子放出素子の構成)
まずは、図1を参照して電子放出素子の構成について説明する。図1は、第1実施形態に係る電子源の主要部構造を示す図であって、(a)は平面図、(b)は一部破断の斜視図である。
図1において、電子源1は、基体をなす素子基板11と、電子放出素子10と、電子放出素子10のオーミック電極として形成されている第1の素子電極14、第2の素子電極15と、素子電極14,15に印加する電気信号を伝達する第1の信号線16、第2の信号線17と、を備えている。また、電子源1は、第1の信号線16とほぼ同じ厚みで形成された下層絶縁部21と、素子電極14,15とほぼ同じ厚みで形成された上層絶縁部22とを備えている。尚、電子源1の全体構造についての説明は省略するが、電子放出素子10の周囲は、高真空で封止された状態となっている。
(First embodiment)
(Configuration of electron-emitting device)
First, the configuration of the electron-emitting device will be described with reference to FIG. 1A and 1B are diagrams showing a main part structure of an electron source according to the first embodiment, wherein FIG. 1A is a plan view and FIG. 1B is a partially broken perspective view.
In FIG. 1, an electron source 1 includes an element substrate 11 forming a base, an electron emitter 10, a first element electrode 14 and a second element electrode 15 formed as ohmic electrodes of the electron emitter 10, A first signal line 16 and a second signal line 17 for transmitting an electric signal applied to the device electrodes 14 and 15 are provided. Further, the electron source 1 includes a lower layer insulating portion 21 formed with substantially the same thickness as the first signal line 16 and an upper layer insulating portion 22 formed with substantially the same thickness as the device electrodes 14 and 15. Although description of the entire structure of the electron source 1 is omitted, the periphery of the electron-emitting device 10 is sealed in a high vacuum.

電子放出素子10は、数オングストロームから数千オングストローム程度の膜厚の導電性薄膜12に、通電フォーミング等で狭小な亀裂を形成して電子放出部13(図示は模式的なもの)とした、いわゆる表面伝導型のものである。導電性薄膜12の材料としては、例えば、Pd,Pt,Ti,Ru,In,Cu,Cr,Ag,Au,Fe,Zn,Sn,Ta,W,Pb等の金属や、PdO,SnO2,In23,PbO,Sb23等の酸化物、HfB2,ZrB2,LaB6,CeB6,YB4,GdB4等の硼化物、TiC,ZrC,HfC,TaC,SiC,WC等の炭化物、TiN,ZrN,HfN等の窒化物、Si,Ge等の半導体、およびカーボン等を用いることができ、本実施形態では特にPdOを用いている。 The electron-emitting device 10 is a so-called electron-emitting portion 13 (illustrated schematically) by forming a narrow crack in the conductive thin film 12 having a thickness of several angstroms to several thousand angstroms by energization forming or the like. It is of the surface conduction type. Examples of the material of the conductive thin film 12 include metals such as Pd, Pt, Ti, Ru, In, Cu, Cr, Ag, Au, Fe, Zn, Sn, Ta, W, and Pb, PdO, SnO 2 , Oxides such as In 2 O 3 , PbO, Sb 2 O 3 , borides such as HfB 2 , ZrB 2 , LaB 6 , CeB 6 , YB 4 , GdB 4 , TiC, ZrC, HfC, TaC, SiC, WC, etc. Carbides, nitrides such as TiN, ZrN, and HfN, semiconductors such as Si and Ge, and carbon can be used. In this embodiment, PdO is used in particular.

素子電極14,15および信号線16,17は、共に導電体で形成された数十nmから数μm程度の膜厚の導電膜であり、Au,Mo,W,Pt,Ti,Al,Cu,Pd,Ni,Cr等の金属およびこれらの合金や、インジウム錫酸化物(ITO)等の透明性導電体などを用いることができる。本実施形態においては、素子電極14,15にはNiが、信号線16,17にはAuが用いられており、このように両者の材料を違えているのは、その目的とする主機能が異なるためである。すなわち、素子電極14,15は、導電性薄膜12とのオーミック接続を確立する機能を、信号線16,17は、電気信号を低抵抗で伝達する機能を担っている。同じ趣旨により両者は膜厚も異なる場合があるが、このような事情から、素子電極14,15と信号線16,17とは、別々に形成される。   The device electrodes 14 and 15 and the signal lines 16 and 17 are both conductive films having a film thickness of about several tens of nm to several μm formed of a conductor, and are Au, Mo, W, Pt, Ti, Al, Cu, Metals such as Pd, Ni, Cr, and alloys thereof, and transparent conductors such as indium tin oxide (ITO) can be used. In the present embodiment, Ni is used for the device electrodes 14 and 15 and Au is used for the signal lines 16 and 17. The reason why the two materials are different is that the main function intended for the purpose is as follows. Because it is different. That is, the element electrodes 14 and 15 have a function of establishing an ohmic connection with the conductive thin film 12, and the signal lines 16 and 17 have a function of transmitting an electric signal with a low resistance. Although the film thickness may be different depending on the same purpose, the device electrodes 14 and 15 and the signal lines 16 and 17 are formed separately because of such circumstances.

第1の信号線16は、素子電極14,15の下面14b,15b側に形成され、第1の素子電極14と下面14bにおいて電気機械的に接続している。また、第2の信号線17は、素子電極14,15の上面14a,15a側に形成され、第2の素子電極15と上面15aにおいて電気機械的に接続している。
下層絶縁部21は、SiO2などの絶縁体で形成されており、第1の信号線16とほぼ同じ厚みで層状をなし、また、平面視方向から見て、第1の信号線16の反転パターンをなしている。下層絶縁部21は、第1の信号線16の膜厚に相当するスペーサとしての機能を果たし、第1の信号線16と共に電子源1の断面構造における第1の層をなしている。
上層絶縁部22は、SiO2などの絶縁体で形成されており、素子電極14,15とほぼ同じ厚みで層状をなし、また、平面視方向から見て、素子電極14,15の反転パターンをなしている。上層絶縁部22は、素子電極14,15の膜厚に相当するスペーサとしての機能を果たし、素子電極14,15と共に電子源1の断面構造における第2の層をなすと共に、第1の信号線16と第2の信号線17とを電気的に絶縁する役割を果たしている。
かくして、電子源1は、第1の信号線16と下層絶縁部21とが第1の層をなし、素子電極14,15と上層絶縁部22とが第2の層をなし、第2の層の上に導電性薄膜12および第2の信号線17が形成された積層構造となっている。
The first signal line 16 is formed on the lower surface 14b, 15b side of the element electrodes 14, 15 and is electromechanically connected to the first element electrode 14 on the lower surface 14b. The second signal line 17 is formed on the upper surface 14a, 15a side of the element electrodes 14, 15, and is electromechanically connected to the second element electrode 15 on the upper surface 15a.
The lower layer insulating portion 21 is formed of an insulator such as SiO 2 and has a layer shape with substantially the same thickness as the first signal line 16, and is inverted from the first signal line 16 when viewed in a plan view. There is a pattern. The lower insulating layer 21 functions as a spacer corresponding to the film thickness of the first signal line 16, and forms a first layer in the cross-sectional structure of the electron source 1 together with the first signal line 16.
The upper layer insulating portion 22 is formed of an insulator such as SiO 2 , has a layer shape with substantially the same thickness as the element electrodes 14 and 15, and has an inverted pattern of the element electrodes 14 and 15 as viewed in a plan view. There is no. The upper insulating portion 22 functions as a spacer corresponding to the film thickness of the device electrodes 14 and 15, and forms a second layer in the cross-sectional structure of the electron source 1 together with the device electrodes 14 and 15, and the first signal line 16 and the second signal line 17 are electrically insulated.
Thus, in the electron source 1, the first signal line 16 and the lower layer insulating portion 21 form a first layer, the device electrodes 14 and 15 and the upper layer insulating portion 22 form a second layer, and the second layer It has a laminated structure in which the conductive thin film 12 and the second signal line 17 are formed thereon.

電子源1は、平面構造的には、第1および第2の信号線16,17がそれぞれY軸方向、X軸方向に沿って伸長し、当該伸長方向に沿ってそれぞれ等間隔で素子電極14,15が配され、一対の素子電極14,15に対応して一つの電子放出素子10が形成された、いわゆる単純マトリクス型の素子配列を有している。
第2の信号線17には、電子放出素子10を1行(図のX軸方向の並び)ずつ順次駆動してゆくための走査信号が、第1の信号線16には、走査信号により選択された行の電子放出素子10の電子放出を制御するための階調信号が印加される。かくして、信号線16,17を伝達する電気信号により、素子電極14,15間に電圧差が発生すると、電子放出部13をまたいで導電性薄膜12内に電子伝導が起こる。このとき、電子放出部13の亀裂を介して伝導する電子の一部は、量子力学的な効果によって真空中に漏れ出し、この電子が放出電子として利用される。
The electron source 1 has a planar structure in which the first and second signal lines 16 and 17 extend along the Y-axis direction and the X-axis direction, respectively, and the device electrodes 14 are equally spaced along the extension direction. , 15 are arranged, and one electron-emitting device 10 is formed corresponding to the pair of device electrodes 14, 15.
A scanning signal for sequentially driving the electron-emitting devices 10 row by row (alignment in the X-axis direction in the figure) is selected for the second signal line 17, and the scanning signal is selected for the first signal line 16. A gradation signal for controlling electron emission of the electron-emitting devices 10 in the selected row is applied. Thus, when a voltage difference is generated between the device electrodes 14 and 15 due to the electrical signals transmitted through the signal lines 16 and 17, electron conduction occurs in the conductive thin film 12 across the electron emission portion 13. At this time, a part of the electrons conducted through the crack of the electron emission portion 13 leaks into the vacuum due to the quantum mechanical effect, and these electrons are used as emitted electrons.

(液滴吐出装置の構成)
次に、電子源1の製造に用いる液滴吐出装置の構成について、図2を参照して説明する。図2は、電子源の製造に用いる液滴吐出装置の一例を示す概略斜視図である。
液滴吐出装置100は、図2に示すように、液滴を吐出するヘッド部110を有するヘッド機構部102と、ヘッド部110から吐出された液滴の吐出対象である基板120を載置する基板機構部103と、ヘッド部110に機能液133を供給する機能液供給部104と、これら各機構部および供給部を総括的に制御する制御部105とを備える。
ヘッド部110は、インクジェットプリンタに用いられるような複数のノズルを有する液滴吐出ヘッド(図示せず)を搭載しており、制御部105からの電気信号を受けて、機能液133を液滴として吐出する。また、液滴の吐出は、制御部105によってノズル毎に制御可能である。
(Configuration of droplet discharge device)
Next, the configuration of the droplet discharge device used for manufacturing the electron source 1 will be described with reference to FIG. FIG. 2 is a schematic perspective view showing an example of a droplet discharge device used for manufacturing an electron source.
As shown in FIG. 2, the droplet discharge device 100 mounts a head mechanism unit 102 having a head unit 110 that discharges droplets and a substrate 120 that is a discharge target of droplets discharged from the head unit 110. The substrate mechanism unit 103, the functional liquid supply unit 104 that supplies the functional liquid 133 to the head unit 110, and the control unit 105 that collectively controls these mechanism units and the supply unit.
The head unit 110 is equipped with a droplet discharge head (not shown) having a plurality of nozzles as used in an ink jet printer, and receives an electrical signal from the control unit 105 and uses the functional liquid 133 as droplets. Discharge. In addition, the ejection of droplets can be controlled for each nozzle by the control unit 105.

基板120としては、ガラス基板、金属基板、合成樹脂基板など、平板状のものであれば大抵のものが利用できる。後述する電子源の製造においては、基板120として図1に示した素子基板11が用いられる。
また機能液133としては、例えば、カラーフィルタのフィルタ材料、光学表示装置に使用する発光材料や蛍光材料、基板の表面にバンクや表面コーティング層を形成するための硬化性樹脂材料、電極や金属配線を形成するための導電性材料、絶縁膜を形成するための絶縁性材料、レジスト材料などを含む溶液が、目的に応じて用意される。
As the substrate 120, most substrates such as a glass substrate, a metal substrate, a synthetic resin substrate and the like can be used. In the manufacture of an electron source to be described later, the element substrate 11 shown in FIG.
Examples of the functional liquid 133 include filter materials for color filters, luminescent materials and fluorescent materials used in optical display devices, curable resin materials for forming banks and surface coating layers on the surface of substrates, electrodes, and metal wirings. A solution containing a conductive material for forming a film, an insulating material for forming an insulating film, a resist material, and the like is prepared according to the purpose.

液滴吐出装置100は、床上に設置された複数の支持脚106と、支持脚106の上側に設置された定盤107を備えている。定盤107の上側には、基板機構部103が定盤107の長手方向(X軸方向)にわたって配置されており、基板機構部103の上方には、定盤107に固定された2本の柱で両持ち支持されているヘッド機構部102が、基板機構部103と直交する方向(Y軸方向)にわたって配置されている。   The droplet discharge device 100 includes a plurality of support legs 106 installed on the floor and a surface plate 107 installed on the upper side of the support legs 106. On the upper side of the surface plate 107, the substrate mechanism unit 103 is disposed over the longitudinal direction (X-axis direction) of the surface plate 107, and above the substrate mechanism unit 103, two columns fixed to the surface plate 107 are provided. The head mechanism unit 102 that is supported at both ends is arranged in a direction (Y-axis direction) orthogonal to the substrate mechanism unit 103.

ヘッド機構部102は、機能液133を吐出するヘッド部110と、ヘッド部110を搭載したキャリッジ111と、キャリッジ111のY軸方向への移動をガイドするY軸ガイド113と、Y軸ガイド113に沿って設置されたY軸ボールねじ115と、Y軸ボールねじ115を正逆回転させるY軸モータ114と、キャリッジ111の下部にあって、Y軸ボールねじ115と螺合してキャリッジ111を移動させる雌ねじ部が形成されたキャリッジ螺合部112とを備えている。   The head mechanism unit 102 includes a head unit 110 that discharges the functional liquid 133, a carriage 111 on which the head unit 110 is mounted, a Y-axis guide 113 that guides the movement of the carriage 111 in the Y-axis direction, and a Y-axis guide 113. A Y-axis ball screw 115 installed along the Y-axis motor 114 that rotates the Y-axis ball screw 115 forward and backward, and a lower part of the carriage 111, which is screwed with the Y-axis ball screw 115 to move the carriage 111. And a carriage screwing portion 112 in which a female screw portion is formed.

基板機構部103の移動機構は、ヘッド機構部102とほぼ同様の構成でX軸方向に配置されており、基板120を載置している載置台121と、載置台121の移動をガイドするX軸ガイド123と、X軸ガイド123に沿って設置されたX軸ボールねじ125と、X軸ボールねじ125を正逆回転させるX軸モータ124と、載置台121の下部にあって、X軸ボールねじ125と螺合して載置台121を移動させる載置台螺合部122とを備えている。   The movement mechanism of the substrate mechanism unit 103 is arranged in the X-axis direction with a configuration substantially the same as that of the head mechanism unit 102, and an X for guiding the movement of the mounting table 121 and the mounting table 121 on which the substrate 120 is mounted. An axis guide 123, an X axis ball screw 125 installed along the X axis guide 123, an X axis motor 124 for rotating the X axis ball screw 125 forward and backward, and a lower part of the mounting table 121, the X axis ball A mounting table screwing portion 122 that is screwed with the screw 125 to move the mounting table 121 is provided.

ヘッド部110に機能液133を供給する機能液供給部104は、ヘッド部110に連通する流路を形成するチューブ131aと、チューブ131aへ液体を送り込むポンプ132と、ポンプ132へ機能液133を供給するチューブ131b(流路)と、チューブ131bに連通して機能液133を貯蔵するタンク130とから成っており、定盤107上の一端に配置されている。   The functional liquid supply unit 104 that supplies the functional liquid 133 to the head unit 110 includes a tube 131 a that forms a flow path that communicates with the head unit 110, a pump 132 that supplies liquid to the tube 131 a, and a functional liquid 133 that is supplied to the pump 132. And a tank 130 that communicates with the tube 131b and stores the functional liquid 133, and is disposed at one end on the surface plate 107.

これらの構成により、ヘッド部110は基板120に対して、それぞれY軸方向およびX軸方向に往復自在に相対移動することが可能であり、ヘッド部110から吐出された液滴を、基板120上の任意の位置に着弾させることができるようになっている。そして、この位置制御と、ヘッド部110におけるノズル毎の吐出制御とを同期させて行うことにより、基板120上に所定のパターンで機能液133を配置(描画)することができる。
尚、図2では、機能液供給部104は一種類の機能液をヘッド部110に供給するように描かれているが、実際には、複数種の機能液を一度に供給可能に構成されており、ヘッド部110は、複数種の機能液を同時に吐出することもできる。
With these configurations, the head unit 110 can reciprocate relative to the substrate 120 in the Y-axis direction and the X-axis direction, respectively, and droplets ejected from the head unit 110 can be transferred onto the substrate 120. It can be landed at any position. Then, by performing this position control and the ejection control for each nozzle in the head unit 110 in synchronization, the functional liquid 133 can be arranged (drawn) on the substrate 120 in a predetermined pattern.
In FIG. 2, the functional liquid supply unit 104 is drawn so as to supply one type of functional liquid to the head unit 110, but actually, it is configured to be able to supply a plurality of types of functional liquid at a time. In addition, the head unit 110 can simultaneously discharge a plurality of types of functional liquids.

(電子源の製造工程)
次に、電子源の製造工程について、図3、図4を参照して説明する。図3(a)〜(c)および図4(d)〜(f)は、第1実施形態に係る電子源の製造工程における一過程を示す一部破断の斜視図である。
(Electron source manufacturing process)
Next, an electron source manufacturing process will be described with reference to FIGS. FIGS. 3A to 3C and FIGS. 4D to 4F are partially broken perspective views showing one process in the manufacturing process of the electron source according to the first embodiment.

まず、図3(a)に示すように、ガラスやセラミックで形成された素子基板11上に、
液滴吐出法を用いて、第1の信号線16をパターン形成する。具体的には、図2に示す液滴吐出装置100を用いて、導電性微粒子を分散媒中に分散させた機能液を素子基板11上にパターン配置し、乾燥、焼成等により機能液を固化して成膜を行うものである。
導電性微粒子は、上述した信号線16,17に用いる導電体材料を微粒子化したものであり、分散性を向上させるためにその表面に有機物などをコーティングして用いることもできる。分散媒には、水、アルコール類、炭化水素系化合物、エーテル系化合物等が用いられ、その蒸気圧は、成膜時の乾燥速度や液滴吐出装置100に保存されている際の保存安定性等の観点から、0.1Pa以上27kPa以下の範囲とするのが好ましい。機能液の表面張力は、吐出安定性等の観点から、0.02N/m以上0.07N/m以下の範囲とするのが好ましく、界面活性剤を添加して調整することもできる。また、機能液には、成膜後の定着性を向上させるための樹脂や、粘度調整、保存安定性調整などのための各種添加剤を適宜添加することができる。
尚、描画に先立ち、前処理として、配置したいパターンに合わせて親液化および撥液化の表面処理(例えば、プラズマ処理や表面吸着分子による膜形成など)を行うことも可能である。このような前処理を行うことで、機能液をより高精度にパターン配置することが可能となる。また、このような液滴吐出法に代えて、フォトリソグラフィー技術や印刷法を用いて信号線16をパターン形成してもよい。
First, as shown in FIG. 3A, on an element substrate 11 formed of glass or ceramic,
The first signal line 16 is patterned using a droplet discharge method. Specifically, using the droplet discharge device 100 shown in FIG. 2, a functional liquid in which conductive fine particles are dispersed in a dispersion medium is arranged in a pattern on the element substrate 11, and the functional liquid is solidified by drying, baking, or the like. Thus, film formation is performed.
The conductive fine particles are obtained by forming the conductive material used for the signal lines 16 and 17 into fine particles, and the surface can be coated with an organic substance or the like in order to improve dispersibility. As the dispersion medium, water, alcohols, hydrocarbon compounds, ether compounds or the like are used, and the vapor pressure thereof is the drying speed at the time of film formation or the storage stability when stored in the droplet discharge device 100. From the viewpoint of the above, it is preferable to set the pressure in the range of 0.1 Pa to 27 kPa. The surface tension of the functional liquid is preferably in the range of 0.02 N / m or more and 0.07 N / m or less from the viewpoint of ejection stability or the like, and can be adjusted by adding a surfactant. In addition, a resin for improving the fixability after film formation and various additives for adjusting the viscosity and adjusting the storage stability can be appropriately added to the functional liquid.
Prior to drawing, as a pretreatment, it is also possible to perform a surface treatment such as lyophilicity and liquid repellency (for example, plasma treatment or film formation with surface adsorbed molecules) in accordance with a pattern to be arranged. By performing such pretreatment, the functional liquid can be arranged in a pattern with higher accuracy. Further, instead of such a droplet discharge method, the signal line 16 may be patterned using a photolithography technique or a printing method.

次に、図3(b)に示すように、液滴吐出法を用いて、素子基板11上に下層絶縁部21をパターン形成する。尚、このとき用いる機能液は、SiO2等の絶縁体微粒子を含む機能液である。下層絶縁部21は、第1の信号線16とほぼ同じ厚みで層状に、且つ、平面視方向から見て第1の信号線16の反転パターンをなすように形成される。下層絶縁部21は液滴吐出法を用いて形成されるので、このような複雑なパターンであってもその工程は容易である。
かくして、第1の信号線16の上面16aと下層絶縁部21の上面21aとが一体となって、段差のほとんどない平滑面23を構成する。
Next, as shown in FIG. 3B, a lower layer insulating portion 21 is pattern-formed on the element substrate 11 by using a droplet discharge method. The functional liquid used at this time is a functional liquid containing insulating fine particles such as SiO 2 . The lower insulating portion 21 is formed in a layer shape with substantially the same thickness as the first signal line 16 and so as to form an inverted pattern of the first signal line 16 when viewed from the plan view. Since the lower insulating layer 21 is formed by using a droplet discharge method, the process is easy even with such a complicated pattern.
Thus, the upper surface 16a of the first signal line 16 and the upper surface 21a of the lower insulating layer 21 are integrated to form a smooth surface 23 having almost no step.

次に、図3(c)に示すように、液滴吐出法やフォトリソグラフィー技術を用いて、第1の信号線16および下層絶縁部21によって形成された平滑面23上に、素子電極14,15をパターン形成する。このとき、第1の素子電極14は、第1の信号線16と上面16aにおいて電気機械的に接続される。また、素子電極14,15は、平滑面23上に形成されるため、ほぼ均一な膜厚で形成され、局所的な断線を生じにくい。   Next, as shown in FIG. 3C, the device electrodes 14 and 14 are formed on the smooth surface 23 formed by the first signal line 16 and the lower insulating layer 21 by using a droplet discharge method or a photolithography technique. 15 is formed into a pattern. At this time, the first element electrode 14 is electromechanically connected to the first signal line 16 on the upper surface 16a. In addition, since the device electrodes 14 and 15 are formed on the smooth surface 23, they are formed with a substantially uniform film thickness and are less likely to cause local disconnection.

次に、図4(d)に示すように、第1の信号線16および下層絶縁部21によって形成された平滑面23上に、下層絶縁部21の場合と同様の手順で上層絶縁部22をパターン形成する。上層絶縁部22は、素子電極14,15とほぼ同じ厚みで層状に、且つ、平面視方向から見て素子電極14,15の反転パターンをなすように形成される。上層絶縁部22もまた液滴吐出法を用いて形成されるので、このような複雑なパターンであってもその工程は容易である。
かくして、素子電極14,15の上面14a,15aと上層絶縁部22の上面22aとが一体となって、段差のほとんどない平滑面24を構成する。
Next, as shown in FIG. 4 (d), the upper insulating layer 22 is formed on the smooth surface 23 formed by the first signal line 16 and the lower insulating layer 21 in the same procedure as the lower insulating layer 21. Form a pattern. The upper layer insulating portion 22 is formed in a layer shape with substantially the same thickness as the element electrodes 14 and 15 and so as to form an inverted pattern of the element electrodes 14 and 15 when viewed from the plan view. Since the upper insulating portion 22 is also formed by using a droplet discharge method, the process is easy even with such a complicated pattern.
Thus, the upper surfaces 14a and 15a of the device electrodes 14 and 15 and the upper surface 22a of the upper insulating portion 22 are integrated to form a smooth surface 24 having almost no step.

次に、図4(e)に示すように、素子電極14,15および上層絶縁部22によって形成された平滑面24上に、第1の信号線16の場合と同様の手順で第2の信号線17をパターン形成する。このとき、第2の信号線17は、第2の素子電極15と上面15aにおいて電気機械的に接続される。また、第2の信号線17は、平滑面24上に形成されるため、ほぼ均一な膜厚で形成され、局所的な断線を生じにくい。   Next, as shown in FIG. 4E, the second signal is formed on the smooth surface 24 formed by the device electrodes 14 and 15 and the upper insulating portion 22 in the same procedure as the case of the first signal line 16. Line 17 is patterned. At this time, the second signal line 17 is electromechanically connected to the second element electrode 15 on the upper surface 15a. Further, since the second signal line 17 is formed on the smooth surface 24, the second signal line 17 is formed with a substantially uniform film thickness, and local disconnection hardly occurs.

次に、図4(f)に示すように、素子電極14,15および上層絶縁部22によって形成された平滑面24上に、液滴吐出法やフォトリソグラフィー技術を用いて、導電性薄膜12を形成する。このとき、導電性薄膜12の両端部は、素子電極14,15とそれぞれ電気機械的に接続される。また、導電性薄膜12は、平滑面24上に形成されるため、ほぼ均一な膜厚で形成され、局所的な断線を生じにくい。
最後に、通電フォーミング等により、導電性薄膜12に電子放出部13(図1参照)を形成し、素子基板11の実装面側(図の上面側)を高真空状態に封止して、図1に示す電子源1が完成する。
Next, as shown in FIG. 4F, the conductive thin film 12 is formed on the smooth surface 24 formed by the device electrodes 14 and 15 and the upper insulating layer 22 by using a droplet discharge method or a photolithography technique. Form. At this time, both ends of the conductive thin film 12 are electromechanically connected to the device electrodes 14 and 15, respectively. Further, since the conductive thin film 12 is formed on the smooth surface 24, the conductive thin film 12 is formed with a substantially uniform film thickness, and local disconnection hardly occurs.
Finally, an electron emission portion 13 (see FIG. 1) is formed in the conductive thin film 12 by energization forming or the like, and the mounting surface side (the upper surface side in the drawing) of the element substrate 11 is sealed in a high vacuum state. 1 is completed.

(電気光学装置の構成)
次に、図5を参照して、電気光学装置の構成について説明する。図5は、電気光学装置の主要部構造を示す部分断面図である。
図5において、電気光学装置70は、素子基板11上に電子放出素子10、素子電極14,15、信号線16,17が配された電子源1と、素子基板11に対向する表示基板71とを備えている。素子基板11と表示基板71とは、図示しない外枠部材を介して一定間隔に保たれ、両基板11,71間の空間72は、10-7Pa程度の真空状態に封止されている。また、両基板11,71間の間隔を維持するためのスペーサ部材を、第2の信号線17上や平滑面24上にX軸方向に伸長させて形成したり、真空度を維持させるために、空間72に対する面に図示しないガス吸着膜を蒸着により形成する場合もある。
(Configuration of electro-optical device)
Next, the configuration of the electro-optical device will be described with reference to FIG. FIG. 5 is a partial cross-sectional view showing the main structure of the electro-optical device.
In FIG. 5, an electro-optical device 70 includes an electron source 1 in which an electron-emitting device 10, device electrodes 14 and 15, and signal lines 16 and 17 are arranged on a device substrate 11, and a display substrate 71 that faces the device substrate 11. It has. The element substrate 11 and the display substrate 71 are kept at a constant interval via an outer frame member (not shown), and the space 72 between the substrates 11 and 71 is sealed in a vacuum state of about 10 −7 Pa. Further, a spacer member for maintaining the distance between the substrates 11 and 71 is formed by extending in the X-axis direction on the second signal line 17 or the smooth surface 24, or in order to maintain the degree of vacuum. In some cases, a gas adsorption film (not shown) is formed on the surface with respect to the space 72 by vapor deposition.

表示基板71は、対向電極73と、蛍光膜74と、遮光膜75とを備えている。遮光膜75は、画素を区画するように電子放出素子10の配列に合わせて形成されており、画素間におけるクロストークや蛍光膜74からの外光反射を低減する役割を果たす。材料としては、黒鉛など、導電性および遮光性のある材料が用いられる。
蛍光膜74は蛍光体を含んでおり、電子放出素子10からの放出電子の衝突によって蛍光体が発光することで、画素を点灯させる役割を果たす。電気光学装置70がカラー表示タイプの場合には、蛍光膜74は、画素ごとに三原色に対応する蛍光体で分けられて形成される。
対向電極73には加速電圧(例えば、10kV程度)が印加され、蛍光膜74の蛍光体を励起させるに十分なエネルギーを与えるために、放出電子を加速する役割を果たす。対向電極73には、例えば、ITO等の透明性導電体が用いられる。
The display substrate 71 includes a counter electrode 73, a fluorescent film 74, and a light shielding film 75. The light shielding film 75 is formed in accordance with the arrangement of the electron-emitting devices 10 so as to partition the pixels, and plays a role of reducing crosstalk between pixels and reflection of external light from the fluorescent film 74. As the material, a material having conductivity and light shielding properties such as graphite is used.
The phosphor film 74 contains a phosphor, and the phosphor emits light due to the collision of the emitted electrons from the electron-emitting device 10 and plays a role in lighting the pixel. When the electro-optical device 70 is a color display type, the fluorescent film 74 is formed by being divided for each pixel by phosphors corresponding to the three primary colors.
An acceleration voltage (for example, about 10 kV) is applied to the counter electrode 73 and plays a role of accelerating the emitted electrons in order to give sufficient energy to excite the phosphor of the phosphor film 74. For the counter electrode 73, for example, a transparent conductor such as ITO is used.

上述の構成において、第2の信号線17に印加する走査信号、第1の信号線16に印加する階調信号を制御して電子放出素子10から電子を放出させ、対向電極73で加速された放出電子が蛍光膜74に衝突することで画素が点灯し、所望の画像が表示される。この電気光学装置70は、先に説明した電子源1を備えているので、信号線16,17や素子電極14,15等の断線を生じにくく、信頼性に優れている。また、スペーサ部材を第2の信号線17上や平滑面24上に形成する場合においては、形成面が平坦なため、スペーサの厚みにより両基板11,71間の間隔を規定しやすくなり、画素間の発光特性ばらつきを低減することができる。   In the above-described configuration, the scanning signal applied to the second signal line 17 and the gradation signal applied to the first signal line 16 are controlled to emit electrons from the electron-emitting device 10 and accelerated by the counter electrode 73. When the emitted electrons collide with the fluorescent film 74, the pixel is turned on, and a desired image is displayed. Since the electro-optical device 70 includes the electron source 1 described above, the signal lines 16 and 17 and the element electrodes 14 and 15 are not easily disconnected, and is excellent in reliability. Further, when the spacer member is formed on the second signal line 17 or the smooth surface 24, since the formation surface is flat, the distance between the substrates 11 and 71 can be easily defined by the thickness of the spacer. It is possible to reduce the variation in light emission characteristics between the two.

(電子機器)
次に、図6を参照して、電子機器の具体例を説明する。図6は、電子機器の一例を示す概略斜視図である。
図6に示す電子機器としての携帯型情報処理装置700は、キーボード701と、情報処理本体703と、電気光学装置702と、を備えている。このような携帯型情報処理装置700のより具体的な例は、ワープロ、パソコンである。この携帯型情報処理装置700は、先に説明した電子源1を備えた電気光学装置702を搭載しているので、信号線16,17や素子電極14,15等の断線を生じにくく、信頼性に優れている。
また、本発明に係る電子源を備える電子機器の別の例としては、電子放出素子10をコヒーレント電子源として使用する様々な機器、例えば、コヒーレント電子ビーム収束装置、電子線ホログラフィー装置、単色化型電子銃、電子顕微鏡、多数本コヒーレント電子ビーム作成装置、電子ビーム露光装置、電子写真プリンタの描画装置などがある。
(Electronics)
Next, a specific example of the electronic device will be described with reference to FIG. FIG. 6 is a schematic perspective view illustrating an example of an electronic apparatus.
A portable information processing device 700 as an electronic apparatus illustrated in FIG. 6 includes a keyboard 701, an information processing body 703, and an electro-optical device 702. More specific examples of such a portable information processing apparatus 700 are a word processor and a personal computer. Since this portable information processing device 700 is equipped with the electro-optical device 702 including the electron source 1 described above, the signal lines 16 and 17 and the element electrodes 14 and 15 are not easily disconnected, and the reliability is improved. Is excellent.
In addition, as another example of an electronic apparatus including the electron source according to the present invention, various apparatuses using the electron-emitting device 10 as a coherent electron source, such as a coherent electron beam converging apparatus, an electron beam holography apparatus, and a monochromatic type. There are electron guns, electron microscopes, multiple coherent electron beam creation devices, electron beam exposure devices, drawing devices for electrophotographic printers, and the like.

(第2実施形態)
次に、本発明の第2実施形態について、図7、図8を参照して説明する。尚、以下では、第1実施形態と重複する内容については説明を省略し、相違点を中心に説明する。図7(a)〜(c)および図8(d)〜(f)は、第2実施形態に係る電子源の製造工程における一過程を示す一部破断の斜視図である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, below, description is abbreviate | omitted about the content which overlaps with 1st Embodiment, and it demonstrates centering around difference. FIGS. 7A to 7C and FIGS. 8D to 8F are partially broken perspective views showing one process in the manufacturing process of the electron source according to the second embodiment.

この第2実施形態においては、電子源1の製造にあたり、まず図7(a)に示すように、フォトリソグラフィー技術を用いたパターンエッチングにより、素子基板11に凹部30を形成する。凹部30は、この後に形成される第1の信号線16(図7(b)参照)のパターンに合わせて形成されており、かくして、素子基板11において図中の仮想線で仕切られた上層の部分が、下層絶縁部31として形成されることになる。そして、図7(b)に示すように、凹部30を埋め込むように第1の信号線16をパターン形成し、第1の信号線16の上面16aと下層絶縁部31の上面31aとが一体となって、段差のほとんどない平滑面23を構成する。   In the second embodiment, when the electron source 1 is manufactured, first, as shown in FIG. 7A, the recess 30 is formed in the element substrate 11 by pattern etching using a photolithography technique. The recess 30 is formed in accordance with the pattern of the first signal line 16 (see FIG. 7B) to be formed later, and thus the upper layer of the element substrate 11 partitioned by the imaginary line in the drawing. A portion is formed as the lower layer insulating portion 31. Then, as shown in FIG. 7B, the first signal line 16 is patterned so as to fill the recess 30, and the upper surface 16a of the first signal line 16 and the upper surface 31a of the lower insulating part 31 are integrated. Thus, the smooth surface 23 having almost no step is formed.

このように、本発明における下層絶縁部は、素子基板11と一体に形成された態様であってもよい。別部材か否かに関わらず、実質的に第1の信号線16の膜厚に相当するスペーサとしての機能を有していることが要件である。また、下層絶縁部の形成は、第1の信号線の形成前であっても形成後であってもよい。   As described above, the lower insulating layer in the present invention may be formed integrally with the element substrate 11. Regardless of whether it is a separate member, it is a requirement that it has a function as a spacer substantially corresponding to the film thickness of the first signal line 16. Further, the lower insulating layer may be formed before or after the first signal line is formed.

次に、図7(c)に示すように、第1の信号線16および下層絶縁部31によって形成された平滑面23上に、液滴吐出法を用いて上層絶縁部32をパターン形成する。上層絶縁部32は、この後に平滑面23上に形成される素子電極14,15(図8(d)参照)とほぼ同じ厚みで層状に形成されている。また、第2の素子電極15と干渉しないための切り欠き部33および、導電性薄膜12(図8(f)参照)の形成面をなす突き出し部34を有したパターンで形成されている。
次に、図8(d)に示すように、素子電極14,15を形成する。かくして、素子電極14,15の上面14a,15aと上層絶縁部32の上面32aとが一体となって、段差のほとんどない平滑面24を構成する。
最後に、図8(e)、図8(f)に示すように、平滑面24上に第2の信号線17および導電性薄膜12を形成し、導電性薄膜12に電子放出部13を形成し、素子基板11の実装面側(図の上面側)を高真空状態に封止して、電子源1が完成する。
Next, as shown in FIG. 7C, the upper insulating layer 32 is patterned on the smooth surface 23 formed by the first signal line 16 and the lower insulating layer 31 by using a droplet discharge method. The upper insulating layer 32 is formed in a layer shape with substantially the same thickness as the device electrodes 14 and 15 (see FIG. 8D) formed on the smooth surface 23 thereafter. Further, it is formed in a pattern having a notch portion 33 for preventing interference with the second element electrode 15 and a protruding portion 34 forming a formation surface of the conductive thin film 12 (see FIG. 8F).
Next, as shown in FIG. 8D, the device electrodes 14 and 15 are formed. Thus, the upper surfaces 14a and 15a of the device electrodes 14 and 15 and the upper surface 32a of the upper insulating portion 32 are integrated to form a smooth surface 24 having almost no step.
Finally, as shown in FIGS. 8E and 8F, the second signal line 17 and the conductive thin film 12 are formed on the smooth surface 24, and the electron emitting portion 13 is formed on the conductive thin film 12. Then, the mounting surface side (the upper surface side in the drawing) of the element substrate 11 is sealed in a high vacuum state, and the electron source 1 is completed.

このように、本発明における上層絶縁部は、素子電極14,15に先立って形成されてもよい。また、そのパターンは、第1実施形態のような素子電極14,15の反転パターンに限定されるものではなく、第2の素子電極15と共に、第2の信号線17の形成面としての平滑面24を形成できるパターンであればよい。下層絶縁部のパターンについても同様のことが言え、この場合、第1の信号線16と共に、素子電極14,15や導電性薄膜12の形成面としての平滑面23を形成できるパターンであればよい。   Thus, the upper insulating portion in the present invention may be formed prior to the device electrodes 14 and 15. Further, the pattern is not limited to the inversion pattern of the device electrodes 14 and 15 as in the first embodiment, but is a smooth surface as a formation surface of the second signal line 17 together with the second device electrode 15. Any pattern can be used as long as it can form 24. The same can be said for the pattern of the lower insulating layer. In this case, any pattern may be used as long as the first signal line 16 and the smooth surface 23 as the formation surface of the device electrodes 14 and 15 and the conductive thin film 12 can be formed. .

本発明は上述の実施形態に限定されない。また、各実施形態の各構成はこれらを適宜組み合わせたり、省略したり、図示しない他の構成と組み合わせたりすることができる。   The present invention is not limited to the above-described embodiment. Moreover, each structure of each embodiment can combine these suitably, can be abbreviate | omitted, or can combine with the other structure which is not shown in figure.

(a)は、第1実施形態に係る電子源の主要部構造を示す平面図。(b)は、電子源の主要部構造を示す一部破断の斜視図。(A) is a top view which shows the principal part structure of the electron source which concerns on 1st Embodiment. (B) is a partially broken perspective view showing the main structure of the electron source. 電子源の製造に用いる液滴吐出装置の一例を示す概略斜視図。The schematic perspective view which shows an example of the droplet discharge apparatus used for manufacture of an electron source. (a)〜(c)は、第1実施形態に係る電子源の製造工程における一過程を示す一部破断の斜視図。(A)-(c) is a partially broken perspective view which shows one process in the manufacturing process of the electron source which concerns on 1st Embodiment. (d)〜(f)は、第1実施形態に係る電子源の製造工程における一過程を示す一部破断の斜視図。(D)-(f) is a partially broken perspective view which shows one process in the manufacturing process of the electron source which concerns on 1st Embodiment. 電気光学装置の主要部構造を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a main part structure of an electro-optical device. 電子機器の一例を示す概略斜視図。The schematic perspective view which shows an example of an electronic device. (a)〜(c)は、第2実施形態に係る電子源の製造工程における一過程を示す一部破断の斜視図。(A)-(c) is a partially broken perspective view which shows one process in the manufacturing process of the electron source which concerns on 2nd Embodiment. (d)〜(f)は、第2実施形態に係る電子源の製造工程における一過程を示す一部破断の斜視図。(D)-(f) is a partially broken perspective view which shows one process in the manufacturing process of the electron source which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1…電子源、10…電子放出素子、11…素子基板、12…導電性薄膜、13…電子放出部、14…第1の素子電極、14a…素子電極の一面としての上面、14b…素子電極の他面としての下面、15…第2の素子電極、15a…素子電極の一面としての上面、15b…素子電極の他面としての下面、16…第1の信号線、16a…上面、17…第2の信号線、21…下層絶縁部、21a…上面、22…上層絶縁部、22a…上面、23…平滑面、24…平滑面、30…凹部、31…下層絶縁部、31a…上面、32…上層絶縁部、32a…上面、33…切り欠き部、34…突き出し部、70…電気光学装置、71…表示基板、72…空間、73…対向電極、74…蛍光膜、75…遮光膜、100…液滴吐出装置、700…電子機器としての携帯型情報処理装置、701…キーボード、702…電気光学装置、703…情報処理本体。
DESCRIPTION OF SYMBOLS 1 ... Electron source, 10 ... Electron emission element, 11 ... Element board | substrate, 12 ... Conductive thin film, 13 ... Electron emission part, 14 ... 1st element electrode, 14a ... Upper surface as one surface of an element electrode, 14b ... Element electrode A lower surface as the other surface, 15 ... a second element electrode, 15a ... an upper surface as one surface of the element electrode, 15b ... a lower surface as the other surface of the element electrode, 16 ... a first signal line, 16a ... an upper surface, 17 ... 2nd signal line, 21 ... lower layer insulating part, 21a ... upper surface, 22 ... upper layer insulating part, 22a ... upper surface, 23 ... smooth surface, 24 ... smooth surface, 30 ... recess, 31 ... lower layer insulating part, 31a ... upper surface, 32 ... upper layer insulating part, 32a ... upper surface, 33 ... notch part, 34 ... protruding part, 70 ... electro-optical device, 71 ... display substrate, 72 ... space, 73 ... counter electrode, 74 ... fluorescent film, 75 ... light shielding film , 100 ... droplet discharge device, 700 ... as electronic equipment Portable information processing apparatus, 701 ... keyboard, 702 ...... electrooptic device, 703 ... information processing body.

Claims (6)

電子放出部を有する導電性薄膜と、前記導電性薄膜に電気機械的に接続する一対の素子電極と、前記一対の素子電極にそれぞれ対応して配線された第1および第2の信号線と、を備える電子源の製造方法であって、
基板の一面に、第1の信号線を形成する工程と、
前記基板の一面に、前記第1の信号線の膜厚に相当するスペーサとして機能する下層絶縁部を形成する工程と、
前記下層絶縁部上および前記第1の信号線上に、前記一対の素子電極を形成する工程と、を備えることを特徴とする電子源の製造方法。
A conductive thin film having an electron emission portion; a pair of element electrodes that are electromechanically connected to the conductive thin film; and first and second signal lines wired corresponding to the pair of element electrodes, A method of manufacturing an electron source comprising:
Forming a first signal line on one surface of the substrate;
Forming a lower insulating layer functioning as a spacer corresponding to the thickness of the first signal line on one surface of the substrate;
Forming the pair of device electrodes on the lower insulating layer and on the first signal line. A method of manufacturing an electron source, comprising:
前記下層絶縁部上および前記第1の信号線上に、前記一対の素子電極の膜厚に相当するスペーサとして機能すると共に、前記第1および第2の信号線間を電気的に絶縁する上層絶縁部を形成する工程と、
前記上層絶縁部上および前記第2の素子電極上に、前記第2の信号線を形成する工程と、を有することを特徴とする請求項1に記載の電子源の製造方法。
On the lower insulating layer and on the first signal line, the upper insulating layer functions as a spacer corresponding to the film thickness of the pair of element electrodes and electrically insulates between the first and second signal lines. Forming a step;
The method of manufacturing an electron source according to claim 1, further comprising: forming the second signal line on the upper insulating layer and on the second element electrode.
前記下層絶縁部は、液滴吐出法を用いてパターン形成されることを特徴とする請求項1または2に記載の電子源の製造方法。   The method of manufacturing an electron source according to claim 1, wherein the lower insulating layer is patterned using a droplet discharge method. 電子放出部を有する導電性薄膜と、
前記導電性薄膜に電気機械的に接続する一対の素子電極と、
前記一対の素子電極のそれぞれに対応して配線され、前記一対の素子電極の一面側に形成された第1の信号線および前記一対の素子電極の他面側に形成された第2の信号線と、
前記第1の信号線の膜厚に相当するスペーサとして機能する下層絶縁部と、を備えることを特徴とする電子源。
A conductive thin film having an electron emitting portion;
A pair of device electrodes electromechanically connected to the conductive thin film;
A first signal line formed on one surface side of the pair of element electrodes and a second signal line formed on the other surface side of the pair of element electrodes, corresponding to each of the pair of element electrodes. When,
An electron source comprising: a lower insulating layer functioning as a spacer corresponding to the film thickness of the first signal line.
請求項4に記載の電子源を備える電気光学装置。   An electro-optical device comprising the electron source according to claim 4. 請求項4に記載の電子源を備える電子機器。
An electronic device comprising the electron source according to claim 4.
JP2005012409A 2005-01-20 2005-01-20 Electron source, electron source manufacturing method, electro-optical device, and electronic apparatus Expired - Fee Related JP4442436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012409A JP4442436B2 (en) 2005-01-20 2005-01-20 Electron source, electron source manufacturing method, electro-optical device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012409A JP4442436B2 (en) 2005-01-20 2005-01-20 Electron source, electron source manufacturing method, electro-optical device, and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2006202589A true JP2006202589A (en) 2006-08-03
JP4442436B2 JP4442436B2 (en) 2010-03-31

Family

ID=36960405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012409A Expired - Fee Related JP4442436B2 (en) 2005-01-20 2005-01-20 Electron source, electron source manufacturing method, electro-optical device, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP4442436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010385A1 (en) * 2009-07-24 2011-01-27 キヤノン株式会社 Luminescent screen, and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010385A1 (en) * 2009-07-24 2011-01-27 キヤノン株式会社 Luminescent screen, and image display device
US8143776B2 (en) 2009-07-24 2012-03-27 Canon Kabushiki Kaisha Luminescent screen and image display apparatus
JP5183807B2 (en) * 2009-07-24 2013-04-17 キヤノン株式会社 Luminescent screen and image display device

Also Published As

Publication number Publication date
JP4442436B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US8058791B2 (en) Electronic circuit board manufacturing apparatus and electronic circuit board
US20050128267A1 (en) Method of manufacturing electronic device, electron source substrate, and image forming apparatus, and apparatus for manufacturing electronic device and electron source substrate
US7548017B2 (en) Surface conduction electron emitter display
JP4442436B2 (en) Electron source, electron source manufacturing method, electro-optical device, and electronic apparatus
KR100726275B1 (en) Electron emitter, method of manufacturing electron emitter, electro-optical device, and electronic apparatus
JP4513581B2 (en) Electron source, electro-optical device, electronic equipment
KR100769635B1 (en) Method of manufacturing electron emission element and method of manufacturing image display device
KR100636256B1 (en) Electron emission element and method of manufacturing the same, electro-optical device, and electronic equipment
JP2006210091A (en) Electron source, its manufacturing method, electro-optical device, and electronic equipment
JP2006172912A (en) Electron emission element and manufacturing method of electron emission element, and electro-optical device and electronic equipment
JP2006172855A (en) Electron emission element and manufacturing method of the electron emission element, as well as electro-optical device, and electronic equipment
JP2006210226A (en) Electron emission element, manufacturing method of the same, image display device, and electronic apparatus
JP3600232B2 (en) Method of manufacturing electron source substrate, electron source substrate manufactured by the method, and image display device using the substrate
JP2001307621A (en) Manufacturing method of electron source substrate and electron source substrate manufactured by the method and image display device using the substrate
JP2008117764A (en) Device for injecting liquid containing metal particulates, and line pattern manufactured by device for injecting liquid containing metal particulates
JP2004296393A (en) Electron source substrate manufacturing device, electron source substrate, and image display device
JP2006216346A (en) Electron emitter and its manufacturing method, image display device and electronic equipment
JP2009050785A (en) Discharge method for liquid body, and manufacturing method for color filter and organic el element
JP2008077960A (en) Electron source and its manufacturing method
JP2004311096A (en) Electron source substrate manufacturing apparatus, electron source substrate base, and image display device
JP2004311095A (en) Electron source substrate manufacturing apparatus, electron source substrate base, and image display device
JP2004296390A (en) Electron source substrate manufacturing device, electron source substrate, and image display device
JP2006202625A (en) Electron emission element, method of manufacturing same, electrooptical device, and electronic apparatus
JP2004296391A (en) Electron source substrate manufacturing device, electron source substrate, and image display device
JP2004311094A (en) Electron source substrate manufacturing apparatus, electron source substrate, and image display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees