JP2006201288A - Microscopic observation apparatus - Google Patents

Microscopic observation apparatus Download PDF

Info

Publication number
JP2006201288A
JP2006201288A JP2005010655A JP2005010655A JP2006201288A JP 2006201288 A JP2006201288 A JP 2006201288A JP 2005010655 A JP2005010655 A JP 2005010655A JP 2005010655 A JP2005010655 A JP 2005010655A JP 2006201288 A JP2006201288 A JP 2006201288A
Authority
JP
Japan
Prior art keywords
pure water
objective lens
water supply
mirror
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005010655A
Other languages
Japanese (ja)
Inventor
Hiromasa Shibata
浩匡 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005010655A priority Critical patent/JP2006201288A/en
Publication of JP2006201288A publication Critical patent/JP2006201288A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/33Immersion oils, or microscope systems or objectives for use with immersion fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3224Units using UV-light guiding optical fibers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3228Units having reflectors, e.g. coatings, baffles, plates, mirrors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Hydrology & Water Resources (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microscopic observation apparatus for directly irradiating supply passes with UV and performing UV-sterilization, dispensing with a process of heating the inside walls of pure water supply/recovery passes arranged in a lens barrel for an objective lens and a process of making medical fluid flow in the passes. <P>SOLUTION: At the bright field observation, a half mirror 7 is located on the position of the optical axis (L1) of the liquid-immersion objective lens 8, and nearly half the UV emitted from an illuminating optical source 2 is vertically emitted on a wafer W. At the sterilization, a reflection mirror 30 is shifted to the optical axis (L1) of the liquid-immersion objective lens 8. Regarding the UV emitted from the illuminating optical source 2, the central UV never advance toward the liquid-immersion objective lens 8 due to the round hole 30a of the reflection mirror 30. On the other hand, the UV reflected by the ambient mirror surface 30b advances along the center axis (L2) of the pure water supply/recovery passes 21 and 22, then, enters the pure water supply/recovery passes 21 and 22 through a cover glass 25, then, the pure water PW in each pass is sterilized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、物体の液浸観察に用いられる顕微鏡観察装置に関し、特に、半導体ウエハや液晶基板などの液浸観察に好適な顕微鏡観察装置に関する。   The present invention relates to a microscope observation apparatus used for immersion observation of an object, and more particularly to a microscope observation apparatus suitable for immersion observation of a semiconductor wafer or a liquid crystal substrate.

半導体回路素子や液晶表示素子の製造工程では、半導体ウエハや液晶基板(総じて「基板」という)に形成された回路パターンの欠陥や異物などの観察には、液浸観察の顕微鏡観察装置を用いている。   In the manufacturing process of semiconductor circuit elements and liquid crystal display elements, a microscope observation apparatus for immersion observation is used for observing defects or foreign matters in circuit patterns formed on a semiconductor wafer or liquid crystal substrate (generally referred to as “substrate”). Yes.

対物レンズの周辺の構造を簡素化しつつ、純水の供給・回収機構を配置することができるように、対物レンズの鏡筒の外部に、純水供給流路及び純水回収流路を形成し、対物レンズの先端部と基板の間に、純水を供給して回収するようにした純水の供給・回収機構が提案されている(例えば、特許文献1参照。)。   A pure water supply flow path and a pure water recovery flow path are formed outside the lens barrel of the objective lens so that the structure around the objective lens can be simplified and the pure water supply / recovery mechanism can be arranged. A pure water supply / recovery mechanism has been proposed in which pure water is supplied and recovered between the tip of the objective lens and the substrate (see, for example, Patent Document 1).

観察光の波長を短く変更すること無く、分解能を向上させる技術として、液浸法が一般的である。   As a technique for improving the resolution without changing the wavelength of the observation light short, a liquid immersion method is generally used.

分解能は、一般に、以下の式で定義される。   The resolution is generally defined by the following equation.

分解能 = k×λ/NA
但し、λは観察波長、NAは対物開き角(sinθ)、kは定数である。
Resolution = k × λ / NA
Where λ is an observation wavelength, NA is an objective opening angle (sin θ), and k is a constant.

kの値は、2線間の分解能を議論する場合は0.5を使用する。   The value of k is 0.5 when discussing the resolution between two lines.

従って、対物NAを大きくすることは、分解能の向上に有効である。ところが、空気中では、屈折率1のため、NA≦1までしか実現出来ない。   Therefore, increasing the objective NA is effective for improving the resolution. However, in the air, since the refractive index is 1, it can be realized only up to NA ≦ 1.

ここで、対物先端とワーク間に屈折率nの媒質を充填すれば、NAは、媒質の屈折率n倍だけ向上する。例えば、水ならn=1.3程度(但し、波長に依存して変化する)なので、NAを1以上にすることが可能である。   Here, if a medium having a refractive index n is filled between the objective tip and the workpiece, the NA is improved by n times the refractive index of the medium. For example, in the case of water, since n = about 1.3 (which varies depending on the wavelength), the NA can be 1 or more.

半導体ウエハ観察、あるいは投影露光時に液浸法を適用する場合には、純水製造装置内部及び全配管路内での微生物の発生や繁殖を防止する必要がある。微生物に対する殺菌法としては、従来から、以下のような方法が採用されている。   When the immersion method is applied during semiconductor wafer observation or projection exposure, it is necessary to prevent the generation and propagation of microorganisms in the pure water production apparatus and in all the piping. Conventionally, the following method has been adopted as a sterilizing method for microorganisms.

常時殺菌法としては、「UV殺菌法」が挙げられる。純水製造装置内部の水循環路中に260nm近辺の波長をピークパワーとするUV殺菌灯を取付け、殺菌を行う方法である(例えば、特許文献2参照。)。
特開11−849504号公報 特開平8−66677号公報
Examples of the constant sterilization method include “UV sterilization method”. In this method, a UV germicidal lamp having a peak power of a wavelength near 260 nm is attached to a water circulation path inside the pure water production apparatus to perform sterilization (see, for example, Patent Document 2).
JP 11-895044 A JP-A-8-66677

UV殺菌法は、大変有効な殺菌方法であるが、管路内全てをくまなく殺菌するには不十分である。   Although the UV sterilization method is a very effective sterilization method, it is not sufficient to sterilize the entire pipe line.

本発明は、上述したような事情に鑑みてなされたものであって、対物レンズの鏡筒に設けた純水供給流路及び純水回収流路の内壁に熱を加えたり又は薬液を流したりすること無く、直接紫外線を照射してUV殺菌を行うことができる顕微鏡観察装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and heat is applied to the inner walls of the pure water supply channel and the pure water recovery channel provided in the lens barrel of the objective lens, or a chemical solution is allowed to flow. An object of the present invention is to provide a microscope observation apparatus capable of performing UV sterilization by directly irradiating ultraviolet rays without doing so.

上記の目的を達成するため、本発明の請求項1に係る顕微鏡観察装置は、対物レンズの鏡筒に設けてあり、対物レンズの焦点位置近傍に純水を供給する純水供給流路と、
前記鏡筒に設けてあり、当該焦点位置近傍から純水を回収する純水回収流路と、
紫外線を発する光源と、
当該光源から、少なくとも純水供給流路に、当該紫外線を案内して照射する案内手段と、を具備することを特徴とする。
In order to achieve the above object, a microscope observation apparatus according to claim 1 of the present invention is provided in a lens barrel of an objective lens, and includes a pure water supply channel that supplies pure water near a focal position of the objective lens,
Provided in the lens barrel, and a pure water recovery flow path for recovering pure water from the vicinity of the focal position;
A light source that emits ultraviolet light;
Guiding means for guiding and irradiating the ultraviolet rays from the light source to at least the pure water supply flow path.

本発明の請求項2に係る顕微鏡観察装置は、前記案内手段は、前記光源から前記純水回収流路に前記紫外線を案内して照射することを特徴とする。   The microscope observation apparatus according to claim 2 of the present invention is characterized in that the guide means guides and irradiates the ultraviolet light from the light source to the pure water recovery channel.

本発明の請求項3に係る顕微鏡観察装置は、前記案内手段は、
明視野観察のためのハーフミラーと、
中央部に開口を有し、周辺部に反射部を有する反射ミラーと、
明視野観察時には、前記光源からの紫外線を明視野観察のハーフミラーにより反射して、観察対象に案内する一方、殺菌時には、前記光源からの紫外線を前記反射ミラーにより反射して、前記純水供給流路又は純水回収流路に案内するように、前記両ミラーを切り替えるミラー切替手段と、を有することを特徴とする。
In the microscope observation apparatus according to claim 3 of the present invention, the guide means includes:
Half mirror for bright field observation,
A reflection mirror having an opening in the center and a reflection part in the periphery;
At the time of bright field observation, the ultraviolet light from the light source is reflected by the half mirror for bright field observation and guided to the observation target, while at the time of sterilization, the ultraviolet light from the light source is reflected by the reflection mirror to supply the pure water. Mirror switching means for switching the both mirrors so as to guide the flow path or the pure water recovery flow path.

本発明の請求項4に係る顕微鏡観察装置は、前記案内手段は、
前記鏡筒に設けてあり、前記ミラーにより反射された紫外線を前記純水供給流路又は純水回収流路内に透過して導く透過部材を有することを特徴とする。
In the microscope observation apparatus according to claim 4 of the present invention, the guide means includes:
It has a transmission member that is provided in the lens barrel and guides the ultraviolet rays reflected by the mirror through the pure water supply channel or the pure water recovery channel.

本発明の請求項5に係る顕微鏡観察装置は、前記案内手段は、
前記鏡筒の先端部に設けてあり、前記純水供給流路又は純水回収流路内に案内された紫外線を、前記対物レンズの焦点位置近傍の純水に向けて反射する反射部材を有することを特徴とする。
In the microscope observation apparatus according to claim 5 of the present invention, the guide means includes:
A reflection member provided at a tip of the lens barrel and configured to reflect ultraviolet rays guided in the pure water supply channel or the pure water recovery channel toward pure water in the vicinity of a focal position of the objective lens; It is characterized by that.

本発明の請求項6に係る顕微鏡観察装置は、前記案内手段は、
紫外線を透過する材質から形成した対物レンズの透過性鏡筒を有することを特徴とする。
In the microscope observation apparatus according to claim 6 of the present invention, the guide means includes:
It has a transmissive lens barrel of an objective lens formed of a material that transmits ultraviolet rays.

本発明の請求項7に係る顕微鏡観察装置は、前記光源は、前記透過性鏡筒の周囲に配置してあることを特徴とする。   The microscope observation apparatus according to a seventh aspect of the present invention is characterized in that the light source is arranged around the transmissive barrel.

本発明の請求項8に係る顕微鏡観察装置は、前記案内手段は、
前記光源からの紫外線を導く光ファイバーと、
当該光ファイバーにより導かれた紫外線を、前記透過性鏡筒の周囲から、前記純水供給流路又は純水回収流路に向けて照射する照射部材と、を有することを特徴とする。
In the microscope observation apparatus according to claim 8 of the present invention, the guide means includes:
An optical fiber for guiding ultraviolet rays from the light source;
And an irradiating member that irradiates the ultraviolet light guided by the optical fiber from the periphery of the transmissive barrel toward the pure water supply channel or the pure water recovery channel.

本発明によれば、紫外線を発する光源から、純水供給流路又は純水回収流路に、当該紫外線を案内して照射するように構成してあることから、純水供給流路又は純水回収流路の内壁に熱を加えたり又は薬液を流したりすること無く、直接紫外線を照射してUV殺菌を行うことができる。   According to the present invention, the pure water supply channel or the pure water is configured to guide and irradiate the ultraviolet light from the light source emitting ultraviolet rays to the pure water supply channel or the pure water recovery channel. UV sterilization can be performed by directly irradiating ultraviolet rays without applying heat or flowing a chemical solution to the inner wall of the recovery channel.

また、顕微鏡観察をしない時間を利用してUV殺菌を行うため、装置のスループットを落とすことなく、殺菌が難しい対物レンズの純水供給・回収流路の洗浄を頻繁に行い、細菌の繁殖を防止させ、純水の品質を高く維持することが出来る。   In addition, since UV sterilization is performed using the time when the microscope is not observed, the pure water supply / recovery flow path of the objective lens, which is difficult to sterilize, is frequently washed without reducing the throughput of the apparatus to prevent bacterial growth. The quality of pure water can be kept high.

別言すれば、最も殺菌しにくい対物レンズ周囲の純水供給・回収流路を、容易に殺菌出来る。従って、微生物に起因する微粒子汚染を大幅に軽減出来、半導体デバイスの歩留まりを向上させることが出来る。また、ウエハ概観検査装置のようにスループットを重視する装置においては、処理速度を落とすことなく、常時UV殺菌を行うことが出来る。   In other words, the pure water supply / recovery channel around the objective lens that is most difficult to sterilize can be easily sterilized. Accordingly, particulate contamination caused by microorganisms can be greatly reduced, and the yield of semiconductor devices can be improved. In addition, in an apparatus that attaches importance to throughput, such as a wafer overview inspection apparatus, UV sterilization can always be performed without reducing the processing speed.

以下、本発明の実施の形態に係る顕微鏡観察装置を図面を参照しつつ説明する。   Hereinafter, a microscope observation apparatus according to an embodiment of the present invention will be described with reference to the drawings.

(第1実施の形態)
図1は、本発明の第1実施の形態に係る顕微鏡観察装置の模式図である。
(First embodiment)
FIG. 1 is a schematic diagram of a microscope observation apparatus according to the first embodiment of the present invention.

顕微鏡装置1には、波長が200〜300nmの紫外線の照明光源2が搭載されている。照明光源2より発せられた紫外光は、コレクタレンズ3、開口絞(AS)4、視野絞(FS)5、コンデンサレンズ6を経由して、明視野のハーフミラー7で折り曲げられ、液浸対物レンズ8を通過して、ウエハW上に平行光として照射される(ケーラー照明の状態)。   The microscope apparatus 1 is equipped with an ultraviolet illumination light source 2 having a wavelength of 200 to 300 nm. The ultraviolet light emitted from the illumination light source 2 passes through the collector lens 3, the aperture stop (AS) 4, the field stop (FS) 5, and the condenser lens 6, and is bent by the bright-field half mirror 7. The light passes through the lens 8 and is irradiated as parallel light on the wafer W (Kohler illumination).

ウエハWに照射された紫外光は、液浸対物レンズ8を経由して、ハーフミラー7を透過し、第2対物レンズ9、及び折り曲げミラー10を経由して、折り曲げミラー10と接眼レンズ11との間に出来る像を、接眼レンズ11で観察者の眼(又はCCD12)に結像させる。   The ultraviolet light irradiated on the wafer W passes through the half mirror 7 via the immersion objective lens 8, passes through the second objective lens 9 and the bending mirror 10, and the folding mirror 10 and the eyepiece 11. An image formed during the period is formed on the observer's eye (or CCD 12) with the eyepiece 11.

顕微鏡装置1には、XYステージ13が設けてあり、このXYステージ13上に、Zステージ14が搭載してある。Zステージ14上には、真空吸着等の手段でウエハWを保持するウエハ保持部材15が搭載してある。ウエハWは、このウエハ保持部材15上に、不図示のウエハ搬送手段により搬送される。   The microscope apparatus 1 is provided with an XY stage 13, and a Z stage 14 is mounted on the XY stage 13. A wafer holding member 15 that holds the wafer W by means such as vacuum suction is mounted on the Z stage 14. The wafer W is transferred onto the wafer holding member 15 by a wafer transfer means (not shown).

液浸対物レンズ8の鏡筒20には、後に詳述するように、液浸対物レンズ8の焦点位置近傍に純水PWを供給する純水供給流路21と、当該焦点位置近傍から純水PWを回収する純水回収流路22とが形成してある。   The lens barrel 20 of the immersion objective lens 8 includes a pure water supply channel 21 for supplying pure water PW near the focal position of the immersion objective lens 8 and pure water from the vicinity of the focal position, as will be described in detail later. A pure water recovery flow path 22 for recovering PW is formed.

純水源(純水製造装置など)16から発生した純水PWは、定量吐出ポンプ17等の手段により、供給配管23を通り、鏡筒20の純水供給流路21を経由して、一定量試料(ウエハW)面に供給される。また、液浸観察後の純水PWは、真空源18で発生する負圧によって、鏡筒20の純水回収流路22及び回収配管24を経由して、排水回収槽19に集められる。   The deionized water PW generated from the deionized water source 16 (deionized water production apparatus or the like) 16 passes through the supply pipe 23 and the deionized water supply passage 21 of the lens barrel 20 by a fixed discharge pump 17 or the like to reach a certain amount. It is supplied to the sample (wafer W) surface. The pure water PW after immersion observation is collected in the drainage recovery tank 19 via the pure water recovery flow path 22 and the recovery pipe 24 of the lens barrel 20 by the negative pressure generated in the vacuum source 18.

図2(a)は、図1に示した液浸対物レンズの断面図であり、(b)は、(a)の矢印bの矢視図である。   2A is a cross-sectional view of the immersion objective lens shown in FIG. 1, and FIG. 2B is a view taken in the direction of arrow b in FIG.

液浸対物レンズ8の鏡筒20は、レンズ素子を所定の間隔で固定する金物20aと、金物20aの外側を覆うように形成した金属製の筒状部材20bと、筒状部材20bの下方に取り付けた環状部材20cと、から構成してある。   The lens barrel 20 of the immersion objective lens 8 includes a metal piece 20a for fixing lens elements at a predetermined interval, a metal cylindrical member 20b formed so as to cover the outside of the metal piece 20a, and a lower part of the cylindrical member 20b. And an attached annular member 20c.

筒状部材20bには、液浸対物レンズ8の光軸(L1)と略平行になるように、液浸対物レンズ8の焦点位置近傍に純水PWを供給する純水供給流路21と、当該焦点位置近傍から純水PWを回収する純水回収流路22とが形成してある。   In the cylindrical member 20b, a pure water supply channel 21 for supplying pure water PW near the focal position of the immersion objective lens 8 so as to be substantially parallel to the optical axis (L1) of the immersion objective lens 8, A pure water recovery flow path 22 for recovering pure water PW from the vicinity of the focal position is formed.

純水供給流路21には、上述した純水源(純水製造装置など)16に連通した供給配管23が接続してあり、純水回収流路22には、上述した排水回収槽19に連通した回収配管24が接続してある。   The pure water supply channel 21 is connected to a supply pipe 23 that communicates with the pure water source (pure water production apparatus or the like) 16 described above. The pure water recovery channel 22 communicates with the drainage recovery tank 19 described above. The collected recovery pipe 24 is connected.

なお、純水供給流路21及び供給配管23と、純水回収流路22及び回収配管とは、互いに対に構成してあるが、その個数等は、図示例に限定されず、適宜選択可能である。   The pure water supply channel 21 and the supply pipe 23 and the pure water recovery channel 22 and the recovery pipe are paired with each other, but the number and the like are not limited to the illustrated example and can be selected as appropriate. It is.

純水供給流路21と、純水回収流路22との上方には、紫外線を透過するリング状のカバーガラス25(透過部材)が装着してあり、これにより、後述するように、紫外線だけを透過して純水供給流路21と純水回収流路22に紫外線を照射する一方、隙間を塞いで純水PWが漏れないようにしている。   Above the pure water supply channel 21 and the pure water recovery channel 22, a ring-shaped cover glass 25 (transmission member) that transmits ultraviolet rays is mounted. The pure water supply channel 21 and the pure water recovery channel 22 are irradiated with ultraviolet rays, while the gap is closed to prevent the pure water PW from leaking.

図3(a)は、図1に示した液浸対物レンズの断面図であり、(b)は、(a)の矢印bの矢視図であり、(c)は、(a)の矢印cの矢視図である。   3A is a cross-sectional view of the immersion objective lens shown in FIG. 1, FIG. 3B is a view taken in the direction of the arrow b in FIG. 3A, and FIG. 3C is the arrow in FIG. It is an arrow view of c.

図4(a)は、明視野観察のハーフミラーと反射ミラーの切替状態を示す模式図(図1のIII−III線に沿った図)であり、(b)は、明視野観察のハーフミラーと反射ミラーの光の反射状態を示す模式図である。   FIG. 4A is a schematic diagram (a view taken along the line III-III in FIG. 1) showing a switching state between a half mirror and a reflection mirror for bright field observation, and FIG. 4B is a half mirror for bright field observation. It is a schematic diagram which shows the reflection state of the light of a reflective mirror.

明視野観察のためのハーフミラー7と、中央部に丸穴30aを有し周辺部に反射部(ミラー面30b)を有する反射ミラー30とは、切替可能に構成してある。   The half mirror 7 for bright field observation and the reflection mirror 30 having a round hole 30a in the center and a reflection part (mirror surface 30b) in the periphery are configured to be switchable.

即ち、明視野観察のハーフミラー7と、反射ミラー30とは、可動ステージ(図示略)上に配置され、一定の移動距離(X)だけ、精度良く移動可能な構造になっている。   That is, the bright-field observation half mirror 7 and the reflection mirror 30 are arranged on a movable stage (not shown), and have a structure that can be accurately moved by a certain moving distance (X).

通常の明視野観察時には、ハーフミラー7は、液浸対物レンズ8の光軸(L1)位置にある。この場合、照明光源2から来た紫外光の略半分は、液浸対物レンズ8経由でウエハWに落射させ、また、ウエハWからの反射光の略半分は、接眼レンズ11方向に導く構造になっている。   During normal bright field observation, the half mirror 7 is at the position of the optical axis (L1) of the immersion objective lens 8. In this case, approximately half of the ultraviolet light coming from the illumination light source 2 is incident on the wafer W via the immersion objective lens 8, and approximately half of the reflected light from the wafer W is guided to the eyepiece lens 11. It has become.

また、本実施の形態では、暗視野観察は、原則として行わない。後述するように、ウエハWのロード/アンロード時等に、純水PWを殺菌するように構成してある。   In this embodiment, dark field observation is not performed in principle. As will be described later, the pure water PW is sterilized when the wafer W is loaded / unloaded.

すなわち、殺菌時には、反射ミラー30を、液浸対物レンズ8の光軸(L1)位置に移動させる。   That is, at the time of sterilization, the reflection mirror 30 is moved to the optical axis (L1) position of the immersion objective lens 8.

照明光源2から照射された紫外光は、反射ミラー30の中央の丸穴30aのため、中央部の紫外光は、液浸対物レンズ8の方向に行かない。   Since the ultraviolet light emitted from the illumination light source 2 is the circular hole 30a at the center of the reflection mirror 30, the ultraviolet light at the center does not go in the direction of the immersion objective lens 8.

一方、その周辺部のミラー面30bで反射された紫外光は、図2(a)及び図3(a)に示すように、純水供給・回収流路21,22の中心軸(L2)に沿って進み、カバーガラス25(透過部材)を介して、純水供給・回収流路21,22に入射して、この内部の純水PWを殺菌する。   On the other hand, the ultraviolet light reflected by the peripheral mirror surface 30b is applied to the central axis (L2) of the pure water supply / recovery channels 21, 22 as shown in FIGS. 2 (a) and 3 (a). Then, the light enters the pure water supply / recovery flow paths 21 and 22 through the cover glass 25 (transmission member), and sterilizes the pure water PW inside.

また、図3(a)に示すように、鏡筒20の筒状部材20bの下方には、純水供給・回収流路21、22内に案内された紫外線を、液浸対物レンズ8の焦点位置近傍の純水PWに向けて反射する凹面鏡31(反射部材)が設けてある。   3A, below the cylindrical member 20b of the lens barrel 20, the ultraviolet light guided into the pure water supply / recovery channels 21 and 22 is focused on the immersion objective lens 8. A concave mirror 31 (reflecting member) that reflects toward the pure water PW near the position is provided.

なお、通常の明視野観察時にも、ハーフミラー7の周辺部で反射された紫外線は、その光量は上記の殺菌時より少ないが、純水供給・回収流路21,22に入射して、純水PWを殺菌する。この周辺部を全反射ミラーに構成しても良い。この場合も、本発明の適用範囲内であることは、勿論である。   Even during normal bright-field observation, the amount of ultraviolet light reflected by the peripheral part of the half mirror 7 is less than that during sterilization, but is incident on the pure water supply / recovery channels 21 and 22, Sterilize water PW. You may comprise this peripheral part in a total reflection mirror. Of course, this case is also within the scope of the present invention.

本実施の形態では、次の動作順序により、顕微鏡観察と殺菌を行うようになっている。   In the present embodiment, microscopic observation and sterilization are performed according to the following operation sequence.

不図示のウエハ搬送手段により、ウエハWが顕微鏡装置1のXYステージ13及びZステージ14上のウエハ保持部材15上に搭載される。ウエハWは、真空吸着等の手段で、ウエハ保持部材15に固定される。XYステージ13で、ウエハW中の観察したいポイントを、対物直下に移動させる。   The wafer W is mounted on the wafer holding member 15 on the XY stage 13 and the Z stage 14 of the microscope apparatus 1 by a wafer transfer means (not shown). The wafer W is fixed to the wafer holding member 15 by means such as vacuum suction. On the XY stage 13, the point to be observed in the wafer W is moved directly under the objective.

純水供給流路21から、純水PWを所定量ウエハW上に吐出した後、Zステージ14が移動して、対物が焦点を結ぶようにしてから、ウエハWの明視野観察を行う。   After a predetermined amount of pure water PW is discharged from the pure water supply channel 21 onto the wafer W, the Z stage 14 moves to focus the objective, and then bright field observation of the wafer W is performed.

なお、この明視野観察の際、上述したように、ハーフミラー7の周辺部で反射された紫外線は、その光量は殺菌時より少ないが、純水供給・回収流路21,22に入射して、純水PWを殺菌することができる。   In this bright field observation, as described above, the amount of ultraviolet light reflected by the peripheral part of the half mirror 7 is smaller than that at the time of sterilization, but enters the pure water supply / recovery channels 21 and 22. Pure water PW can be sterilized.

明視野観察の終了後、真空源18を起動するか、あるいは不図示の電磁弁等の開閉手段により、純水回収流路22に真空を供給する。この真空により、ウエハW上の純水PWが周囲の空気と一緒に純水回収流路22から吸い込まれて回収される。   After the bright field observation is completed, the vacuum source 18 is activated, or vacuum is supplied to the pure water recovery passage 22 by an opening / closing means such as an electromagnetic valve (not shown). By this vacuum, the pure water PW on the wafer W is sucked from the pure water recovery passage 22 together with the surrounding air and recovered.

なお、この顕微鏡は、明視野観察専用であるため、ハーフミラー7は、殺菌時以外は、液浸対物レンズ8の光軸(L1)上にある。   Since this microscope is exclusively for bright field observation, the half mirror 7 is on the optical axis (L1) of the immersion objective lens 8 except during sterilization.

明視野観察の完了後、ウエハWをウエハ保持部材15へアンロードし、次に、ウエハWをロードする時間を利用して、反射ミラー30を、液浸対物レンズ8の光軸(L1)位置に移動させる。   After completion of the bright field observation, the wafer W is unloaded onto the wafer holding member 15, and then the reflection mirror 30 is moved to the position of the optical axis (L 1) of the immersion objective lens 8 using the time for loading the wafer W. Move to.

この際、上記のように、照明光源2から照射された紫外光は、反射ミラー30の中央の丸穴30aのため、中央部の紫外光は、液浸対物レンズ8の方向に行かない。   At this time, as described above, since the ultraviolet light emitted from the illumination light source 2 is the circular hole 30a at the center of the reflection mirror 30, the ultraviolet light at the center does not go in the direction of the immersion objective lens 8.

一方、その周辺部のミラー面30bで反射された紫外光は、図2(a)及び図3(a)に示すように、純水供給・回収流路21,22の中心軸(L2)に沿って進み、カバーガラス25(透過部材)を介して、純水供給・回収流路21,22に入射して、この内部の純水PWを殺菌する。また、図3(a)に示すように、鏡筒20の筒状部材20bの下方に設けた凹面鏡31(反射部材)によって、純水供給・回収流路21、22内に案内された紫外線を液浸対物レンズ8の焦点位置近傍の純水PWに向けて反射して、この純水PWを殺菌する。   On the other hand, the ultraviolet light reflected by the peripheral mirror surface 30b is applied to the central axis (L2) of the pure water supply / recovery channels 21, 22 as shown in FIGS. 2 (a) and 3 (a). Then, the light enters the pure water supply / recovery flow paths 21 and 22 through the cover glass 25 (transmission member), and sterilizes the pure water PW inside. Further, as shown in FIG. 3A, the ultraviolet light guided into the pure water supply / recovery channels 21 and 22 by the concave mirror 31 (reflecting member) provided below the cylindrical member 20b of the lens barrel 20 is generated. The pure water PW is sterilized by reflecting toward the pure water PW near the focal position of the immersion objective lens 8.

以上から、本実施の形態では、顕微鏡観察をしない時間を利用してUV殺菌を行うため、装置のスループットを落とすことなく、殺菌が難しい液浸対物レンズ8の純水供給・回収流路21,22の洗浄を頻繁に行い、細菌の繁殖を防止させ、純水の品質を高く維持することが出来る。   As described above, in this embodiment, since UV sterilization is performed using a time during which microscopic observation is not performed, the pure water supply / recovery flow channel 21 of the immersion objective lens 8 that is difficult to sterilize without reducing the throughput of the apparatus, 22 is frequently washed to prevent the growth of bacteria and maintain the quality of pure water high.

別言すれば、最も殺菌しにくい液浸対物レンズ8周囲の純水供給・回収流路21,22を、容易に殺菌出来る。従って、微生物に起因する微粒子汚染を大幅に軽減出来、半導体デバイスの歩留まりを向上させることが出来る。また、ウエハWの概観検査装置のようにスループットを重視する装置においては、処理速度を落とすことなく、常時UV殺菌を行うことが出来る。   In other words, the pure water supply / recovery channels 21 and 22 around the immersion objective lens 8 that is most difficult to sterilize can be easily sterilized. Accordingly, particulate contamination caused by microorganisms can be greatly reduced, and the yield of semiconductor devices can be improved. In addition, in an apparatus that attaches importance to throughput, such as the wafer W overview inspection apparatus, UV sterilization can always be performed without reducing the processing speed.

(第2実施の形態)
図5は、本発明の第2実施の形態に係り、液浸対物レンズの断面図である。
(Second Embodiment)
FIG. 5 is a cross-sectional view of the immersion objective lens according to the second embodiment of the present invention.

本実施の形態は、その基本的構成が上述した第1実施の形態と同様であり、主として相違する点を説明する。   In the present embodiment, the basic configuration is the same as that of the first embodiment described above, and differences will be mainly described.

液浸対物レンズ8の鏡筒20は、レンズ素子を所定の間隔で固定する金物20aと、金物20aの外側を覆うように形成した筒状部材20bと、から構成してある。   The lens barrel 20 of the immersion objective lens 8 is composed of a metal piece 20a for fixing lens elements at a predetermined interval and a cylindrical member 20b formed so as to cover the outside of the metal piece 20a.

筒状部材20bには、液浸対物レンズ8の光軸(L1)と略平行になるように、液浸対物レンズ8の焦点位置近傍に純水PWを供給する純水供給流路21と、当該焦点位置近傍から純水PWを回収する純水回収流路22とが形成してある。   In the cylindrical member 20b, a pure water supply channel 21 for supplying pure water PW near the focal position of the immersion objective lens 8 so as to be substantially parallel to the optical axis (L1) of the immersion objective lens 8, A pure water recovery flow path 22 for recovering pure water PW from the vicinity of the focal position is formed.

本実施の形態では、鏡筒20の筒状部材20bは、光源波長に対して高い透過率を有する材質から形成してある。例えば、248nm紫外光には、透明石英が適する。但し、紫外線を透過する材質であれば、これに限定されるものではない。   In the present embodiment, the cylindrical member 20b of the lens barrel 20 is formed of a material having a high transmittance with respect to the light source wavelength. For example, transparent quartz is suitable for 248 nm ultraviolet light. However, the material is not limited to this as long as the material transmits ultraviolet rays.

鏡筒20の筒状部材20bの外周囲には、紫外線殺菌灯40が配置してある。この紫外線殺菌灯40は、260nm近傍をピークとする波長を持っている。なお、この紫外線殺菌灯40は、複数個を筒状部材20bの外周囲に設けてあってもよく、また、環状に構成してあってもよい。   An ultraviolet germicidal lamp 40 is disposed on the outer periphery of the cylindrical member 20b of the lens barrel 20. This ultraviolet germicidal lamp 40 has a wavelength having a peak near 260 nm. A plurality of the ultraviolet germicidal lamps 40 may be provided on the outer periphery of the cylindrical member 20b, or may be configured in an annular shape.

紫外線殺菌灯40は、一連の明視野観察中、筒状部材20bの周囲で点灯し続けているので、純水供給・回収流路21,22の内壁にバクテリアが付着して繁殖するのを防止できる。   Since the ultraviolet germicidal lamp 40 continues to be lit around the cylindrical member 20b during a series of bright field observations, it prevents bacteria from adhering to the inner walls of the pure water supply / recovery channels 21 and 22 to propagate. it can.

また、明視野観察中に、紫外線殺菌灯40の光が迷光となって邪魔な場合には、ウエハWのロード/アンロード中のように、ウエハWを観察していない時を利用して点灯させれば良い。   In addition, during bright field observation, when the light from the ultraviolet germicidal lamp 40 is disturbed by stray light, the light is turned on when the wafer W is not observed, such as during loading / unloading of the wafer W. You can do it.

以上から、本実施の形態では、最も殺菌しにくい液浸対物レンズ8の周囲の純水供給・回収流路21,22を、容易に殺菌出来る。従って、微生物に起因する微粒子汚染を大幅に軽減出来、半導体デバイスの歩留まりを向上させることが出来る。   As described above, in the present embodiment, the pure water supply / recovery channels 21 and 22 around the immersion objective lens 8 that is most difficult to sterilize can be easily sterilized. Accordingly, particulate contamination caused by microorganisms can be greatly reduced, and the yield of semiconductor devices can be improved.

また、明視野観察中にリアルタイムな殺菌を行うことができるため、ウエハWの概観検査装置のようにスループットを重視する装置においては、処理速度を落とすことなく、常時UV殺菌を行うことが出来る。   Further, since real-time sterilization can be performed during bright-field observation, UV sterilization can always be performed without reducing the processing speed in an apparatus that places importance on throughput, such as the wafer W overview inspection apparatus.

図6は、本発明の第2実施の形態の変形例に係る顕微鏡観察装置の模式図である。   FIG. 6 is a schematic diagram of a microscope observation apparatus according to a modification of the second embodiment of the present invention.

照明光源2は、少なくとも200〜300nmの波長帯を含む顕微鏡観察用光源である。照明光源2から出た紫外光は、ハーフミラー、UVブロッキングフィルタ等の光分離手段41により、一部を分離されて、光ファイバー42に導入され、液浸対物レンズ8の鏡筒20の筒状部材20bの周囲に導かれる。   The illumination light source 2 is a microscope observation light source including at least a wavelength band of 200 to 300 nm. A part of the ultraviolet light emitted from the illumination light source 2 is separated by a light separation means 41 such as a half mirror or a UV blocking filter and introduced into an optical fiber 42, and the cylindrical member of the barrel 20 of the immersion objective lens 8. 20b around.

光ファイバー42の他端は、紫外線照射口43(照射部材)に連結してあり、これにより、光ファイバー42により導かれた紫外線は、紫外線照射口43から、紫外線透過可能な筒状部材20bの純水供給・回収流路21,22の周囲に照射される。なお、紫外線照射口43は、複数個を筒状部材20bの外周囲に設けてあってもよく、また、環状に構成してあってもよい。   The other end of the optical fiber 42 is connected to an ultraviolet irradiation port 43 (irradiation member), so that the ultraviolet light guided by the optical fiber 42 is purified from the ultraviolet irradiation port 43 through the pure water of the cylindrical member 20b. Irradiates around the supply / recovery channels 21 and 22. Note that a plurality of ultraviolet irradiation ports 43 may be provided on the outer periphery of the cylindrical member 20b, or may be configured in an annular shape.

照明光源2から分離して光ファイバー42を介して鏡筒20の筒状部材20bの周囲の紫外線照射口43に導入された紫外光は、液浸対物レンズ8でウエハWを観察している間中、純水供給・回収流路21,22の周囲で点灯し続けている。そのため、純水供給・回収流路21,22の内壁にバクテリアが付着して繁殖するのを防止できる。   The ultraviolet light separated from the illumination light source 2 and introduced into the ultraviolet irradiation port 43 around the cylindrical member 20 b of the lens barrel 20 via the optical fiber 42 is being observed while the wafer W is being observed by the immersion objective lens 8. The lights continue to be lit around the pure water supply / recovery channels 21 and 22. Therefore, it is possible to prevent bacteria from adhering to the inner walls of the pure water supply / recovery flow paths 21 and 22 to propagate.

また、観察中に、殺菌用の紫外光が迷光となって邪魔な場合には、ウエハWのロード/アンロード中のように、ウエハWを観察していない時を利用して、光ファイバー42の光源側端部に設けた不図示のシャッターをOPENすれば良い。   Further, during the observation, when the sterilizing ultraviolet light is disturbed by stray light, the time when the wafer W is not observed, such as during loading / unloading of the wafer W, is used. An unillustrated shutter provided at the light source side end may be opened.

なお、本発明は、上述した実施の形態に限定されず、純水供給流路及び回収流路のいずれか一方にのみ紫外線を照射する構成にしてもよいし、種々変形可能である。   In addition, this invention is not limited to embodiment mentioned above, You may make it the structure which irradiates an ultraviolet-ray only to any one of a pure water supply flow path and a collection | recovery flow path, and can change variously.

本発明の第1実施の形態に係る顕微鏡観察装置の模式図である。1 is a schematic diagram of a microscope observation apparatus according to a first embodiment of the present invention. (a)は、図1に示した液浸対物レンズの断面図であり、(b)は、(a)の矢印bの矢視図である。(A) is sectional drawing of the immersion objective lens shown in FIG. 1, (b) is an arrow line view of the arrow b of (a). (a)は、図1に示した液浸対物レンズの断面図であり、(b)は、(a)の矢印bの矢視図であり、(c)は、(a)の矢印cの矢視図である。(A) is sectional drawing of the immersion objective lens shown in FIG. 1, (b) is an arrow view of the arrow b of (a), (c) is the arrow c of (a). It is an arrow view. (a)は、明視野観察のハーフミラーと反射ミラーの切替状態を示す模式図(図1のIII−III線に沿った図)であり、(b)は、明視野観察のハーフミラーと反射ミラーの光の反射状態を示す模式図である。(A) is a schematic diagram (drawing along the III-III line of FIG. 1) which shows the switching state of the half mirror and reflection mirror of bright field observation, (b) is the half mirror and reflection of bright field observation. It is a schematic diagram which shows the reflective state of the light of a mirror. 本発明の第2実施の形態に係り、液浸対物レンズの断面図である。It is sectional drawing of the immersion objective lens concerning 2nd Embodiment of this invention. 本発明の第2実施の形態の変形例に係る顕微鏡観察装置の模式図である。It is a schematic diagram of the microscope observation apparatus which concerns on the modification of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 顕微鏡装置
2 紫外線の照明光源
3 コレクタレンズ
4 開口絞(AS)
5 視野絞(FS)
6 コンデンサレンズ
7 明視野のハーフミラー
8 液浸対物レンズ
9 第2対物レンズ
10 折り曲げミラー
11 接眼レンズ
12 CCD
13 XYステージ
14 Zステージ
15 ウエハ保持部材
16 純水源(純水製造装置など)
17 定量吐出ポンプ
18 真空源
19 排水回収槽
20 鏡筒
20a 金物
20b 筒状部材
20c 環状部材
21 純水供給流路
22 純水回収流路
23 供給配管
24 回収配管
25 カバーガラス(透過部材)
30 反射ミラー
30a 丸穴
30b 周辺部のミラー面(反射部)
31 凹面鏡(反射部材)
40 紫外線殺菌灯
41 光分離手段41
42 光ファイバー
43 紫外線照射口(照射部材)
DESCRIPTION OF SYMBOLS 1 Microscope apparatus 2 UV illumination light source 3 Collector lens 4 Aperture stop (AS)
5 Field of view (FS)
6 Condenser Lens 7 Bright Field Half Mirror 8 Immersion Objective Lens 9 Second Objective Lens 10 Bending Mirror 11 Eyepiece 12 CCD
13 XY stage 14 Z stage 15 Wafer holding member 16 Pure water source (pure water production equipment, etc.)
DESCRIPTION OF SYMBOLS 17 Constant discharge pump 18 Vacuum source 19 Wastewater collection tank 20 Lens barrel 20a Hardware 20b Cylindrical member 20c Annular member 21 Pure water supply flow path 22 Pure water recovery flow path 23 Supply pipe 24 Recovery pipe 25 Cover glass (transmission member)
30 Reflective mirror 30a Round hole 30b Mirror surface (reflective part) at the periphery
31 Concave mirror (reflective member)
40 UV germicidal lamp 41 Light separation means 41
42 Optical fiber 43 Ultraviolet irradiation port (irradiation member)

Claims (8)

対物レンズの鏡筒に設けてあり、対物レンズの焦点位置近傍に純水を供給する純水供給流路と、
前記鏡筒に設けてあり、当該焦点位置近傍から純水を回収する純水回収流路と、
紫外線を発する光源と、
当該光源から、少なくとも純水供給流路に、当該紫外線を案内して照射する案内手段と、を具備することを特徴とする顕微鏡観察装置。
A pure water supply channel that is provided in the lens barrel of the objective lens and supplies pure water near the focal position of the objective lens;
Provided in the lens barrel, and a pure water recovery flow path for recovering pure water from the vicinity of the focal position;
A light source that emits ultraviolet light;
A microscope observation apparatus comprising: guide means for guiding and irradiating the ultraviolet light from at least the pure light supply flow path from the light source.
前記案内手段は、前記光源から前記純水回収流路に前記紫外線を案内して照射することを特徴とする請求項1に記載の顕微鏡観察装置。   The microscope observation apparatus according to claim 1, wherein the guide unit guides and irradiates the ultraviolet light from the light source to the pure water recovery channel. 前記案内手段は、
明視野観察のためのハーフミラーと、
中央部に開口を有し、周辺部に反射部を有する反射ミラーと、
明視野観察時には、前記光源からの紫外線を明視野観察のハーフミラーにより反射して、観察対象に案内する一方、殺菌時には、前記光源からの紫外線を前記反射ミラーにより反射して、前記純水供給流路又は純水回収流路に案内するように、前記両ミラーを切り替えるミラー切替手段と、を有することを特徴とする請求項1又は2に記載の顕微鏡観察装置。
The guiding means includes
Half mirror for bright field observation,
A reflection mirror having an opening in the center and a reflection part in the periphery;
At the time of bright field observation, the ultraviolet light from the light source is reflected by the half mirror for bright field observation and guided to the observation target, while at the time of sterilization, the ultraviolet light from the light source is reflected by the reflection mirror to supply the pure water. The microscope observation apparatus according to claim 1, further comprising: a mirror switching unit that switches the both mirrors so as to guide the flow path or the pure water recovery flow path.
前記案内手段は、
前記鏡筒に設けてあり、前記ミラーにより反射された紫外線を前記純水供給流路又は純水回収流路内に透過して導く透過部材を有することを特徴とする請求項3に記載の顕微鏡観察装置。
The guiding means includes
4. The microscope according to claim 3, further comprising a transmission member that is provided in the barrel and guides the ultraviolet rays reflected by the mirror through the pure water supply channel or the pure water recovery channel. Observation device.
前記案内手段は、
前記鏡筒の先端部に設けてあり、前記純水供給流路又は純水回収流路内に案内された紫外線を、前記対物レンズの焦点位置近傍の純水に向けて反射する反射部材を有することを特徴とする請求項3に記載の顕微鏡観察装置。
The guiding means includes
A reflection member provided at a tip of the lens barrel and configured to reflect ultraviolet rays guided in the pure water supply channel or the pure water recovery channel toward pure water in the vicinity of a focal position of the objective lens; The microscope observation apparatus according to claim 3.
前記案内手段は、
紫外線を透過する材質から形成した対物レンズの透過性鏡筒を有することを特徴とする請求項1又は2に記載の顕微鏡観察装置。
The guiding means includes
The microscope observation apparatus according to claim 1, further comprising a transmission lens barrel of an objective lens formed of a material that transmits ultraviolet rays.
前記光源は、前記透過性鏡筒の周囲に配置してあることを特徴とする請求項6に記載の顕微鏡観察装置。   The microscope observation apparatus according to claim 6, wherein the light source is arranged around the transmissive barrel. 前記案内手段は、
前記光源からの紫外線を導く光ファイバーと、
当該光ファイバーにより導かれた紫外線を、前記透過性鏡筒の周囲から、前記純水供給流路又は純水回収流路に向けて照射する照射部材と、を有することを特徴とする請求項6に記載の顕微鏡観察装置。
The guiding means includes
An optical fiber for guiding ultraviolet rays from the light source;
An irradiation member that irradiates the ultraviolet light guided by the optical fiber from the periphery of the transmissive lens tube toward the pure water supply flow path or the pure water recovery flow path. The microscope observation apparatus described.
JP2005010655A 2005-01-18 2005-01-18 Microscopic observation apparatus Withdrawn JP2006201288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010655A JP2006201288A (en) 2005-01-18 2005-01-18 Microscopic observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010655A JP2006201288A (en) 2005-01-18 2005-01-18 Microscopic observation apparatus

Publications (1)

Publication Number Publication Date
JP2006201288A true JP2006201288A (en) 2006-08-03

Family

ID=36959374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010655A Withdrawn JP2006201288A (en) 2005-01-18 2005-01-18 Microscopic observation apparatus

Country Status (1)

Country Link
JP (1) JP2006201288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109748A (en) * 2007-10-30 2009-05-21 Olympus Corp Optical microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109748A (en) * 2007-10-30 2009-05-21 Olympus Corp Optical microscope

Similar Documents

Publication Publication Date Title
TWI245163B (en) Lithographic apparatus and device manufacturing method
JP4108970B2 (en) Total reflection fluorescence microscope with white light source
JP5345739B2 (en) Method and apparatus for liquid disinfection using a light transmissive conduit
US8000003B2 (en) Fluorescence microscope
WO1998057213A1 (en) Optical device, method of cleaning the same, projection aligner, and method of producing the same
JP2005083800A (en) Flaw inspection method and flaw inspection device
TW200415375A (en) Contaminant removing method and device, and exposure method and apparatus
JP2009177183A (en) Lithography apparatus and device manufacturing method
EP3677945B1 (en) Phase difference observation device and cell treatment device
TW200537122A (en) Microscope and immersion objective lens
JP2006201288A (en) Microscopic observation apparatus
JP2011171620A (en) Exposure device, cleaning method, and method of manufacturing the device
JP4989423B2 (en) Optical microscope
JP5644101B2 (en) Exposure equipment
JP2006243425A (en) Microscope system
JP2006201605A (en) Microscopic observation apparatus
US6867914B2 (en) Ultraviolet microscope
JP2010251142A (en) Light irradiation apparatus and inspection device
JP2013134491A (en) Microscope and light-transmissive unit
JP2007286162A (en) Immersion microscopic device
JP2009182328A (en) Immersion lithography apparatus
JP2010145950A (en) Liquid-immersion objective lens and microscope including the same
JP2009098230A (en) Condenser lens cover and shield cover for microscope illumination light
JP2009122372A (en) Ultraviolet microscope
JP3647056B2 (en) Microscope and magnification switching device for illumination light of microscope

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401