JP2006201024A - Distribution type of evaluation method for snowice as water resource - Google Patents

Distribution type of evaluation method for snowice as water resource Download PDF

Info

Publication number
JP2006201024A
JP2006201024A JP2005012915A JP2005012915A JP2006201024A JP 2006201024 A JP2006201024 A JP 2006201024A JP 2005012915 A JP2005012915 A JP 2005012915A JP 2005012915 A JP2005012915 A JP 2005012915A JP 2006201024 A JP2006201024 A JP 2006201024A
Authority
JP
Japan
Prior art keywords
snow
amount
runoff
outflow
snowfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005012915A
Other languages
Japanese (ja)
Other versions
JP4535379B2 (en
Inventor
Minjiao Lu
旻皎 陸
Norio Hayakawa
典生 早川
Isao Ueishi
勲 上石
Fumio Miyashita
文夫 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUGOSU KK
HOKURIKU KENSETSU KOSAIKAI
Nagaoka University of Technology NUC
Original Assignee
ARUGOSU KK
HOKURIKU KENSETSU KOSAIKAI
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUGOSU KK, HOKURIKU KENSETSU KOSAIKAI, Nagaoka University of Technology NUC filed Critical ARUGOSU KK
Priority to JP2005012915A priority Critical patent/JP4535379B2/en
Publication of JP2006201024A publication Critical patent/JP2006201024A/en
Application granted granted Critical
Publication of JP4535379B2 publication Critical patent/JP4535379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distribution type of an evaluation method for snowice as a water resource such as predicting future variation by grasping a variation in accurate snowice water resource quantity in objective region and variation in outflow rate of the objective region, for example, by the eventual output, outflow rate for snowfall and snow melting in order to construct a system by verifying and correcting actual outflow and calculation outflow using a distribution type of an outflow model. <P>SOLUTION: The objective region is partitioned in a grid. From snowfall in each grid by meteorological data and each geographical conditions and the outflow of each grid including snow melting by a phenomenological model based on snowfall quantity, snow melting, soil penetration and evaporation, the outflow rate of the whole objective region is calculated from a pseudo river channel network by actual river data and geological data. By verifying and comparing the outflow and the actual outflow and correcting parameters for correcting the snowfall quantity in each grid and calculating the snowfall quantity, snow melting or outflow, accurate snowice water resources in the objective region is grasped with the distribution type of the evaluation method for the snowice water resources. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば山岳域の積雪量の分布を定量的に算定可能な分布型融雪流出モデルを対象流域に適用し、高精度に雪氷水資源量と流出量の変動を評価・予測するものである。   The present invention applies, for example, a distributed snowmelt runoff model capable of quantitatively calculating the distribution of snow cover in mountainous areas to target basins, and evaluates and predicts fluctuations in snow ice water resources and runoff with high accuracy. is there.

ダムは、利水,親水,治水の役割を担っており、その管理が流域の社会及び自然環境へ与える影響が大きい。   Dams have the role of water use, water hydrophilicity, and flood control, and their management has a great impact on the basin society and natural environment.

即ち、水源となる降水は、雪又は雨として降り、その季節変動など全体的傾向は概ね把握されているが、量的には年々変動が大きいこともあり不確定な面が多い。特に、山岳地域の降積雪は、分布状況が未解明であり、その測定データも少なくないことから、定量的な分布を把握することが困難となっている。   That is, precipitation as water source falls as snow or rain, and the overall trend such as seasonal variation is generally grasped. However, there are many uncertain aspects in terms of quantitative variation every year. In particular, snowfall in mountainous areas is not well understood and its measurement data is not small, so it is difficult to grasp the quantitative distribution.

そのため適切な水資源管理を遂行するにあたり、難しい判断が強いられる状況にある。   For this reason, it is difficult to make judgments when performing appropriate water resource management.

従来の河川流出モデルは、降雨に伴う流出を対象としており、降積雪及び融雪に伴う流出は河川流出モデルに反映されていなかった。   Conventional river runoff models target runoff associated with rainfall, and runoff associated with snowfall and melting has not been reflected in the river runoff model.

それぞれ独立したモデル計算によって降雪や積雪,融雪は推定されても、実際の量を把握することが困難なため、検証されることがなく、信頼性が低いと言える。   Even if snowfall, snowfall, and snowmelt are estimated by independent model calculations, it is difficult to grasp the actual amount, so it is not verified and the reliability is low.

降積雪モデル及び融雪モデルから出力される計算降積雪量及び計算融雪量は、実際データの収集は困難であるため、それぞれの計算値を検証し、精度向上を図ることは困難であった。   Since it is difficult to collect actual data, it is difficult to verify the calculated values and improve the accuracy of the calculated snowfall and the calculated snowmelt output from the snowfall model and the snowmelt model.

別表「分布型融雪流出モデル研究業績」Appendix: "Distributed Snowmelt Runoff Model Research Achievements"

そこで本発明では、山岳域の降積雪分布を定量的に算定可能な分布型融雪流出モデルを対象流域に適用し、高精度に雪氷水資源量と流出量の変動を評価・予測するものである。   Therefore, in the present invention, a distributed snowmelt runoff model capable of quantitatively calculating snowfall distribution in mountain areas is applied to the target basin, and fluctuations in the amount of snow ice water resources and runoff are accurately estimated and predicted. .

本発明では、以下のアウトプットを得る。   In the present invention, the following output is obtained.

(1) ダム集水域の定量的な雪氷水資源量、及び流出量を評価する手法を提案する。   (1) We propose a method to evaluate the quantity of snow and ice water resources and runoff in the dam catchment area.

(2) 代表的な気象パターン(豊水年,平水年,渇水年)における、雪氷水資源量及び流
出量の推定結果を示す。
(2) Estimated results of snow and ice water resources and runoff in typical meteorological patterns (water-filled years, flat-water years, drought years).

(3) 今年度末までの気象データから流域の雪氷水資源量を推定し、各気象パターンに基
づいて、融雪期(3〜6月)における流出予測を示す。
(3) Estimate the amount of snow, ice and water resources in the basin from the meteorological data up to the end of the current fiscal year, and show the runoff prediction during the snowmelt season (March to June) based on each weather pattern.

(4) 長期気象変動予測に基づいて、雪氷水資源量及びその流出への影響を示す。   (4) Based on long-term meteorological fluctuation forecasts, the amount of snow and ice water resources and their impact on runoff are shown.

本発明の成果を活用することで、広大なダム集水域の定量的な雪氷水資源量をリアルタイムに把握し、融雪期の水資源量及び流量の変化を予測することが可能になる。これにより、水資源管理が容易になり、予測情報から早期の対策が可能となると考えられる。   By utilizing the results of the present invention, it becomes possible to grasp in real time the quantitative amount of snow and ice resources in a vast dam catchment area and to predict changes in the amount of water resources and the flow rate during the snowmelt season. As a result, water resource management becomes easy, and it is considered that early measures can be taken from the prediction information.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

対象流域を格子状に区画し、気象データと各地形条件によって各格子での積雪量と、降雪水量・融雪・土壌浸透・蒸発散に基づく物理現象モデルによって融雪を含めた各格子の流出量から、実河道データと地形データとから得られる擬河道網に基づいて対象流域全体の流出量とを求め、この解析により求めた対象流域全体の流出量と実際の流出量とを検証比較して前記各格子の積雪量を補正若しくは降雪水量又は融雪量又は流出量を求めるパラメータを補正設定することで、この対象流域での精度の高い雪氷水資源量を把握することを特徴とする雪氷水資源の分布型評価方法に係るものである。   The target watershed is divided into grids, and the amount of snow on each grid is determined by meteorological data and topographical conditions, and the amount of runoff from each grid including snowmelt is determined by a physical phenomenon model based on snowfall, snowmelt, soil infiltration, and evapotranspiration. In addition, the outflow amount of the entire target basin is obtained based on the pseudo river network obtained from the actual river channel data and the topographic data, and the outflow amount of the entire target basin obtained by this analysis is compared with the actual outflow amount by verifying and comparing The snow ice water resource is characterized by grasping the snow ice water resource amount with high accuracy in this target basin by correcting the snow accumulation amount of each grid or correcting the parameter for calculating the snow water amount, the snow melting amount or the runoff amount. This relates to the distributed evaluation method.

また、前記対象流域での精度の高い雪氷水資源量の変化と対象流域の流出量の変化を把握して今後の変化を予測することを特徴とする請求項1記載の雪氷水資源の分布型評価方法に係るものである。   2. The distribution type of snow and ice water resources according to claim 1, wherein a change in snow and ice water resources with high accuracy in the target basin and a change in runoff of the target basin are grasped and future changes are predicted. It relates to the evaluation method.

また、利水ダムの集水域を前記対象流域とし、この対象流域の雪氷水資源量を把握することでこの利水ダムの放流を制御管理することを特徴とする請求項1,2のいずれか1項に記載の雪氷水資源の分布型評価方法に係るものである。   Moreover, the discharge area of this water dam is controlled and managed by grasping the amount of snow, ice, and water resources in the water basin as the target water basin. This relates to the distribution-type evaluation method for snow and ice water resources described in 1.

本発明は上述のように構成したから、分布型流出モデルによる計算流出量と実際の流出量とを検証して補正修正しシステムを構築するため、降積雪量及び融雪量を、最終的なアウトプットである流出量によって、検証していない既存モデルよりも信頼性の高い値を推定することが可能になり、対象流域での精度の高い雪氷水資源量を把握することができ、これにより例えば前記対象流域での精度の高い雪氷水資源量の変化と対象流域の流出量の変化を把握して今後の変化を予測することなど極めて秀れた雪氷水資源の分布型評価方法となる。   Since the present invention is configured as described above, in order to construct a system that verifies and corrects the calculated runoff amount based on the distributed runoff model and the actual runoff amount, and constructs a system, the amount of snowfall and the amount of snowmelt are finally output. It is possible to estimate values that are more reliable than existing models that have not been verified, and to grasp snow and ice water resources with high accuracy in the target basin. This is an extremely excellent distribution-type evaluation method for snow and ice water resources, such as predicting future changes by grasping changes in the amount of snow and ice water resources with high accuracy in the target basin and changes in the amount of runoff from the target basin.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

例えば、既存の気象観測所及びその他の手法により得られた雨量や気温などの気象データに基づいて、河川流域の積雪や融雪及びそれに伴う融雪を、河川流域を数10mから数100mの格子状に区分して、それぞれの格子について流出計算を行う。   For example, based on meteorological data such as rainfall and temperature obtained by existing weather stations and other methods, snow accumulation and snow melting in a river basin and the accompanying snow melting are converted into a grid of tens to hundreds of meters in the river basin. Divide and calculate runoff for each grid.

各格子点の標高データと実河道データから流域界と起伏を考慮し各格子間を結ぶ数値的な水の流路(擬河道網)を作成する。   A numerical water channel (pseudo river network) that connects the grids is created from the elevation data and actual river channel data of each grid point in consideration of the basin boundary and undulations.

擬河道網を介して流出量を、積雪融雪過程の物理モデルを導入した分布型流出モデルの手法を用いて計算する。   The amount of runoff through the simulated river network is calculated using a distributed runoff model method that introduces a physical model of the snow melting process.

気象データが得られていない地域の任意の時間における降雪量とその変化を信頼性高く推定する。   The amount of snowfall and its change at an arbitrary time in an area where weather data is not available are estimated with high reliability.

雪氷水資源量の推定
(a) 山岳域の積雪量解析(積雪による水資源の賦存量解析)
流域内の雪氷水資源量について、本モデルを用いて、解析対象年毎に雪氷水資源量
の各格子点における時系列変化,並びに流域全体の雪氷水資源量を定量的に求める解
析をする。
Estimating snow and ice water resources
(a) Snow cover analysis in mountainous areas (Analysis of existing water resources due to snow cover)
Use this model to analyze the amount of snow, ice, and water resources in the basin quantitatively for each year of the analysis, and to quantitatively determine the amount of snow, ice, and water resources in the basin as a time series at each grid point .

(b) 気象変動による水資源変動解析と環境影響変化解析
流出融雪解析モデルに気象の長期変動傾向を入力し、将来における水資源量を把握
し、温暖化現象などの長期的な気象変動の雪氷水資源量への影響を評価する解析をす
る。
(b) Water resource fluctuation analysis and environmental impact change analysis due to weather fluctuations Long-term fluctuation trends of weather are input into the runoff and snowmelt analysis model, the amount of water resources in the future is grasped, and snow and ice of long-term weather fluctuations such as global warming phenomenon Analyze the impact on water resources.

(c) 積雪を主要水源とする利水ダムの管理・制御手法への適用
融雪流出解析モデルを用いて利水ダムの集水域の雪氷水資源量を格子点毎に定量的
に求め、将来のダムの洪水や渇水に備えた放流を制御管理することに応用する。
(c) Application to the management and control method of water utilization dams that use snow as the main water source Using snowmelt runoff analysis models, the amount of snow and ice water in the catchment area of the water utilization dam is quantitatively determined for each grid point, and future dam It is applied to control and manage discharge for flood and drought.

融雪災害危険性予測
(a) 融雪泥流解析
融雪流出解析モデルを用いて活火山の積雪量を推定し、積雪期の火山活動による融
雪泥流の規模及び発生時の危険度を予測する。
Snowmelt disaster risk prediction
(a) Snowmelt mud flow analysis The snowmelt runoff model is used to estimate the amount of snowfall in active volcanoes, and to predict the size and risk of snowmelt mudflow due to volcanic activity during the snowfall season.

(b) 融雪洪水解析
気象庁により提供される気象予測データ(降水,気温,雲量等)をインプットデー
タとし、融雪期の降雨や気温上昇による融雪洪水の任意の時間先まで流出量を予測す
る。
(b) Snowmelt flood analysis Meteorological forecast data (precipitation, temperature, cloud cover, etc.) provided by the Japan Meteorological Agency is used as input data to predict runoff to any time ahead of snowmelt floods due to rainfall during the snowmelt season or temperature rise. .

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本モデルは、流域情報を平均化して計算させる「集中型流出モデル」と異なり、流域の地形や気象の不均一性に対応した「分布型流出モデル」である。流域の地形条件や気象条件は不均一であるため、より現実的な状況を再現させるために流域を細かい格子状に分割し、それぞれの格子において地理・気象条件を考慮して計算を行うものである。   This model is a “distributed runoff model” corresponding to the terrain of the basin and the heterogeneity of the weather, unlike the “centralized runoff model” that calculates the basin information by averaging. Since the terrain and weather conditions of the basin are uneven, the basin is divided into fine grids to reproduce a more realistic situation, and each grid is calculated taking into account geography and weather conditions. is there.

流出計算は、各格子に入力される降水(雨か雪)に対し、物理現象モデル(降水、融雪、土壌浸透、蒸発散、等)により流出を計算し、格子点間を結ぶ経路を通って流域出口まで追跡計算させている。   For runoff calculation, runoff is calculated for each precipitation (rain or snow) input to each grid using a physical phenomenon model (precipitation, snowmelt, soil infiltration, evapotranspiration, etc.) Follow-up calculation to the basin exit.

なお、本モデルは、降積雪と融雪過程を各格子に組み込み、降雪期、融雪期を含む長期間の流域流量を再現させることが可能である。   This model incorporates snowfall and melting processes into each grid, and can reproduce the long-term basin flow including the snowfall and snowmelt periods.

即ち、本発明は、流出解析モデルと融雪流出モデルよりなる。全体のシステムは与えられた河川流域について、降水量,気温などの気象データを入力値とし、流域を一定間隔の格子点で区切って、その格子点上で流出流量、積雪量を計算し、流出した水の流れを格子点から格子点へ擬河道網を経由して追跡し、最終的には流域出口での河川流量を得るものである。   That is, the present invention comprises a runoff analysis model and a snowmelt runoff model. The entire system uses meteorological data such as precipitation and temperature as input values for a given river basin, divides the basin at grid points at regular intervals, calculates runoff flow and snowfall on the grid points, The water flow is traced from the grid point to the grid point via the pseudo river network, and finally the river flow at the basin exit is obtained.

従って、このシステムでは数十平方kmから数千平方kmに及ぶ流域を間隔50m程度の格子点で代表させ、格子点と格子点の間を結ぶ擬河道網を、水は高いところから低いところへ流れるという原理に従って構築するというコンピューターに強く依存した技術を必要とする。次にその各格子点において与えられた降水量と気温から降水を雨と雪に分類し、各格子点に堆積した積雪については気温,日射量に応じて融解させる計算を格子点ごとに行う。各格子点で発生した流出水は、複雑な擬河道網を効率良く追跡する計算手法により、流域出口での河川流量を計算する。この一連の手法の中で、降雪量(積雪量)の分布を定めるパラメータを同定する必要があり、この同定を成し遂げたモデルは高精度な流域出口での流量再現が出来ると共に、各格子点での流出量と積雪量を高精度で与えるものである。   Therefore, in this system, watersheds ranging from several tens of square kilometers to several thousand square kilometers are represented by lattice points with an interval of about 50 m, and the pseudo river network connecting the lattice points to the place where the water is from high to low. It requires a technology that relies heavily on computers that are built according to the principle of flow. Next, the precipitation is classified into rain and snow from the precipitation and temperature given at each grid point, and the snow accumulated at each grid point is calculated for each grid point to melt according to the temperature and solar radiation. For the runoff generated at each grid point, the river flow at the basin exit is calculated by a calculation method that efficiently tracks a complex pseudo river network. In this series of methods, it is necessary to identify the parameters that determine the distribution of snowfall (snow accumulation), and the model that achieves this identification can reproduce the flow rate at the basin outlet with high accuracy and at each grid point. The amount of snow runoff and the amount of snow are given with high accuracy.

このような出力が可能であるモデルを用いて、雪氷水資源の評価に応用することができる。すなわち山地に堆積した積雪は重要な水資源であると考えられる。本モデルではこの積雪量が高精度にしかも分布的に得られることになる。例えば、3月末の雪が降らなくなる時期において、山に堆積した雪がどの位あるかという情報は春の水資源管理の上で重要な情報となる。しかも本モデルにより、融雪流量も高精度に求めることができる。さらにこのような雪氷水資源量が地球温暖化などの気候変動によりどのような変化を受けるかを高精度で求めることができる。このように水資源管理に応用する技術を含めたものとして本技術を考える。   Using a model that can output in this way, it can be applied to the evaluation of snow and ice water resources. In other words, snow accumulation in the mountains is considered an important water resource. In this model, the amount of snow can be obtained with high accuracy and distribution. For example, information on how much snow has accumulated in the mountains at the end of March when snow does not fall is important information for spring water resource management. Moreover, the snowmelt flow rate can be obtained with high accuracy by this model. Furthermore, it is possible to determine with high accuracy how the amount of snow, ice and water resources is affected by climate change such as global warming. In this way, this technology is considered to include technology applied to water resources management.

<従来からのモデルとの相違>
従来からある流出解析モデルは通常は流域を一つの容器のようにみなし、そこに平均的な量の降水量があったと考えるのが大部分であった。本モデルのように流域を各格子ごとに分割して分布的に流出量を計算するものは最近出始めてはいるが、積雪量を計算しそれを応用するという発想は本発明が初めてである。即ち、本モデルでは各格子点において、流出量,積雪量などが高精度で得られるために、従来山地の堆積した雪の量は定量的に知る方法はなかった。このモデルではこれらの情報から山地の雪の堆積量の情報がはじめて高精度に得られるようになったものであり、雪氷水資源管理に応用が初めて可能になったものである。
<Differences from conventional models>
Conventional runoff analysis models usually considered the basin as a single vessel and considered that there was an average amount of precipitation there. Although this type of model has recently started to divide the basin for each grid and calculate the runoff amount in a distributed manner, the present invention is the first idea to calculate the snowfall amount and apply it. In other words, in this model, since the amount of runoff, the amount of snowfall, etc. can be obtained with high accuracy at each grid point, there has been no method for quantitatively knowing the amount of snow accumulated in the mountains in the past. In this model, the information on the amount of snow accumulation in the mountainous area can be obtained with high accuracy for the first time from this information, and this is the first application for snow and ice water resource management.

以下、更に詳細に説明する。   This will be described in more detail below.

1.「分布型融雪流出モデル」の特徴
雪氷水資源を扱う上では、アウトプットである流出量を求めるまでに、「降積雪プロセス」、「融雪プロセス」、「流出プロセス」の3つのプロセスを扱う必要がある。従来、それぞれのプロセスは統合的化されることは少なく、流域全体の雪氷水資源量及び融雪流出量を関連付けて扱うことは少なかった。
1. Features of the “distributed snowmelt runoff model” When dealing with snow and ice water resources, it is necessary to handle the three processes of “falling snowfall process”, “snowmelt process”, and “runoff process” before obtaining the output runoff amount. There is. In the past, each process was rarely integrated, and it was rare to relate snow ice water resources and snowmelt runoff in association with the entire basin.

本モデルは、各プロセスにおいて既往の研究成果から物理現象に基づいたモデルを適用し、それらを組み合わせることにより現実的な融雪流出過程を表現している。   This model expresses a realistic snowmelt runoff process by applying a model based on physical phenomena from past research results in each process and combining them.

(1) 流域条件の不均一性を「分布型」により表現している
流域を均一条件として捉える「集中型」に対して、本モデルで採用している「分布
型」は、流域全体を細かな格子状に区画し、もともと不均一な気象条件や地形条件を
捉えることが出来る手法である。
(1) Non-uniformity of basin conditions is expressed by `` distribution type '' The `` distribution type '' adopted in this model is more detailed for the `` distribution type '' that considers the basin as a uniform condition. It is a technique that can be divided into a grid and capture the originally uneven weather conditions and topographic conditions.

この分布型手法では、各格子において、各プロセスの計算を行うことにより、空間
的な偏りがある気象条件や地理条件を反映させ、解析することが可能である。
In this distributed method, it is possible to analyze by reflecting the weather and geographical conditions with spatial bias by calculating each process in each grid.

(2) 流域全体の流路構造を「擬河道網」により表現している
擬河道網は、「水は高所から低所へ流れる」を原則として、実際には見えない水の
流路構造を、数値的に表現している。
(2) The channel structure of the entire basin is expressed by the `` pseudo river network '' The pseudo river network is based on the principle that `` water flows from a high place to a low place ''. Is expressed numerically.

各格子のアウトプットである流出量は、この「擬河道網」を介して追跡計算され、
流末で流域全体の流出量として出力される。
The amount of outflow that is the output of each grid is tracked and calculated via this "pseudo river network"
It is output as the outflow of the entire basin at the end of the river.

(3) 高精度で信頼性の高い積雪水量・融雪量を推定できる
本モデルは、降雪期、融雪期を含む長期間の流域流量をモデルで再現させるために
、降積雪及び融雪のプロセスを統合しており、計算過程の副産物として積雪量、融雪
量の算定が可能である。
(3) Accurate and reliable estimation of snowfall and snowmelt volume This model integrates the process of snowfall and snowmelt to reproduce the long-term basin flow including the snowfall and snowmelt periods in the model. As a by-product of the calculation process, it is possible to calculate snow cover and snow melt.

算定された積雪量と融雪量は、それぞれのプロセスが連続的に統合されているため
、最終的なアウトプットである計算流出量を実際の流出量で検証することにより、高
精度で信頼性が高い値となっている。
The calculated snow cover and snow melt are integrated with each other in a continuous manner. Therefore, by verifying the calculated runoff, which is the final output, with the actual runoff, it is highly accurate and reliable. High value.

(4) 標高や観測機器の誤差を考慮して「降雪量」を推定している
山岳地域の降積雪は、その測定データが少なく分布状況が未解明であるため、定量
的な分布を把握するためには、領域内に設けた数ヶ所の観測データから推定するしか
方法がない。
(4) Estimate the amount of snowfall taking into account the altitude and error of observation equipment Snowfall in mountainous areas has little measurement data and the distribution status is unknown, so grasp the quantitative distribution The only way to do this is to estimate it from several observation data provided in the area.

そのため、観測された降水量から単純に積算した流域平均降水量と、積算した流域
流出高(流域流出量/流域面積)を比較すると、前者は後者より小さい。その理由と
しては、
ア)降雪時の降水量計は、真の降水量の一定割合しか捕捉していないこと
イ)山岳地域にあっては、降雪時の降水量は高度依存性があり、降水量計地点より
高所の降水量増が反映されていないこと
そこで、本モデルでは、標高による降雪量の違いを補正する「降雪量標高補正係数
」と、雨量計による雪粒子の捕捉不足を補正するための「雨量計補正係数」を導入し
ている。
Therefore, when comparing the basin average precipitation calculated simply from the observed precipitation and the integrated basin outflow height (basin outflow / basin area), the former is smaller than the latter. The reason is
A) Precipitation meter during snowfall captures only a certain percentage of true precipitation. B) In mountainous areas, precipitation during snowfall is altitude-dependent.
Therefore, this model does not reflect the increase in precipitation at high altitudes.In this model, the snowfall altitude correction coefficient that corrects the difference in snowfall due to altitude and the lack of snow particle capture by the rain gauge are corrected. A rain gauge correction factor has been introduced.

(5) 日射や地形条件を踏まえて「融雪」を表現している
従来、融雪は気温のみをパラメータとした「積算暖度(degree day,degree hour
)法」が一般に採用されているが、本モデルでは、熱収支法を用いて放射収支、顕熱
潜熱を計算し、斜面方向や勾配など地形による影響が考慮されている。
(5) “Snow melting” is expressed based on solar radiation and topographical conditions. Conventionally, snow melting is based on the temperature only as a parameter.
In this model, the heat balance method is used to calculate the radiation balance and sensible heat latent heat, and the effects of topography such as slope direction and gradient are taken into account.

2.分布型融雪流出モデルの解析フロー
(1) 降積雪(降水)プロセス
(a) 降水量データの配分
一般に降水量データは流域内に設けた数ヶ所の降水量計においてのみ知られてお
り、これらの値を、各降水量計周辺の格子に配分する。
2. Analysis flow of distributed snowmelt runoff model
(1) Snowfall (precipitation) process
(a) Allocation of precipitation data Generally, precipitation data is known only in several precipitation gauges in the basin, and these values are distributed to the grid around each precipitation gauge.

降水量データの配分は、観測所の設置密度による影響をなくすために最近隣法(
ティーセン法と同じ原理)を用いており、各格子に最も近い気象観測点の降水量が
使用される。
The distribution of precipitation data is based on the nearest neighbor method (
The same principle as the Thiessen method is used, and the precipitation at the weather station closest to each grid is used.

(b) 降水形態の判別
入力値として各格子要素に与えた降水量は、標高補正をしたその格子の気温によ
り、降雨と降雪のどちらかに判断される。降雪の場合は、各格子で積雪量として融
雪まで貯留される。
(b) Discrimination of precipitation type Precipitation given to each grid element as an input value is judged as either rain or snowfall depending on the temperature of the grid corrected for elevation. In the case of snowfall, snow is stored in each grid as snow accumulation.

(c) 降雪量の補正
本モデルにおける降雪量の算定では、一般的に言われている「降雪は高度ととも
に直線的に増加する」をモデル化し、標高による降雪量の違いを補正する「降雪量
標高補正係数」を導入している。
(c) Correction of snowfall In the calculation of snowfall in this model, the commonly-known `` snowfall increases linearly with altitude '' is modeled, and the difference in snowfall due to altitude is corrected. Snowfall altitude correction factor ”has been introduced.

また、雨量計の観測データには誤差が含まれていることが既往の研究により報告
されているため、雨量計による雪粒子の捕捉不足を補正するための「雨量計補正係
数」を導入している。
In addition, since previous studies have reported that rain gauge observation data contain errors, a rain gauge correction factor has been introduced to correct the lack of snow particle capture by rain gauges. ing.

以上をまとめると、標高hの格子点の雪としての降水量P(h)は、標高h0にあ
る観測点の雨量計観測値P(h0)を用いて次式のように書ける。
P(h)=A・P(h0)・[1+B・(h−h0)
Summarizing the above, precipitation P (h) as snow at the grid point at altitude h can be written as follows using the rain gauge observation value P (h 0 ) at the observation point at altitude h 0 .
P (h) = A · P (h 0 ) · [1 + B · (h−h 0 )

(2) 融雪プロセス
貯留された積雪は気温、日射などの気象要素により融解を受け、融雪流出を発生す
る。本モデルでは、放射エネルギー、顕熱、潜熱を考慮した熱収支法を採用しており
、高度且つ現実的なモデルで表現している。
(2) Snow melting process The stored snow is melted by meteorological factors such as temperature and solar radiation, and snow melting runoff occurs. This model employs a heat balance method that takes into account radiant energy, sensible heat, and latent heat, and is expressed by an advanced and realistic model.

(3) 流出プロセス
(a) 格子内での流出
格子内に入力されている降水量(降雨、融雪)は、土壌の保水能力や湿潤状態な
どを考慮した新安江モデルを経て、その格子点の流出量となり、下流へ向けて流出
する。
(3) Spill process
(a) Runoff in the grid Precipitation (rainfall, snowmelt) input in the grid becomes the runoff of the grid point through the Shin Yasue model taking into account the water retention capacity and wet state of the soil. Outflow downstream.

新安江モデルは、超蓄流出理論に基づく流出と蒸発散の流出プロセスが考慮され
ており、我が国のような湿潤地域において広く適合することが知られている。
The Shin Yasue model takes into account the runoff process of evapotranspiration and evapotranspiration based on the superstored runoff theory, and is known to be widely applicable in wet regions such as Japan.

超蓄流出理論は、「ある降水に対し土壌の貯水能力を超えるまで流出が発生しな
い」という考え方であり、超過した降水は、地下浸透する「基底流出」成分と、土
壌表面を流れ出る「直接流出」成分の2成分に分割され流出する。
The theory of superstored runoff is the idea that “a runoff does not occur until the water storage capacity of the soil is exceeded for a certain precipitation”, and the excess precipitation flows out to the “basal runoff” component that penetrates underground and the soil surface. Divided into two components, “Direct Outflow” component, and outflowed.

蒸発散は、土壌から直接蒸発する成分と樹木の葉から蒸散される成分が含まれて
おり、上層・下層・深層に分けられた上側の層から順番に水分を奪う形となってい
る。降水や融雪による補給の場合は、その逆となる。
Evapotranspiration contains a component that evaporates directly from the soil and a component that evaporates from the leaves of the tree, and takes away moisture sequentially from the upper layer divided into upper, lower, and deep layers. The reverse is true for replenishment by precipitation or melting snow.

(b) 各格子間での流出
各格子要素からの流出水は、各格子点間を結ぶ経路(擬河道網)を通って流域出
口まで追跡計算される。
(b) Runoff between each grid Runoff from each grid element is traced to the basin exit through the path connecting the grid points (pseudo river network).

本モデルの追跡計算には、
物理法則にしたがって基礎式をもとにして流出量を求めるキネマティックウエイ
ブ法(kinematic wave法、等価粗度法)を採用している。
For tracking calculation of this model,
The kinematic wave method (kinematic wave method, equivalent roughness method) is used to calculate the outflow based on the basic equation according to the physical law.

(c) 各格子間の流出経路
各格子間を結ぶ数値的な水の流路を「擬河道網」と呼び、各格子点の標高データ
と実河道データから、流域界と起伏を考慮して作成され、実河道と組み合わせるこ
とにより流域全体の流路構造を数値的に表現させている。
(c) Runoff path between each grid The numerical water flow path connecting each grid is called `` pseudo river network '', and the basin boundaries and undulations are taken into account from the altitude data and actual river channel data at each grid point. It is created and combined with the actual river channel to numerically represent the channel structure of the entire basin.

国土地理院の提供する国土地理情報は格子間隔50mであり、本モデルはその情
報を取り込むことにより「擬河道網」を作成する。
The Geographical Survey Information provided by the Geospatial Information Authority of Japan has a grid interval of 50 m, and this model creates a “pseudo river network” by incorporating this information.

3.推定積雪量の精度向上について
分布型融雪流出モデルは、各プロセス(降積雪、融雪、流出)を統合した流出モデルであるため、各プロセスの相互作用の最終的なアウトプットである流出量を検証することにより、上位プロセスである降積雪プロセス、融雪プロセスが検証されたことになる。
3. About accuracy improvement of estimated snow cover Since the distributed snowmelt runoff model is a runoff model that integrates each process (falling snow, snowmelt, runoff), it verifies the runoff that is the final output of the interaction of each process. By doing so, the upper snowfall process and the snow melting process are verified.

従って、既存モデルよりも高精度に降積雪量及び融雪量が推定することが可能になる。   Therefore, it is possible to estimate the amount of snowfall and the amount of snowmelt with higher accuracy than the existing model.

以下に既存モデルとの違いを示した。   The differences from the existing model are shown below.

(1) 既存モデルによるプロセスフロー
降積雪および融雪プロセスから出力される計算降積雪量および計算融雪量は、実際
データの収集は困難であるため、それぞれの計算値を検証し、精度向上を図ることは
困難である。
(1) Process flow based on existing model Since it is difficult to collect actual data on the amount of snowfall and the amount of snowmelt that are output from the snowfall and snowmelt processes, it is difficult to collect actual data. It is difficult.

(2) 流出モデルによるプロセスフロー
各プロセスを経てアウトプットされる計算流出量は、実際データが収集されている
流域の流末における流出量により、降雪期、融雪期を含む長期間の値に対して検証さ
れる。
(2) Process flow based on runoff model The calculated runoff output from each process is based on the runoff at the end of the basin where actual data is collected, compared to long-term values including the snowfall and snowmelt periods. Verified.

この検証により、上位プロセスである「降積雪プロセス」の精度向上が図られ、実
際の観測が困難である山岳域の雪氷水資源量を推定することが可能になる。
This verification will improve the accuracy of the “fall snow process”, which is a higher-level process, and will make it possible to estimate the amount of snow, ice and water resources in mountainous areas where actual observation is difficult.

4.具体的な進め方
(1) 資料収集整理
(a) 対象流域の既存文献・関連資料の収集整理
対象流域の関連する文献や資料として、下記に示すような資料を収集・整理する
4). How to proceed
(1) Collecting and organizing data
(a) Collecting and organizing existing documents and related materials in the target basin The following materials are collected and organized as related documents and materials in the target basin.

・流域の水資源利用に関する資料
・流域山岳域の積雪に関する資料
・ダムの管理に関する資料
・ Documents related to water resource use in the basin ・ Documents related to snowfall in the basin and mountainous areas

(b) 対象流域の気象および水文データの収集整理
対象流域および周辺の各種気象および水文データを、収集整理する。
(b) Collect and organize meteorological and hydrological data in the target basin Collect and organize various meteorological and hydrological data in the target basin and the surrounding area.

[気象・水文データ]
・気温、降水量、積雪深、日射、風向風速
・ダム管理データ(流入量、放流量、貯留量)
・対象河川の取水量(発電、上水、工業用水、農業用水等)
[Meteorological and hydrological data]
・ Temperature, precipitation, snow depth, solar radiation, wind direction and wind speed ・ Dam management data (inflow, discharge, storage)
・ Amount of water taken from the target river (power generation, tap water, industrial water, agricultural water, etc.)

[情報源候補]
・国土交通省水文観測所データ
・気象庁アメダスデータ
・各ダムおよび周辺ダム管理所の気象観測データ
[Candidate information source]
・ Ministry of Land, Infrastructure, Transport and Tourism hydrological observation data ・ Meteorological Agency AMeDAS data ・ Meteorological observation data of each dam and surrounding dam management station

流域内で観測所が平均的に分布していない、観測間隔、精度が均質でない、欠測
が多い等、精度の検証が必要と判断される場合は、現地観測を行なうこともある。
If it is judged that verification of accuracy is necessary, such as when stations are not distributed in the basin on average, observation intervals, accuracy is not uniform, or there are many missing data, on-site observations may be conducted.

風の吹き抜けや吹溜りによる影響が少ない平坦な開けた場所で積雪水量を観測し
、モデル計算値と比較することにより、検証を行なう。
Verification is performed by observing the amount of snow water in a flat, open area that is less affected by wind blowoffs and puddles, and comparing it with model calculations.

(c) 気象パターン毎のデータ抽出条件の検討
収集した気象、流量データから、豊水年、平水年、渇水年の気象パターンを抽出
し、雪氷水資源および流出量の予測・推定に適用する。
(c) Examination of data extraction conditions for each meteorological pattern Extract the meteorological patterns for the wet, normal, and dry years from the collected meteorological and flow data, and apply them to the prediction and estimation of snow and ice water resources and runoff.

ここで、豊水年、平水年、渇水年は、過去30年(気象学の一般的な定義に従っ
た。)の降水量データを収集し、出現頻度を解析により抽出する。なおデータが3
0年入手できない時には入手できる範囲で進めるものとする。
Here, precipitation data for the last 30 years (according to the general definition of meteorology) is collected for the water-filling year, the normal water year, and the drought year, and the frequency of occurrence is extracted by analysis. The data is 3
When it is not available in 0 years, it shall be advanced within the available range.

ア)豊水年とは年間総降水量が上位から1/4位(年間豊水流量の定義に従った
。(建設省河川砂防技術基準(案)同解説、調査編、p.57))に当たる年。
A) The annual amount of annual precipitation is ¼ from the top (according to the definition of annual water flow)
. (Ministry of Construction River Sabo Technical Standards (draft), explanation, survey, p.57)).

イ)平水年とは平均降水量に最も近い年。         B) A plain water year is the year closest to the average precipitation.

ウ)渇水年とは下位から1/10位(年間渇水流量の定義に従った。(建設省河
川砂防技術基準(案)同解説、調査編、p.57))に当たる年。
C) The drought year is 1 / 10th from the bottom (according to the definition of annual drought flow.
Year corresponding to the River Sabo Technical Standard (draft), the same commentary, survey, p.57)).

(2) 対象流域における分布型流出モデルの作成
(a) データセット作成
パラメータ同定のための、インプットデータセット(気象データ)および検証用
データセット(流出データ)を作成する。
(2) Creating a distributed runoff model in the target basin
(a) Data set creation Create input data sets (meteorological data) and verification data sets (runoff data) for parameter identification.

基本的に、毎時の観測データをインプットデータとして用いる。欠測等により均
質のデータが得られない場合は、補間や解析期間の制限などの手法により解析を進
める。
Basically, hourly observation data is used as input data. If uniform data cannot be obtained due to missing measurements, etc., the analysis proceeds by techniques such as interpolation and analysis period limitations.

インプットデータの種類は、以下が挙げられる。
[インプット気象データ]:気温、降水量、日射、風向風速
The types of input data include the following.
[Input weather data]: Temperature, precipitation, solar radiation, wind direction and wind speed

(b) 流出路ネットワークの作成
流出路ネットワークは、10〜100m間隔の地形データと実河道データから、
流域界と起伏を考慮して作成し、実河道と組み合わせることにより流域全体の流路
構造を数値的に表現させている。
(b) Creation of runoff network The runoff network is based on topographic data and actual river channel data at intervals of 10 to 100 meters.
It is created taking into account the basin boundaries and undulations, and combined with the actual river channel, the channel structure of the entire basin is numerically expressed.

(3) パラメータ同定による流出モデルの検証
流域によって流出条件がことなるため、「分布型融雪流出モデル」では、いくつか
のパラメータを設けることにより流域特性を表現している。そのため、それぞれの流
域において固有のパラメータを設定(以降この作業を「同定」という)する必要があ
る。
(3) Verification of runoff model by parameter identification Since runoff conditions vary depending on the catchment area, the “distributed snowmelt runoff model” expresses the catchment characteristics by providing several parameters. Therefore, it is necessary to set unique parameters in each basin (hereinafter this operation is called “identification”).

パラメータ同定の主な方法は、多年の気象データをインプットデータとし、パラメ
ータを変化させながら流出量を計算し、実流量との誤差率がもっとも小さくなる値を
求める。
The main method for parameter identification is to calculate multi-year meteorological data as input data, calculate the runoff amount while changing the parameters, and obtain the value with the smallest error rate from the actual flow rate.

主なパラメータは、以下の3つである。       The main parameters are the following three.

A)土壌の保水量、湿潤度を表すパラメータ
B)雨量計による降雪水量を補正するパラメータ
C)標高にともなう降雪量増加を補正するパラメータ
A) Parameters indicating the amount of water retained and wetness of the soil B) Parameters for correcting the amount of snowfall by the rain gauge C) Parameters for correcting the increase in snowfall due to altitude

このうち、A)に類するパラメータは、低水時または減水時のデータを用いて、同
定が可能である。B)、C)のパラメータは、降水量の全量を補正するものであり、
融雪流出モデルにとって最も重要なパラメータである。
Of these, parameters similar to A) can be determined using data during low or low water. The parameters of B) and C) correct the total amount of precipitation,
It is the most important parameter for the snowmelt runoff model.

(4) 流出モデルによる雪氷水資源解析
(a) 融雪流出モデルによる雪氷水資源量の解析
・従来、精度良く評価する方法のなかった流域内の雪氷水資源量について、本モ
デルを用いて定量的にしかも分布情報として求めることができる。
(4) Snow / ice water resource analysis by runoff model
(a) Analysis of the amount of snow and ice water resources using a snowmelt runoff model
Using Dell, it can be obtained quantitatively and as distribution information.

・すなわち、解析対象年毎に雪氷水資源量の各格子点における時系列変化、なら
びに流域全体の雪氷水資源量を求めることができる。
・ In other words, the time series change at each grid point of snow / ice / water resources for each year
The amount of snow, ice and water resources in the entire basin can be obtained.

・これにより、雪氷水資源量の平水年、渇水年における量的な傾向、ならびにそ
の変動の程度を求めることができる。
・ This allows quantitative trends in snow and ice water resources in normal and dry years, as well as
The degree of fluctuation can be obtained.

(b) 予測気象データを取り入れたリアルタイム水資源予測
・各年の融雪初期において、現時点流域流量と流域雪氷水資源量が本モデルによ
り得られる。これを初期条件とし、融雪期間中の気象予測を行い、それに基づ
いて融雪期間中の流量予測を行う。
(b) Real-time water resource prediction incorporating predicted weather data ・ At the beginning of each year's snowmelt, the current basin flow rate and basin snow ice water resource amount are calculated according to this model.
Can be obtained. Using this as the initial condition, weather prediction during the snowmelt period is performed and
And predict the flow during the snowmelt period.

・月単位の気象予測は高い精度は望めないため、本予測に当たっては既年度の解
析成果を取り入れて、変動の幅を評価する形で行う。
-Since the monthly weather forecast cannot be expected to have high accuracy,
Analyze results and evaluate the range of fluctuation.

・すなわち作業は以下の手続きに従う。         ・ That is, work follows the following procedures.

ア)現時点における流域雪氷水資源量、流量を流出モデルより求める。           A) Obtain the basin snow / ice water resources and flow rate from the runoff model.

イ)月単位の気象予測情報から融雪期間中の気象パターンの推定をする。同時
に前項(a)の成果を加味して、予測気象パターンの変動範囲を定める。
B) Estimate the weather pattern during the snowmelt period from monthly weather forecast information. simultaneous
Taking into account the results of (a) above, the fluctuation range of the predicted weather pattern is determined.

ウ)予測気象パターンを流出モデルに入力して、融雪期間における流域流出量
予測を行う。
C) By inputting the predicted weather pattern into the runoff model, the catchment runoff during the snowmelt period
Make a prediction.

・上記の結果はダム管理に用いることができる。         ・ The above results can be used for dam management.

(5) 長期気象変動の雪氷水資源量への影響把握
・本流出モデルを用いることにより、温暖化現象などの長期的な気象変動の雪氷水
資源量への影響を評価することができる。
(5) Understanding the impact of long-term weather fluctuations on snow, ice and water resources • By using this runoff model, the impact of long-term weather fluctuations such as global warming on snow and ice water resources can be evaluated.

・気象の長期変動傾向を入力することにより、容易に将来における水資源量が把握
できる。
・ By entering the long-term fluctuation trend of weather, the amount of water resources in the future can be easily grasped.

(6) 雪氷水資源および流出解析システムの概略検討
一旦完成した当該流域の「分布型融雪流出解析モデル」を用いて、日々のダム管理
に役立つ「融雪量予測システム」を開発することができる。
(6) Schematic study of snow / ice water resources and runoff analysis system Using the “distributed snowmelt runoff analysis model” for the basin once completed, a “snow melt forecasting system” useful for daily dam management can be developed.

すなわち、本分布型融雪流出解析モデルを組み込んだ解析システムをダム管理シス
テムに組み込み、常時入力される各種気象・水文データに基づき解析を行い、現時点
における雪氷水資源量を計算させる。
In other words, an analysis system incorporating this distributed snowmelt runoff analysis model is incorporated into the dam management system, and analysis is performed based on various meteorological and hydrological data that are constantly input, and the current amount of snow, ice, and water resources is calculated.

次に、これらの量とシステムに組み込んだ気象パターンの解析結果から、現時点か
ら予想される気象パターンを求める。それにより、現時点から予測される雪氷水資源
量と流出量の変動を解析し、出力させる。
Next, the weather pattern expected from the present time is obtained from these quantities and the analysis result of the weather pattern incorporated into the system. As a result, the fluctuations in snow and ice resources and runoff predicted from the present time are analyzed and output.

この解析システムは、日々更新される気象データをインプットデータとし、雪氷水
資源量や流出量予測が可能であるため、ダム管理における難しい判断において有効な
情報を提供できる。
This analysis system can provide useful information for difficult judgments in dam management because it can predict the amount of snow and ice water resources and runoff by using daily updated weather data as input data.

・自治体の水供給の要請に対する判断を、定量的なデータに基づいて検討できる。       -Judgment on local water supply requests can be considered based on quantitative data.

・積雪による水資源量が定量的に把握できるため、早期の対策ができる、等。       ・ Because the amount of water resources due to snow can be grasped quantitatively, early measures can be taken.

本実施例の業務フローを示すフロー図である。It is a flowchart which shows the business flow of a present Example. 先行文献を列挙した「分布融雪流出モデル研究業務」表の1である。It is 1 in the “Distributed snowmelt runoff model research work” table listing the prior literature. 先行文献を列挙した「分布融雪流出モデル研究業務」表の2である。It is 2 of the "distributed snowmelt runoff model research work" table listing the prior literature. 先行文献を列挙した「分布融雪流出モデル研究業務」表の3である。It is 3 in the “Distributed snowmelt runoff model research work” table listing the prior literature.

Claims (3)

対象流域を格子状に区画し、気象データと各地形条件によって各格子での積雪量と、降雪水量・融雪・土壌浸透・蒸発散に基づく物理現象モデルによって融雪を含めた各格子の流出量から、実河道データと地形データとから得られる擬河道網に基づいて対象流域全体の流出量とを求め、この解析により求めた対象流域全体の流出量と実際の流出量とを検証比較して前記各格子の積雪量を補正若しくは降雪水量又は融雪量又は流出量を求めるパラメータを補正設定することで、この対象流域での精度の高い雪氷水資源量を把握することを特徴とする雪氷水資源の分布型評価方法。   The target watershed is divided into grids, and the amount of snow on each grid is determined by meteorological data and topographical conditions, and the amount of runoff from each grid including snowmelt is determined by a physical phenomenon model based on snowfall, snowmelt, soil infiltration, and evapotranspiration. In addition, the outflow amount of the entire target basin is obtained based on the pseudo river network obtained from the actual river channel data and the topographic data, and the outflow amount of the entire target basin obtained by this analysis is compared with the actual outflow amount by verifying and comparing The snow ice water resource is characterized by grasping the snow ice water resource amount with high accuracy in this target basin by correcting the snow accumulation amount of each grid or correcting the parameter for calculating the snow water amount, the snow melting amount or the runoff amount. Distributed evaluation method. 前記対象流域での精度の高い雪氷水資源量の変化と対象流域の流出量の変化を把握して今後の変化を予測することを特徴とする請求項1記載の雪氷水資源の分布型評価方法。   The distribution-type evaluation method for snow and ice water resources according to claim 1, wherein a change in snow and ice water resources with high accuracy in the target basin and a change in runoff from the target basin are grasped and future changes are predicted. . 利水ダムの集水域を前記対象流域とし、この対象流域の雪氷水資源量を把握することでこの利水ダムの放流を制御管理することを特徴とする請求項1,2のいずれか1項に記載の雪氷水資源の分布型評価方法。
The drainage of this water dam is controlled and managed by determining the watershed of the water dam as the target basin and grasping the amount of snow and ice water in the target basin. Distribution type evaluation method of snow and ice water resources in Japan.
JP2005012915A 2005-01-20 2005-01-20 Distribution type evaluation method of snow and ice water resources Active JP4535379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012915A JP4535379B2 (en) 2005-01-20 2005-01-20 Distribution type evaluation method of snow and ice water resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012915A JP4535379B2 (en) 2005-01-20 2005-01-20 Distribution type evaluation method of snow and ice water resources

Publications (2)

Publication Number Publication Date
JP2006201024A true JP2006201024A (en) 2006-08-03
JP4535379B2 JP4535379B2 (en) 2010-09-01

Family

ID=36959157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012915A Active JP4535379B2 (en) 2005-01-20 2005-01-20 Distribution type evaluation method of snow and ice water resources

Country Status (1)

Country Link
JP (1) JP4535379B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185489A (en) * 2007-01-30 2008-08-14 Japan Weather Association Snow melt runoff prediction system
JP2008186308A (en) * 2007-01-30 2008-08-14 Japan Weather Association Device, method and program for estimating amount of water supplied by soil
JP2009223692A (en) * 2008-03-17 2009-10-01 Chugoku Electric Power Co Inc:The Operation support system, operation support method and program for water storage facility,
JP2012007957A (en) * 2010-06-23 2012-01-12 Niigata Univ Temperature sensor for estimating snow melting rate and snow melting rate estimation method using the same
KR101152908B1 (en) 2010-07-21 2012-06-05 부경대학교 산학협력단 Apparatus and method of measuring natural evaporating, icing, melting
CN109446630A (en) * 2018-10-23 2019-03-08 宁夏大学 Multiple target water resource optimal allocation method based on Hybrid Particle Swarm
JP2020177260A (en) * 2019-04-15 2020-10-29 株式会社日立製作所 Placement support device and placement support method
JP2021092396A (en) * 2019-12-06 2021-06-17 トヨタ自動車株式会社 Environmental prediction system and environmental prediction method
CN113887965A (en) * 2021-10-08 2022-01-04 中国水利水电科学研究院 Basin ecological flow accounting method
CN114418446A (en) * 2022-01-28 2022-04-29 哈尔滨工业大学 Quantitative assessment method for water resource shortage
CN115034662A (en) * 2022-06-29 2022-09-09 青海省环境地质勘查局 Geological evaluation method for frozen soil survey based on watershed division
CN115375203A (en) * 2022-10-25 2022-11-22 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Comprehensive analysis system for multi-element water resource optimization configuration
JP7303960B1 (en) 2022-12-07 2023-07-06 中国科学院西北生態環境資源研究院 Method for estimating glacier snowmelt runoff
CN117236668A (en) * 2023-11-15 2023-12-15 山东锋士信息技术有限公司 Regional water resource allocation analysis decision method and system based on supply and consumption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033567A (en) * 1999-07-22 2001-02-09 Kansai Electric Power Co Inc:The Ultra-short-time rainfall instant estimation method and device
JP2002269656A (en) * 2001-03-12 2002-09-20 Foundation Of River & Basin Integrated Communications Japan River information provision system
JP2003014868A (en) * 2001-06-28 2003-01-15 Foundation Of River & Basin Integrated Communications Japan System for providing predictive information of flood

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033567A (en) * 1999-07-22 2001-02-09 Kansai Electric Power Co Inc:The Ultra-short-time rainfall instant estimation method and device
JP2002269656A (en) * 2001-03-12 2002-09-20 Foundation Of River & Basin Integrated Communications Japan River information provision system
JP2003014868A (en) * 2001-06-28 2003-01-15 Foundation Of River & Basin Integrated Communications Japan System for providing predictive information of flood

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
早川典生、他: "分布型融雪流出解析における降雪モデル", 1998年度日本雪氷学会全国大会講演予稿集, JPN6010002657, 30 September 1998 (1998-09-30), pages 61, ISSN: 0001612975 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186308A (en) * 2007-01-30 2008-08-14 Japan Weather Association Device, method and program for estimating amount of water supplied by soil
JP2008185489A (en) * 2007-01-30 2008-08-14 Japan Weather Association Snow melt runoff prediction system
JP2009223692A (en) * 2008-03-17 2009-10-01 Chugoku Electric Power Co Inc:The Operation support system, operation support method and program for water storage facility,
JP2012007957A (en) * 2010-06-23 2012-01-12 Niigata Univ Temperature sensor for estimating snow melting rate and snow melting rate estimation method using the same
KR101152908B1 (en) 2010-07-21 2012-06-05 부경대학교 산학협력단 Apparatus and method of measuring natural evaporating, icing, melting
CN109446630A (en) * 2018-10-23 2019-03-08 宁夏大学 Multiple target water resource optimal allocation method based on Hybrid Particle Swarm
JP7152350B2 (en) 2019-04-15 2022-10-12 株式会社日立製作所 Placement support device and placement support method
JP2020177260A (en) * 2019-04-15 2020-10-29 株式会社日立製作所 Placement support device and placement support method
JP2021092396A (en) * 2019-12-06 2021-06-17 トヨタ自動車株式会社 Environmental prediction system and environmental prediction method
JP7310577B2 (en) 2019-12-06 2023-07-19 トヨタ自動車株式会社 Environmental prediction system and environmental prediction method
CN113887965A (en) * 2021-10-08 2022-01-04 中国水利水电科学研究院 Basin ecological flow accounting method
CN114418446A (en) * 2022-01-28 2022-04-29 哈尔滨工业大学 Quantitative assessment method for water resource shortage
CN115034662A (en) * 2022-06-29 2022-09-09 青海省环境地质勘查局 Geological evaluation method for frozen soil survey based on watershed division
CN115375203A (en) * 2022-10-25 2022-11-22 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Comprehensive analysis system for multi-element water resource optimization configuration
CN115375203B (en) * 2022-10-25 2023-02-07 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Comprehensive analysis system for multi-element water resource optimization configuration
JP7303960B1 (en) 2022-12-07 2023-07-06 中国科学院西北生態環境資源研究院 Method for estimating glacier snowmelt runoff
CN117236668A (en) * 2023-11-15 2023-12-15 山东锋士信息技术有限公司 Regional water resource allocation analysis decision method and system based on supply and consumption
CN117236668B (en) * 2023-11-15 2024-03-08 山东锋士信息技术有限公司 Regional water resource allocation analysis decision method and system based on supply and consumption

Also Published As

Publication number Publication date
JP4535379B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4535379B2 (en) Distribution type evaluation method of snow and ice water resources
Lauri et al. Using reanalysis and remotely sensed temperature and precipitation data for hydrological modeling in monsoon climate: Mekong River case study
Wu et al. Simulation of soil loss processes based on rainfall runoff and the time factor of governance in the Jialing River Watershed, China
Sridhar et al. Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho
Islam et al. Evaluating uncertainties in modelling the snow hydrology of the Fraser River Basin, British Columbia, Canada
Wu et al. Analysis of seasonal snowmelt contribution using a distributed energy balance model for a river basin in the Altai Mountains of northwestern China
Cattoën et al. Coupling a high-resolution weather model with a hydrological model for flood forecasting in New Zealand
Boyogueno et al. Prediction of flow-rate of Sanaga Basin in Cameroon using HEC-HMS hydrological system: application to the Djerem sub-basin at Mbakaou
Anwar The rainfall-runoff model using of the watershed physical characteristics approach
Reza Ghanbarpour et al. Evaluation of spatial and temporal variability of snow cover in a large mountainous basin in Iran
Guo et al. Daily runoff simulation in Poyang Lake Intervening Basin based on remote sensing data
Hayes et al. Estimating precipitation in the central Cascades of Washington
Avanzi Feather River Hydrologic Observatory: Improving Snowpack Forecasting for Hydropower Generation Using Intelligent Information Systems: a Report for California's Fourth Climate Change Assessment
Miller et al. Climate change sensitivity study of California hydrology: a report to the California Energy Commission
Sugiyama et al. Spatial distribution of surface ablation in the terminus of Rhonegletscher, Switzerland
Khan et al. Assessment of flows in a glaciated region-Shigar River Basin, Pakistan
Tsegaw Comparative analysis of rainfall-runoff modeling using HEC-HMS, SMAR and PED-W models: A case of Robiggumero Catchment
Makki Vijayaprakash Application of HEC-HMS modelling on River Storån, Model evaluation and analysis of the processes by using soil moisture accounting loss method
Van Huijgevoort et al. Simulation of low flows and drought events in WATCH test basins: impact of different climate forcing datasets
Kikine Hydrological modeling and forecasting using HEC-HMS soil moisture accounting for a snow dominated basin in Turkey
Zomorodian et al. Modeling of river discharge in the Firoozabad watershed using soil and water assessment tool model
Zhang et al. Improving Flood Forecasts capability of Taihang Piedmont Basin by coupling WRF and HEC-HMS
Hao et al. Improvement and application research of the SRM in alpine regions
Shilpakar et al. Impact of climate change on snowmelt runoff: A case study of Tamakoshi basin in Nepal
Snider A Calibration and Application of the Watershed Environmental Hydrology (WEHY) Model to the Calaveras Watershed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4535379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250