JP2006200733A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2006200733A
JP2006200733A JP2005186922A JP2005186922A JP2006200733A JP 2006200733 A JP2006200733 A JP 2006200733A JP 2005186922 A JP2005186922 A JP 2005186922A JP 2005186922 A JP2005186922 A JP 2005186922A JP 2006200733 A JP2006200733 A JP 2006200733A
Authority
JP
Japan
Prior art keywords
rolling element
rolling
resin
raceway groove
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005186922A
Other languages
Japanese (ja)
Inventor
Toyohisa Yamamoto
豊寿 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005186922A priority Critical patent/JP2006200733A/en
Publication of JP2006200733A publication Critical patent/JP2006200733A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • F16C19/166Four-point-contact ball bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing capable of restraining generation of a large quantity of abrasion powder when an axial load acts on a resin inner race and a resin outer race and large reduction in the service life of a rolling body by biting-in of the abrasion powder generated in large quantities. <P>SOLUTION: The central part depth of rolling body track grooves 4 and 5 formed on an outer peripheral surface of the resin inner race 2 and an inner peripheral surface of the resin outer race 3, is set to 18% to 45% to a diameter of the rolling body 6, and a contact point of the rolling body track grooves 4 and 5 and the rolling body 5, is made to hardly run on a shoulder part of the rolling body track grooves 4 and 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ウエハ洗浄装置や食品機械などで使用される転がり軸受に関する。   The present invention relates to a rolling bearing used in a wafer cleaning device or a food machine.

半導体ウエハを洗浄処理するウエハ洗浄装置では、ウエハ搬送機構の回転軸を支持する軸受として、玉軸受等の転がり軸受が使用されているが、このような転がり軸受は、従来、内輪や外輪が鋼等の金属から形成されている場合が多い。このため、水等の洗浄液が飛散して転がり軸受に付着すると、内輪や外輪の転動体軌道溝に酸化鉄等の潤滑剤汚染物質が発生し、この潤滑剤汚染物質によりグリース等の潤滑剤が汚染されることによって転動体が早期に摩耗し易くなる。そこで、内輪や外輪の転動体軌道溝に酸化鉄等の潤滑剤汚染物質が発生するのを抑制するために、内輪及び外輪をポリアセタール等の合成樹脂から形成したものが知られている(特許文献1及び2参照)。
特開平5−202943号公報 特開平9−303403号公報
In a wafer cleaning apparatus for cleaning a semiconductor wafer, a rolling bearing such as a ball bearing is used as a bearing for supporting a rotating shaft of a wafer transfer mechanism. It is often formed from a metal such as. For this reason, when cleaning fluid such as water scatters and adheres to the rolling bearing, lubricant contaminants such as iron oxide are generated in the rolling element raceway grooves of the inner ring and outer ring, and lubricant such as grease is caused by this lubricant contaminant. Contamination makes it easy for the rolling elements to wear early. Therefore, in order to suppress the occurrence of lubricant contaminants such as iron oxide in the rolling element raceway grooves of the inner ring and the outer ring, those in which the inner ring and the outer ring are formed from a synthetic resin such as polyacetal are known (patent document). 1 and 2).
JP-A-5-202943 JP-A-9-303403

しかしながら、上記文献1及び2に示されたものは、内輪及び外輪が鋼等の金属からなるものと比較して、内輪及び外輪の弾性率が極めて小さいため、アキシアル方向の荷重(以下「アキシアル荷重」と称す)が転動体を介して内輪や外輪に作用すると、内輪の外周面や外輪の内周面に形成された転動体軌道溝が容易に変形し、転動体軌道溝の変形によって転動体と転動体軌道溝との接触点が転動体軌道溝の肩部に乗り上がり、その結果、転動体軌道溝の肩部に発生する応力集中によって摩耗粉が大量に発生して周辺環境を汚染したり、摩耗粉の噛み込みによって転動体の寿命が大幅に低下したりするおそれがあった。   However, since the elastic modulus of the inner ring and the outer ring is extremely small compared with the case where the inner ring and the outer ring are made of metal such as steel, the ones shown in the above-mentioned documents 1 and 2 have a load in the axial direction (hereinafter referred to as “axial load”). ”) Acts on the inner ring and the outer ring via the rolling elements, the rolling element raceway grooves formed on the outer circumferential surface of the inner ring and the inner circumferential surface of the outer ring easily deform, and the rolling element is deformed by the deformation of the rolling element raceway grooves. The contact point between the rolling element raceway groove and the rolling element raceway groove climbs onto the shoulder of the rolling element raceway groove, and as a result, a large amount of wear powder is generated due to the concentration of stress generated on the shoulder of the rolling element raceway groove and contaminates the surrounding environment. In addition, there is a possibility that the life of the rolling element may be significantly reduced by the wear powder.

本発明は、このような問題点に着目してなされたものであり、転動体と転動体軌道溝との接触点が転動体軌道溝の肩部に乗り上がることによって摩耗粉が大量に発生したり、大量に発生した摩耗粉の噛み込みによって転動体の寿命が大幅に低下したりすることを抑制することのできる転がり軸受を提供することを目的とするものである。   The present invention has been made paying attention to such problems, and a large amount of wear powder is generated when the contact point between the rolling element and the rolling element raceway groove rides on the shoulder of the rolling element raceway groove. Another object of the present invention is to provide a rolling bearing capable of suppressing the life of a rolling element from being significantly reduced due to a large amount of wear powder generated.

上記の目的を達成するために、請求項1の発明は、樹脂組成物からなる内輪と、該内輪の外周に設けられた樹脂製の外輪と、前記内輪の外周面に形成された転動体軌道溝と前記外輪の内周面に形成された転動体軌道溝を前記内輪または前記外輪の回転に伴って転動する多数の球状転動体とを備えた転がり軸受において、前記転動体軌道溝の中央部分の深さを前記転動体の直径に対して18%以上45%以下としたことを特徴とする。   In order to achieve the above object, an invention according to claim 1 includes an inner ring made of a resin composition, a resin outer ring provided on the outer periphery of the inner ring, and a rolling element track formed on the outer peripheral surface of the inner ring. In a rolling bearing comprising a groove and a number of spherical rolling elements that roll a rolling element raceway groove formed on the inner peripheral surface of the outer ring as the inner ring or the outer ring rotates, the center of the rolling element raceway groove The depth of the part is 18% or more and 45% or less with respect to the diameter of the rolling element.

請求項2の発明は、請求項1記載の転がり軸受において、前記転動体軌道溝が前記内輪及び前記外輪の軸方向に沿う断面形状が前記転動体の直径に対して50.5%〜51.9%の曲率でゴシックアーチ状もしくは円弧状に形成されていることを特徴とする。
請求項3の発明は、請求項1又は2記載の転がり軸受において、前記転動体が前記内輪と前記外輪との間に設けられた保持器により前記内輪及び前記外輪の円周方向に転動自在に保持されていることを特徴とする。
According to a second aspect of the present invention, in the rolling bearing according to the first aspect, a cross-sectional shape of the rolling element raceway groove along the axial direction of the inner ring and the outer ring is 50.5% to 51.51 with respect to the diameter of the rolling element. It is characterized by a Gothic arch shape or arc shape with a curvature of 9%.
According to a third aspect of the present invention, in the rolling bearing according to the first or second aspect, the rolling element is rollable in a circumferential direction of the inner ring and the outer ring by a cage provided between the inner ring and the outer ring. It is characterized by being held in.

請求項4の発明は、請求項3記載の転がり軸受において、前記転動体軌道溝の中央部分の深さを前記転動体の直径に対して18%以上28%以下としたことを特徴とする。
請求項5の発明は、請求項4記載の転がり軸受において、前記転動体軌道溝が前記内輪及び前記外輪の軸方向に沿う断面形状が前記転動体の直径に対して52.2%〜55%の曲率でゴシックアーチ状もしくは円弧状に形成されていることを特徴とする。
According to a fourth aspect of the present invention, in the rolling bearing according to the third aspect, the depth of the central portion of the rolling element raceway groove is 18% or more and 28% or less with respect to the diameter of the rolling element.
According to a fifth aspect of the present invention, in the rolling bearing according to the fourth aspect, the rolling element raceway groove has a cross-sectional shape along the axial direction of the inner ring and the outer ring of 52.2% to 55% with respect to the diameter of the rolling element. It is formed in a Gothic arch shape or an arc shape with a curvature of.

請求項6の発明は、請求項1〜5のいずれか一項記載の転がり軸受において、前記多数の転動体のうち少なくとも一つの転動体が樹脂組成物から形成されていることを特徴とする。
請求項7の発明は、請求項1〜5のいずれか一項記載の転がり軸受において、前記多数の転動体のうち少なくとも一つの転動体がポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、溶融成形可能な耐食性樹脂、含フッ素樹脂のうちいずれか一つを主成分とする樹脂組成物から形成されていることを特徴とする。
According to a sixth aspect of the present invention, in the rolling bearing according to any one of the first to fifth aspects, at least one of the multiple rolling elements is formed of a resin composition.
The invention according to claim 7 is the rolling bearing according to any one of claims 1 to 5, wherein at least one of the rolling elements is made of polyethylene resin, polypropylene resin, polyacetal resin, and melt-resistant corrosion resistance. It is formed from the resin composition which has any one of resin and a fluorine-containing resin as a main component.

請求項8の発明は、請求項1又は2記載の転がり軸受において、前記多数の転動体が非樹脂組成物からなる第1転動体と樹脂組成物からなる第2転動体とからなり、前記第1転動体及び第2転動体が前記内輪と前記外輪との間に交互に配列されていることを特徴とする。
請求項9の発明は、請求項8記載の転がり軸受において、前記第2転動体の直径と前記第1転動体の直径との比を0.987以上1.013以下としたことを特徴とする。
The invention according to claim 8 is the rolling bearing according to claim 1 or 2, wherein the multiple rolling elements include a first rolling element made of a non-resin composition and a second rolling element made of a resin composition. One rolling element and a second rolling element are alternately arranged between the inner ring and the outer ring.
The invention according to claim 9 is the rolling bearing according to claim 8, wherein the ratio of the diameter of the second rolling element to the diameter of the first rolling element is 0.987 or more and 1.013 or less. .

請求項8の発明に係る転がり軸受では、非樹脂組成物からなる第1転動体と樹脂組成物からなる第2転動体とを内輪と外輪との間に交互に配することで、特に高速で回転する場合に、転動体同士の摩擦や衝突が生じた時にも第1転動体と第2転動体との接触となり、転動体の摩耗が効果的に低減するため、長寿命となる。すなわち、総転動体形式の転がり軸受において、樹脂組成物からなる第2転動体を持たない場合は、特に高速回転時に、非樹脂組成物からなる第1転動体同士が接触して摩耗が生じやすい。このため、転動体の表面粗さが増大し、その結果、樹脂製内輪及び樹脂製外輪が異常に摩耗したり、転動体の直径が異常に小さくなったりすることによって、軸受内部のすきまが異常に大きくなり、転がり軸受が比較的短時間で寿命に達する場合があるが、請求項8の発明に係る転がり軸受では、転動体同士の接触や衝突による摩耗を効果的に抑制できるので、転がり軸受の耐久性を高めることができる。   In the rolling bearing according to the invention of claim 8, the first rolling element made of the non-resin composition and the second rolling element made of the resin composition are alternately arranged between the inner ring and the outer ring, so that the speed is particularly high. In the case of rotation, even when friction or collision between the rolling elements occurs, the first rolling element and the second rolling element come into contact with each other, and wear of the rolling elements is effectively reduced, resulting in a long life. That is, in the case of a rolling element of the total rolling element type, when the second rolling element made of the resin composition is not provided, the first rolling elements made of the non-resin composition come into contact with each other, particularly during high-speed rotation, and wear easily occurs. . As a result, the surface roughness of the rolling element increases, and as a result, the inner ring and the outer ring made of resin are abnormally worn or the diameter of the rolling element becomes abnormally small. The rolling bearing may reach the end of its life in a relatively short time. However, the rolling bearing according to the invention of claim 8 can effectively suppress wear due to contact or collision between the rolling elements. Can increase the durability.

請求項9の発明に係る転がり軸受では、樹脂組成物からなる第2転動体の直径と非樹脂組成物からなる第1転動体の直径との比を0.987以上1.013以下としたことで、樹脂組成物からなる第2転動体が保持器との摺動面や内輪及び外輪との接触点で摺動する相手面(保持器であればポケット内面、内輪及び外輪であれば軌道溝表面)と適度な接触力が生じる結果、自己潤滑性に優れる樹脂材料が第2転動体から上記相手面に転着し、相手面に転着した樹脂材料によって転動体と保持器あるいは軌道溝表面との接触部に生じる摩擦力が低減されるので、転動体や内外輪等の摩耗を抑制して転がり軸受を長期にわたって作動させることができる。なお、第2転動体の直径と第1転動体の直径との比が0.987未満の場合は、上記相手面と第2転動体との接触が不十分となり、その結果、第2転動体から相手面に転着される樹脂材料の転着量が少なくなるので、軸受寿命が極端に短くなる場合がある。また、第2転動体の直径と第1転動体の直径との比が1.013を超える場合は、上記相手面に対する第2転動体の接触力が極端に大きくなり、その結果、第2転動体に異常な摩耗が生じたり、第2転動体が破損したりすることによって、軸受寿命が極端に短くなる場合がある。   In the rolling bearing according to the invention of claim 9, the ratio of the diameter of the second rolling element made of the resin composition and the diameter of the first rolling element made of the non-resin composition is 0.987 or more and 1.013 or less. And the mating surface on which the second rolling element made of the resin composition slides at the contact surface with the sliding surface of the cage and the inner ring and the outer ring (the inner surface of the pocket if the cage, the raceway groove if the inner ring and the outer ring) As a result of an appropriate contact force with the surface), a resin material excellent in self-lubricating property is transferred from the second rolling element to the mating surface, and the rolling material and the cage or the surface of the raceway groove by the resin material transferred to the mating surface Thus, the frictional force generated at the contact portion is reduced, so that the rolling bearing and the inner and outer rings can be prevented from being worn and the rolling bearing can be operated over a long period of time. In addition, when the ratio of the diameter of a 2nd rolling element and the diameter of a 1st rolling element is less than 0.987, the contact of the said opposing surface and a 2nd rolling element becomes inadequate, As a result, a 2nd rolling element Since the amount of resin material transferred to the mating surface is reduced, the bearing life may be extremely shortened. When the ratio of the diameter of the second rolling element to the diameter of the first rolling element exceeds 1.013, the contact force of the second rolling element with respect to the mating surface becomes extremely large, and as a result, the second rolling element The bearing life may be extremely shortened due to abnormal wear on the moving body or damage to the second rolling element.

請求項10の発明は、請求項1〜5のいずれか一項記載の転がり軸受において、前記多数の転動体の全てが樹脂組成物から形成されていることを特徴とするものであり、このような構成とすることで、樹脂組成物は自己潤滑性に優れているため、ドライ(無潤滑)条件下において転動体の摩耗がより効果的に低減され、転がり軸受の更なる長寿命化を図ることができる。   A tenth aspect of the present invention is the rolling bearing according to any one of the first to fifth aspects, wherein all of the plurality of rolling elements are formed of a resin composition. Since the resin composition has excellent self-lubricating properties, the wear of the rolling elements is more effectively reduced under dry (no lubrication) conditions, and the life of the rolling bearing is further extended. be able to.

請求項11の発明は、請求項1〜5のいずれか一項記載の転がり軸受において、前記多数の転動体の全てがポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、溶融成形可能な耐食性樹脂、含フッ素樹脂のうちいずれか一つを主成分とする樹脂組成物から形成されていることを特徴とするものであり、このような構成とすることで、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、溶融成形可能な耐食性樹脂、含フッ素樹脂のうちいずれか一つを主成分とする樹脂組成物は樹脂組成物のなかでも特に自己潤滑性に優れるため、特にドライ(無潤滑)条件下において転動体の摩耗がより効果的に低減され、転がり軸受の更なる長寿命化を図ることができる。   The invention according to claim 11 is the rolling bearing according to any one of claims 1 to 5, wherein all of the numerous rolling elements are polyethylene resin, polypropylene resin, polyacetal resin, melt-resistant corrosion-resistant resin, and fluorine-containing resin. It is characterized by being formed from the resin composition which has any one of these as a main component, By setting it as such a structure, a polyethylene resin, a polypropylene resin, a polyacetal resin, and melt molding are possible Since the resin composition containing either one of the corrosion-resistant resin and the fluorine-containing resin as a main component is particularly excellent in self-lubricating property among the resin compositions, the wear of the rolling element is particularly improved under dry (non-lubricating) conditions. It can be effectively reduced and the life of the rolling bearing can be further extended.

本発明に係る転がり軸受では、内輪や外輪に作用するアキシアル荷重によって転動体軌道溝に変形が生じても転動体と転動体軌道溝との接触点が転動体軌道溝の肩部に乗り上がり難くなる。したがって、転動体と転動体軌道溝との接触点が転動体軌道溝の肩部に乗り上がることによって摩耗粉が大量に発生したり、大量に発生した摩耗粉の噛み込みによって転動体の寿命が大幅に低下したりすることを抑制することができる。   In the rolling bearing according to the present invention, even if the rolling element raceway groove is deformed by an axial load acting on the inner ring or the outer ring, the contact point between the rolling element and the rolling element raceway groove is unlikely to ride on the shoulder of the rolling element raceway groove. Become. Therefore, a large amount of wear powder is generated when the contact point between the rolling element and the rolling element raceway groove rides on the shoulder of the rolling element raceway groove. It can suppress that it falls significantly.

以下、表1及び図1〜図7を参照して本発明に係る転がり軸受について説明する。
表1は、本発明に係る転がり軸受の実施例1〜12と比較例1〜4を示している。
Hereinafter, the rolling bearing according to the present invention will be described with reference to Table 1 and FIGS.
Table 1 shows Examples 1 to 12 and Comparative Examples 1 to 4 of the rolling bearing according to the present invention.

Figure 2006200733
Figure 2006200733

表1において、実施例1〜4は図1に示す保持器付き転がり軸受1Aの実施例を示し、実施例5〜12は図2に示す保持器無し転がり軸受1Bの実施例を示している。また、比較例1及び比較例2は図1に示す保持器付き転がり軸受1Aの比較例を示し、比較例3及び比較例4は図2に示す保持器無し転がり軸受1Bの比較例を示している。   In Table 1, Examples 1 to 4 show examples of the rolling bearing with retainer 1A shown in FIG. 1, and Examples 5 to 12 show examples of the rolling bearing without retainer 1B shown in FIG. Comparative Example 1 and Comparative Example 2 show a comparative example of a rolling bearing with a retainer 1A shown in FIG. 1, and Comparative Examples 3 and 4 show a comparative example of a rolling bearing without a retainer 1B shown in FIG. Yes.

図1に示す保持器付き転がり軸受1Aは内輪2を備えており、この内輪2の外周には外輪3が設けられている。また、保持器付き転がり軸受1Aは内輪2の外周面に形成された転動体軌道溝4と外輪3の内周面に形成された転動体軌道溝5とを内輪2又は外輪3の回転に伴って転動する多数の球状転動体6を備えており、内輪2と外輪3との間には、上記転動体6を内輪2及び外輪3の円周方向に転動自在に保持する保持器7が設けられている。   A rolling bearing with a cage 1 </ b> A shown in FIG. 1 includes an inner ring 2, and an outer ring 3 is provided on the outer periphery of the inner ring 2. Further, the rolling bearing with a cage 1A includes a rolling element raceway groove 4 formed on the outer peripheral surface of the inner ring 2 and a rolling element raceway groove 5 formed on the inner peripheral surface of the outer ring 3 as the inner ring 2 or the outer ring 3 rotates. A cage 7 is provided between the inner ring 2 and the outer ring 3 to hold the rolling element 6 so that it can roll in the circumferential direction of the inner ring 2 and the outer ring 3. Is provided.

図2に示す保持器無し転がり軸受1Bは、保持器付き転がり軸受1Aとほぼ同様の構成であるが、転動体6を内輪2及び外輪3の円周方向に転動自在に保持する保持器7を備えていない点が保持器付き転がり軸受1Aと異なる点である。
実施例1〜12及び比較例1〜4の内輪と外輪は、表1に示すように、例えばPE(ポリエチレン)、PEEK(ポリエーテルエーテルケトン)、PCTFE(ポリクロロトリフルオロエチレン)、PVdF(ポリビニリデンフルオライド)、PTFE(四フッ化エチレン)、PP(ポリプロピレン)、POM(ポリアセタール)のうちいずれか一つを主成分とする樹脂組成物から形成されている。
The rolling bearing without retainer 1B shown in FIG. 2 has substantially the same configuration as the rolling bearing with a cage 1A, but retains the rolling element 6 so that it can roll in the circumferential direction of the inner ring 2 and the outer ring 3. The point which is not provided is a point different from the rolling bearing 1A with a cage.
As shown in Table 1, the inner rings and outer rings of Examples 1 to 12 and Comparative Examples 1 to 4 are, for example, PE (polyethylene), PEEK (polyether ether ketone), PCTFE (polychlorotrifluoroethylene), PVdF (polyethylene). The resin composition is mainly composed of any one of vinylidene fluoride), PTFE (tetrafluoroethylene), PP (polypropylene), and POM (polyacetal).

なお、表1に示す実施例1〜12及び比較例1〜4では、PEとして商品名:ポリペンコU−PE(日本ポリペンコ社製)を、POMとして商品名:ジュラコンM140(ポリプラスチックス社製)を、PPとして商品名:サンアロマーPB370A(サンアロマー社製)を、PVDFとして商品名:クレハKFポリマーT−♯850(呉羽化学工業社製)を、PPSとして商品名:ライトンR−6(フィリップスペトローリアム社製)を、PEEKとして商品名:ビクトレックスPEEK150G(ビクトレックス社製)を、PTFEとして商品名:テフロン(登録商標)PTFE(デュポン社製)を、PCTFEとして商品名:ネオフロンPCTFE M−300PL(ダイキン工業社製)を、炭素繊維として商品名:クレカチョップM−102S(呉羽化学工業社製、繊維径:14.5μm、長さ0.2mm)を、チタン酸カリウムウィスカーとして商品名:ティスモD−101(大塚化学社製、繊維径:0.3〜0.6μm、長さ10〜20μm)を使用した。   In Examples 1 to 12 and Comparative Examples 1 to 4 shown in Table 1, trade name: Polypenco U-PE (manufactured by Nippon Polypenco) as PE, and trade name: Duracon M140 (manufactured by Polyplastics) as POM. , PP as trade name: Sun Allomer PB370A (manufactured by Sun Allomer), PVDF as trade name: Kureha KF Polymer T- # 850 (manufactured by Kureha Chemical Co., Ltd.), and PPS as trade name: Ryton R-6 (Philippe Spectroy) Am)) as PEEK, trade name: Victorex PEEK150G (manufactured by Victorex), PTFE as trade name: Teflon (registered trademark) PTFE (manufactured by DuPont), and PCTFE as trade name: NEOFLON PCTFE M-300PL Trade name: Kureka chop M (made by Daikin Industries) as carbon fiber 102S (manufactured by Kureha Chemical Industry Co., Ltd., fiber diameter: 14.5 μm, length: 0.2 mm) as potassium titanate whisker, product name: Tismo D-101 (manufactured by Otsuka Chemical Co., Ltd., fiber diameter: 0.3-0. 6 μm, length 10-20 μm) was used.

表1の実施例1〜9及び比較例1〜4はその全ての転動体が硼珪酸ガラス、SUS440C、窒化けい素、SUS304のうちいずれか一つの耐食性材料で形成されたものを示しているが、実施例10〜12は転動体の一つがPTFE、PP等の樹脂材で形成されたものを示している。
また、表1の実施例1〜4(保持器付き転がり軸受)は転動体軌道溝の中央部分の深さd(図3及び図4参照)を転動体の直径に対して18%〜28%の範囲内としたものを示しているが、表1の実施例5〜12(保持器無し転がり軸受)は転動体軌道溝の中央部分の深さdを転動体の直径に対して18%〜45%の範囲内としたものを示している。一方、表1の比較例1〜4は転動体軌道溝の中央部分の深さdを転動体の直径に対して17%,29%,17%,46%としたものを示している。
Examples 1 to 9 and Comparative Examples 1 to 4 in Table 1 show that all the rolling elements are formed of any one of corrosion-resistant materials among borosilicate glass, SUS440C, silicon nitride, and SUS304. In Examples 10 to 12, one of the rolling elements is formed of a resin material such as PTFE or PP.
In Examples 1 to 4 (rolling bearings with a cage) in Table 1, the depth d (see FIGS. 3 and 4) of the center portion of the rolling element raceway groove is 18% to 28% with respect to the diameter of the rolling element. However, in Examples 5 to 12 (roller bearings without cage) in Table 1, the depth d of the central portion of the rolling element raceway groove is 18% to the diameter of the rolling element. The value within the range of 45% is shown. On the other hand, Comparative Examples 1 to 4 in Table 1 indicate that the depth d of the central portion of the rolling element raceway groove is 17%, 29%, 17%, and 46% with respect to the diameter of the rolling element.

さらに、表1の実施例1〜4(保持器付き転がり軸受)は転動体軌道溝の曲率R(図3及び図4参照)を転動体の直径に対して52.2%〜55%の範囲内としたものを示し、表1の実施例5〜12(保持器無し転がり軸受)は転動体軌道溝の曲率Rを転動体の直径に対して50.5%〜51.9%の範囲内としたものを示している。一方、表1の比較例1〜4は転動体軌道溝の曲率Rを転動体の直径に対して52%,56%,50.2%,52%としたものを示している。   Further, in Examples 1 to 4 (rolling bearings with a cage) in Table 1, the curvature R (see FIGS. 3 and 4) of the rolling element raceway groove is in the range of 52.2% to 55% with respect to the diameter of the rolling element. In Examples 5 to 12 (roller bearings without cage) in Table 1, the curvature R of the rolling element raceway groove is within the range of 50.5% to 51.9% with respect to the diameter of the rolling element. Is shown. On the other hand, Comparative Examples 1 to 4 in Table 1 show that the curvature R of the rolling element raceway groove is 52%, 56%, 50.2%, and 52% with respect to the diameter of the rolling element.

なお、図3及び図4に示す転動体軌道溝4,5は内輪2及び外輪3の軸方向に沿う断面がゴシックアーチ状に形成されたものを図示しているが、内輪2及び外輪3の軸方向に沿う断面が円弧状に形成された転動体軌道溝であってもよい。
図5は転がり軸受の耐久性を試験するときに用いられる試験装置の概略構成を示す図であり、図中11はモータ、12はカップリング、13はスピンドル、14はシャフト、15はサポート軸受、16はワイヤ、17はプーリ、18は錘、19はスプレーガン、20は振動計、21は水槽、22は試験軸受を示している。
The rolling element raceway grooves 4 and 5 shown in FIGS. 3 and 4 are illustrated in which the cross sections along the axial direction of the inner ring 2 and the outer ring 3 are formed in a Gothic arch shape. A rolling element raceway groove in which a cross section along the axial direction is formed in an arc shape may be used.
FIG. 5 is a diagram showing a schematic configuration of a test apparatus used for testing the durability of a rolling bearing, in which 11 is a motor, 12 is a coupling, 13 is a spindle, 14 is a shaft, 15 is a support bearing, Reference numeral 16 is a wire, 17 is a pulley, 18 is a weight, 19 is a spray gun, 20 is a vibration meter, 21 is a water tank, and 22 is a test bearing.

図6は、図5に示す試験装置を用いて冠形樹脂製保持器付き転がり軸受の耐久性を水中で且つ回転速度:300min-1、アキシアル荷重:80N、ラジアル荷重:10N、温度:常温の試験条件で試験した結果を示す図である。同図において、縦軸は保持器付き転がり軸受の耐久性(比較例1の試験データを1とした場合の相対値)を示し、横軸は転動体直径に対する転動体軌道溝の中央部深さdを示している。また、図中曲線61は内輪及び外輪をPEEK製とした場合における保持器付き転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示し、曲線62は内輪及び外輪をPE製とした場合における保持器付き転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示している。また、曲線63は内輪及び外輪をPCTFE製とした場合における保持器付き転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示している。 FIG. 6 shows the durability of a rolling bearing with a crown-shaped resin cage using the test apparatus shown in FIG. 5 in water and at a rotational speed of 300 min −1 , an axial load of 80 N, a radial load of 10 N, and a temperature of room temperature. It is a figure which shows the result tested on test conditions. In this figure, the vertical axis shows the durability of the rolling bearing with cage (relative value when the test data of Comparative Example 1 is 1), and the horizontal axis is the depth of the central part of the rolling element raceway groove with respect to the rolling element diameter. d. Curve 61 in the figure shows the relationship between the durability of the rolling bearing with cage and the depth of the center of the rolling element raceway groove with respect to the diameter of the rolling element when the inner ring and outer ring are made of PEEK, and curve 62 shows the inner ring and outer ring. 7 shows the relationship between the durability of the rolling bearing with a cage and the depth of the central portion of the rolling element raceway groove with respect to the diameter of the rolling element when the bearing is made of PE. A curve 63 shows the relationship between the durability of the rolling bearing with a cage and the depth of the center of the rolling element raceway groove with respect to the diameter of the rolling element when the inner ring and the outer ring are made of PCTFE.

図6に示す保持器付き転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係から明らかように、転動体直径に対する転動体軌道溝の中央部深さが18%〜28%の範囲から外れると、保持器付き転がり軸受の耐久性が急激に低下することがわかる。これは、転動体直径に対する転動体軌道溝の中央部深さが18%未満であると、軌道輪を構成する樹脂組成物の弾性率が金属と比較して非常に小さいため、軌道輪に作用するアキシアル荷重によって転動体軌道溝が容易に変形し、転動体軌道溝の変形によって転動体と転動体軌道溝との接触点が転動体軌道溝の肩部に乗り上がり、その結果、転動体軌道溝の肩部に発生する応力集中によって摩耗粉が大量に発生して周辺環境を汚染したり、摩耗粉の噛み込みによって転動体の寿命が大幅に低下したりするためである。また、転動体直径に対する転動体軌道溝の中央部深さが28%を超えると、転動体軌道溝の肩部と保持器とが接触し易くなるため、転動体がすべり易くなり、その結果、転動体転動溝の肩部と保持器との接触部や転動体と軌道輪との接触部で異常摩耗が生じることにより、摩耗粉が大量に発生して周辺環境を汚染したり、摩耗粉の噛み込みによって転動体の寿命が大幅に低下したりするためである。   As is apparent from the relationship between the durability of the rolling bearing with cage shown in FIG. 6 and the central depth of the rolling element raceway groove with respect to the rolling element diameter, the central depth of the rolling element raceway groove with respect to the rolling element diameter is 18% to It can be seen that the durability of the rolling bearing with a cage is drastically reduced when it is out of the 28% range. This is because when the depth of the central portion of the rolling element raceway groove with respect to the rolling element diameter is less than 18%, the elastic modulus of the resin composition constituting the raceway is very small compared to that of the metal, so that it acts on the raceway. The rolling element raceway groove is easily deformed by the axial load, and the contact point between the rolling element and the rolling element raceway groove rises on the shoulder of the rolling element raceway groove as a result of the deformation of the rolling element raceway groove. This is because a large amount of wear powder is generated due to the concentration of stress generated in the shoulder portion of the groove and pollutes the surrounding environment, or the life of the rolling element is significantly reduced due to the biting of the wear powder. Further, if the central depth of the rolling element raceway groove with respect to the rolling element diameter exceeds 28%, the shoulder of the rolling element raceway groove and the cage are likely to come into contact with each other. Abnormal wear occurs at the contact part between the shoulder of the rolling element rolling groove and the cage and the contact part between the rolling element and the bearing ring, so that a large amount of wear powder is generated and the surrounding environment is contaminated. This is because the life of the rolling element is significantly reduced by biting.

したがって、表1に示す実施例1〜4のように、転動体直径に対する転動体軌道溝の中央部深さを18%〜28%の範囲内とすることにより、転動体直径に対する転動体軌道溝の中央部深さが18%〜28%の範囲から外れるもの(比較例1及び比較例2)と比較して、保持器付き転がり軸受の耐久性を高めることができる。また、表1に示す実施例2及び3のように、転動体直径に対する転動体軌道溝の中央部深さを20%〜25%の範囲内とすることにより、保持器付き転がり軸受の耐久性をより高めることができる。   Therefore, as in Examples 1 to 4 shown in Table 1, by setting the central depth of the rolling element raceway groove with respect to the rolling element diameter within the range of 18% to 28%, the rolling element raceway groove with respect to the rolling element diameter The durability of the rolling bearing with a cage can be enhanced as compared with those in which the center depth of the roller is out of the range of 18% to 28% (Comparative Example 1 and Comparative Example 2). Further, as in Examples 2 and 3 shown in Table 1, the durability of the rolling bearing with a cage is achieved by setting the central depth of the rolling element raceway groove to the rolling element diameter within a range of 20% to 25%. Can be further enhanced.

実施例1〜4の保持器付き転がり軸受は、比較例1のものと比較して、転がり軸受の耐久性が3〜12倍程度であることがわかる。これは、比較例1のように、転動体軌道溝の曲率Rが転動体の直径に対して52.2%未満であると、軌道輪を構成する樹脂組成物の弾性率が金属と比較して非常に小さいため、軌道輪に作用するアキシアル荷重によって転動体軌道溝が容易に変形し、転動体軌道溝の変形によって転動体と転動体軌道溝との接触点が転動体軌道溝の肩部に乗り上がり、その結果、転動体軌道溝の肩部に発生する応力集中によって摩耗粉が大量に発生して周辺環境を汚染したり、摩耗粉の噛み込みによって転動体の寿命が大幅に低下したりするためである。また、比較例2のように、転動体軌道溝の曲率Rが転動体の直径に対して55%を超えると、転がり軸受の耐久性が1以下となることがわかる。   It can be seen that the rolling bearings with cages of Examples 1 to 4 have a durability of the rolling bearing of about 3 to 12 times that of Comparative Example 1. This is because, as in Comparative Example 1, when the curvature R of the rolling element raceway groove is less than 52.2% with respect to the diameter of the rolling element, the elastic modulus of the resin composition constituting the raceway is compared with that of metal. Therefore, the rolling element raceway groove is easily deformed by the axial load acting on the raceway, and the contact point between the rolling element and the rolling element raceway groove is the shoulder of the rolling element raceway groove due to the deformation of the rolling element raceway groove. As a result, a large amount of wear powder is generated due to the stress concentration generated on the shoulder of the rolling element raceway groove, contaminating the surrounding environment, and the life of the rolling element is significantly reduced due to the biting of the wear powder. This is because Moreover, when the curvature R of a rolling element raceway groove exceeds 55% with respect to the diameter of a rolling element like the comparative example 2, it turns out that durability of a rolling bearing will be 1 or less.

したがって、保持器付き転がり軸受の軌道輪を樹脂製とし、かつ転動体の直径に対する転動体軌道溝の中央部深さを18%〜28%、好ましくは20%〜25%の範囲内とする場合は、実施例1〜4のように、転動体軌道溝の曲率Rを転動体の直径に対して52.2%〜55%の範囲内とすることが好ましい。
図7は、図5に示す試験装置を用いて保持器無し転がり軸受の耐久性を水中で且つ軸受回転速度:300min-1、アキシアル荷重:80N、ラジアル荷重:10N、温度:常温の試験条件で試験した結果を示す図である。このときの転動体はいずれも窒化けい素である。
Therefore, when the bearing ring of the rolling bearing with cage is made of resin and the depth of the central portion of the rolling element raceway groove with respect to the diameter of the rolling element is within a range of 18% to 28%, preferably 20% to 25%. As in Examples 1 to 4, it is preferable that the curvature R of the rolling element raceway groove is in the range of 52.2% to 55% with respect to the diameter of the rolling element.
FIG. 7 shows the durability of a rolling bearing without a cage using the test apparatus shown in FIG. 5 under the test conditions in water, bearing rotational speed: 300 min −1 , axial load: 80 N, radial load: 10 N, temperature: room temperature. It is a figure which shows the result of having tested. The rolling elements at this time are all silicon nitride.

同図において、縦軸は保持器無し転がり軸受の耐久性(比較例3の試験データを1とした場合の相対値)を示し、横軸は転動体直径に対する転動体軌道溝の中央部深さdを示している。また、図中曲線71は内輪及び外輪をPOM製とした場合における保持器無し転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示し、曲線72は内輪及び外輪をPP製とした場合における保持器無し転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示している。また、曲線73は内輪及び外輪をPVDF製とした場合における保持器無し転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示している。   In the same figure, the vertical axis shows the durability of the rolling bearing without a cage (relative value when the test data of Comparative Example 3 is 1), and the horizontal axis is the depth of the central part of the rolling element raceway groove with respect to the rolling element diameter. d. Curve 71 in the figure shows the relationship between the durability of the rolling bearing without a cage when the inner ring and the outer ring are made of POM and the central depth of the rolling element raceway groove with respect to the diameter of the rolling element, and curve 72 shows the inner ring and the outer ring. 7 shows the relationship between the durability of a rolling bearing without a cage when made of PP and the central depth of the rolling element raceway groove with respect to the rolling element diameter. Curve 73 shows the relationship between the durability of the rolling bearing without a cage when the inner ring and the outer ring are made of PVDF and the central depth of the rolling element raceway groove with respect to the rolling element diameter.

図7に示す保持器無し転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係から明らかように、転動体直径に対する転動体軌道溝の中央部深さが18%〜45%の範囲から外れると、保持器無し転がり軸受の耐久性が急激に低下することがわかる。
したがって、表1に示す実施例5〜12のように、転動体直径に対する転動体軌道溝の中央部深さを18%〜45%の範囲内とすることにより、転動体直径に対する転動体軌道溝の中央部深さが18%〜45%の範囲から外れるもの(比較例3及び比較例4)と比較して、保持器無し転がり軸受の耐久性を高めることができる。また、表1に示す実施例6〜8及び10〜12のように、転動体直径に対する転動体軌道溝の中央部深さを20%〜40%の範囲内とすることにより、保持器付き転がり軸受の耐久性をより高めることができる。
As is apparent from the relationship between the durability of the rolling bearing without a retainer shown in FIG. 7 and the central depth of the rolling element raceway groove with respect to the rolling element diameter, the central depth of the rolling element raceway groove with respect to the rolling element diameter is 18% to It can be seen that when it is out of the range of 45%, the durability of the rolling bearing without a cage is drastically lowered.
Accordingly, as in Examples 5 to 12 shown in Table 1, by setting the central depth of the rolling element raceway groove to the rolling element diameter within a range of 18% to 45%, the rolling element raceway groove to the rolling element diameter is set. The durability of the rolling bearing without a cage can be improved as compared with those in which the depth of the central portion is out of the range of 18% to 45% (Comparative Example 3 and Comparative Example 4). Moreover, like Example 6-8 shown in Table 1, and 10-12, the center part depth of the rolling-element track groove with respect to a rolling-element diameter shall be in the range of 20%-40%, and rolling with a holder | retainer is carried out. The durability of the bearing can be further increased.

実施例5〜12の保持器無し転がり軸受は、比較例3のものと比較して、転がり軸受の耐久性が4〜20倍程度であることがわかる。これは、比較例3のように、転動体軌道溝の曲率Rが転動体の直径に対して50.5%未満であると、軌道輪を構成する樹脂組成物の弾性率が金属と比較して非常に小さいため、軌道輪に作用するアキシアル荷重によって転動体軌道溝が容易に変形し、転動体軌道溝の変形によって転動体と転動体軌道溝との接触点が転動体軌道溝の肩部に乗り上がり、その結果、転動体軌道溝の肩部に発生する応力集中によって摩耗粉が大量に発生して周辺環境を汚染したり、摩耗粉の噛み込みによって転動体の寿命が大幅に低下したりするためである。また、比較例4のように、転動体軌道溝の曲率Rが転動体の直径に対して51.9%を超えると、転がり軸受の耐久性が急激に低下することがわかる。   It can be seen that the cageless rolling bearings of Examples 5 to 12 have a durability of the rolling bearing of about 4 to 20 times that of Comparative Example 3. This is because, as in Comparative Example 3, when the curvature R of the rolling element raceway groove is less than 50.5% with respect to the diameter of the rolling element, the elastic modulus of the resin composition constituting the raceway is compared with that of metal. Therefore, the rolling element raceway groove is easily deformed by the axial load acting on the raceway, and the contact point between the rolling element and the rolling element raceway groove is the shoulder of the rolling element raceway groove due to the deformation of the rolling element raceway groove. As a result, a large amount of wear powder is generated due to the stress concentration generated on the shoulder of the rolling element raceway groove, contaminating the surrounding environment, and the life of the rolling element is significantly reduced due to the biting of the wear powder. This is because Further, as in Comparative Example 4, it can be seen that when the curvature R of the rolling element raceway groove exceeds 51.9% with respect to the diameter of the rolling element, the durability of the rolling bearing is drastically reduced.

したがって、保持器無し転がり軸受の軌道輪を樹脂製とし、かつ転動体の直径に対する転動体軌道溝の中央部深さを18%〜45%、好ましくは20%〜40%の範囲内とする場合は、実施例5〜12のように、転動体軌道溝の曲率Rを転動体の直径に対して50.5%〜51.9%の範囲内とすることが好ましい。
なお、本発明は表1に示す実施例1〜12に限定されるものではない。たとえば、転がり軸受の軌道輪素材として好適な樹脂材としては、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリアセタール(POM)樹脂、ポリフェニレンサルファイド(PPS)樹脂に代表されるポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルニトリル(PEN)、芳香族ポリイミド(PI)、熱可塑性ポリイミド(TPI)、ポリアミドイミド(PAI)、芳香族ポリエステル(LCP)および各種含フッ素樹脂が挙げられる。
Therefore, when the bearing ring of the rolling bearing without a cage is made of resin and the depth of the central portion of the rolling element raceway groove with respect to the diameter of the rolling element is in the range of 18% to 45%, preferably 20% to 40%. As in Examples 5 to 12, it is preferable that the curvature R of the rolling element raceway groove is in the range of 50.5% to 51.9% with respect to the diameter of the rolling element.
The present invention is not limited to Examples 1 to 12 shown in Table 1. For example, as a resin material suitable as a bearing ring material of a rolling bearing, polyarylene sulfide resin represented by polyethylene (PE) resin, polypropylene (PP) resin, polyacetal (POM) resin, polyphenylene sulfide (PPS) resin, poly Examples include ether ether ketone (PEEK), polyether nitrile (PEN), aromatic polyimide (PI), thermoplastic polyimide (TPI), polyamideimide (PAI), aromatic polyester (LCP), and various fluorine-containing resins.

軌道輪素材として含フッ素樹脂を用いる場合は、特に限定されないが、例えばテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)などの含フッ素樹脂を用いることができる。   When a fluorine-containing resin is used as the bearing ring material, it is not particularly limited. For example, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride ( PVDF), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE) and the like can be used.

転がり軸受の軌道輪を樹脂組成物から形成する場合は、軌道輪の潤滑特性を向上させたり、転動体軌道溝と転動体との接触点に発生する摩擦力を低減したりする目的で、樹脂組成物に四フッ化エチレン樹脂粉末(PTFE)、黒鉛、六方晶窒化ホウ素(hBN)、フッ素雲母、メラミンシアヌレート(MCA)、層状の結晶構造を有するアミノ酸化合物(N−ラウロ・L−リジン)、フッ化黒鉛、フッ化ピッチ、二硫化モリブデン(MoS2)等の固体潤滑剤を適量添加してもよい。この場合、樹脂組成物に対する固体潤滑剤の添加量が30質量%を超えると、異なる潤滑作用の向上が期待できないばかりでなく、樹脂組成物自体の機械的強度が低下することによって、樹脂組成物からなる軌道輪や保持器の摩耗が増加し、寿命が短くなってしまう場合がある。したがって、軌道輪を構成する樹脂組成物に固体潤滑剤を添加する場合は、固体潤滑剤の添加量を30質量%以下とすることが好ましい。 When the bearing ring of the rolling bearing is formed from a resin composition, the resin is used for the purpose of improving the lubrication characteristics of the bearing ring or reducing the frictional force generated at the contact point between the rolling element raceway groove and the rolling element. Composition includes tetrafluoroethylene resin powder (PTFE), graphite, hexagonal boron nitride (hBN), fluorine mica, melamine cyanurate (MCA), amino acid compound having a layered crystal structure (N-lauro / L-lysine) An appropriate amount of solid lubricant such as fluorinated graphite, fluorinated pitch, and molybdenum disulfide (MoS 2 ) may be added. In this case, when the amount of the solid lubricant added to the resin composition exceeds 30% by mass, not only the improvement of the different lubricating action cannot be expected, but also the mechanical strength of the resin composition itself decreases, thereby causing the resin composition There is a case where wear of the bearing ring and the cage is increased, and the life is shortened. Therefore, when a solid lubricant is added to the resin composition constituting the bearing ring, the amount of the solid lubricant added is preferably 30% by mass or less.

また、樹脂組成物に添加される固体潤滑剤の平均粒径が0.1μm未満であると、母材である溶融成形可能な含フッ素樹脂と混合した際に凝集が起こり、粒子の分散や不均一になる場合がある。一方、固体潤滑剤の平均粒径が60μmを超えると、成形体である樹脂組成物の表面の平滑性が低下すると共に強度が低下し、転がり軸受の寿命が短くなってしまう場合がある。したがって、軌道輪を構成する樹脂組成物に固体潤滑剤を添加する場合は、固体潤滑剤の平均粒径を0.1μm以上60μm以下とすることが好ましい。   In addition, if the average particle size of the solid lubricant added to the resin composition is less than 0.1 μm, aggregation occurs when mixed with a melt-moldable fluororesin as a base material, and dispersion or non-uniformity of the particles occurs. It may become uniform. On the other hand, if the average particle diameter of the solid lubricant exceeds 60 μm, the smoothness of the surface of the resin composition, which is a molded body, may be reduced, the strength may be reduced, and the life of the rolling bearing may be shortened. Therefore, when a solid lubricant is added to the resin composition constituting the race, the average particle size of the solid lubricant is preferably 0.1 μm or more and 60 μm or less.

転がり軸受の軌道輪を樹脂製とする場合は、軌道輪の機械的強度、耐熱性、寸法安定性などを向上させるために、軌道輪素材に繊維状充填材を配合してもよい。軌道輪素材に配合される繊維状充填材としては、特に限定されないが、ホウ酸アルミニウムウィスカー、チタン酸カリウムウィスカー、カーボンウィスカー、アラミド繊維、芳香族ポリイミド繊維、液晶ポリエステル繊維、グラファイトウィスカー、ガラス繊維、炭素繊維、ボロン繊維、炭化けい素ウィスカー、窒化けい素ウィスカー、アルミナウィスカー、窒化アルミニウムウィスカー、ウォラストナイトなどを用いることができる。   When the bearing ring of the rolling bearing is made of resin, a fibrous filler may be added to the bearing ring material in order to improve the mechanical strength, heat resistance, dimensional stability and the like of the bearing ring. The fibrous filler to be blended in the raceway material is not particularly limited, but aluminum borate whisker, potassium titanate whisker, carbon whisker, aramid fiber, aromatic polyimide fiber, liquid crystal polyester fiber, graphite whisker, glass fiber, Carbon fiber, boron fiber, silicon carbide whisker, silicon nitride whisker, alumina whisker, aluminum nitride whisker, wollastonite, or the like can be used.

この場合、繊維状充填材のアスペクト比が3未満では樹脂組成物の補強効果が十分に発揮されず、アスペクト比が200を超えると混合時の均一分散が極めて困難となるので、繊維状充填材のアスペクト比は3以上200以下であることが好ましい。また、繊維状充填材の繊維径は、特に限定されないが、平均繊維径が0.2μm以上30μm以下、好ましくは0.3μm以上5μm以下であることが望ましい。   In this case, if the aspect ratio of the fibrous filler is less than 3, the reinforcing effect of the resin composition is not sufficiently exhibited. If the aspect ratio exceeds 200, uniform dispersion during mixing becomes extremely difficult. The aspect ratio is preferably 3 or more and 200 or less. The fiber diameter of the fibrous filler is not particularly limited, but the average fiber diameter is preferably 0.2 μm or more and 30 μm or less, and preferably 0.3 μm or more and 5 μm or less.

樹脂組成物への繊維状充填材の配合量が30質量%を超えると、更なる機械的強度の向上が期待できないばかりでなく、樹脂組成物を溶融背成形する際の流動性が著しく低下する。また、溶融成形の際の流動性および樹脂組成物の機械的強度の観点から、樹脂組成物における固体潤滑剤と繊維状充填材の各々の含有率が30質量%以下であっても、両者の合計含有率が50質量%を超えると、樹脂組成物を溶融成形する際の流動性および樹脂組成物の機械的強度が著しく低下する場合がある。したがって、樹脂組成物への繊維状充填材の配合量は、特に限定されないが、30質量%以下であることが好ましい。
樹脂組成物に含有させる繊維状充填材は、母材である溶融成形の可能な含フッ素樹脂との密着性を上げたり、母材中に均一に分散させたりする目的で、シラン系やとチタネート系のカップリング剤により表面処理がなされているものであってもよいし、その他の目的に応じて表面処理がなされているものでもよい。
When the blending amount of the fibrous filler in the resin composition exceeds 30% by mass, not only a further improvement in mechanical strength can be expected, but also the fluidity when melt-molding the resin composition is significantly reduced. . In addition, from the viewpoint of fluidity during melt molding and the mechanical strength of the resin composition, even if each content of the solid lubricant and the fibrous filler in the resin composition is 30% by mass or less, When the total content exceeds 50% by mass, the fluidity when the resin composition is melt-molded and the mechanical strength of the resin composition may be significantly reduced. Therefore, the blending amount of the fibrous filler in the resin composition is not particularly limited, but is preferably 30% by mass or less.
The fibrous filler contained in the resin composition is a silane or titanate for the purpose of improving adhesion with a meltable fluorine-containing resin that is a base material, or uniformly dispersing in the base material. The surface treatment may be performed with a system coupling agent, or the surface treatment may be performed according to other purposes.

表1の実施例1では転動体材料として硼珪酸ガラスを用いた場合を例示したが、硼珪酸ガラス以外のガラス(例えばソーダライムガラス、パイレックス(登録商標)ガラスなど)を転動体材料として用いてもよい。
表1の実施例2では転動体材料としてSUS440Cを用いた場合を例示したが、SUS440C以外のステンレス鋼系金属材料(例えばSUS304、SUS630)を転動体材料として用いてもよい。
In Example 1 of Table 1, the case where borosilicate glass is used as the rolling element material is exemplified, but glass other than borosilicate glass (for example, soda lime glass, Pyrex (registered trademark) glass) is used as the rolling element material. Also good.
In Example 2 of Table 1, although the case where SUS440C was used as a rolling element material was illustrated, you may use stainless steel type metal materials (for example, SUS304, SUS630) other than SUS440C as a rolling element material.

表1の実施例3では転動体材料として窒化けい素(Si34)を用いた場合を例示したが、窒化けい素以外のセラミックス材料(例えば炭化珪素(SiC)、サイアロン(Sialon)、部分安定化ジルコニア(ZrO2)、アルミナ(Al23)など)を転動体材料として用いてもよい。
表1の各実施例では転動体を単一の材料から形成したものを例示したが、上述した複数種の材料を組合せてもよい。
In Example 3 of Table 1, the case where silicon nitride (Si 3 N 4 ) was used as the rolling element material was exemplified, but ceramic materials other than silicon nitride (for example, silicon carbide (SiC), sialon (Sialon), part) Stabilized zirconia (ZrO 2 ), alumina (Al 2 O 3 ), etc.) may be used as the rolling element material.
In each Example of Table 1, although what formed the rolling element from the single material was illustrated, you may combine the multiple types of material mentioned above.

次に、図8を参照して、本発明の第2の実施形態について説明する。
図8は本発明の第2の実施形態に係る転がり軸受の径方向に沿う断面図であり、同図に示されるように、第2の実施形態に係る転がり軸受は、内輪2及び外輪3を備えている。これらの内輪2及び外輪3は例えばPE,PP,POM,PPS等の樹脂を主成分とする材料で形成されており、内輪2の外周面には転動体軌道溝4が、また外輪3の内周面には転動体軌道溝5がそれぞれ形成されている。
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 8 is a sectional view along the radial direction of the rolling bearing according to the second embodiment of the present invention. As shown in FIG. 8, the rolling bearing according to the second embodiment includes an inner ring 2 and an outer ring 3. I have. The inner ring 2 and the outer ring 3 are formed of a material mainly composed of a resin such as PE, PP, POM, PPS, and the like. The rolling element raceway grooves 5 are formed on the circumferential surface.

転動体軌道溝4と転動体軌道溝5との間には、樹脂以外の材料(例えばガラス、金属、セラミックス等)からなる複数(例えば6個)の第1転動体6Aと樹脂組成物からなる複数(例えば6個)の第2転動体6Bが交互に配設されている。これらの転動体6A,6Bは球状に形成されており、第1転動体6Aの直径をD、第2転動体6Bの直径をDとすると、DとDとの比は、D/D=0.987〜1.013となっている。
第2の実施形態に係る転がり軸受の実施例を比較例と共に表2に示す。
Between the rolling element raceway grooves 4 and the rolling element raceway grooves 5, a plurality of (for example, six) first rolling elements 6 </ b> A made of a material other than resin (for example, glass, metal, ceramics, etc.) and a resin composition are used. A plurality of (for example, six) second rolling elements 6B are alternately arranged. These rolling elements 6A, 6B is formed in a spherical shape, diameter D N of the first rolling element 6A, when the diameter of the second rolling element 6B and D P, the ratio between D P and D N is, D P / D N = 0.987 to 1.013.
Examples of rolling bearings according to the second embodiment are shown in Table 2 together with comparative examples.

Figure 2006200733
Figure 2006200733

表2において、実施例13,14,16,17,19及び20は第1転動体6Aの転動体材料として硼珪酸ガラスを用いたものを示し、実施例15及び18は第1転動体6Aの転動体材料としてSUS304を用いたものを示している。また、実施例13,16,18及び19は第2転動体6Bの転動体材料としてポリエチレン(PE)樹脂を、実施例14及び20は第2転動体6Bの転動体材料としてポリプロピレン(PP)樹脂を、実施例15及び17は第2転動体6Bの転動体材料として四フッ化エチレン(PTFE)を用いたものをそれぞれ示している。   In Table 2, Examples 13, 14, 16, 17, 19 and 20 show those using borosilicate glass as the rolling element material of the first rolling element 6A, and Examples 15 and 18 are examples of the first rolling element 6A. A material using SUS304 as a rolling element material is shown. In Examples 13, 16, 18 and 19, polyethylene (PE) resin is used as the rolling element material of the second rolling element 6B. In Examples 14 and 20, polypropylene (PP) resin is used as the rolling element material of the second rolling element 6B. Examples 15 and 17 show examples in which tetrafluoroethylene (PTFE) is used as the rolling element material of the second rolling element 6B.

なお、実施例13〜20、比較例5及び6では、実施例1〜12及び比較例1〜4で使用した材料のほかに、特殊PEとして、三井化学株式会社製造のリュブマーL4000(商品名)を使用した。また、チタネート系カップリング剤として、味の素ファインテクノ株式会社製造のプレンアクトKR TTS(商品名)を、シランカップリング剤として、信越化学株式会社製造のKBM3103(商品名)をそれぞれ使用した。   In Examples 13 to 20 and Comparative Examples 5 and 6, in addition to the materials used in Examples 1 to 12 and Comparative Examples 1 to 4, as a special PE, Lübmer L4000 (trade name) manufactured by Mitsui Chemicals, Inc. It was used. In addition, Prenact KR TTS (trade name) manufactured by Ajinomoto Fine Techno Co., Ltd. was used as the titanate coupling agent, and KBM3103 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silane coupling agent.

本発明者は、表2に示す仕様の転がり軸受(型番6001、内径:12mm、外径:28mm、幅:8mm)を作製し、軸受の耐久性を評価するために、次のような軸受回転試験を水中で行った。すなわち、図5に示す日本精工(株)製軸受回転試験機を用いて軸受の内輪を回転速度:1000min−1、アキシアル荷重:80N、温度:常温の条件で回転させ、そのときに発生する軸受の振動を振動計20で測定した。そして、その測定値が初期値の5倍に上昇した時点を転がり軸受の寿命と定め、比較例5の耐久性を1として各軸受の耐久性について評価した。その評価結果を表2に併記する。 The present inventor manufactured a rolling bearing (model number 6001, inner diameter: 12 mm, outer diameter: 28 mm, width: 8 mm) having the specifications shown in Table 2 and evaluated the bearing durability as follows. The test was performed in water. That is, the bearing generated by rotating the inner ring of the bearing at a rotational speed of 1000 min −1 , an axial load of 80 N, and a temperature of room temperature using a bearing rotation tester manufactured by NSK Ltd. shown in FIG. Was measured with a vibrometer 20. And the time when the measured value rose to 5 times the initial value was determined as the life of the rolling bearing, and the durability of each bearing was evaluated with the durability of Comparative Example 5 as 1. The evaluation results are also shown in Table 2.

実施例13〜20と比較例5とを比較すると、実施例13〜20のほうが比較例5よりも軸受の耐久性が4倍〜17倍程度高いことがわかる。これは、比較例5及び比較例6のように、樹脂組成物からなる第2転動体を持たない場合は、転動体同士が接触して摩耗が生じやすくなり、その結果、転がり軸受が比較的短時間で寿命に達するのに対し、実施例13〜20のように、非樹脂組成物からなる第1転動体と樹脂組成物からなる第2転動体とを内輪と外輪との間に交互に配することによって、転動体同士の摩擦や衝突が生じた時にも第1転動体と第2転動体との接触となり、転動体同士の接触や衝突による摩耗が抑制されるためと考察される。   When Examples 13 to 20 and Comparative Example 5 are compared, it can be seen that Examples 13 to 20 have a bearing durability about 4 to 17 times higher than that of Comparative Example 5. This is because, as in Comparative Example 5 and Comparative Example 6, when there is no second rolling element made of a resin composition, the rolling elements come into contact with each other and wear tends to occur. As a result, the rolling bearing is relatively While reaching the life in a short time, as in Examples 13 to 20, the first rolling element made of the non-resin composition and the second rolling element made of the resin composition are alternately arranged between the inner ring and the outer ring. It is considered that the arrangement causes contact between the first rolling element and the second rolling element even when friction or collision between the rolling elements occurs, and wear due to contact or collision between the rolling elements is suppressed.

したがって、非樹脂組成物からなる第1転動体と樹脂組成物からなる第2転動体とを内輪と外輪との間に交互に配することによって、転動体同士の接触や衝突による摩耗を効果的に抑制できるので、転がり軸受の耐久性を高めることができる。
次に、本発明者は表3に示す転がり軸受A〜Cを作製し、各軸受における第2転動体の直径Dと第1転動体の直径Dとの比をD/D=0.975〜1.02の範囲で変化させた時の転がり軸受の耐久性について評価した。その評価結果を図9に示す。
Accordingly, by alternately arranging the first rolling element made of the non-resin composition and the second rolling element made of the resin composition between the inner ring and the outer ring, wear due to contact or collision between the rolling elements is effective. Therefore, the durability of the rolling bearing can be enhanced.
Then, the present inventor has produced a rolling bearing A~C shown in Table 3, the ratio of the diameter D P and the diameter D N of the first rolling bodies of the second rolling element in the bearings D P / D N = The durability of the rolling bearing when changed in the range of 0.975 to 1.02 was evaluated. The evaluation results are shown in FIG.

Figure 2006200733
Figure 2006200733

図9に示されるように、D/Dが0.987〜1.013の範囲内にある場合は、転がり軸受の耐久性が7以上の高い値を示していることがわかる。これは、樹脂組成物からなる第2転動体が保持器との摺動面や内輪及び外輪との接触点で摺動する相手面(保持器であればポケット内面、内輪及び外輪であれば軌道溝表面)と適度な接触力が生じる結果、自己潤滑性に優れる樹脂材料が第2転動体から上記相手面に転着し、相手面に転着した樹脂材料によって転動体と保持器あるいは軌道溝表面との接触部に生じる摩擦力が低減されるためと考察される。 As shown in FIG. 9, when D P / DN is in the range of 0.987 to 1.013, it can be seen that the durability of the rolling bearing shows a high value of 7 or more. This is because the second rolling element made of the resin composition slides on the sliding surface with the cage and the contact point with the inner ring and the outer ring (the inner surface of the pocket if the cage, the track if the inner ring and the outer ring). As a result of an appropriate contact force with the groove surface), a resin material excellent in self-lubricating property is transferred from the second rolling element to the mating surface, and the rolling element and the cage or raceway groove by the resin material transferred to the mating surface. It is considered that the frictional force generated at the contact portion with the surface is reduced.

一方、D/Dが0.987〜1.013の範囲内から外れると、転がり軸受の耐久性が急激に低下することがわかる。これは、D/Dが0.987未満になると上記相手面と第2転動体との接触が不十分となり、その結果、第2転動体から相手面に転着される樹脂材料の転着量が少なくなるためと考察され、またD/Dが1.013を超えると上記相手面に対する第2転動体の接触力が極端に大きくなり、その結果、第2転動体に異常な摩耗が生じたり、第2転動体が破損したりするためと考察される。 On the other hand, when the D P / D N is out of the range of 0.987 to 1.013, the durability of the rolling bearing is understood to be rapidly decreased. This is because when D P / DN is less than 0.987, the contact between the mating surface and the second rolling element becomes insufficient, and as a result, the resin material that is transferred from the second rolling element to the mating surface is transferred. It is considered that because the wear amount is small, and the contact force of the second rolling member with respect to the mating surface when the D P / D N exceeds 1.013 is extremely large, as a result, abnormal second rolling element It is considered that wear occurs or the second rolling element is damaged.

したがって、第2転動体の直径Dと第1転動体の直径Dとの比を0.987以上1.013以下とすることにより、転動体と保持器あるいは軌道溝表面との接触部に生じる摩擦力が低減されるので、転がり軸受の耐久性をより高めることができる。
次に、本発明の実施例21〜30を比較例7〜9と共に表4に示す。
Therefore, the ratio between the diameter D N of the diameter D P and the first rolling member of the second rolling element by a 0.987 or 1.013 or less, the contact portion between the rolling elements and the cage or raceway groove surface Since the generated frictional force is reduced, the durability of the rolling bearing can be further increased.
Next, Table 21 shows Examples 21 to 30 of the present invention together with Comparative Examples 7 to 9.

Figure 2006200733
Figure 2006200733

表4において、実施例21〜30は軌道輪が樹脂組成物からなる転がり軸受の転動体をPTFE等の樹脂材料から形成したものを示している。また、比較例7及び9は軌道輪が樹脂組成物からなる転がり軸受の転動体を硼珪酸ガラスから形成したものを示し、比較例8は軌道輪が樹脂組成物からなる転がり軸受の転動体をSUS304製としたものを示している。なお、表4において保持器には、冠型ふっ素系樹脂保持器を用いた。   In Table 4, Examples 21-30 show what formed the rolling element of the rolling bearing from which a bearing ring consists of a resin composition from resin materials, such as PTFE. Comparative Examples 7 and 9 show rolling elements of rolling bearings whose bearing rings are made of a resin composition made of borosilicate glass, and Comparative Example 8 shows rolling elements of rolling bearings whose bearing rings are made of a resin composition. The one made of SUS304 is shown. In Table 4, a crown type fluorine resin cage was used as the cage.

表4の実施例21〜30及び比較例7〜9に示すような転がり軸受(型番6001、内径:12mm、外径:28mm、幅:8mm)を試作し、これらの回転試験(試験条件は内輪回転、ドライ(無循環)環境下、回転速度:600min−1、アキシアル荷重:80N、温度:常温)を図5に示す日本精工(株)製軸受回転試験機を用いて行った。そして、回転試験時の振動値が初期値の5倍に上昇した時点を転がり軸受の寿命として定め、試作した各転がり軸受の耐久性について評価した。その結果を表4に併記する。 Rolling bearings (model No. 6001, inner diameter: 12 mm, outer diameter: 28 mm, width: 8 mm) as shown in Examples 21 to 30 and Comparative Examples 7 to 9 in Table 4 were made on trial, and these rotation tests (test conditions were inner ring) Under a rotating and dry (non-circulating) environment, a rotational speed: 600 min −1 , an axial load: 80 N, and a temperature: normal temperature were performed using a bearing rotation tester manufactured by Nippon Seiko Co., Ltd. shown in FIG. And the time when the vibration value at the time of the rotation test increased to 5 times the initial value was determined as the life of the rolling bearing, and the durability of each prototype rolling bearing was evaluated. The results are also shown in Table 4.

実施例21〜30に示されるものと比較例7に示されるものとを比較すると、実施例21〜30に示されるものは、その耐久性の評価値が比較例7に示されるものと比較して、3〜16倍程度高いことがわかる。これは、比較例7に示されるものは転動体が硼珪酸ガラスから形成されているのに対し、実施例21〜30に示されるものは転動体が自己潤滑性に優れた樹脂組成物から形成されているためである。   When what is shown in Examples 21 to 30 and that shown in Comparative Example 7 are compared, those shown in Examples 21 to 30 are compared with those shown in Comparative Example 7 in terms of durability evaluation values. It can be seen that it is about 3 to 16 times higher. This is because the rolling element is formed from borosilicate glass in the comparative example 7, whereas the rolling elements are formed from a resin composition having excellent self-lubricating properties in the examples 21 to 30. It is because it has been.

したがって、軌道輪が樹脂組成物からなる転がり軸受の転動体の全てを樹脂組成物から形成したことにより、樹脂組成物は自己潤滑性に優れているため、ドライ(無潤滑)条件下において転動体の摩耗がより効果的に低減され、転がり軸受の更なる長寿命化を図ることができる。特に、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、溶融成形可能な耐食性樹脂、含フッ素樹脂のうちいずれか一つを主成分とする樹脂組成物は樹脂組成物のなかでも特に自己潤滑性に優れるため、特にドライ(無潤滑)条件下において転動体の摩耗がより効果的に低減され、転がり軸受の更なる長寿命化を図ることができる。   Therefore, since all of the rolling elements of the rolling bearing in which the race ring is made of the resin composition are formed from the resin composition, the resin composition has excellent self-lubricating properties, and therefore the rolling element under dry (non-lubricated) conditions. Wear is more effectively reduced, and the life of the rolling bearing can be further extended. In particular, a resin composition mainly comprising any one of a polyethylene resin, a polypropylene resin, a polyacetal resin, a melt-resistant corrosion-resistant resin, and a fluorine-containing resin is particularly excellent in self-lubricating properties among resin compositions. In particular, the wear of the rolling elements is more effectively reduced under dry (non-lubricated) conditions, and the life of the rolling bearing can be further extended.

保持器付き転がり軸受の軸方向断面図である。It is an axial sectional view of a rolling bearing with a cage. 保持器無し転がり軸受の軸方向断面図である。It is an axial sectional view of a rolling bearing without a cage. 図1及び図2に示す内輪の部分断面図である。It is a fragmentary sectional view of the inner ring | wheel shown in FIG.1 and FIG.2. 図1及び図2に示す外輪の部分断面図である。It is a fragmentary sectional view of the outer ring | wheel shown in FIG.1 and FIG.2. 転がり軸受の耐久性を試験するときに用いる試験装置の概略構成図である。It is a schematic block diagram of the testing apparatus used when testing the durability of a rolling bearing. 保持器付き転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示す図である。It is a figure which shows the relationship between durability of a rolling bearing with a cage | basket, and the center part depth of a rolling element raceway groove | channel with respect to a rolling element diameter. 保持器無し転がり軸受の耐久性と転動体直径に対する転動体軌道溝の中央部深さとの関係を示す図である。It is a figure which shows the relationship between durability of a rolling bearing without a cage | basket, and the center part depth of a rolling element raceway groove | channel with respect to a rolling element diameter. 本発明の第2の実施形態に係る転がり軸受の径方向断面図である。It is radial direction sectional drawing of the rolling bearing which concerns on the 2nd Embodiment of this invention. 樹脂製転動体の直径と非樹脂製転動体の直径との比と転がり軸受の耐久性との関係を示す図である。It is a figure which shows the relationship between the ratio of the diameter of a resin rolling element and the diameter of a non-resin rolling element, and durability of a rolling bearing.

符号の説明Explanation of symbols

1A 保持器付き転がり軸受
1B 保持器無し転がり軸受
2 内輪
3 外輪
4,5 転動体軌道溝
6 転動体
6A 第1転動体
6B 第2転動体
7 保持器
1A Rolling bearing with cage 1B Rolling bearing without cage 2 Inner ring 3 Outer ring 4, 5 Rolling element raceway groove 6 Rolling element 6A First rolling element 6B Second rolling element 7 Cage

Claims (11)

樹脂組成物からなる内輪と、該内輪の外周に設けられた樹脂製の外輪と、前記内輪の外周面に形成された転動体軌道溝と前記外輪の内周面に形成された転動体軌道溝を前記内輪または前記外輪の回転に伴って転動する多数の球状転動体とを備えた転がり軸受において、
前記転動体軌道溝の中央部分の深さを前記転動体の直径に対して18%以上45%以下としたことを特徴とする転がり軸受。
An inner ring made of a resin composition; an outer ring made of resin provided on the outer periphery of the inner ring; a rolling element raceway groove formed on the outer peripheral surface of the inner ring; and a rolling element raceway groove formed on the inner peripheral surface of the outer ring. In a rolling bearing comprising a large number of spherical rolling elements that roll as the inner ring or the outer ring rotates,
A rolling bearing characterized in that a depth of a central portion of the rolling element raceway groove is 18% or more and 45% or less with respect to a diameter of the rolling element.
前記転動体軌道溝は前記内輪及び前記外輪の軸方向に沿う断面形状が前記転動体の直径に対して50.5%〜51.9%の曲率でゴシックアーチ状もしくは円弧状に形成されていることを特徴とする請求項1記載の転がり軸受。   The rolling element raceway groove has a cross-sectional shape along the axial direction of the inner ring and the outer ring formed in a Gothic arch shape or an arc shape with a curvature of 50.5% to 51.9% with respect to the diameter of the rolling element. The rolling bearing according to claim 1, wherein: 前記転動体は前記内輪と前記外輪との間に設けられた保持器により前記内輪及び前記外輪の円周方向に転動自在に保持されていることを特徴とする請求項1又は2記載の転がり軸受。   The rolling element according to claim 1 or 2, wherein the rolling element is held by a retainer provided between the inner ring and the outer ring so as to be able to roll in a circumferential direction of the inner ring and the outer ring. bearing. 請求項3記載の転がり軸受において、前記転動体軌道溝の中央部分の深さを前記転動体の直径に対して18%以上28%以下としたことを特徴とする転がり軸受。   4. The rolling bearing according to claim 3, wherein a depth of a central portion of the rolling element raceway groove is 18% or more and 28% or less with respect to a diameter of the rolling element. 前記転動体軌道溝は前記内輪及び前記外輪の軸方向に沿う断面形状が前記転動体の直径に対して52.2%〜55%の曲率でゴシックアーチ状もしくは円弧状に形成されていることを特徴とする請求項4記載の転がり軸受。   The rolling element raceway groove has a cross-sectional shape along the axial direction of the inner ring and the outer ring formed in a Gothic arch shape or an arc shape with a curvature of 52.2% to 55% with respect to the diameter of the rolling element. The rolling bearing according to claim 4, wherein 前記多数の転動体のうち少なくとも一つの転動体が樹脂組成物から形成されていることを特徴とする請求項1〜5のいずれか一項記載の転がり軸受。   The rolling bearing according to any one of claims 1 to 5, wherein at least one of the rolling elements is made of a resin composition. 前記多数の転動体のうち少なくとも一つの転動体がポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、溶融成形可能な耐食性樹脂、含フッ素樹脂のうちいずれか一つを主成分とする樹脂組成物から形成されていることを特徴とする請求項1〜5のいずれか一項記載の転がり軸受。   At least one of the rolling elements is formed of a resin composition mainly composed of any one of polyethylene resin, polypropylene resin, polyacetal resin, melt-resistant corrosion-resistant resin, and fluorine-containing resin. The rolling bearing according to claim 1, wherein the rolling bearing is provided. 前記多数の転動体は非樹脂組成物からなる第1転動体と樹脂組成物からなる第2転動体とからなり、前記第1転動体及び第2転動体は前記内輪と前記外輪との間に交互に配列されていることを特徴とする請求項1又は2記載の転がり軸受。   The plurality of rolling elements are composed of a first rolling element made of a non-resin composition and a second rolling element made of a resin composition, and the first rolling element and the second rolling element are between the inner ring and the outer ring. 3. The rolling bearing according to claim 1, wherein the rolling bearings are arranged alternately. 請求項8記載の転がり軸受において、前記第2転動体の直径と前記第1転動体の直径との比を0.987以上1.013以下としたことを特徴とする転がり軸受。   9. The rolling bearing according to claim 8, wherein a ratio of the diameter of the second rolling element to the diameter of the first rolling element is 0.987 or more and 1.013 or less. 前記多数の転動体の全てが樹脂組成物から形成されていることを特徴とする請求項1〜5のいずれか一項記載の転がり軸受。   All the said many rolling elements are formed from the resin composition, The rolling bearing as described in any one of Claims 1-5 characterized by the above-mentioned. 前記多数の転動体の全てがポリエチレン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、溶融成形可能な耐食性樹脂、含フッ素樹脂のうちいずれか一つを主成分とする樹脂組成物から形成されていることを特徴とする請求項1〜5のいずれか一項記載の転がり軸受。   All of the numerous rolling elements are formed from a resin composition mainly composed of any one of polyethylene resin, polypropylene resin, polyacetal resin, melt-resistant corrosion-resistant resin, and fluorine-containing resin. The rolling bearing according to any one of claims 1 to 5.
JP2005186922A 2004-08-11 2005-06-27 Rolling bearing Pending JP2006200733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186922A JP2006200733A (en) 2004-08-11 2005-06-27 Rolling bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004234305 2004-08-11
JP2004370817 2004-12-22
JP2005186922A JP2006200733A (en) 2004-08-11 2005-06-27 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2006200733A true JP2006200733A (en) 2006-08-03

Family

ID=36958907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186922A Pending JP2006200733A (en) 2004-08-11 2005-06-27 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2006200733A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203049A (en) * 2017-06-05 2018-12-27 眞司 喜屋武 Caster and movable body
JP2019162587A (en) * 2018-03-19 2019-09-26 セイコーインスツル株式会社 Vibration generation device and electronic device
WO2023079701A1 (en) * 2021-11-05 2023-05-11 株式会社ハーモニック・ドライブ・システムズ Strain wave gear device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203049A (en) * 2017-06-05 2018-12-27 眞司 喜屋武 Caster and movable body
JP2019162587A (en) * 2018-03-19 2019-09-26 セイコーインスツル株式会社 Vibration generation device and electronic device
CN110289727A (en) * 2018-03-19 2019-09-27 精工电子有限公司 Vibration generating arrangement and electronic equipment
JP7109948B2 (en) 2018-03-19 2022-08-01 セイコーインスツル株式会社 Vibration generator and electronic equipment
CN110289727B (en) * 2018-03-19 2023-05-02 精工电子有限公司 Vibration generating device and electronic apparatus
WO2023079701A1 (en) * 2021-11-05 2023-05-11 株式会社ハーモニック・ドライブ・システムズ Strain wave gear device

Similar Documents

Publication Publication Date Title
US6575631B2 (en) Rolling bearing and rolling bearing device
JPWO2006080527A1 (en) Thin wall bearing
JP2000240666A (en) Rolling bearing
JP2006200733A (en) Rolling bearing
JP5516686B2 (en) Rolling bearing
JP2005326021A (en) Anticorrosion rolling bearing
JP2006046373A (en) Rolling bearing
JP2011106665A (en) Rolling bearing for high-speed rotation
JP2004076928A (en) Rolling bearing cage made of synthetic resin and rolling bearing
WO2018230381A1 (en) Thrust rolling bearing formed from resin
JP2008075803A (en) Rolling bearing
JP2003049845A (en) Rolling device
JPH0942296A (en) Corrosion resistant rolling bearing
JP2006010061A (en) Rolling bearing
JP2003049847A (en) Rolling device
JP2002081448A (en) Rolling bearing
JP2019002562A (en) Resin thrust rolling bearing
JP2008256166A (en) Thrust needle roller bearing
JP2004190692A (en) Rolling support device
JP2000087973A (en) Corrosion resistant rolling bearing
JP2004190717A (en) Rolling device
JP2003013965A (en) Rolling bearing
JP4748148B2 (en) Rolling bearing
JP4038341B2 (en) Solid lubricated rolling bearing
JP2006250324A (en) Cage