JP2006200039A - High carbon steel wire material having excellent wire drawability and manufacturing process thereof - Google Patents

High carbon steel wire material having excellent wire drawability and manufacturing process thereof Download PDF

Info

Publication number
JP2006200039A
JP2006200039A JP2005368733A JP2005368733A JP2006200039A JP 2006200039 A JP2006200039 A JP 2006200039A JP 2005368733 A JP2005368733 A JP 2005368733A JP 2005368733 A JP2005368733 A JP 2005368733A JP 2006200039 A JP2006200039 A JP 2006200039A
Authority
JP
Japan
Prior art keywords
less
steel wire
temperature
dave
high carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005368733A
Other languages
Japanese (ja)
Other versions
JP2006200039A5 (en
JP4621133B2 (en
Inventor
琢哉 ▲高▼知
Takuya Kochi
Takeshi Kuroda
武司 黒田
Hidenori Sakai
英典 酒井
Tomotada Maruo
知忠 丸尾
Shogo Murakami
昌吾 村上
Hiroshi Yaguchi
浩 家口
Takaaki Minamida
高明 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005368733A priority Critical patent/JP4621133B2/en
Publication of JP2006200039A publication Critical patent/JP2006200039A/en
Publication of JP2006200039A5 publication Critical patent/JP2006200039A5/ja
Application granted granted Critical
Publication of JP4621133B2 publication Critical patent/JP4621133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high carbon steel wire material which is made of high carbon steel as a raw material for wire products such as steel cords, bead wires, PC steel wires and spring steel, allows for these wire products to be manufactured with high productivity and has excellent wire drawability and a manufacturing process thereof. <P>SOLUTION: The high carbon steel wire material having excellent wire drawability is composed of a steel material in which the respective contents of C, Si, Mn, P, S, N, Al and O are specified. The bcc-Fe crystal grains of its metal structure have an average crystal grain diameter (Dave) of 20 μm or less and a maximum crystal grain diameter (Dmax) of 120 μm or less. As a preferred mode of the steel material, the bcc-Fe crystal grains of the above metal structure have an area ratio of crystal grains having a diameter of 80 μm or more of 40% or less, an average sub grain diameter (dave) of 10 μm or less, a maximum sub grain diameter (dmax) of 50 μm or less, and a (Dave/dave) ratio of the average crystal grain diameter (Dave) to the average sub grain diameter (dave) of 4.5 or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スチールコードやビードワイヤ、PC鋼線、ばね鋼などの伸線加工品の素材となる高炭素鋼であって、高い伸線加工性の下でそれらの伸線加工品を生産性良く製造することのできる伸線性に優れた炭素鋼線材とその製法に関するものである。   The present invention is a high carbon steel used as a material for wire drawing products such as steel cords, bead wires, PC steel wires, spring steel, etc., and these wire drawing products are highly productive under high wire drawing workability. The present invention relates to a carbon steel wire material that can be manufactured and excellent in wire drawability, and a manufacturing method thereof.

上記の様な伸線加工品を製造する際には、素材となる鋼線材に対して殆どの場合サイズ調整や材質(物性)調整のため伸線加工が施されるので、鋼線材の伸線加工性を改善することは生産性等を高める上で極めて有益となる。ちなみに、伸線加工性が改善されると、伸線速度の上昇や伸線パス数の減少によって生産性を向上できるばかりでなく、ダイス寿命の延長など多くの利益を享受できるからである。   When manufacturing the wire drawing products as described above, the steel wire material is usually drawn for size adjustment and material (physical property) adjustment. Improving processability is extremely useful for improving productivity and the like. Incidentally, when the wire drawing workability is improved, not only can the productivity be improved by increasing the wire drawing speed and the number of wire drawing passes, but also many benefits such as extending the die life can be enjoyed.

ところで伸線加工性については、従来は主として伸線時の耐断線性に主眼を置いた改良研究が行われてきた。例えば特許文献1には、パーライトブロックサイズ、初析セメンタイト量、セメンタイト厚さ、セメンタイト中のCr濃度などに注目し、これらを適正化することで耐断線性を改善する技術が開示されている。   By the way, with regard to wire drawing workability, conventionally, improvement studies have been conducted mainly focusing on the wire breakage resistance during wire drawing. For example, Patent Document 1 discloses a technique for improving disconnection resistance by focusing on the pearlite block size, the amount of proeutectoid cementite, the cementite thickness, the Cr concentration in cementite, and the like, and optimizing them.

また特許文献2は、上部ベイナイトの面積率や粒内ベイナイトのサイズを制御すると伸線加工限界が向上することを明らかにしている。その他、特許文献3には、鋼中の全酸素量と非粘性介在物組成を制御することによって、耐断線性やダイス寿命を改善する技術が開示されている。ダイス寿命については、鋼線材表面に存在するスケールの剥離性(デスケーリング性)も重要であり、スケール剥離性が不良で鋼線材表面にスケールが残存すると、伸線加工時にダイス欠損の原因になることから、特許文献4は、スケール中に存在する空孔を制御することでメカニカルデスケーリング性を高める技術を開示している。   Patent Document 2 reveals that the wire drawing limit is improved by controlling the area ratio of the upper bainite and the size of the intragranular bainite. In addition, Patent Document 3 discloses a technique for improving the wire breakage resistance and the die life by controlling the total oxygen content and the non-viscous inclusion composition in steel. As for the die life, the peelability (descaling property) of the scale existing on the surface of the steel wire is also important, and if the scale peelability is poor and the scale remains on the surface of the steel wire, it will cause die loss during wire drawing. For this reason, Patent Document 4 discloses a technique for improving mechanical descaling properties by controlling holes present in a scale.

ところが上記の様な従来技術は、特定の伸線条件下における耐断線性の改善に主眼を置いた技術であり、伸線加工性の観点から、伸線速度の向上や伸線パス数の減少、ダイス寿命の延長には殆ど注目されていない。また非特許文献1の第6章にまとめられている如く、伸線速度の上昇や1パス当りの減面率増大は、伸線加工品の延性劣化やダイス寿命の低下を招くことを明らかにしている。しかし前述した様な従来技術を含めて、伸線速度の上昇や減面率の増大を実用規模で達成可能にするほどの伸線加工性改善効果は得られていない。
特開2004−91912号公報 特開平8−295930号公報 特開昭62−130258号公報 特許第3544804号 日本塑性加工学会編集の「引抜き加工」(コロナ社より1990年10月25日発行)、特に第6章
However, the conventional technology as described above is a technology that focuses on improving the wire breakage resistance under specific wire drawing conditions. From the viewpoint of wire drawing workability, the wire drawing speed is increased and the number of wire drawing passes is reduced. Little attention has been paid to extending the die life. In addition, as summarized in Chapter 6 of Non-Patent Document 1, it has been clarified that an increase in the drawing speed and an increase in the area reduction rate per pass cause a deterioration in the ductility of the drawn product and a reduction in the die life. ing. However, including the prior art as described above, an effect of improving the wire drawing workability so that an increase in the wire drawing speed and an increase in the area reduction rate can be achieved on a practical scale has not been obtained.
JP 2004-91912 A JP-A-8-295930 JP-A-62-130258 Japanese Patent No. 3544804 "Drawing" edited by the Japan Society for Technology of Plasticity (issued by Corona on October 25, 1990), especially Chapter 6

本発明は上記の様な事情に着目してなされたものであって、その目的は、特に生産性を重視し、伸線速度の上昇や減面率の増大、更にはダイス寿命の延長を可能にする伸線加工性に優れた鋼線材を提供し、併せてその様な鋼線材を効率よく製造することのできる方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to focus on productivity in particular, and it is possible to increase the drawing speed, increase the area reduction rate, and further extend the die life. An object of the present invention is to provide a steel wire rod excellent in wire drawing workability and to provide a method capable of efficiently producing such a steel wire rod.

上記課題を解決することのできた本発明に係る伸線性に優れた高炭素鋼線材の構成は、質量%(以下、成分組成の場合は単に%で表わす)で、C:0.6〜1.1%、Si:0.1〜2.0%、Mn:0.1〜1.0%、P:0.020%以下、S:0.020%以下、N:0.006%以下、Al:0.03%以下、O:0.0030%以下を満たし、残部がFeおよび不可避不純物からなり、金属組織のbcc−Fe結晶粒において、平均結晶粒径(Dave)が20μm以下で、最大結晶粒径(Dmax)が120μm以下であるところに要旨が存在する。   The composition of the high carbon steel wire rod excellent in drawability according to the present invention that can solve the above-mentioned problems is expressed by mass% (hereinafter, simply expressed as% in the case of a component composition), and C: 0.6-1. 1%, Si: 0.1 to 2.0%, Mn: 0.1 to 1.0%, P: 0.020% or less, S: 0.020% or less, N: 0.006% or less, Al : 0.03% or less, O: 0.0030% or less is satisfied, the balance is Fe and inevitable impurities, and the average crystal grain size (Dave) is 20 μm or less in the bcc-Fe crystal grains of metal structure, and the largest crystal The gist exists where the particle size (Dmax) is 120 μm or less.

本発明に係る上記鋼線材のより好ましい態様としては、前記金属組織のbcc−Fe結晶粒において、粒径が80μm以上であるものの占める面積率が40%以下であり、更には、平均亜結晶粒径(dave)が10μm以下で、最大亜結晶粒径(dmax)が50μm以下であるもの、及び、平均結晶粒径(Dave)と平均亜結晶粒径(dave)の比(Dave/dave)が4.5以下であるもの、更には、鋼線材の引張強度をTS、当該鋼線材中のC濃度をWcとしたとき、それらが下記式(1)の関係を満たすもの、が挙げられる。
TS≦1240×Wc0.52……(1)
As a more preferable embodiment of the steel wire according to the present invention, in the bcc-Fe crystal grain of the metal structure, the area ratio occupied by the grain size of 80 μm or more is 40% or less, and further, the average subcrystal grain The diameter (dave) is 10 μm or less, the maximum subcrystal grain size (dmax) is 50 μm or less, and the ratio (Dave / dave) of the average crystal grain size (Dave) to the average subcrystal grain size (dave) is Those having a tensile strength of 4.5 or less, and those satisfying the relationship of the following formula (1) when the tensile strength of the steel wire is TS and the C concentration in the steel wire is Wc are mentioned.
TS ≦ 1240 × Wc 0.52 (1)

また本発明の鋼線材は、上記成分の他、必要に応じて、Cr:1.5%以下(0%を含まない)、Cu:1.0%以下(0%を含まない)、Ni:1.0%以下(0%を含まない)から選ばれる少なくとも1種の元素を含み、或いは更に、Mg:5ppm以下(0ppmを含まない)、Ca:5ppm以下(0ppmを含まない)、REM:1.5ppm以下(0ppmを含まない)から選ばれる少なくとも1種の元素を含むものであっても構わない。   In addition to the above components, the steel wire rod according to the present invention, if necessary, Cr: 1.5% or less (not including 0%), Cu: 1.0% or less (not including 0%), Ni: It contains at least one element selected from 1.0% or less (excluding 0%), or Mg: 5 ppm or less (not including 0 ppm), Ca: 5 ppm or less (not including 0 ppm), REM: It may contain at least one element selected from 1.5 ppm or less (not including 0 ppm).

また本発明の鋼線材においては、表層のトータル脱炭量(Dm-T)が100μm以下で、スケール付着量が0.15〜0.85質量%であることも、好ましい実施形態である。   In the steel wire rod of the present invention, it is also a preferred embodiment that the total decarburization amount (Dm-T) of the surface layer is 100 μm or less and the scale adhesion amount is 0.15 to 0.85 mass%.

更に本発明の製法は、上記特性を備えた伸線性に優れた高炭素鋼線材を製造するための有用な方法として位置付けられるもので、
第1の製法は、上記成分組成要件を満たす鋼からなり、730〜1050℃に加熱された鋼線材を、15℃/秒以上の平均冷却速度で470〜640℃の温度(T)まで冷却した後、該温度(T)よりも高温である550〜720℃の温度(T)まで3℃/秒以上の平均昇温速度で加熱するところに要旨を有し、
第2の製法は、上記成分組成要件を満たす鋼材を900〜1260℃に加熱し、740℃以上の温度で熱間圧延すると共に1100℃以下の温度で仕上げ圧延した後、750〜950℃の温度域まで水冷して搬送装置上に巻取り、その後、15℃/秒以上の平均冷却速度で冷却することにより、巻取り終了から20秒以内に鋼材温度の極小値(T)を500〜630℃まで降下させてから加熱し、巻取り終了から45秒以内に鋼材温度の極大値(T)を上記極小値(T)よりも高温である580〜720℃に高めるところに要旨を有している。
Furthermore, the production method of the present invention is positioned as a useful method for producing a high carbon steel wire rod having the above characteristics and excellent wire drawing property,
The first method consists of a steel satisfying the above ingredient composition requirements, cooling a steel wire rod which has been heated to 730-1,050 ° C., to a temperature of four hundred seventy to six hundred and forty ° C. at an average cooling rate of more than 15 ° C. / sec (T 1) Then, it has a gist where it is heated at an average rate of temperature increase of 3 ° C./second or more to a temperature (T 2 ) of 550 to 720 ° C., which is higher than the temperature (T 1 ).
In the second manufacturing method, a steel material satisfying the above component composition requirements is heated to 900 to 1260 ° C., hot-rolled at a temperature of 740 ° C. or higher, and finish-rolled at a temperature of 1100 ° C. or lower, and then a temperature of 750 to 950 ° C. Water-cooled to an area and wound on a conveying device, and then cooled at an average cooling rate of 15 ° C./second or more, the steel material temperature minimum value (T 3 ) was reduced to 500 to 630 within 20 seconds from the end of winding. The temperature is lowered to ℃ and then heated, and within 45 seconds from the end of winding, the steel material maximum value (T 4 ) is increased to 580 to 720 ℃, which is higher than the above minimum value (T 3 ). is doing.

本発明によれば、鋼中のC,Si,Mn,P,S,N,Al,Oの各含有量を規定すると共に、金属組織面からbcc−Fe結晶粒の平均結晶粒径と最大結晶粒径を特定し、好ましくは更に、粗大結晶粒の面積率を抑え、更には、上記bcc−Fe結晶粒の平均亜結晶粒径や最大亜結晶粒径、それらの粒径比を特定することによって、優れた伸線加工性を有し、伸線速度の上昇や減面率の増大により生産性を高め得るばかりでなく、ダイス寿命の延長をも可能にする高炭素鋼線材を提供し、更には、その様な優れた伸線加工性を有する高炭素鋼線材を確実に且つ効率よく製造することのできる方法を提供できる。   According to the present invention, the contents of C, Si, Mn, P, S, N, Al, and O in steel are specified, and the average crystal grain size and the maximum crystal of the bcc-Fe crystal grains from the metal structure surface. Specify the grain size, preferably further suppress the area ratio of coarse crystal grains, and further specify the average subcrystal grain size and maximum subcrystal grain size of the bcc-Fe crystal grains, and the grain size ratio thereof. Provides a high carbon steel wire that has excellent wire drawing workability, can not only increase productivity by increasing the drawing speed and increasing the area reduction ratio, but also can extend the die life, Furthermore, it is possible to provide a method capable of reliably and efficiently producing a high carbon steel wire having such excellent wire drawing workability.

以下、本発明において鋼材の化学成分を定めた理由を明らかにし、引き続いて、鋼材組織の結晶粒径などを定めた理由を詳細に説明していく。   Hereinafter, the reason for determining the chemical composition of the steel material in the present invention will be clarified, and subsequently, the reason for determining the crystal grain size of the steel structure will be described in detail.

まず、鋼材の化学成分を定めた理由を説明する。   First, the reason for determining the chemical composition of the steel material will be described.

C:0.6%以上、1.1%以下
鉄鋼材料の強度に影響する元素であり、本発明の対象とするスチールコード、ビードワイヤ、PC鋼線などに必要とされる強度を確保するには、0.6%以上の添加を必要とする。C含量を多くすると強度は増大するが、多過ぎると延性が劣化するので上限を1.1%とした。
C: 0.6% or more, 1.1% or less An element that affects the strength of steel materials, and in order to ensure the strength required for steel cords, bead wires, PC steel wires, etc., which are the subject of the present invention , 0.6% or more of addition is required. If the C content is increased, the strength increases, but if it is too much, the ductility deteriorates, so the upper limit was made 1.1%.

Si:0.1%以上、2.0%以下
高度に伸線加工される鋼材では特に脱酸を目的として添加され、0.1%以上の添加が必要である。また、Siは鋼材の強化にも寄与するため必要に応じて増量するが、過度の添加は固溶強化を増大させると共に脱炭を促進させるので注意すべきであり、本発明では低強度化と脱炭防止の観点から上限を2.0%と定めた。より好ましいSi含量は0.15%以上、1.8%以下である。
Si: 0.1% or more, 2.0% or less Steel materials that are highly drawn are particularly added for the purpose of deoxidation, and it is necessary to add 0.1% or more. Further, Si contributes to strengthening of the steel material, so the amount is increased as necessary. However, excessive addition increases the solid solution strengthening and promotes decarburization. The upper limit was set at 2.0% from the viewpoint of preventing decarburization. A more preferable Si content is 0.15% or more and 1.8% or less.

Mn:0.1%以上、1.0%以下
脱酸および、有害元素であるSをMnSとして固定し無害化させる目的で0.1%以上の添加を必要とする。またMnは、鋼中の炭化物を安定化させる作用も有しているが、多過ぎると偏析や過冷組織が生じて伸線性を劣化させるので、1.0%以下に抑えねばならない。より好ましいMn含量は0.15%以上、0.9%以下である。
Mn: 0.1% or more, 1.0% or less It is necessary to add 0.1% or more for the purpose of deoxidation and fixing S which is a harmful element as MnS and detoxifying it. Mn also has the effect of stabilizing the carbides in the steel, but if it is too much, segregation and supercooled structure occur and the drawability deteriorates, so it must be suppressed to 1.0% or less. A more preferable Mn content is 0.15% or more and 0.9% or less.

P:0.020%以下(0%を含まない)
Pは伸線加工性に特に有害な元素であり、多過ぎると鋼材の靭延性が劣化するので、本発明では上限を0.020%と定めた。好ましくは0.015%以下、更に好ましくは0.010%以下である。
P: 0.020% or less (excluding 0%)
P is an element that is particularly harmful to the wire drawing workability. If it is too much, the toughness of the steel material deteriorates, so the upper limit is set to 0.020% in the present invention. Preferably it is 0.015% or less, More preferably, it is 0.010% or less.

S:0.020%以下(0%を含まない)
有害元素であるが、前述した如くMn添加によりMnSとして固定できる。しかしS含量が多くなると、MnSの量とサイズが増大し延性が劣化するので、本発明では、上限を0.020%と定めた。より好ましくは0.015%以下、更に好ましくは0.010%以下である。
S: 0.020% or less (excluding 0%)
Although it is a harmful element, it can be fixed as MnS by adding Mn as described above. However, if the S content increases, the amount and size of MnS increase and the ductility deteriorates. Therefore, in the present invention, the upper limit is set to 0.020%. More preferably, it is 0.015% or less, More preferably, it is 0.010% or less.

N:0.006%以下(0%を含まない)
時効硬化によって強度上昇に寄与するが、延性を劣化させるため、本発明では上限を0.006%と定めた。好ましくは0.004%以下、更に好ましくは0.003%以下である。
N: 0.006% or less (excluding 0%)
Although age hardening contributes to strength increase, in order to deteriorate ductility, the upper limit is set to 0.006% in the present invention. Preferably it is 0.004% or less, More preferably, it is 0.003% or less.

Al:0.03%以下(0%を含まない)
Alは脱酸剤として有効であり、しかもNと結合してAlNを形成することで金属組織の微細化にも寄与する。しかしAl含量が多過ぎると粗大酸化物が生成し、伸線性を劣化させるので、本発明では上限を0.03%と定めた。より好ましくは0.01%以下、更に好ましくは0.005%以下である。
Al: 0.03% or less (excluding 0%)
Al is effective as a deoxidizer, and also contributes to refinement of the metal structure by combining with N to form AlN. However, if the Al content is too large, coarse oxides are formed and the wire drawing is deteriorated. Therefore, in the present invention, the upper limit is set to 0.03%. More preferably, it is 0.01% or less, More preferably, it is 0.005% or less.

O:0.003%以下
鋼中の酸素量が多くなると粗大酸化物が形成され易くなって伸線性が劣化するので、本発明では上限を0.003%と定めた。好ましくは0.002%以下、更に好ましくは0.0015%以下である。
O: 0.003% or less As the amount of oxygen in the steel increases, coarse oxides are easily formed and the drawability deteriorates. Therefore, in the present invention, the upper limit is set to 0.003%. Preferably it is 0.002% or less, More preferably, it is 0.0015% or less.

本発明の鋼線材は上記化学成分を基本成分とし、残部は実質的に鉄と不可避不純物であるが、必要に応じて下記の元素を含有していてもよい。   The steel wire of the present invention has the above chemical components as basic components, and the balance is substantially iron and inevitable impurities, but may contain the following elements as necessary.

Cr:1.5%以下
鋼材の高強度化に有効な元素であるが、過度に添加すると過冷組織が形成し易くなって伸線性を劣化させるので、添加するにしても1.5%以下に抑えねばならない。
Cr: 1.5% or less Although it is an element effective for increasing the strength of steel materials, if added excessively, a supercooled structure is easily formed and the drawability is deteriorated. It must be suppressed to.

Cu:1.0%以下
表層部の脱炭を抑制する作用を有する他、耐食性を高める作用も有しているので、必要に応じて添加することができる。しかし過度に添加すると、熱間加工時に割れを発生し易くなるばかりでなく、過冷組織の形成により伸線性にも悪影響を及ぼすので、本発明では上限を1.0%と定めた。
Cu: 1.0% or less In addition to having an action of suppressing decarburization of the surface layer part, it also has an action of enhancing corrosion resistance, and can be added as necessary. However, if added excessively, not only does cracking easily occur during hot working, but also the wire drawability is adversely affected by the formation of a supercooled structure, so the upper limit was set to 1.0% in the present invention.

Ni:1.0%以下
上記Cuと同様に表層部の脱炭抑制と耐食性の向上に有効であることから、必要に応じて添加される。しかし、過度に添加すると過冷組織の形成によって伸線性を劣化させるので、1.0%以下に抑えねばならない。
Ni: 1.0% or less Ni is added as necessary because it is effective for suppressing decarburization of the surface layer portion and improving corrosion resistance in the same manner as Cu. However, if added excessively, the drawability deteriorates due to the formation of a supercooled structure, so it must be suppressed to 1.0% or less.

Mg:5ppm以下
Mgは酸化物を軟質化する作用を有しているので、必要に応じて添加することができる。しかし、過度に添加すると酸化物の性質が変化して伸線性を劣化させるので、多くとも5ppm以下、好ましくは2ppm以下に抑えるのがよい。
Mg: 5 ppm or less Since Mg has the effect of softening the oxide, it can be added as necessary. However, if added excessively, the properties of the oxide change and the drawability deteriorates, so it is best to keep it at most 5 ppm, preferably 2 ppm or less.

Ca:5ppm以下
Caにも酸化物を軟質化する作用があり、必要に応じて添加してもよい。しかし、過度に添加すると酸化物の性質が変化して伸線性を劣化させるので、5ppm以下に抑えるべきであり、より好ましくは2ppm以下に抑えるのがよい。
Ca: 5 ppm or less Ca also has an effect of softening an oxide, and may be added as necessary. However, if it is added excessively, the properties of the oxide change and the drawability deteriorates, so it should be suppressed to 5 ppm or less, and more preferably 2 ppm or less.

REM:1.5ppm以下
REMにも酸化物を軟質化する作用があり、必要に応じて添加してもよい。しかし過度に添加すると、上記MgやCaなどと同様に酸化物の性質が変化して伸線性を劣化させるので、上限を1.5ppmとした。より好ましくは0.5ppm以下である。
REM: 1.5 ppm or less REM also has the effect of softening the oxide, and may be added as necessary. However, if excessively added, the properties of the oxide change as in the case of Mg and Ca and the wire drawability deteriorates, so the upper limit was made 1.5 ppm. More preferably, it is 0.5 ppm or less.

次に、金属組織について説明する。   Next, the metal structure will be described.

本発明では、上記成分組成を満たすことを前提として、その金属組織が、“bcc−Fe結晶粒について、平均結晶粒径(Dave)が20μm以下で、且つ最大結晶粒径(Dmax)が120μm以下”であることを必須とする。   In the present invention, on the premise of satisfying the above component composition, the metal structure is “with respect to the bcc-Fe crystal grains, the average crystal grain size (Dave) is 20 μm or less and the maximum crystal grain size (Dmax) is 120 μm or less. ”Is mandatory.

より好ましくは、同じくbcc−Fe結晶粒について、“粒径が80μm以上である結晶粒の面積率が40%以下”、“平均亜結晶粒径(dave)が10μm以下で最大亜結晶粒径(dmax)が50μm以下”で、あるいは更に“平均結晶粒径(Dave)と平均亜結晶粒径(dave)の比(Dave/dave)が4.5以下”であるものである。   More preferably, for the bcc-Fe crystal grains, “the area ratio of crystal grains having a grain size of 80 μm or more is 40% or less”, “the average subcrystal grain size (dave) is 10 μm or less and the maximum subcrystal grain size ( dmax) is 50 μm or less ”, or“ the ratio of the average crystal grain size (Dave) to the average subcrystal grain size (dave) (Dave / dave) is 4.5 or less ”.

伸線時の代表的な断線形態には、例えば「硬鋼線の伸線加工限界とその支配要因、塑性と加工」(高橋ら)、Vol.19(1978),第726頁にも示されている様に、カッピー断線と縦割れ・せん断割れがある。これによると、カッピー断線は素線材のパーライトブロックが粗くて延性が乏しい場合に発生するとされている。そこで例えば特開2004−91912号公報でも、パーライトブロック粒度番号を6〜8番に制御することで耐断線性の改善を図っている。しかしこの発明でも、伸線加工時における伸線速度の上昇を実現するまでには至っていない。   Typical wire breaking forms at the time of wire drawing include, for example, “drawing limit of hard steel wire and its controlling factors, plasticity and working” (Takahashi et al.), Vol. 19 (1978), page 726, there are a broken copper line, a vertical crack and a shear crack. According to this, it is said that the disconnection of the coupling occurs when the pearlite block of the wire is rough and the ductility is poor. Therefore, for example, Japanese Patent Application Laid-Open No. 2004-91912 also attempts to improve the disconnection resistance by controlling the pearlite block particle size number to 6-8. However, even this invention has not yet achieved an increase in the drawing speed during the drawing process.

そこで本発明者らは、『カッピー断線は、伸線加工時に結晶回転がスムーズに起こらなかった場所にボイドが発生し成長して破断に至るものであり、たとえ結晶粒度番号で代表される平均的な結晶粒径を微細化しても、粗大な結晶粒が存在すればその部分でボイドが発生し、これが断線を引き起こす』という考え方に基づいて、結晶粒径のサイズと分布の制御に取り組んだ。   Therefore, the present inventors have stated that “a disconnection of a cappy is a phenomenon in which a void is generated and grows at a place where crystal rotation does not occur smoothly during wire drawing, leading to fracture. Even if the crystal grain size was made finer, if coarse crystal grains existed, voids were generated in the part, and this caused disconnection ”, and we worked on controlling the size and distribution of the crystal grain size.

また本発明で対象とする相対的に高炭素の鋼線材は、パーライト主体の組織に制御されることが多いため、線材の延性はパーライトブロックで代表されていることが多い(「共析パーライト鋼の延性支配因子」高橋ら,日本金属学会誌,vol.42(1978)第708頁)。しかし通常の鋼材は、フェライトやベイナイトなど他の組織が混在していることから、本発明者らはパーライト以外の組織も含めた全体の結晶粒径のサイズと分布を考慮すべきであるとの考えの下に検討を重ねた。   In addition, since the relatively high carbon steel wire targeted by the present invention is often controlled by a pearlite-based structure, the ductility of the wire is often represented by a pearlite block (“eutectoid pearlite steel”). "Takahashi et al., Journal of the Japan Institute of Metals, vol. 42 (1978) p. 708). However, since ordinary steel materials contain other structures such as ferrite and bainite, the present inventors should consider the size and distribution of the entire crystal grain size including structures other than pearlite. I studied repeatedly under my thoughts.

その結果、本発明で規定する如く、平均結晶粒径(Dave)を20μm以下に微細化した上で、最大結晶粒径(Dmax)を120μm以下に制御すれば、伸線性が大幅に改善されることを突き止めた。ちなみに、平均結晶粒径(Dave)が20μmを超えると、素線が延性不足となる。また、仮に平均結晶粒径(Dave)が20μm以下であったとしても、最大結晶粒径(Dmax)が120μmを超えると伸線加工時に破断し易くなる。更に高度の伸線性を得るには、平均結晶粒径(Dave)を17μm以下とするのがよく、最大結晶粒径(Dmax)は100μm以下とするのがよい。   As a result, as specified in the present invention, if the average crystal grain size (Dave) is refined to 20 μm or less and the maximum crystal grain size (Dmax) is controlled to 120 μm or less, the drawability is greatly improved. I found out. Incidentally, when the average crystal grain size (Dave) exceeds 20 μm, the wire becomes insufficiently ductile. Further, even if the average crystal grain size (Dave) is 20 μm or less, if the maximum crystal grain size (Dmax) exceeds 120 μm, it tends to break during wire drawing. In order to obtain a higher degree of wire drawing, the average crystal grain size (Dave) is preferably 17 μm or less, and the maximum crystal grain size (Dmax) is preferably 100 μm or less.

金属組織面からすると、上記平均結晶粒径(Dave)と最大結晶粒径(Dmax)を特定することで、本発明の一応の目的は達成されるが、伸線加工性の更なる向上を図るには、こうした要件に加えて、下記の要件を満たす様に制御することが望ましい。   From the viewpoint of the metal structure, by specifying the average crystal grain size (Dave) and the maximum crystal grain size (Dmax), the purpose of the present invention can be achieved, but the wire drawing workability is further improved. In addition to these requirements, it is desirable to control to satisfy the following requirements.

即ち、同じく金属組織のbcc−Fe結晶粒において、粒径が80μm以上である結晶粒を面積率で40%以下に制御し、結晶粒全体を均一微細化すれば、伸線性を更に改善することができる。粒径80μm以上の結晶粒のより好ましい面積率は25%以下で、特に好ましいのは0%である。   That is, in the same bcc-Fe crystal grains having a metal structure, if the crystal grains having a grain size of 80 μm or more are controlled to an area ratio of 40% or less and the entire crystal grains are uniformly refined, the drawability is further improved. Can do. A more preferable area ratio of crystal grains having a particle diameter of 80 μm or more is 25% or less, and particularly preferably 0%.

また、伸線性の更なる向上を目指して更に検討を重ねたところ、隣接する結晶との方位差が小さい境界を持つ結晶単位である所謂亜結晶粒も結晶回転に影響しており、平均亜結晶粒径(dave)を10μm以下、最大亜結晶粒径(dmax)を50μm以下に抑えれば、伸線性が一段と高められることを知った。即ち、粗大な亜結晶粒径のものを少なくして均一微細化すると応力集中部が低減し、ボイド発生が抑制されるためと考えられる。こうした効果を発揮させる上でより好ましい平均亜結晶粒径(dave)は7μm以下、最大亜結晶粒径(dmax)は40μm以下である。   In addition, when further studies were made with the aim of further improving the drawability, so-called subcrystal grains, which are crystal units having a boundary with a small misorientation with the adjacent crystal, also affect the crystal rotation. It has been found that the drawability can be further improved if the grain size (dave) is 10 μm or less and the maximum subcrystal grain size (dmax) is 50 μm or less. That is, it is considered that when the number of coarse subcrystal grains is reduced and uniform refinement is performed, the stress concentration portion is reduced and the generation of voids is suppressed. In order to exert such effects, the average subcrystal grain size (dave) is more preferably 7 μm or less, and the maximum subcrystal grain size (dmax) is 40 μm or less.

更に、平均結晶粒径(Dave)と平均亜結晶粒径(dave)については、上述した範囲内で両者の比(Dave/dave)を小さく抑えれば、伸線性が一段と向上することが確認された。伸線中の結晶回転が鋼素材全体に渡ってスムーズとなり、応力集中を起こし難くなるためと考えられる。こうした作用を有効に発揮させる上で好ましい(Dave/dave)比は4.5以下、より好ましくは4.0以下である。   Furthermore, with regard to the average crystal grain size (Dave) and the average subcrystal grain size (dave), it is confirmed that the wire drawability is further improved if the ratio (Dave / dave) of both is kept within the above range. It was. This is probably because crystal rotation during wire drawing is smooth over the entire steel material and stress concentration is less likely to occur. A preferable (Dave / dave) ratio is 4.5 or less, more preferably 4.0 or less, for effectively exhibiting such an action.

更に本発明において、伸線性の更なる向上を図るには、『TS≦1240×Wc0.52』(TSは鋼線材の引張強度、Wcは当該鋼線材中のC濃度を表わす)の関係を満たす様に制御することも有効となる。 Further, in the present invention, in order to further improve the drawability, the relationship of “TS ≦ 1240 × Wc 0.52 ” (TS represents the tensile strength of the steel wire and Wc represents the C concentration in the steel wire) is satisfied. It is also effective to control this.

伸線速度を上昇させ、減面率を増大すると、ボイドが発生し易くなるばかりでなく、鋼線材やダイスの温度が上昇し、断線(縦割れ・せん断割れ)やダイス寿命の低下につながる。伸線速度や減面率が同一であるとき、温度上昇は線材の強度にも大きな影響を及ぼし、引張強度の低いものほど温度上昇は低く抑えられる。また鋼線材全体としての引張強度には、線材内の強度ばらつきの影響も大きく、また、引張強度は鋼線材中のC含量によってほぼ決まってくること、そして、該引張強度(TS)と当該鋼線材のC含量(Wc)の関係が上記式の関係を満たす様に調整すれば、伸線時の温度上昇による断線が有為に抑制されると共に、ダイス寿命も向上することが確認された。   Increasing the wire drawing speed and increasing the area reduction rate not only facilitates the generation of voids, but also increases the temperature of the steel wire and the die, leading to wire breakage (longitudinal cracking / shear cracking) and a reduction in die life. When the drawing speed and the area reduction rate are the same, the temperature rise has a great influence on the strength of the wire, and the lower the tensile strength, the lower the temperature rise. Further, the tensile strength of the steel wire as a whole is greatly affected by variations in strength within the wire, the tensile strength is almost determined by the C content in the steel wire, and the tensile strength (TS) and the steel. It was confirmed that if the relationship of the C content (Wc) of the wire is adjusted so as to satisfy the relationship of the above formula, disconnection due to a temperature rise during wire drawing is significantly suppressed and the die life is also improved.

更に加えて本発明では、伸線加工性の一層の向上を図るため、鋼線材の表層脱炭量とスケール付着量が伸線性に与える影響についても検討を加えたところ、『表層トータル脱炭量(Dm-t)が100μm以下で、表層スケール付着量が0.15〜0.85質量%であるもの』も優れた伸線加工性を示すことが確認された。   In addition, in the present invention, in order to further improve the wire drawing workability, the influence of the surface layer decarburization amount and the scale adhesion amount of the steel wire on the wire drawing property was also examined. It was confirmed that “(Dm-t) is 100 μm or less and the surface layer scale deposition amount is 0.15 to 0.85 mass%” also shows excellent wire drawing workability.

ちなみに、鋼線材の成分設計や組織制御により伸線性を改善した場合でも、鋼線材表面のスケール性状によって伸線性は影響を受ける。鋼線材は、伸線加工に先立って化学的、機械的に脱スケール処理されるが、その工程でスケールが除去しきれず残存したまま伸線加工を行うと、ダイス欠損を引き起こす。スケール付着量がスケール剥離性に及ぼす影響は大きく、スケール付着量が多いほどその剥離性は良好であるが、多過ぎると剥離後に発錆することがある。また、鋼線材表面で脱炭が起こっている場合、スケール付着量が十分であっても、スケールが脱炭部に噛み込んでスケール剥離が困難になる。そのため本発明では、スケール由来の伸線性阻害要因を極力低減するための要件についても追求した結果、上記の様に、表層トータル脱炭量(Dm-T)を100μm以下に制御し、更に表層スケール付着量を0.15〜0.85質量%の範囲に制御すれば、スケール起因の伸線性低下を可及的に抑制できることを確認したのである。   By the way, even when the wire drawing property is improved by the component design and the structure control of the steel wire material, the wire drawing property is affected by the scale property of the surface of the steel wire material. Steel wire rods are chemically and mechanically descaled prior to wire drawing. However, if wire drawing is performed while the scale cannot be completely removed in the process, die loss is caused. The influence of the scale adhesion amount on the scale peelability is large, and the larger the scale adhesion amount, the better the peelability. However, if the amount is too large, rusting may occur after peeling. In addition, when decarburization occurs on the surface of the steel wire rod, even if the amount of scale attached is sufficient, the scale bites into the decarburized part, and the scale peeling becomes difficult. Therefore, in the present invention, as a result of pursuing the requirements for reducing the scale-derived wire drawing obstruction factor as much as possible, the surface total decarburization amount (Dm-T) is controlled to 100 μm or less as described above, and the surface scale is further reduced. It has been confirmed that if the adhesion amount is controlled within the range of 0.15 to 0.85 mass%, the reduction in wire drawing due to scale can be suppressed as much as possible.

次に、上記特性を備えた高炭素鋼線材の製造方法について説明する。   Next, the manufacturing method of the high carbon steel wire rod provided with the said characteristic is demonstrated.

まず第1の方法は、前述した成分組成の要件を満たす鋼からなる730〜1050℃に加熱された鋼線材を、平均冷却速度15℃/秒以上の速度で冷却し、470〜640℃の温度(T)まで冷却した後、該温度(T)よりも高温である550〜720℃の温度(T)まで3℃/秒以上の平均昇温速度で加熱する方法である。 First, the first method is to cool a steel wire heated to 730 to 1050 ° C. made of steel that satisfies the above-described requirements for the component composition at an average cooling rate of 15 ° C./second or more, and a temperature of 470 to 640 ° C. (T 1) after cooling to a method of heating at that temperature (T 1) is higher than five hundred and fifty to seven hundred and twenty ° C. of the temperature (T 2) to 3 ° C. / sec or more average heating rate.

また第2の方法は、同じく前述した成分組成の要件を満たす鋼材を900〜1260℃に加熱し、740℃以上の温度で熱間圧延すると共に1100℃以下の温度で仕上げ圧延した後、750〜950℃の温度域まで水冷して搬送装置上に巻取り、その後、15℃/秒以上の平均冷却速度で冷却することにより、巻取り終了から20秒以内に鋼材温度の極小値(T)を500〜630℃まで降下させてから加熱し、巻取り終了から45秒以内に鋼材温度の極大値(T)を上記極小値(T)よりも高温である580〜720℃に高める方法である。 In the second method, a steel material that satisfies the above-described requirements for the component composition is heated to 900 to 1260 ° C., hot-rolled at a temperature of 740 ° C. or higher, and finish-rolled at a temperature of 1100 ° C. or lower, and then 750 to 750 ° C. Water cooling to a temperature range of 950 ° C. and winding on a transfer device, followed by cooling at an average cooling rate of 15 ° C./second or more, the steel material temperature minimum value (T 3 ) within 20 seconds from the end of winding The temperature is lowered to 500 to 630 ° C. and then heated, and within 45 seconds from the end of winding, the maximum value (T 4 ) of the steel material is increased to 580 to 720 ° C., which is higher than the minimum value (T 3 ). It is.

即ち上記特性を備えた鋼線材を得るには、炭化物を一旦固溶して変態前の組織を均一にするため、まず730℃以上に加熱する必要がある。このとき、加熱温度が高いほどスケール剥離性は向上するが、加熱温度が1050℃を超えると変態前の結晶粒が粗大化し、引き続いて行う冷却工程で変態による組織制御が困難になるので、加熱温度は1050℃以下に抑えるべきである。このときのより好ましい加熱温度は750℃以上、1000℃以下である。   That is, in order to obtain a steel wire rod having the above characteristics, it is necessary to first heat to 730 ° C. or higher in order to make the carbide once solid solution and to make the structure before transformation uniform. At this time, the higher the heating temperature, the better the scale peelability. However, if the heating temperature exceeds 1050 ° C., the crystal grains before transformation become coarse, and it becomes difficult to control the structure by transformation in the subsequent cooling step. The temperature should be kept below 1050 ° C. The more preferable heating temperature at this time is 750 degreeC or more and 1000 degrees C or less.

また該加熱後の冷却工程で、前述した本発明の制御対象とする結晶粒径が決まってくる。結晶粒径を極力均一且つ微細化するには、該加熱後の冷却速度をできるだけ速くした方がよく、本発明では平均冷却速度を15℃/秒以上と定めている。また、冷却時の到達温度(T)が低いほど結晶粒は微細化するが、470℃を下回る温度まで冷却すると伸線性を害する過冷組織が生成し易くなるため、下限を470℃と定めた。到達温度が640℃超では、平均粒径が粗大化するので少なくとも640℃以下にまでは冷却しなければならない。該冷却時のより好ましい到達温度は480℃以上、630℃以下である。 In the cooling step after the heating, the crystal grain size to be controlled by the present invention is determined. In order to make the crystal grain size as uniform and fine as possible, the cooling rate after heating should be as high as possible. In the present invention, the average cooling rate is set to 15 ° C./second or more. In addition, the lower the ultimate temperature (T 1 ) at the time of cooling, the finer the crystal grains, but when cooled to a temperature below 470 ° C., it becomes easy to generate a supercooled structure that impairs the drawability, so the lower limit is set to 470 ° C. It was. If the reached temperature exceeds 640 ° C., the average particle size becomes coarse, so it must be cooled to at least 640 ° C. or less. A more preferable temperature reached during the cooling is 480 ° C. or more and 630 ° C. or less.

本発明では、結晶粒微細化のための上記冷却工程に引き続いて、到達温度(T)よりも高温である550〜720℃の温度(T)に昇温することを必須とする。この昇温時の温度(T)は鋼材の強度に顕著な影響を及ぼし、該温度(T)が高くなるほど強度は低下し、伸線加工性には有利となる。550℃未満では強度低下が不十分であり、一方、720℃を超えて過度に高温になると、変態が不十分となり却って強度上昇を招くことがある。該昇温時のより好ましい到達温度は580℃以上、715℃以下である。 In the present invention, it is essential to raise the temperature to 550 to 720 ° C. (T 2 ), which is higher than the ultimate temperature (T 1 ), following the above cooling step for crystal grain refinement. The temperature (T 2 ) at the time of the temperature rise has a significant influence on the strength of the steel material, and the strength decreases as the temperature (T 2 ) increases, which is advantageous for wire drawing workability. If the temperature is lower than 550 ° C., the strength is not sufficiently lowered. On the other hand, if the temperature exceeds 720 ° C. and the temperature is excessively high, transformation may be insufficient and the strength may be increased. A more preferable reached temperature at the time of the temperature rise is 580 ° C. or more and 715 ° C. or less.

すなわち、470℃以上、640℃以下(より好ましくは480℃以上、630℃以下)の温度(T)にまで一旦冷却した後、T<Tであり550℃以上、720℃以下(より好ましくは580℃以上、715℃以下、更に好ましくは710℃以下)の温度(T)に再加熱することで、結晶粒が均一微細で低強度の鋼材が得られる。 That is, after cooling once to a temperature (T 1 ) of 470 ° C. or more and 640 ° C. or less (more preferably 480 ° C. or more and 630 ° C. or less), T 1 <T 2 and 550 ° C. or more and 720 ° C. or less (more By reheating to a temperature (T 2 ) of preferably 580 ° C. or more and 715 ° C. or less, more preferably 710 ° C. or less, a steel material with uniform and fine crystal grains and low strength can be obtained.

但しこの際、温度(T)から温度(T)への平均昇温速度が遅過ぎると、本発明が意図するレベルまでの低強度化が達成できなくなるので、この間の平均昇温速度は3℃/秒以上とすることが不可欠の要件となる。即ち上記第1の方法で伸線性に優れた鋼線材を得るには、730℃以上、1050℃以下(より好ましくは750℃以上、1000℃以下)に加熱された線材を平均冷却速度15℃/秒以上で470℃以上、640℃以下(より好ましくは480℃以上、630℃以下)の温度(T)まで冷却した後、該温度(T)よりも高温である550℃以上、720℃以下(より好ましくは580℃以上、715℃以下、更に好ましくは710℃以下)の温度(T)に3℃/秒以上の速度で昇温することが重要となる。 However, at this time, if the average rate of temperature increase from the temperature (T 1 ) to the temperature (T 2 ) is too slow, the reduction in strength to the level intended by the present invention cannot be achieved. It is an indispensable requirement to set the temperature to 3 ° C./second or more. That is, in order to obtain a steel wire excellent in drawability by the first method, a wire heated to 730 ° C. or higher and 1050 ° C. or lower (more preferably 750 ° C. or higher and 1000 ° C. or lower) is cooled at an average cooling rate of 15 ° C. / After cooling to a temperature (T 1 ) of 470 ° C. or more and 640 ° C. or less (more preferably 480 ° C. or more and 630 ° C. or less) in a second or more, 550 ° C. or more and 720 ° C. which are higher than the temperature (T 1 ) It is important to raise the temperature (T 2 ) below (more preferably 580 ° C. or more, 715 ° C. or less, more preferably 710 ° C. or less) at a rate of 3 ° C./second or more.

一方、本発明が適用される鋼線材が熱間圧延線材である場合は、前記第2の方法を適用して下記の様に制御する。   On the other hand, when the steel wire to which the present invention is applied is a hot-rolled wire, the second method is applied and the following control is performed.

まず、加熱炉で900〜1260℃に加熱した後、740℃以上の温度で熱間圧延し、仕上げ圧延温度は1100℃以下に制御する。加熱温度が900℃未満では加熱が不十分であり、1260℃を超えると表層脱炭域が広くなるからである。より好ましい加熱温度は900℃以上、1250℃以下である。また、圧延温度を下げると表層脱炭が促進されて結果的にスケール剥離性が劣化するので、熱間圧延の下限温度は740℃と定めた。より好ましい下限温度は780℃である。また仕上げ圧延温度が1100℃を超えると、次工程で行う冷却、再加熱による変態組織制御が困難になるため、仕上げ圧延温度の上限は1100℃と定めた。   First, after heating to 900-1260 degreeC with a heating furnace, it hot-rolls at the temperature of 740 degreeC or more, and finish rolling temperature is controlled to 1100 degrees C or less. This is because if the heating temperature is less than 900 ° C., the heating is insufficient, and if it exceeds 1260 ° C., the surface decarburization region becomes wide. A more preferable heating temperature is 900 ° C. or more and 1250 ° C. or less. Further, when the rolling temperature is lowered, surface layer decarburization is promoted, resulting in deterioration of scale peelability. Therefore, the lower limit temperature of hot rolling is set to 740 ° C. A more preferable lower limit temperature is 780 ° C. Further, when the finish rolling temperature exceeds 1100 ° C., it becomes difficult to control the transformation structure by cooling and reheating performed in the next step, so the upper limit of the finish rolling temperature is set to 1100 ° C.

仕上げ圧延の後は750〜950℃に水冷し、コンベア等の搬送装置上に巻取って載置する。水冷後に行う温度管理は、その後の変態制御とスケール制御のためであるが、冷却時の到達温度が750℃を下回る低温になると表層に過冷組織が生成し、一方、950℃を超える高温域ではスケールの変形能がなくなり、運搬時に剥離して錆発生の原因になる。   After finish rolling, it is water-cooled to 750 to 950 ° C., wound up and placed on a conveyor such as a conveyor. The temperature management performed after water cooling is for the subsequent transformation control and scale control, but when the temperature reached during cooling becomes lower than 750 ° C, a supercooled structure is formed on the surface layer, while the high temperature region exceeding 950 ° C. Then, the deformability of the scale is lost, and it peels off during transportation and causes rust.

巻取り後は、平均冷却速度15℃/秒以上の平均冷却速度で冷却し、搬送装置上への巻取り載置から20秒以内に鋼材温度の最低値を500〜630℃の温度(T)に制御すると共に、引き続いて該温度(T)から、載置後45秒までに鋼材温度の最高値を上記温度(T)よりも高温である580〜720℃の温度(T)に再加熱することが、伸線性に優れた金属組織を得る上で重要な要件となる。 After winding, the steel sheet is cooled at an average cooling rate of 15 ° C./second or more, and the minimum steel material temperature is set to a temperature of 500 to 630 ° C. (T 3) within 20 seconds after winding on the conveying device. and controls to), followed by the temperature (T 3), the maximum value of the steel material temperature until after loading 45 seconds five hundred eighty to seven hundred twenty ° C. is higher than the temperature (T 3) temperature (T 4) It is an important requirement to obtain a metal structure excellent in drawability.

即ち、巻取り載置後20秒以内の最低温度(T)が500〜630℃となる様に15℃/秒以上の速度で制御冷却することで、結晶粒を均一且つ微細にすることができる。冷却速度が15℃/秒未満では、冷却速度不足で金属組織を十分に均一微細化できず、一部粗大粒が発生する。この時の冷却速度は速いほど金属組織の微細化には有効であるが、熱間圧延後に衝風冷却する場合は鋼線材内の冷却速度のばらつきが大きくなり易い。従って、冷却速度は120℃/秒以下、より好ましくは100℃/秒以下にするのがよい。また、この冷却工程で480℃未満にまで冷却した場合も表層に過冷組織が発生し、逆に630℃を超えた場合は粗大粒が生成し易くなる。巻取り載置から20秒以内に好適温度域まで冷却しない場合も、金属組織が粗大化する。 That is, the crystal grains can be made uniform and fine by controlling cooling at a rate of 15 ° C./second or more so that the minimum temperature (T 3 ) within 20 seconds after winding and placing becomes 500 to 630 ° C. it can. If the cooling rate is less than 15 ° C./second, the metal structure cannot be sufficiently refined uniformly due to insufficient cooling rate, and some coarse grains are generated. The faster the cooling rate at this time, the more effective is the refinement of the metal structure. However, when blast cooling is performed after hot rolling, the variation in the cooling rate in the steel wire tends to increase. Therefore, the cooling rate should be 120 ° C./second or less, more preferably 100 ° C./second or less. Further, even when cooled to below 480 ° C. in this cooling step, a supercooled structure is generated on the surface layer, and conversely, when it exceeds 630 ° C., coarse particles are easily generated. Even when the temperature is not cooled to a suitable temperature range within 20 seconds after the winding and mounting, the metal structure becomes coarse.

該冷却の後は、続いて該温度(T)から、巻取り載置より45秒までに鋼材温度の最高値が該温度(T)よりも高温である580〜720℃の温度(T)に制御することで、熱間圧延材の強度を有為に低下させることができる。このときの低強度化をより効果的に進めるには、巻取り載置から該温度域に達するまでの時間を42秒以内、更に好ましくは40秒以内とするのがよい。ここで、温度Tが温度Tよりも低かったり、温度Tが580℃未満である場合は強度が不十分となり、温度Tが720℃を超える場合は、強度と共に延性も低くなる。 After the cooling, subsequently, from the temperature (T 3 ), a temperature of 580 to 720 ° C. (T 3 ) in which the maximum value of the steel material is higher than the temperature (T 3 ) by 45 seconds from the winding and mounting. By controlling to 4 ), the strength of the hot rolled material can be significantly reduced. In order to more effectively reduce the strength at this time, it is preferable to set the time from the winding and mounting to the temperature range within 42 seconds, more preferably within 40 seconds. Here, when the temperature T 4 is lower than the temperature T 3 or when the temperature T 4 is less than 580 ° C., the strength is insufficient, and when the temperature T 4 exceeds 720 ° C., the ductility is lowered with the strength.

以上の様に、伸線性に優れた熱間圧延線材を得るには前記第2の方法を採用し、加熱炉で900〜1260℃(より好ましくは900〜1250℃)に加熱した後、圧延温度740℃以上(より好ましくは780℃以上)で熱間圧延し、仕上げ圧延温度は1100℃以下に制御し、引き続いて750〜950℃に水冷して搬送装置上に巻取り載置した後、15℃/秒以上の速度で冷却し、巻取り載置から20秒以内の鋼材温度の最低値を500〜630℃の温度(T)に制御し、次いで該温度(T)から、巻取り載置から45秒までの鋼材温度の最高値をT<Tで580〜720℃の温度(T)に制御することで、伸線加工性に優れた高炭素鋼線材を効率よく得ることができる。温度(T)の好ましい範囲は580〜715℃、更に好ましいのは580〜710℃である。 As described above, in order to obtain a hot-rolled wire rod excellent in drawability, the second method is adopted, and after heating to 900 to 1260 ° C. (more preferably 900 to 1250 ° C.) in a heating furnace, the rolling temperature After hot rolling at 740 ° C. or higher (more preferably 780 ° C. or higher), the finish rolling temperature is controlled to 1100 ° C. or lower, subsequently cooled to 750 to 950 ° C. and wound on a conveying device, then 15 The steel material is cooled at a rate of at least ° C./second, and the minimum steel material temperature within 20 seconds after winding is controlled to a temperature (T 3 ) of 500 to 630 ° C., and then the temperature (T 3 ) is taken up. By controlling the maximum value of the steel material temperature from 45 to 45 seconds to a temperature (T 4 ) of 580 to 720 ° C. with T 3 <T 4 , a high carbon steel wire material excellent in wire drawing workability is efficiently obtained. be able to. The preferable range of the temperature (T 4 ) is 580 to 715 ° C, and more preferably 580 to 710 ° C.

以下、実験例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the configuration and operational effects of the present invention will be described in more detail with reference to experimental examples.However, the present invention is not limited by the following experimental examples, and is appropriate within a range that can be adapted to the purpose described above and below. It is also possible to carry out the invention with modifications, and these are all included in the technical scope of the present invention.

実験例1
表1に示す化学組成を有する直径5.5mmの熱間圧延鋼線材を作製した。なお、表1中のREMは、La,Ce,PrおよびNdの合計量である。得られた各熱間圧延鋼線材を、図1および表2,3に示す条件で大気炉加熱し、鉛炉へ連続的に装入して熱処理することにより、種々の鋼線材を得た。なお本実験例では大気炉と鉛炉を用いて熱処理した例を示したが、本発明はもとよりこれらの設備の使用に限定されるものではなく、他の加熱炉や保持炉を使用することも勿論可能である。
Experimental example 1
A hot rolled steel wire rod having a chemical composition shown in Table 1 and having a diameter of 5.5 mm was produced. Note that REM in Table 1 is the total amount of La, Ce, Pr, and Nd. Each hot-rolled steel wire obtained was heated in an atmospheric furnace under the conditions shown in FIG. 1 and Tables 2 and 3, and continuously charged into a lead furnace and heat-treated to obtain various steel wires. In this experimental example, an example of heat treatment using an atmospheric furnace and a lead furnace was shown, but the present invention is not limited to the use of these facilities, and other heating furnaces and holding furnaces may be used. Of course it is possible.

得られた各鋼線材について、組織的特徴とスケール特性および引張特性を評価した。組織的特徴のうち、結晶粒と亜結晶粒の結晶単位に関しては、本発明では各結晶単位のばらつきを評価することが重要であることから、その評価手法としてSEM/EBSP(Electron Back Scatter diffraction Pattern)法を採用した。尚、SEMとしてはJEOL社製の商品名「JSM−5410」を使用し、EBSP法には、TSL社製の「OIM(Orientation Imaging Microscopy)システム」を使用した。   Each steel wire obtained was evaluated for structural characteristics, scale characteristics and tensile characteristics. Among the structural features, regarding crystal units of crystal grains and sub-crystal grains, since it is important to evaluate the variation of each crystal unit in the present invention, SEM / EBSP (Electron Back Scatter diffraction Pattern) is used as the evaluation method. ) Method was adopted. The trade name “JSM-5410” manufactured by JEOL was used as the SEM, and the “OIM (Orientation Imaging Microscopy) system” manufactured by TSL was used for the EBSP method.

各鋼線材から湿式切断で試料を採取した後、EBSP測定用の試料調整に湿式研磨、バフ研磨、化学研磨を採用し、研磨加工の歪みと凹凸を極力低減した試料を作成した。このとき、観察面が鋼線材の縦断面となる様に研磨加工した。   Samples were collected from each steel wire by wet cutting, and then wet polishing, buff polishing, and chemical polishing were employed for sample preparation for EBSP measurement, and samples with reduced distortion and irregularities in the polishing process were made as much as possible. At this time, it grind | polished so that an observation surface might become the longitudinal cross-section of a steel wire.

得られた試料を使用し、鋼線材の線径中心部をEBSP測定位置として測定を行った。測定ステップは0.5μm以下とし、各鋼線材の測定面積が60000μm以上となる様にした。測定後に結晶方位の解析を行ったが、解析の信頼性を高めるため、平均CI(Confidence Index)値が0.3以上である測定結果を用いて解析した。 The obtained sample was used, and the measurement was performed using the center portion of the wire diameter of the steel wire as the EBSP measurement position. The measurement step was 0.5 μm or less, and the measurement area of each steel wire was 60000 μm 2 or more. The crystal orientation was analyzed after the measurement. In order to increase the reliability of the analysis, the analysis was performed using the measurement result having an average CI (Confidence Index) value of 0.3 or more.

bcc−Fe結晶方位の解析により、本発明で意図する結晶単位としては方位角度差が10°以上である境界線に囲まれる領域を「結晶粒」、方位角度差が2°以上である境界線に囲まれる領域を「亜結晶粒」として、各々の解析結果(バウンダリーマップ:一例を図2に示す)を得、各バウンダリーマップを画像解析ソフト「Image-Pro」で処理して各結晶単位を計算し評価した。   As a result of the analysis of the bcc-Fe crystal orientation, the crystal unit intended by the present invention is defined as a region surrounded by a boundary line having an orientation angle difference of 10 ° or more, and a boundary line having an orientation angle difference of 2 ° or more. Each sub-grain is the area surrounded by, and each analysis result (boundary map: an example is shown in Fig. 2) is obtained, and each boundary map is processed by image analysis software "Image-Pro" Units were calculated and evaluated.

まず、上記「Image-Pro」でバウンダリーマップにて境界線で囲まれる個々の領域(結晶単位)の面積を求める。次に、その面積を元に個々の結晶単位を円相当径に近似して計算した円直径を個々の結晶粒径として採用した。それらの計算結果を元に、図3に一例を示す如く統計処理することによって、平均結晶粒径(Dave)、平均亜結晶粒径(dave)、最大結晶粒径(Dmax)、最大亜結晶粒径(dmax)、80μm以上の結晶粒の占める面積率、平均結晶粒径と平均亜結晶粒径の比(Dave/dave)を夫々求めた。   First, the area of each region (crystal unit) surrounded by the boundary line in the boundary map is obtained by “Image-Pro”. Next, the circle diameter calculated by approximating each crystal unit to the equivalent circle diameter based on the area was adopted as the individual crystal grain size. Based on the calculation results, statistical processing is performed as shown in FIG. 3 as an example to obtain an average crystal grain size (Dave), an average subcrystal grain size (dave), a maximum crystal grain size (Dmax), and a maximum subcrystal grain size. The diameter (dmax), the area ratio of crystal grains of 80 μm or more, and the ratio of the average crystal grain size to the average subcrystal grain size (Dave / dave) were determined.

組織的特徴のうちトータル脱炭量は、JIS G0558に記載されている測定方法によって求めた。試料は鋼線材から切断採取し、線材横断面が観察面となる様に樹脂に埋め込んだ後、湿式研磨、バフ研磨を施し、5%ナイタールで金属組織を現出させて光学顕微鏡観察を行い、鋼線材表層の脱炭量を測定した。脱炭評価は各鋼線材につき各々2個以上測定し、平均値を求めた。   Among the structural characteristics, the total decarburization amount was determined by the measurement method described in JIS G0558. The sample was cut and collected from the steel wire, embedded in the resin so that the cross section of the wire became the observation surface, wet-polished, buffed, and exposed to an optical microscope by revealing the metal structure with 5% nital, The decarburization amount of the steel wire surface layer was measured. In the decarburization evaluation, two or more pieces were measured for each steel wire, and the average value was obtained.

またスケール特性は、鋼線材表層に付着しているスケール量によって評価した。具体的には、各鋼線材から長さ200mmの試料を切断採取し、塩酸を用いた酸洗前後の試料の重量差からスケール付着量を計算した。スケール評価には、各鋼線材について10本以上測定してその平均値を用いた。   The scale characteristics were evaluated by the amount of scale attached to the steel wire surface layer. Specifically, a sample having a length of 200 mm was cut and collected from each steel wire, and the amount of scale adhesion was calculated from the weight difference between the samples before and after pickling with hydrochloric acid. For the scale evaluation, 10 or more steel wires were measured and the average value was used.

引張特性の評価は、各鋼線材から長さ400mmの試料を切断採取し、万能試験機によりクロスヘッドスピード10mm/min、ゲージ長150mmで引張試験を行った。各鋼線材につき40本以上測定し、それらの平均値を引張強度(TS:MPa)および絞り値(RA:%)とした。   For the evaluation of the tensile properties, a sample having a length of 400 mm was cut from each steel wire, and a tensile test was performed with a universal testing machine at a crosshead speed of 10 mm / min and a gauge length of 150 mm. More than 40 wires were measured for each steel wire, and the average values were taken as the tensile strength (TS: MPa) and the drawing value (RA:%).

次に、伸線性の評価について述べる。各鋼線材は、伸線前工程として脱スケール処理および潤滑皮膜処理を行った。脱スケール処理には塩酸を使用し、酸洗処理によりスケールを除去した。スケール除去後、潤滑皮膜処理として各鋼線材表面に燐酸塩皮膜を付与してから伸線加工に供した。その後、連続伸線機によって最終線径で0.9mmまで乾式伸線加工を行った。   Next, evaluation of wire drawing property will be described. Each steel wire was subjected to descaling and lubricating film treatment as a pre-drawing process. Hydrochloric acid was used for descaling, and the scale was removed by pickling. After removing the scale, a phosphate film was applied to the surface of each steel wire as a lubricating film treatment, and then subjected to wire drawing. Thereafter, dry drawing was performed with a continuous wire drawing machine to a final wire diameter of 0.9 mm.

この実験例では、伸線加工時の生産性向上を目的とし、伸線加工条件としては、最終伸線速度600m/分でダイス数14個の条件(1)、ダイス数は14個のままで最終伸線速度を800m/分に高めた条件(2)、更に最終伸線速度800m/分でダイス数を12個に減らした条件(3)の3つの条件で実施した。   In this experimental example, the purpose is to improve the productivity at the time of wire drawing, and the wire drawing conditions are the condition (1) in which the final wire drawing speed is 600 m / min and the number of dies is 14 and the number of dies is 14 pieces. The test was carried out under three conditions: a condition (2) in which the final drawing speed was increased to 800 m / min, and a condition (3) in which the number of dies was reduced to 12 at a final drawing speed of 800 m / min.

条件(1)から(3)になるにつれて、伸線加工の生産性は向上するが伸線加工条件は厳しくなり、伸線加工に供する鋼線材には高い伸線性が必要となる。この3つの条件で各鋼線材につき50トンずつ伸線加工を行い、伸線中の断線の有無とダイス寿命を評価した。ダイス寿命の評価は、伸線中にダイスが破損した場合は(×)評価とし、50トンの伸線加工中にダイス破損は生じないがダイスが磨耗し、伸線後にダイス交換を必要とする場合は(△)評価、50トン伸線後にもダイス破損および磨耗によるダイス交換の必要性がない場合を(○)評価とした。(−)で示したのは、断線したためダイス寿命を評価するに至らなかったものである。   As the conditions (1) to (3) change, the productivity of wire drawing improves, but the wire drawing conditions become severe, and the steel wire used for wire drawing requires high wire drawing. Under these three conditions, 50 tons of wire was drawn for each steel wire, and the presence or absence of wire breakage during wire drawing and the die life were evaluated. The die life is evaluated as (x) when the die breaks during wire drawing. Die breakage does not occur during wire drawing of 50 tons, but the die is worn and requires die change after wire drawing. In the case, the evaluation was (Δ), and the case where there was no need to change the die due to die breakage or wear after 50 tons wire drawing was evaluated as (() evaluation. What was shown by (-) was not able to evaluate die life because it was disconnected.

結果を表4および図4に示す。   The results are shown in Table 4 and FIG.

Figure 2006200039
Figure 2006200039

Figure 2006200039
Figure 2006200039

Figure 2006200039
Figure 2006200039

Figure 2006200039
Figure 2006200039

表1〜4より、次の様に解析できる。   From Tables 1 to 4, it can be analyzed as follows.

まず、平均結晶粒径(Dave)と最大結晶粒径(Dmax)については、図4にまとめて示す如く、(Dave)を20μm以下、(Dmax)を120μm以下に制御することで伸線性が向上し、伸線速度を上げても破断せず高速伸線が可能になる。更に、付加的要件として、(Dave)を17μm以下、(Dmax)を100μm以下に組織を均一微細化し、平均亜結晶粒径(dave)を10μm以下、最大亜結晶粒径(dmax)を50μm以下、(Dave/dave)比を4.5以下に制御し、TSを1240×Wc0.52以下に低強度化すれば、高速伸線化に加えてダイス数を減少しても断線なく伸線が可能となり、伸線加工性を一段と高めることができる。 First, the average crystal grain size (Dave) and the maximum crystal grain size (Dmax) are improved by controlling (Dave) to 20 μm or less and (Dmax) to 120 μm or less as summarized in FIG. However, even if the drawing speed is increased, high-speed drawing is possible without breaking. Furthermore, as additional requirements, (Dave) is 17 μm or less, (Dmax) is 100 μm or less, the structure is uniformly refined, the average subcrystal grain size (dave) is 10 μm or less, and the maximum subcrystal grain size (dmax) is 50 μm or less. If the (Dave / dave) ratio is controlled to 4.5 or less and TS is reduced to 1240 x Wc 0.52 or less, drawing is possible without disconnection even if the number of dies is reduced in addition to high-speed drawing. Thus, the wire drawing workability can be further improved.

平均結晶粒径(Dave)と最大結晶粒径(Dmax)の要件は満たすものの、上記付加的要件を満たしていない表2〜4のNo.2、14、18、24、29、30、40、41は、高速伸線化は可能であるものの、ダイス数が減少したときに破断が発生している。また、ダイス寿命の観点からすると、スケール剥離性がよくない表2〜4のNo.3は、伸線条件を厳しくしても伸線中の断線は生じないが、伸線後にダイス交換を必要とするほどダイス寿命に悪影響がみられる。また、鋼が軟質化不足で『TS≦1240×Wc0.52』を満たしていない表2〜4のNo.29、30、40も、ダイス寿命がよくない。 Although the requirements of the average crystal grain size (Dave) and the maximum crystal grain size (Dmax) are satisfied, No. in Tables 2 to 4 which do not satisfy the above additional requirements. Although 2, 14, 18, 24, 29, 30, 40, and 41 can be drawn at high speed, fracture occurs when the number of dies decreases. Moreover, from the viewpoint of the die life, Nos. No. 3 does not cause disconnection during wire drawing even if the wire drawing conditions are strict, but the die life is adversely affected to the extent that die replacement is required after wire drawing. In addition, No. in Tables 2 to 4 where steel does not satisfy “TS ≦ 1240 × Wc 0.52 ” due to insufficient softening. 29, 30, and 40 also have poor die life.

その他、伸線性に及ぼす成分組成の影響は表3,4のNo.43〜48に現われている。即ち、表3,4のNo.43、44で用いている鋼種A16、A17はP,S含有量が高いため、金属組織は適正に制御しているにもかかわらず断線が発生している。また、表3,4のNo.45で用いている鋼種A18は、Si含有量が多過ぎるため顕著な脱炭を起こしておりスケール剥離性が悪く、また強度も高過ぎるため伸線中にダイス破損や断線が発生している。   In addition, the effect of the component composition on the drawability is shown in Tables 3 and 4. It appears in 43-48. That is, No. in Tables 3 and 4. Steel types A16 and A17 used in Nos. 43 and 44 have a high P and S content, and thus disconnection occurs even though the metal structure is appropriately controlled. In Tables 3 and 4, No. Steel type A18 used in No. 45 has a significant decarburization because of its excessive Si content, has poor scale peelability, and is too high in strength, resulting in die breakage and disconnection during wire drawing.

表3,4のNo.46で用いている鋼種A19は、Mn含量が多過ぎるため過冷組織が生じて強度が高く、No.47の鋼種A20はN含有量が多過ぎるため延性不足であり、伸線中にひずみ時効脆化を起こし易い。No.48の鋼種A21も同様にC含量が規定値を超えているため、延性が乏しいうえに伸線中のひずみ時効脆化を生じ易い。   No. in Tables 3 and 4 Steel type A19 used in No. 46 has a too high Mn content, resulting in a supercooled structure and high strength. Steel No. 47, No. 47, is too ductile because of its excessive N content, and is susceptible to strain aging embrittlement during wire drawing. No. Similarly, 48 steel type A21 has a C content exceeding the specified value, so that it has poor ductility and is susceptible to strain aging embrittlement during wire drawing.

以上の様に、鋼成分が本発明の規定範囲から外れているものは、本発明の組織的特徴を満たしていても満足のいく伸線性は得られない。   As described above, if the steel component is out of the specified range of the present invention, satisfactory wire drawing cannot be obtained even if the structural features of the present invention are satisfied.

実験例2
熱間圧延のままで伸線性を向上させるため、下記表5に示す鋼種を用いて検討を行った。表5に示した鋼種は全て本発明で定める成分組成の要件を満足している。表5中のREMは、La,Ce,PrおよびNdの合計含量である。
Experimental example 2
In order to improve the drawability as it is in hot rolling, examination was performed using the steel types shown in Table 5 below. All the steel types shown in Table 5 satisfy the component composition requirements defined in the present invention. REM in Table 5 is the total content of La, Ce, Pr and Nd.

表5に記載の鋼種を、表6および図5に示す条件で熱間圧延した。熱間圧延材の場合は、加熱炉から圧延、冷却まで全ての工程において制御する必要があり、図5に示す如く前記実験例1の場合(図1)よりも管理項目が複雑となる。得られた熱間圧延材に対し、前記実験例1と同様にして組織的特徴、スケール特性、引張特性、伸線性を評価した。   The steel types listed in Table 5 were hot-rolled under the conditions shown in Table 6 and FIG. In the case of a hot-rolled material, it is necessary to control in all steps from the heating furnace to rolling and cooling, and the management items are more complicated than in the case of Experimental Example 1 (FIG. 1) as shown in FIG. The obtained hot-rolled material was evaluated for structural characteristics, scale characteristics, tensile characteristics, and wire drawing properties in the same manner as in Experimental Example 1.

結果は表6〜8および図6にまとめて示す通りであり、熱間圧延においても、加熱から巻取り冷却に渡る一連の工程の各管理項目を適切に制御することで、組織的特徴、スケール特性および引張特性を本発明の規定範囲内に制御することができ、伸線性評価結果から、熱間圧延ままでも優れた伸線性が得られることを確認できる。   The results are summarized in Tables 6 to 8 and FIG. 6, and even in hot rolling, by appropriately controlling each management item in a series of processes from heating to winding cooling, the structural characteristics, scale The properties and tensile properties can be controlled within the specified range of the present invention, and it can be confirmed from the results of wire drawing evaluation that excellent wire drawing can be obtained even in hot rolling.

Figure 2006200039
Figure 2006200039

Figure 2006200039
Figure 2006200039

Figure 2006200039
Figure 2006200039

Figure 2006200039
Figure 2006200039

以上の説明した様に、所定成分組成の要件を満たす炭素鋼線において、特に平均結晶粒径(Dave)を20μm以下、最大結晶粒径(Dmax)を120μm以下とし、金属組織単位のサイズばらつきを低減すると共に均一微細化することで、優れた伸線性を有する高炭素鋼線材を得ることができる。   As described above, in the carbon steel wire satisfying the requirements of the predetermined component composition, the average crystal grain size (Dave) is set to 20 μm or less, the maximum crystal grain size (Dmax) is set to 120 μm or less, and the size variation of the metal structure unit is A high carbon steel wire having excellent drawability can be obtained by reducing the size and making it uniform and uniform.

実験例1で採用した製造パターンの概略図である。6 is a schematic diagram of a manufacturing pattern employed in Experimental Example 1. FIG. 本発明で得た鋼線材のバウンダリーマップの1例を示す図である。It is a figure which shows one example of the boundary map of the steel wire obtained by this invention. 実験で得た鋼線材の結晶単位の評価例を示すグラフである。It is a graph which shows the example of evaluation of the crystal unit of the steel wire obtained by experiment. 実験例1で得た平均結晶粒径と最大結晶粒径が性能に及ぼす影響をまとめて示すグラフである。4 is a graph collectively showing the influence of the average crystal grain size and the maximum crystal grain size obtained in Experimental Example 1 on performance. 実験例2で採用した製造パターンの概略図である。It is the schematic of the manufacturing pattern employ | adopted in Experimental example 2. FIG. 実験例2で得た平均結晶粒径と最大結晶粒径が性能に及ぼす影響をまとめて示すグラフである。It is a graph which shows collectively the influence which the average crystal grain size obtained in Experimental Example 2 and the maximum crystal grain size have on performance.

Claims (10)

質量%で、C:0.6〜1.1%、Si:0.1〜2.0%、Mn:0.1〜1.0%、P:0.020%以下、S:0.020%以下、N:0.006%以下、Al:0.03%以下、O:0.0030%以下を満たし、残部がFeおよび不可避不純物からなり、金属組織のbcc−Fe結晶粒において、平均結晶粒径(Dave)が20μm以下で、最大結晶粒径(Dmax)が120μm以下であることを特徴とする伸線性に優れた高炭素鋼線材。   In mass%, C: 0.6 to 1.1%, Si: 0.1 to 2.0%, Mn: 0.1 to 1.0%, P: 0.020% or less, S: 0.020 %, N: 0.006% or less, Al: 0.03% or less, O: 0.0030% or less, the balance being Fe and inevitable impurities, and the average crystal in the bcc-Fe crystal grains of metal structure A high carbon steel wire rod excellent in wire drawing, characterized by having a grain size (Dave) of 20 μm or less and a maximum crystal grain size (Dmax) of 120 μm or less. 前記金属組織のbcc−Fe結晶粒において、粒径が80μm以上であるものの占める面積率が40%以下である請求項1に記載の高炭素鋼線材。   2. The high carbon steel wire rod according to claim 1, wherein in the bcc-Fe crystal grains of the metal structure, an area ratio occupied by particles having a particle size of 80 μm or more is 40% or less. 前記金属組織のbcc−Fe結晶粒において、平均亜結晶粒径(dave)が10μm以下で、最大亜結晶粒径(dmax)が50μm以下である請求項1または2に記載の高炭素鋼線材。   The high carbon steel wire rod according to claim 1 or 2, wherein the bcc-Fe crystal grains of the metal structure have an average subcrystal grain size (dave) of 10 µm or less and a maximum subcrystal grain size (dmax) of 50 µm or less. 前記金属組織のbcc−Fe結晶粒において、平均結晶粒径(Dave)と平均亜結晶粒径(dave)の比(Dave/dave)が4.5以下である請求項1〜3のいずれかに記載の高炭素鋼線材。   The ratio (Dave / dave) of the average crystal grain size (Dave) to the average subcrystal grain size (dave) in the metal structure bcc-Fe crystal grains is 4.5 or less. The high carbon steel wire described. 鋼線材の引張強度をTS、当該鋼線材中のC濃度をWcとしたとき、それらが下記式(1)の関係を満たすものである請求項1〜4のいずれかに記載の高炭素鋼線材。
TS≦1240×Wc0.52……(1)
The high carbon steel wire according to any one of claims 1 to 4, wherein when the tensile strength of the steel wire is TS and the C concentration in the steel wire is Wc, they satisfy the relationship of the following formula (1). .
TS ≦ 1240 × Wc 0.52 (1)
鋼が更に他の元素として、Cr:1.5%以下(0%を含まない)、Cu:1.0%以下(0%を含まない)、Ni:1.0%以下(0%を含まない)から選ばれる少なくとも1種の元素を含むものである請求項1〜5のいずれかに記載の高炭素鋼線材。   Still other elements of steel are Cr: 1.5% or less (not including 0%), Cu: 1.0% or less (not including 0%), Ni: 1.0% or less (including 0%) The high carbon steel wire according to any one of claims 1 to 5, which contains at least one element selected from: 鋼が、更に他の元素として、Mg:5ppm以下(0ppmを含まない)、Ca:5ppm以下(0ppmを含まない)、REM:1.5ppm以下(0ppmを含まない)から選ばれる少なくとも1種の元素を含むものである請求項1〜6のいずれかに記載の高炭素鋼線材。   Steel is at least one element selected from Mg: 5 ppm or less (not including 0 ppm), Ca: 5 ppm or less (not including 0 ppm), REM: 1.5 ppm or less (not including 0 ppm) as other elements. The high carbon steel wire according to any one of claims 1 to 6, which contains an element. 表層のトータル脱炭量(Dm-T)が100μm以下であり、且つスケール付着量が0.15〜0.85質量%である請求項1〜7のいずれかに記載の高炭素鋼線材。 The high carbon steel wire according to any one of claims 1 to 7, wherein a total decarburization amount (D mT ) of the surface layer is 100 µm or less, and a scale adhesion amount is 0.15 to 0.85 mass%. 前記請求項1,6,7のいずれかに規定される成分組成の鋼からなり、730〜1050℃に加熱された鋼線材を、15℃/秒以上の平均冷却速度で470〜640℃の温度(T)まで冷却した後、該温度(T)よりも高温である550〜720℃の温度(T)まで3℃/秒以上の平均昇温速度で加熱することを特徴とする、伸線性に優れた高炭素鋼線材の製法。 A steel wire made of steel having a component composition defined in any one of claims 1, 6, and 7 and heated to 730 to 1050 ° C. at a temperature of 470 to 640 ° C. at an average cooling rate of 15 ° C./second or more. (T 1) after cooling to, wherein the heating at said temperature (T 1) is higher than five hundred and fifty to seven hundred and twenty ° C. of the temperature (T 2) to 3 ° C. / sec or more average heating rate, A method for producing high carbon steel wire rods with excellent drawability. 前記請求項1,6,7のいずれかに規定される成分組成の鋼材を900〜1260℃に加熱し、740℃以上の温度で熱間圧延すると共に1100℃以下の温度で仕上げ圧延した後、750〜950℃の温度域まで水冷して搬送装置上に巻取り、その後、15℃/秒以上の平均冷却速度で冷却することにより、巻取り終了から20秒以内に鋼材温度の極小値(T)を500〜630℃まで降下させてから加熱し、巻取り終了から45秒以内に鋼材温度の極大値(T)を上記極小値(T)よりも高温である580〜720℃に高めることを特徴とする、伸線性に優れた高炭素鋼線材の製法。 After heating the steel material having the component composition defined in any one of claims 1, 6 and 7 to 900 to 1260 ° C, hot rolling at a temperature of 740 ° C or higher and finish rolling at a temperature of 1100 ° C or lower, Water cooling to a temperature range of 750 to 950 ° C. and winding on a transfer device, followed by cooling at an average cooling rate of 15 ° C./second or more, the steel material temperature minimum value (T 3 ) The temperature is lowered to 500 to 630 ° C. and then heated, and the maximum value (T 4 ) of the steel material temperature is increased to 580 to 720 ° C. which is higher than the above minimum value (T 3 ) within 45 seconds from the end of winding. A method for producing a high carbon steel wire rod excellent in drawability, characterized by increasing.
JP2005368733A 2004-12-22 2005-12-21 High carbon steel wire rod excellent in drawability and production method thereof Expired - Fee Related JP4621133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005368733A JP4621133B2 (en) 2004-12-22 2005-12-21 High carbon steel wire rod excellent in drawability and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004371901 2004-12-22
JP2005368733A JP4621133B2 (en) 2004-12-22 2005-12-21 High carbon steel wire rod excellent in drawability and production method thereof

Publications (3)

Publication Number Publication Date
JP2006200039A true JP2006200039A (en) 2006-08-03
JP2006200039A5 JP2006200039A5 (en) 2008-08-21
JP4621133B2 JP4621133B2 (en) 2011-01-26

Family

ID=36958292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368733A Expired - Fee Related JP4621133B2 (en) 2004-12-22 2005-12-21 High carbon steel wire rod excellent in drawability and production method thereof

Country Status (1)

Country Link
JP (1) JP4621133B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034036A2 (en) 2007-09-05 2009-03-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wire rod having excellent wire drawability and its production method
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
JP2010132943A (en) * 2008-12-02 2010-06-17 Kobe Steel Ltd Hot-rolled wire rod having excellent wire drawability and mechanical descaling property, and method for producing the same
JP2011033600A (en) * 2009-08-06 2011-02-17 Kobe Steel Ltd Method for evaluating resistance to delayed fracture of steel plate molding
JP2012167380A (en) * 2011-02-09 2012-09-06 Bridgestone Corp Wire for reinforcing rubber article and method for manufacturing the same
WO2013108828A1 (en) 2012-01-20 2013-07-25 新日鐵住金株式会社 Rolled wire rod, and method for producing same
WO2014208492A1 (en) 2013-06-24 2014-12-31 新日鐵住金株式会社 High-carbon steel wire rod and method for manufacturing same
WO2016158901A1 (en) * 2015-03-30 2016-10-06 株式会社神戸製鋼所 High-carbon steel wire material with excellent wire drawability, and steel wire
KR20170028396A (en) 2014-08-08 2017-03-13 신닛테츠스미킨 카부시키카이샤 High carbon steel wire having excellent drawability
KR20170054492A (en) 2014-10-20 2017-05-17 신닛테츠스미킨 카부시키카이샤 Steel wire for bearing with excellent wire drawability and coil formability after wiredrawing
JP2018044208A (en) * 2016-09-14 2018-03-22 株式会社東郷製作所 Spring and spring material
WO2024136562A1 (en) * 2022-12-21 2024-06-27 주식회사 포스코 Wire rod and steel wire for spring, spring, and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295994A (en) * 1995-04-21 1996-11-12 Nippon Steel Corp Wire rod to be descaled
JPH10183229A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Production of high carbon steel wire rod
JP2000119808A (en) * 1998-10-13 2000-04-25 Kobe Steel Ltd Steel wire capable of papid spheroidizing and excellent in cold forgeability, and its manufacture
JP2000256792A (en) * 1999-03-04 2000-09-19 Nippon Steel Corp High strength and high ductility extra-fine steel wire and stranded wire and its production
JP2004137597A (en) * 2002-09-26 2004-05-13 Kobe Steel Ltd Hot rolled wire rod in which heat treatment before wire drawing can be eliminated, and having excellent wire drawability
JP2004300497A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Wire- or bar-shaped steel excellent in wire-drawing property, its production method and bearing part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295994A (en) * 1995-04-21 1996-11-12 Nippon Steel Corp Wire rod to be descaled
JPH10183229A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Production of high carbon steel wire rod
JP2000119808A (en) * 1998-10-13 2000-04-25 Kobe Steel Ltd Steel wire capable of papid spheroidizing and excellent in cold forgeability, and its manufacture
JP2000256792A (en) * 1999-03-04 2000-09-19 Nippon Steel Corp High strength and high ductility extra-fine steel wire and stranded wire and its production
JP2004137597A (en) * 2002-09-26 2004-05-13 Kobe Steel Ltd Hot rolled wire rod in which heat treatment before wire drawing can be eliminated, and having excellent wire drawability
JP2004300497A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Wire- or bar-shaped steel excellent in wire-drawing property, its production method and bearing part

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034036A2 (en) 2007-09-05 2009-03-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wire rod having excellent wire drawability and its production method
JP2009062574A (en) * 2007-09-05 2009-03-26 Kobe Steel Ltd Wire having excellent wire drawability, and producing method therefor
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
JP2010132943A (en) * 2008-12-02 2010-06-17 Kobe Steel Ltd Hot-rolled wire rod having excellent wire drawability and mechanical descaling property, and method for producing the same
JP2011033600A (en) * 2009-08-06 2011-02-17 Kobe Steel Ltd Method for evaluating resistance to delayed fracture of steel plate molding
JP2012167380A (en) * 2011-02-09 2012-09-06 Bridgestone Corp Wire for reinforcing rubber article and method for manufacturing the same
WO2013108828A1 (en) 2012-01-20 2013-07-25 新日鐵住金株式会社 Rolled wire rod, and method for producing same
US9169530B2 (en) 2012-01-20 2015-10-27 Nippon Steel & Sumitomo Metal Corporation Rolled wire rod and manufacturing method thereof
WO2014208492A1 (en) 2013-06-24 2014-12-31 新日鐵住金株式会社 High-carbon steel wire rod and method for manufacturing same
KR20160009659A (en) 2013-06-24 2016-01-26 신닛테츠스미킨 카부시키카이샤 High-carbon steel wire rod and method for manufacturing same
US10174399B2 (en) 2013-06-24 2019-01-08 Nippon Steel & Sumitomo Metal Corporation High carbon steel wire rod and method for manufacturing same
EP3165626A4 (en) * 2014-08-08 2018-03-28 Nippon Steel & Sumitomo Metal Corporation High carbon steel wire having excellent drawability
KR20170028396A (en) 2014-08-08 2017-03-13 신닛테츠스미킨 카부시키카이샤 High carbon steel wire having excellent drawability
US10487379B2 (en) 2014-08-08 2019-11-26 Nippon Steel Corporation High-carbon steel wire rod with excellent wire drawability
KR20170054492A (en) 2014-10-20 2017-05-17 신닛테츠스미킨 카부시키카이샤 Steel wire for bearing with excellent wire drawability and coil formability after wiredrawing
US10287660B2 (en) 2014-10-20 2019-05-14 Nippon Steel & Sumitomo Metal Corporation Steel wire rod for bearings having excellent drawability and coil formability after drawing
WO2016158901A1 (en) * 2015-03-30 2016-10-06 株式会社神戸製鋼所 High-carbon steel wire material with excellent wire drawability, and steel wire
JP2018044208A (en) * 2016-09-14 2018-03-22 株式会社東郷製作所 Spring and spring material
WO2018051599A1 (en) * 2016-09-14 2018-03-22 株式会社東郷製作所 Spring and spring material
WO2024136562A1 (en) * 2022-12-21 2024-06-27 주식회사 포스코 Wire rod and steel wire for spring, spring, and method for manufacturing same

Also Published As

Publication number Publication date
JP4621133B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4621133B2 (en) High carbon steel wire rod excellent in drawability and production method thereof
KR100709846B1 (en) High carbon steel wire material having excellent wire drawability and manufacturing process thereof
KR100651302B1 (en) High carbon steel wire rod superior in wire-drawability and method for producing the same
JP5092749B2 (en) High ductility high carbon steel wire
KR101925735B1 (en) Steel wire for wire drawing
JP5154694B2 (en) High carbon steel wire rod with excellent workability
JP5179331B2 (en) Hot rolled wire rod excellent in wire drawing workability and mechanical descaling property and manufacturing method thereof
WO2009119359A1 (en) Wire rod and high-strength steel wire excellent in ductility, and processes for production of both
JP2007327084A (en) Wire rod having excellent wire drawability and its production method
JP5590256B2 (en) Rolled wire rod and manufacturing method thereof
EP3366802A1 (en) Steel wire for wire drawing
JP2003082437A (en) High strength steel wire having excellent strain age embrittlement resistance and longitudinal crack resistance, and production method therefor
JP5201009B2 (en) High-strength extra-fine steel wire, high-strength extra-fine steel wire, and manufacturing methods thereof
JP4375149B2 (en) High strength low alloy steel wire
JP5329272B2 (en) Spring steel
JP4008320B2 (en) Rolled and drawn wire rods for bearings
JP2001181789A (en) Small-diameter hot rolled high carbon steel wire rod excellent in wire drawability
JP5796781B2 (en) Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
JP3681712B2 (en) High carbon steel wire rod excellent in drawability and manufacturing method thereof
JP4016894B2 (en) Steel wire rod and method for manufacturing steel wire
JP3863478B2 (en) Hot-rolled wire rod with excellent wire drawing workability that can omit heat treatment before wire drawing
JP2008081823A (en) Steel plate having excellent fine blanking workability, and manufacturing method therefor
JP3434080B2 (en) Wire for descaling
JP2003171737A (en) Rolled wire rod for bearing
WO2022264948A1 (en) Steel part and manufacturing method of steel part

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4621133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees