JP2006198933A - Composite foam - Google Patents
Composite foam Download PDFInfo
- Publication number
- JP2006198933A JP2006198933A JP2005014017A JP2005014017A JP2006198933A JP 2006198933 A JP2006198933 A JP 2006198933A JP 2005014017 A JP2005014017 A JP 2005014017A JP 2005014017 A JP2005014017 A JP 2005014017A JP 2006198933 A JP2006198933 A JP 2006198933A
- Authority
- JP
- Japan
- Prior art keywords
- foam
- resin
- epoxy
- styrene
- composite foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
Abstract
Description
本発明は、長期にわたって良好な断熱性を有する複合発泡体に関する。 The present invention relates to a composite foam having good heat insulating properties over a long period of time.
スチレン系樹脂を押出機等にて加熱溶融し、次いで脂肪族炭化水素、塩素化された炭化水素、フッ素化された炭化水素、塩素フッ素化された炭化水素などの発泡剤を添加し、冷却させ、これを低圧域に押出すことによりスチレン系樹脂発泡体を連続的に製造する方法は、既に知られている(例えば、特許文献1参照)。 Styrene resin is heated and melted with an extruder, etc., and then a foaming agent such as aliphatic hydrocarbon, chlorinated hydrocarbon, fluorinated hydrocarbon, or chlorine fluorinated hydrocarbon is added and allowed to cool. A method of continuously producing a styrenic resin foam by extruding it into a low pressure region is already known (see, for example, Patent Document 1).
このようにして得たスチレン系樹脂発泡体の製造直後は、上述したような熱伝導率の低い発泡剤のみで発泡体の気泡(セル)が満たされているため、スチレン系樹脂発泡体として良好な断熱性を有している。しかし、時間の経過とともに空気が発泡体セル中に浸入することから徐々に断熱性が低下する傾向がある。また、より長期的にみると、発泡剤がセル中から放散されることからも経時的に断熱性は低下する傾向にある。 Immediately after the production of the styrene resin foam thus obtained, the foam cells (cells) are filled with only the foaming agent having a low thermal conductivity as described above, so that it is good as a styrene resin foam. It has a good heat insulating property. However, since air permeates into the foam cell with the passage of time, the heat insulation tends to be gradually lowered. In addition, from a long-term perspective, the heat insulating property tends to decrease over time because the foaming agent is diffused from the cells.
発泡剤がセル中から放散することによる断熱性の低下を防止する目的で、発泡剤をより多く添加することが考えられるが、得られる発泡体の成形性が悪くなり、また、発泡剤として可燃性の脂肪族炭化水素を用いる場合などは、得られる発泡体の難燃性が低下するといった問題がある。 It is conceivable to add more foaming agent for the purpose of preventing a decrease in heat insulation due to the diffusion of the foaming agent from inside the cell, but the moldability of the resulting foam deteriorates and is combustible as a foaming agent. In the case of using a functional aliphatic hydrocarbon, there is a problem that the flame retardancy of the obtained foam is lowered.
そこで、ハロゲンを含まない発泡剤を使用したスチレン系樹脂発泡体中への空気の浸入や、発泡体からの発泡剤の放散を抑制し、長期的に断熱性を保つ方法として、非ハロゲン系物質の被膜を形成させた発泡体が知られている(例えば、特許文献2参照)。しかし、非ハロゲン系フィルムを積層する場合は接着剤等で貼り付ける必要があり作業性が良好とは言えず、フェノール樹脂をスプレー、塗布するなどの方法も挙げられているが、硬化するために加熱が必要であるなど、後処理が面倒な場合がある。 Therefore, a non-halogen material is used as a method to prevent the intrusion of air into the styrenic resin foam using a foaming agent that does not contain halogen, and to prevent the foaming agent from escaping from the foam, and to maintain thermal insulation over the long term. There is known a foam in which the above film is formed (see, for example, Patent Document 2). However, when laminating non-halogen-based films, it is necessary to stick with an adhesive or the like and workability is not good, and methods such as spraying and applying phenol resin are also mentioned, but in order to cure In some cases, post-treatment is troublesome, such as heating is required.
また、フッ化炭化水素を発泡剤として含有する発泡体において、ガスバリア性フィルムをエポキシ樹脂接着剤で貼り付けることにより、断熱性の経時悪化を抑制する方法はすでに知られている(例えば、特許文献3参照)が、環境適合性に優れた炭素数3〜5の飽和炭化水素を発泡剤として用いるスチレン系樹脂発泡体においては、単にガスバリア性フィルムをエポキシ樹脂接着剤で貼り付けるだけでは発泡剤の放散抑制が充分ではなく、エポキシ樹脂接着剤の厚みなどの調整が必要である。 In addition, in a foam containing fluorinated hydrocarbon as a foaming agent, a method for suppressing deterioration of heat insulation over time by pasting a gas barrier film with an epoxy resin adhesive is already known (for example, Patent Documents). 3)), however, in the case of styrene resin foam using a C3-C5 saturated hydrocarbon having excellent environmental compatibility as a foaming agent, simply attaching a gas barrier film with an epoxy resin adhesive Emission suppression is not sufficient and adjustment of the thickness of the epoxy resin adhesive is necessary.
一方、ポリスチレンよりもガスバリア性の高いポリアミド系樹脂などを加熱溶融させ、発泡剤を加えて発泡体を作製する方法も提案されているが、成形が容易ではなく、また、得られる発泡体の独立気泡率も低いことなどから断熱性の経時劣化も充分抑制されているとは言いがたい(例えば、特許文献4および5参照)。 On the other hand, a method for producing a foam by heating and melting a polyamide resin having a gas barrier property higher than that of polystyrene and adding a foaming agent has also been proposed. However, molding is not easy, and the obtained foam is independent. It is difficult to say that the heat-insulating deterioration with time is sufficiently suppressed due to the low bubble rate (see, for example, Patent Documents 4 and 5).
機械的強度と軽量性を併せ持った樹脂発泡体として、ポリスチレン発泡粒子をエポキシ樹脂系硬化物で接合したものが知られているが、エポキシ樹脂系硬化物をポリスチレン発泡粒子の接着のために用いており、得られる発泡成形体の断熱性に関しては一切言及されていない(例えば、特許文献6参照)。
このような状況の下、本発明が解決しようとする課題は、簡便な方法にて長期にわたって良好な断熱性を有する複合発泡体を提供することである。 Under such circumstances, the problem to be solved by the present invention is to provide a composite foam having a good heat insulating property over a long period of time by a simple method.
本発明者らは、前記課題の解決のため鋭意研究を行った結果、特定の発泡剤とともに押出発泡してなるスチレン系樹脂発泡体の表面に、エポキシ系硬化樹脂を積層被覆してなる複合発泡体が、長期にわたって良好な断熱性を有することを見出し、本発明に至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a composite foam formed by laminating and coating an epoxy-based cured resin on the surface of a styrene-based resin foam obtained by extrusion foaming together with a specific foaming agent. The body was found to have good thermal insulation over a long period of time, leading to the present invention.
すなわち、本発明は、スチレン系樹脂組成物を炭素数3〜5の飽和炭化水素からなる発泡剤とともに押出発泡してなるスチレン系樹脂発泡体の表面に、常温で硬化するエポキシ系硬化樹脂を積層被覆してなる複合発泡体に関する。 That is, the present invention laminates an epoxy-based cured resin that cures at room temperature on the surface of a styrene-based resin foam obtained by extrusion foaming a styrene-based resin composition together with a foaming agent composed of a saturated hydrocarbon having 3 to 5 carbon atoms. The present invention relates to a composite foam formed by coating.
前記エポキシ系硬化樹脂が、主剤であるエポキシ系化合物と、硬化剤とからなることが好ましい。 It is preferable that the epoxy-based cured resin includes an epoxy-based compound as a main agent and a curing agent.
前記主剤であるエポキシ系化合物が、ビスフェノールA型ジグリシジルエーテルおよび/またはビスフェノールA型エポキシ樹脂であることが好ましい。 It is preferable that the epoxy compound as the main agent is bisphenol A type diglycidyl ether and / or bisphenol A type epoxy resin.
前記硬化剤が、ポリアミド、ポリアミン、ポリアミドアミン、ポリチオール、の群から選ばれる少なくとも1種の化合物を含有することが好ましい。 The curing agent preferably contains at least one compound selected from the group consisting of polyamide, polyamine, polyamidoamine, and polythiol.
積層被覆したエポキシ系硬化樹脂の平均厚みが、0.1〜500マイクロメートルであることが好ましい。 It is preferable that the average thickness of the laminated epoxy resin is 0.1 to 500 micrometers.
前記スチレン系樹脂発泡体の表面に、更にガスバリア性物質を積層被覆することが好ましい。 It is preferable that a gas barrier material is further laminated and coated on the surface of the styrenic resin foam.
前記ガスバリア性物質が、ポリアミド系樹脂、ポリアクリロニトリル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニリデン系樹脂、エチレン−ビニルアルコール共重合体、の群から選ばれる少なくとも1種の樹脂を含有することが好ましい。 It is preferable that the gas barrier substance contains at least one resin selected from the group consisting of a polyamide-based resin, a polyacrylonitrile-based resin, a polystyrene-based resin, a polyvinylidene chloride-based resin, and an ethylene-vinyl alcohol copolymer.
スチレン系樹脂発泡体の気泡(セル)中に含まれる空気の分圧が、50キロパスカル以下であることが好ましい。
また、本発明は、スチレン系樹脂組成物を炭素数3〜5の飽和炭化水素からなる発泡剤とともに押出発泡してなるスチレン系樹脂発泡体の気泡(セル)中に含まれる空気の分圧が、50キロパスカル以下の時点で、該スチレン系樹脂発泡体の表面に、エポキシ系硬化樹脂を積層被覆してなる複合発泡体の製造方法に関する。
The partial pressure of air contained in the bubbles (cells) of the styrene resin foam is preferably 50 kilopascals or less.
In the present invention, the partial pressure of air contained in bubbles (cells) of a styrene resin foam obtained by extruding and foaming a styrene resin composition together with a foaming agent composed of a saturated hydrocarbon having 3 to 5 carbon atoms. The present invention relates to a method for producing a composite foam obtained by laminating and coating an epoxy-based cured resin on the surface of the styrene-based resin foam at a time of 50 kilopascals or less.
さらに、本発明は、スチレン系樹脂組成物を炭素数3〜5の飽和炭化水素からなる発泡剤とともに押出発泡してなるスチレン系樹脂発泡体の製造方法であって、押出機から大気中に押出されて12時間以内に、該スチレン系樹脂発泡体の表面に、エポキシ系硬化樹脂を積層被覆してなる複合発泡体の製造方法に関する。 Furthermore, the present invention relates to a method for producing a styrene resin foam obtained by extruding and foaming a styrene resin composition together with a foaming agent composed of a saturated hydrocarbon having 3 to 5 carbon atoms, which is extruded from an extruder into the atmosphere. The present invention also relates to a method for producing a composite foam obtained by laminating and coating an epoxy-based cured resin on the surface of the styrene resin foam within 12 hours.
本発明によれば、長期にわたって良好な断熱性を有する複合発泡体が提供される。本発明の複合発泡体は、その優れた断熱性の点から、種々の用途、特に建築用断熱材の用途に有用である。 ADVANTAGE OF THE INVENTION According to this invention, the composite foam which has favorable heat insulation over a long term is provided. The composite foam of the present invention is useful for various uses, particularly for the use of heat insulating materials for buildings, from the viewpoint of its excellent heat insulating properties.
本発明は、スチレン系樹脂組成物を発泡剤とともに押出発泡してなるスチレン系樹脂発泡体の表面に、常温で硬化するエポキシ系硬化樹脂を積層被覆してなる複合発泡体である。被覆処理などをしないスチレン系樹脂発泡体においては、空気が時間とともに発泡体中に浸入し、また、押出時に添加した発泡剤も徐々に大気中に放出されることから、経時的に断熱性が低下する。言い換えると、経時的に熱伝導率が高くなってくる(以下、断熱性の経時劣化とも言う)。しかし、本発明のように、エポキシ系硬化樹脂をスチレン系樹脂発泡体の表面に積層被覆した場合、空気の浸入および発泡剤の放出の両方が抑制され、断熱性の経時劣化が飛躍的に改善される。 The present invention is a composite foam obtained by laminating and coating an epoxy-based cured resin that cures at room temperature on the surface of a styrene-based resin foam obtained by extrusion foaming a styrene-based resin composition together with a foaming agent. In styrenic resin foams that do not undergo coating treatment, air penetrates into the foam over time, and the foaming agent added during extrusion is gradually released into the atmosphere. descend. In other words, the thermal conductivity increases with time (hereinafter also referred to as heat-insulating deterioration over time). However, when the epoxy curable resin is laminated on the surface of the styrene resin foam as in the present invention, both the intrusion of air and the release of the foaming agent are suppressed, and the deterioration of heat insulation over time is dramatically improved. Is done.
このようにエポキシ系硬化樹脂は、積層被覆した部分において発泡剤の放出および空気の浸入の両方を抑制するものであり、積層被覆部分が一部の面であっても、その部分からの発泡剤の放出および空気の浸入を抑制できることから、断熱性の経時劣化を改善しうる。但し、積層被覆部分がより広いほうが好ましく、最も好ましくは、スチレン系樹脂発泡体の全表面をエポキシ系硬化樹脂で積層被覆することである。 Thus, the epoxy-based cured resin suppresses both the release of the foaming agent and the intrusion of air in the laminated coating portion, and even if the laminated coating portion is a partial surface, the foaming agent from that portion Since the release of air and the intrusion of air can be suppressed, it is possible to improve the deterioration of heat insulation over time. However, a wider laminated coating portion is preferred, and most preferably, the entire surface of the styrene resin foam is laminated and coated with an epoxy-based cured resin.
例えば、1820cm×910cm×25cmなどの直方体のスチレン系樹脂発泡体においては、6面中の1820cm×910cmの最も広い面の1面をエポキシ系硬化樹脂で積層被覆することが好ましく、1820cm×910cmの最も広い面の2面を積層被覆することがより好ましく、最も好ましくは6面すべてを積層被覆することである。 For example, in a styrene resin foam having a rectangular parallelepiped shape such as 1820 cm × 910 cm × 25 cm, it is preferable that one of the widest surfaces of 1820 cm × 910 cm among the six surfaces is laminated and coated with an epoxy-based cured resin, and 1820 cm × 910 cm It is more preferred to laminate and coat two of the widest surfaces, and most preferred to laminate and coat all six sides.
本発明において常温で硬化するエポキシ系硬化樹脂とは、0℃〜40℃の温度範囲において24時間以内に硬化するエポキシ系硬化樹脂を言う。作業性、生産性の点から10℃〜35℃で24時間以内に硬化するエポキシ系硬化樹脂が好ましく、15℃〜30℃で12時間以内に硬化するエポキシ系硬化樹脂がより好ましい。0℃未満で硬化するエポキシ系硬化樹脂は、硬化するまでに24時間を超える傾向にある。一方、40℃を超える温度では硬化時間が短くなるものの加熱装置などが必要となってしまう。 In the present invention, the epoxy-based cured resin that cures at room temperature refers to an epoxy-based cured resin that cures within 24 hours in a temperature range of 0 ° C to 40 ° C. From the viewpoint of workability and productivity, an epoxy-based cured resin that cures within 10 hours at 10 ° C. to 35 ° C. is preferable, and an epoxy-based cured resin that cures within 12 hours at 15 ° C. to 30 ° C. is more preferable. Epoxy cured resins that cure below 0 ° C tend to exceed 24 hours before being cured. On the other hand, if the temperature exceeds 40 ° C., the curing time is shortened, but a heating device is required.
本発明において、硬化までの時間が速く、また、常温で硬化するという生産性の観点、あるいは発泡剤として用いる3〜5の飽和炭化水素の放出を顕著に抑制するという観点からは、常温で硬化するエポキシ系硬化樹脂としては、主剤であるエポキシ系化合物と、硬化剤からなる二液型のエポキシ系硬化樹脂を用いることがより好ましい。 In the present invention, the time to cure is fast, and from the viewpoint of productivity of curing at room temperature, or from the viewpoint of significantly suppressing the release of 3-5 saturated hydrocarbons used as a foaming agent, curing at room temperature. As the epoxy-based cured resin to be used, it is more preferable to use a two-pack type epoxy-based cured resin composed of an epoxy-based compound as a main component and a curing agent.
上記主剤として用いられるエポキシ系化合物としては、硬化剤と反応して硬化するエポキシ系化合物であれば特に制限はない。具体的には、ビスフェノールA型ジグリシジルエーテル、ビフェニルジグリシジルエーテル、ビスフェノールF型ジグリシジルエーテル、ビスフェノールAD型ジグリシジルエーテル、ビスフェノールS型ジグリシジルエーテル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等や、これらを水添化あるいは臭素化したエポキシ樹脂、グリシジルエステル型エポキシ樹脂、ノボラック型エポキシ樹脂、ウレタン結合を有するウレタン変性エポキシ樹脂、メタキシレンジアミンやヒダントインなどをエポキシ化した含窒素エポキシ樹脂、ポリブタジエンあるいはNBRを含有するゴム変性エポキシ樹脂などが挙げられ、断熱性の維持の観点からはビスフェノールA型ジグリシジルエーテル、ビスフェノールA型エポキシ樹脂がより好ましい。
また、これらのエポキシ系化合物の中でも、積層被覆するときのハンドリング性を考慮すると、常温で液状あるいは半固体状のエポキシ系樹脂がより好ましく、常温で約300パスカル・秒(約300000センチポイズ)以下の粘度のものが最も好ましい。
上記硬化剤としては、一般的なエポキシ系樹脂用硬化剤を用いればよく、例えばポリアミド、ポリアミン、ポリアミドアミン、ポリチオール、ポリアルコール、酸無水物、ポリフェノールなどが挙げられるが、迅速な硬化時間、あるいは硬化後の可とう性を考慮すると、ポリアミド、ポリアミン(例えば脂肪族ポリアミンとしてはエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタキシリレンジアミン、メンセンジアミン等;芳香族ポリアミンとしてはメタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジエチルジフェニルメタン、ジアミノジフェニルスルホン等;第2級または第3級アミンとしてはベンジルジメチルアミン、トリエチレンジアミン、トリエタノールアミン、ピペリジン、ポリアミドアミン等)、ポリアミドアミン、ポリチオールがより好ましい。これら硬化剤の中でも、積層被覆するときのハンドリング性を考慮すると、常温で液状あるいは半固体状の硬化剤がより好ましく、常温で約200パスカル・秒(約200000センチポイズ)以下の粘度のものが最も好ましい。
なお、主剤のエポキシ系化合物と硬化剤を混合する際に、必要であれば、3級アミンなどの硬化促進剤を添加しても良い。
The epoxy compound used as the main agent is not particularly limited as long as it is an epoxy compound that is cured by reacting with a curing agent. Specifically, bisphenol A type diglycidyl ether, biphenyl diglycidyl ether, bisphenol F type diglycidyl ether, bisphenol AD type diglycidyl ether, bisphenol S type diglycidyl ether, bisphenol A type epoxy resin, bisphenol F type epoxy resin, Bisphenol AD type epoxy resin, bisphenol S type epoxy resin, etc., hydrogenated or brominated epoxy resin, glycidyl ester type epoxy resin, novolac type epoxy resin, urethane modified epoxy resin having urethane bond, metaxylenediamine, Nitrogen-containing epoxy resins epoxidized with hydantoin, etc., rubber-modified epoxy resins containing polybutadiene or NBR, etc. Phenol A diglycidyl ether, bisphenol A type epoxy resin is more preferable.
In addition, among these epoxy compounds, in consideration of handling properties when laminating and coating, an epoxy resin that is liquid or semi-solid at room temperature is more preferable, and about 300 Pascal second (about 300000 centipoise) or less at room temperature. Viscosity is most preferred.
As the curing agent, a general curing agent for epoxy resin may be used, and examples thereof include polyamide, polyamine, polyamidoamine, polythiol, polyalcohol, acid anhydride, polyphenol, etc., but rapid curing time or Taking into account the flexibility after curing, polyamides, polyamines (eg, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, metaxylylenediamine, mensendiamine, etc. as aliphatic polyamines; metaphenylenes as aromatic polyamines; Diamine, diaminodiphenylmethane, diaminodiethyldiphenylmethane, diaminodiphenylsulfone, etc .; secondary or tertiary amines include benzyldimethylamine, triethylenediamine, triethanolamine Piperidine, polyamidoamine, etc.), polyamide amine, polythiol is more preferable. Among these curing agents, in consideration of handling properties when laminating and coating, curing agents that are liquid or semi-solid at room temperature are more preferable, and those having a viscosity of about 200 Pascal second (about 200000 centipoise) or less at room temperature are the most. preferable.
When mixing the main epoxy compound and the curing agent, if necessary, a curing accelerator such as a tertiary amine may be added.
エポキシ系硬化樹脂を積層被覆した際の平均厚みに特に制限はないが、発泡剤の放出抑制および空気の浸入抑制の点では0.1〜500マイクロメートルが好ましく、10〜300マイクロメートルがより好ましい。0.1マイクロメートル未満では発泡剤の放出抑制および空気の浸入抑制効果が低くなり、500マイクロメートルを越えると複合発泡体の重量が重くなり、ハンドリングしずらくなる。 The average thickness when the epoxy-based cured resin is laminated and coated is not particularly limited, but is preferably 0.1 to 500 μm, more preferably 10 to 300 μm in terms of suppression of foaming agent release and air infiltration. . If it is less than 0.1 micrometer, the effect of suppressing the release of the foaming agent and the infiltration of air becomes low, and if it exceeds 500 micrometers, the weight of the composite foam becomes heavy and handling becomes difficult.
本発明において、スチレン系樹脂発泡体の少なくとも一つの面に、更にガスバリア性物質を積層被覆した複合発泡体は、断熱性の経時劣化を抑制する上でより好ましい形態である。このようなガスバリア性物質としては、ポリアミド系樹脂、ポリアクリロニトリル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニリデン系樹脂、ポリ塩化ビニル系樹脂、ポリビリルアルコール樹脂、エチレン−ビニルアルコール共重合体、スチレン−アクリロニトリル共重合体、金属箔など(アルミ箔など)が挙げられる。これらの中でも、断熱性の経時劣化抑制の観点からは、ポリアミド系樹脂、ポリアクリロニトリル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニリデン系樹脂、エチレン−ビニルアルコール共重合体が最も好ましい。
これらのガスバリア性物質は、0.1〜500マイクロメートルの平均厚みでスチレン系樹脂発泡体の少なくとも一つの面に積層被覆することが、断熱性の経時劣化抑制、及び生産性の観点でより好ましい。
In the present invention, a composite foam in which a gas barrier material is further laminated and coated on at least one surface of the styrene resin foam is a more preferable form in order to suppress the deterioration of heat insulation over time. Examples of such gas barrier substances include polyamide resins, polyacrylonitrile resins, polystyrene resins, polyvinylidene chloride resins, polyvinyl chloride resins, polybilyl alcohol resins, ethylene-vinyl alcohol copolymers, styrene-acrylonitrile. A copolymer, metal foil, etc. (aluminum foil etc.) are mentioned. Among these, polyamide resins, polyacrylonitrile resins, polystyrene resins, polyvinylidene chloride resins, and ethylene-vinyl alcohol copolymers are the most preferable from the viewpoint of suppressing heat deterioration over time.
These gas barrier substances are more preferably laminated and coated on at least one surface of the styrenic resin foam with an average thickness of 0.1 to 500 micrometers from the viewpoints of heat-insulating aging degradation and productivity. .
特に、0.1〜500マイクロメートルの平均厚みのフィルム状ガスバリア性物質を用いると積層被覆が容易で好ましいが、このような場合、あらかじめ1つのガスバリア性フィルムに異なるガスバリア性フィルムを積層したり、1つのガスバリア性フィルムに異なるガスバリア性物質を塗布するなどして複数のガスバリア性物質を複合しておくことは、より好ましい形態である。 In particular, when a film-like gas barrier material having an average thickness of 0.1 to 500 micrometers is used, lamination coating is easy and preferable. In such a case, different gas barrier films are laminated in advance on one gas barrier film, It is a more preferable form to combine a plurality of gas barrier substances by applying different gas barrier substances to one gas barrier film.
エポキシ系硬化樹脂、あるいはガスバリア性物質をスチレン系樹脂発泡体に積層被覆する部分、あるいは積層する順序に制限は全くないが、例えば、次の(1)〜(5)のような場合を例示できる。
(1)スチレン系樹脂発泡体にエポキシ系硬化樹脂を積層被覆し、その上にガスバリア性物質を更に積層被覆する。
(2)スチレン系樹脂発泡体にガスバリア性物質を積層被覆し、その上にエポキシ系硬化樹脂を更に積層被覆する。
(3)スチレン系樹脂発泡体の一部にエポキシ系硬化樹脂を積層被覆し、残りの他の部分にガスバリア性物質を積層被覆する。
(4)スチレン系樹脂発泡体に、エポキシ系硬化樹脂とガスバリア性物質を交互に積層被覆する。
(5)スチレン系樹脂発泡体にエポキシ系硬化樹脂を積層被覆し、その上にスチレン系樹脂発泡体を積層被覆する。更に必要に応じてエポキシ系硬化樹脂、ガスバリア性物質、スチレン系樹脂発泡体を適当な順序で積層被覆する。
There is no limitation on the portion of the epoxy-based cured resin or gas barrier substance that is laminated and coated on the styrene-based resin foam, or the order of lamination. For example, the following cases (1) to (5) can be exemplified. .
(1) A styrenic resin foam is laminated with an epoxy-based cured resin, and a gas barrier material is further laminated thereon.
(2) A gas barrier material is laminated and coated on the styrene resin foam, and an epoxy-based cured resin is further laminated and coated thereon.
(3) An epoxy-based cured resin is laminated and coated on a part of the styrene-based resin foam, and a gas barrier material is laminated and coated on the remaining other part.
(4) Styrenic resin foam is alternately laminated with an epoxy-based cured resin and a gas barrier material.
(5) A styrene resin foam is laminated with an epoxy-based cured resin, and a styrene resin foam is laminated thereon. Further, if necessary, an epoxy-based cured resin, a gas barrier material, and a styrene resin foam are laminated and coated in an appropriate order.
本発明の複合発泡体におけるスチレン系樹脂発泡体の気泡(セル)中に含まれる空気量としては特に制限はないが、断熱性の観点から、気泡(セル)中の空気の分圧として70キロパスカル以下であることが好ましい。より好ましくは50キロパスカル以下であり、最も好ましくは25キロパスカル以下である。
本発明は、スチレン系樹脂組成物を炭素数3〜5の飽和炭化水素からなる発泡剤とともに押出発泡してなるスチレン系樹脂発泡体の気泡(セル)中に含まれる空気の分圧が、50キロパスカル以下の時点で、該スチレン系樹脂発泡体の少なくとも一つの面に、エポキシ系硬化樹脂を積層被覆してなる複合発泡体の製造方法である。
断熱性の観点から、該スチレン系樹脂発泡体の気泡(セル)中に含まれる空気の分圧が、25キロパスカル以下である時点で該スチレン系樹脂発泡体の少なくとも一つの面に、エポキシ系硬化樹脂を積層被覆することがより好ましい。
Although there is no restriction | limiting in particular as air quantity contained in the bubble (cell) of the styrene resin foam in the composite foam of this invention, From a heat insulation viewpoint, it is 70 kg as a partial pressure of the air in a bubble (cell). It is preferably less than Pascal. More preferably, it is 50 kilopascals or less, and most preferably 25 kilopascals or less.
In the present invention, the partial pressure of air contained in bubbles (cells) of a styrene-based resin foam obtained by extruding and foaming a styrene-based resin composition together with a blowing agent composed of a saturated hydrocarbon having 3 to 5 carbon atoms is 50 This is a method for producing a composite foam obtained by laminating and coating an epoxy-based cured resin on at least one surface of the styrene-based resin foam at the time of kilopascal or less.
From the viewpoint of heat insulation, at the time when the partial pressure of air contained in the bubbles (cells) of the styrenic resin foam is 25 kilopascals or less, at least one surface of the styrenic resin foam is epoxy-based. More preferably, the cured resin is laminated and coated.
スチレン系樹脂発泡体にエポキシ系硬化樹脂やガスバリア性物質を積層被覆する時点ついては特に制限はないが、押出発泡させてスチレン系樹脂発泡体を得ると同時に積層被覆し、できるだけ発泡剤の放出を抑制するとともに、スチレン系樹脂発泡体が大気と接することによる空気の浸入を抑制することが断熱性の観点で好ましい。但し、スチレン系樹脂発泡体を得ると同時に積層被覆せず、後れて積層被覆した場合でも、積層被覆以降の発泡剤の放出や空気の浸入については抑制することはできることから、断熱性の経時劣化を抑制することは可能である。 There is no particular restriction on the point at which the epoxy-based cured resin or gas barrier material is laminated and coated on the styrene-based resin foam, but at the same time as the styrene-based resin foam is obtained by extrusion foaming, the release of the blowing agent is suppressed as much as possible. In addition, it is preferable from the viewpoint of heat insulation to suppress the intrusion of air due to the styrene resin foam being in contact with the atmosphere. However, even when the styrenic resin foam is obtained and the laminate coating is not performed at the same time, the release of the foaming agent and the intrusion of air after the laminate coating can be suppressed. It is possible to suppress deterioration.
このようなことから、本発明のスチレン系樹脂組成物を炭素数3〜5の飽和炭化水素からなる発泡剤とともに押出発泡してなるスチレン系樹脂発泡体の製造方法において、押出機から大気中に押出されて12時間以内に、該スチレン系樹脂発泡体の少なくとも一つの面に、エポキシ系硬化樹脂を積層被覆してなる複合発泡体の製造方法が好ましい製造方法である。 Therefore, in the method for producing a styrene resin foam obtained by extruding and foaming the styrene resin composition of the present invention together with a foaming agent composed of a saturated hydrocarbon having 3 to 5 carbon atoms, from the extruder to the atmosphere. A production method of a composite foam obtained by laminating and coating an epoxy cured resin on at least one surface of the styrene resin foam within 12 hours after extrusion is a preferred production method.
断熱性の観点からは、押出機から大気中に押出されてから6時間以内がより好ましく、最も好ましくは1時間以内である。 From the viewpoint of heat insulation, it is more preferably within 6 hours, most preferably within 1 hour after being extruded from the extruder into the atmosphere.
本発明においてエポキシ系硬化樹脂をスチレン系樹脂発泡体に積層被覆する方法については特に制限はなく、(1)主剤であるエポキシ系樹脂と硬化剤を混合した後、可使時間内にスチレン系樹脂発泡体に塗布する方法、(2)主剤であるエポキシ系樹脂と硬化剤を混合した後、可使時間内にスチレン系樹脂発泡体にスプレーする方法、(3)主剤であるエポキシ系樹脂と硬化剤を混合した後、可使時間内にスチレン系樹脂発泡体を浸漬する方法、(4)あらかじめ硬化させたエポキシ系硬化樹脂を接着剤でスチレン系樹脂発泡体に積層被覆する方法、などが挙げられる。 In the present invention, the method of laminating and coating the epoxy-based cured resin on the styrene-based resin foam is not particularly limited. (1) After mixing the main component epoxy resin and the curing agent, the styrene-based resin within the pot life. Method of applying to foam, (2) After mixing epoxy resin as main agent and curing agent, spraying to styrene resin foam within pot life, (3) Epoxy resin and curing as main agent After mixing the agent, a method of immersing the styrene resin foam within the pot life, (4) a method of laminating and coating a styrene resin foam with a pre-cured epoxy-based cured resin with an adhesive, etc. It is done.
本発明においてガスバリア性物質をスチレン系樹脂発泡体に積層被覆する方法については特に制限はなく、(1)可使時間内のエポキシ系硬化樹脂あるいはその他の液体状や半固体状の接着剤を用いてガスバリア性フィルムを積層被覆する方法、(2)フィルム状(ホットメルト)接着剤を用いてガスバリア性フィルムを積層被覆する方法、(3)ガスバリア性物質を含むラテックス状あるいはエマルジョンなどの液体を塗布、スプレーする方法、(4)ガスバリア性物質を含むラテックス状あるいはエマルジョンなどの液体中にスチレン系樹脂発泡体を浸漬する方法、などを挙げることができる。 In the present invention, the method for laminating and coating the gas barrier substance on the styrene resin foam is not particularly limited, and (1) an epoxy-based cured resin or other liquid or semi-solid adhesive within the usable life is used. (2) A method of laminating and coating a gas barrier film using a film-like (hot melt) adhesive, and (3) Applying a liquid such as a latex or an emulsion containing a gas barrier material. And a method of spraying, and (4) a method of immersing a styrenic resin foam in a liquid such as a latex or an emulsion containing a gas barrier substance.
本発明で用いられる発泡剤としては、炭素数3〜5の飽和炭化水素が用いられる。炭素数3〜5の飽和炭化水素としては、具体的には、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、シクロペンタンなどが挙げられる。
これらの中でも、発泡性、断熱性の点からプロパン、n−ブタン、i−ブタン、シクロペンタンあるいはこれらの混合物が好ましい。
なお、本発明において、発泡剤として炭素数3〜5の飽和炭化水素以外の化合物を併用しても良く、具体的には特開2004−331964号公報に記載のある非ハロゲン系発泡剤や、トリフルオロメタン(HFC−23:CHF3)、ジフルオロメタン(HFC−32:CH2F2)、1,1,1,2,2−ペンタフルオロエタン(HFC−125:CHF2CF3)、1,1,1,2−テトラフルオロエタン(HFC−134a:CH2FCF3)、1,1,1−トリフルオロエタン(HFC−143a:CH3CF3)、1,1−ジフルオロエタン(HFC−152a:CH3CHF2)、1,1,1,2,3,3,3−ヘプタフルオロプロパン(HFC−227ea:CF3CHFCF3)、1,1,1,3,3,3−ヘキサフルオロプロパン(HFC−236fa:CF3CH2CF3)、1,1,2,2,3−ペンタフルオロプロパン(HFC−245ca:CH2FCF2CHF2)、1,1,1,2,2−ペンタフルオロプロパン(HFC−245cb:CF3CF2CH3)、1,1,1,3,3−ペンタフルオロプロパン(HFC−245fa:CF3CH2CHF2)、1,1,1,3,3−ペンタフルオロブタン(HFC−365mfc:CF3CH2CF2CH3)などのハイドロフルオロカーボンが挙げられ、これらを適宜用いることができる。この中でも、ジメチルエーテル、水、二酸化炭素、ハイドロフルオロカーボンなどを併用することが、発泡性、断熱性などの点から好ましい。
As the blowing agent used in the present invention, a saturated hydrocarbon having 3 to 5 carbon atoms is used. Specific examples of the saturated hydrocarbon having 3 to 5 carbon atoms include propane, n-butane, i-butane, n-pentane, i-pentane, and cyclopentane.
Among these, propane, n-butane, i-butane, cyclopentane or a mixture thereof is preferable in terms of foamability and heat insulation.
In the present invention, a compound other than a saturated hydrocarbon having 3 to 5 carbon atoms may be used in combination as a foaming agent, specifically, a non-halogen foaming agent described in JP-A-2004-331964, Trifluoromethane (HFC-23: CHF 3 ), difluoromethane (HFC-32: CH 2 F 2 ), 1,1,1,2,2-pentafluoroethane (HFC-125: CHF 2 CF 3 ), 1, 1,1,2-tetrafluoroethane (HFC-134a: CH 2 FCF 3 ), 1,1,1-trifluoroethane (HFC-143a: CH 3 CF 3 ), 1,1-difluoroethane (HFC-152a: CH 3 CHF 2), 1,1,1,2,3,3,3- heptafluoropropane (HFC-227ea: CF 3 CHFCF 3), 1,1,1,3,3,3- Hekisafuruo Propane (HFC-236fa: CF 3 CH 2 CF 3), 1,1,2,2,3- pentafluoropropane (HFC-245ca: CH 2 FCF 2 CHF 2), 1,1,1,2,2- Pentafluoropropane (HFC-245cb: CF 3 CF 2 CH 3 ), 1,1,1,3,3-pentafluoropropane (HFC-245fa: CF 3 CH 2 CHF 2 ), 1,1,1,3 Hydrofluorocarbons such as 3-pentafluorobutane (HFC-365mfc: CF 3 CH 2 CF 2 CH 3 ) can be used, and these can be used as appropriate. Among these, it is preferable to use dimethyl ether, water, carbon dioxide, hydrofluorocarbon and the like in terms of foaming properties, heat insulating properties, and the like.
本発明のスチレン系樹脂発泡体の製造時に、スチレン系樹脂中に添加または注入される発泡剤の量としては、発泡倍率の設定値などに応じて適宜かわるものではあるが、通常、発泡剤の合計量をスチレン系樹脂100重量部に対して1〜20重量部とするのが好ましい。特に、断熱性の観点からは、炭素数3〜5の飽和炭化水素については2〜10重量部とすることがより好ましい。発泡剤の添加量が1重量部未満では発泡倍率が低く、発泡体としての軽量、断熱などの特性が発揮されにくい場合があり、一方、20重量部を超えると過剰な発泡剤量のため発泡体中にボイドなどの不良を生じたり、発泡剤の種類によっては難燃性が低下する場合がある。 In the production of the styrene resin foam of the present invention, the amount of the foaming agent to be added or injected into the styrene resin is appropriately changed according to the setting value of the expansion ratio, etc. The total amount is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the styrene resin. In particular, from the viewpoint of heat insulation, the saturated hydrocarbon having 3 to 5 carbon atoms is more preferably 2 to 10 parts by weight. When the amount of the foaming agent added is less than 1 part by weight, the foaming ratio is low, and the characteristics such as light weight and heat insulation as foams may be difficult to be exhibited. On the other hand, when the amount exceeds 20 parts by weight, foaming is caused by an excessive amount of foaming agent. There may be defects such as voids in the body, and flame retardancy may be reduced depending on the type of foaming agent.
本発明で用いられるスチレン系樹脂としては、特に限定はなく、例えば、スチレン単量体のみから得られるスチレンホモポリマー、スチレン単量体およびスチレンと共重合可能な単量体またはその誘導体から得られるランダム、ブロックあるいはグラフト共重合体、後臭素化ポリスチレン、ゴム強化ポリスチレンなどの変性ポリスチレンなどが具体例としてあげられる。発泡性の観点からはスチレンホモポリマーが最も好ましい。これらは単独で使用してもよく2種以上を混合して使用してもよい。 The styrenic resin used in the present invention is not particularly limited, and can be obtained from, for example, a styrene homopolymer obtained only from a styrene monomer, a styrene monomer, a monomer copolymerizable with styrene, or a derivative thereof. Specific examples include random, block or graft copolymers, post-brominated polystyrene, modified polystyrene such as rubber-reinforced polystyrene, and the like. From the viewpoint of foamability, styrene homopolymer is most preferable. These may be used alone or in combination of two or more.
なお、スチレンと共重合可能な単量体としては、特開2004−331964号公報に記載のあるものが具体的に挙げられる。 Specific examples of the monomer copolymerizable with styrene include those described in JP-A-2004-331964.
本発明において、スチレン系樹脂発泡体、エポキシ系硬化樹脂、ガスバリア性物質に難燃剤を添加し、得られる複合発泡体に難燃性を付与することは好ましい形態である。このような目的で用いられる難燃剤に特に制限は無く、ハロゲン系難燃剤、リン系難燃剤、シリカ系難燃剤、窒素系難燃剤など、一般的に知られている難燃剤を適宜選択して用いればよい。 In the present invention, it is preferable to add a flame retardant to a styrene resin foam, an epoxy curable resin, or a gas barrier material to impart flame retardancy to the resulting composite foam. There are no particular restrictions on the flame retardant used for such purposes, and a generally known flame retardant such as a halogen flame retardant, a phosphorus flame retardant, a silica flame retardant, or a nitrogen flame retardant is appropriately selected. Use it.
特に基材となるスチレン系樹脂発泡体を難燃化することは、建材用途などとして用いる場合重要となるが、スチレン系樹脂発泡体の難燃化においては、ハロゲン系難燃剤を用いることが好ましい。
このようなハロゲン難燃剤としては、特開2004−331964号公報に記載のあるものが具体的に挙げられるが、難燃性の観点から、ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、テトラブロモビスフェノールAビス(2,3−ジブロモプロピルエーテル)、トリス(2,3−ジブロモプロピル)イソシアヌレートがより好ましい。
In particular, it is important to make a styrene resin foam as a base material flame retardant when used as a building material or the like. However, in making a styrene resin foam flame retardant, it is preferable to use a halogen flame retardant. .
Specific examples of such halogen flame retardants include those described in JP-A-2004-331964. From the viewpoint of flame retardancy, hexabromocyclododecane, tetrabromocyclooctane, tetrabromobisphenol A Bis (2,3-dibromopropyl ether) and tris (2,3-dibromopropyl) isocyanurate are more preferable.
ハロゲン系難燃剤のスチレン系樹脂発泡体中における含有量は、JIS A9511測定方法Aに規定される難燃性が得られるように、発泡剤添加量、発泡体密度、難燃相乗効果を有する添加剤などの種類あるいは添加量などにあわせて適宜調整されるものであるが、概ねスチレン系樹脂100重量部に対して、0.1〜20重量部が好ましく、より好ましくは1〜15重量部、さらに好ましくは2〜12重量部である。ハロゲン系難燃剤の含有量が0.1重量部未満では、発泡体として、本発明の目的とする難燃性などの良好な諸特性が得られがたい傾向があり、一方、20重量部を超えると、得られる発泡体の耐熱性や表面性、発泡体製造時の安定性などをかえって損う場合がある。 The content of the halogen-based flame retardant in the styrene resin foam is an additive having a foaming agent addition amount, a foam density, and a flame retardant synergistic effect so that the flame retardancy specified in JIS A9511 measuring method A can be obtained. Although it is suitably adjusted according to the type or addition amount of the agent and the like, it is preferably 0.1 to 20 parts by weight, more preferably 1 to 15 parts by weight, with respect to 100 parts by weight of the styrenic resin. More preferably, it is 2 to 12 parts by weight. When the content of the halogen-based flame retardant is less than 0.1 parts by weight, it is difficult to obtain good characteristics such as flame retardancy, which is the object of the present invention, as a foam. When it exceeds, the heat resistance and surface property of the foam obtained, stability at the time of foam production, etc. may be lost.
本発明において、スチレン系樹脂発泡体の難燃性を向上させる目的で、上述したハロゲン難燃剤と相乗効果を示す化合物を添加しても良い。このようなハロゲン難燃剤と相乗効果を示す化合物としては、含鉄化合物、含燐化合物、含窒素化合物、含ホウ素化合物、含硫黄化合物などが挙げられ、具体的には、酸化鉄やその他、特開2003−327738号公報に記載されている含燐化合物、含窒素化合物、含ホウ素化合物、含硫黄化合物などを用いれば良い。 In the present invention, for the purpose of improving the flame retardancy of the styrene resin foam, a compound exhibiting a synergistic effect with the halogen flame retardant described above may be added. Examples of the compound exhibiting a synergistic effect with such a halogen flame retardant include iron-containing compounds, phosphorus-containing compounds, nitrogen-containing compounds, boron-containing compounds, sulfur-containing compounds and the like. Phosphorus-containing compounds, nitrogen-containing compounds, boron-containing compounds, sulfur-containing compounds and the like described in JP-A-2003-327738 may be used.
一方、エポキシ系硬化樹脂の難燃化においては、上述したハロゲン難燃剤、特開2003−327738号公報に記載されている含燐化合物、含窒素化合物、含ホウ素化合物、含硫黄化合物を単独、あるいは併用して用いて難燃化することが可能である。この中でも、ハロゲン難燃剤、含燐化合物、含窒素化合物、含ホウ素化合物を2種以上併用して用いることがより好ましい。 On the other hand, in the flame-retarding of the epoxy-based cured resin, the halogen flame retardant described above, the phosphorus-containing compound, the nitrogen-containing compound, the boron-containing compound, and the sulfur-containing compound described in JP-A-2003-327738 are used alone, or It can be used in combination to make it flame retardant. Among these, it is more preferable to use a combination of two or more halogen flame retardants, phosphorus-containing compounds, nitrogen-containing compounds, and boron-containing compounds.
スチレン系樹脂発泡体の発泡剤として水を用いる場合、水を吸収できる吸水性物質を同時に併用することが好ましい。このような場合、発泡体中には、主として気泡径が0.25mm以下の比較的小さい気泡(小気泡)および、気泡径が0.3〜1mm程度の比較的大きな気泡(大気泡)が海島状に混在する特徴的な気泡構造を有するスチレン系樹脂発泡体が得られる。このようにして得られるスチレン系樹脂発泡体は、断熱性能が向上されており、このようなスチレン系樹脂発泡体にエポキシ系硬化樹脂を積層被覆した複合発泡体においては、断熱性能が向上されたまま経時劣化が抑制されることから、より好ましい形態となる。更には、発泡剤として水を用いる場合は、大気泡の生成により得られる発泡体が低密度で容易に厚さを出すことが可能となり、スチレン系樹脂発泡体の成形性も良好となることからも、発泡剤として水を用いることが好ましい。 When water is used as the foaming agent for the styrene resin foam, it is preferable to use a water-absorbing substance capable of absorbing water at the same time. In such a case, relatively small bubbles (small bubbles) mainly having a bubble diameter of 0.25 mm or less and relatively large bubbles (large bubbles) having a bubble diameter of about 0.3 to 1 mm are contained in the foam. A styrene resin foam having a characteristic cell structure mixed in a shape is obtained. The styrenic resin foam thus obtained has improved heat insulation performance, and in the composite foam in which such a styrene resin foam is laminated with an epoxy-based cured resin, the heat insulation performance is improved. Since deterioration with time is suppressed as it is, a more preferable form is obtained. Furthermore, when water is used as the foaming agent, the foam obtained by the generation of large bubbles can be easily thickened at a low density, and the moldability of the styrene resin foam can be improved. However, it is preferable to use water as a foaming agent.
吸水性物質の具体例としては、特開2004−331964号公報記載のものが挙げられ、適宜これらを用いれば良い。 Specific examples of the water-absorbing substance include those described in JP-A-2004-331964, and these may be used as appropriate.
本発明においては、必要に応じて、本発明の効果を阻害しない範囲で種々の難燃助剤、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、酸化チタン、炭酸カルシウムなどの無機化合物、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸バリウム、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物などの加工助剤、フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類、ヒンダードアミン類などの耐光性安定剤、前記以外の難燃剤、帯電防止剤、顔料などの着色剤などの添加剤を含有させることができる。 In the present invention, if necessary, various flame retardant aids, silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, as long as the effects of the present invention are not impaired. Inorganic compounds such as calcium carbonate, processing aids such as sodium stearate, magnesium stearate, barium stearate, liquid paraffin, olefin wax, stearylamide compound, phenolic antioxidant, phosphorus stabilizer, nitrogen stabilizer Additives such as a colorant such as a light-resistant stabilizer such as an agent, a sulfur-based stabilizer, benzotriazoles and hindered amines, a flame retardant other than those described above, an antistatic agent, and a pigment.
本発明で用いられるスチレン系樹脂発泡体は、スチレン系樹脂、ハロゲン系難燃剤などの他の添加剤を押出機などの加熱溶融手段に供給し、任意の段階で高圧条件下で、発泡剤をスチレン系樹脂に添加し、流動ゲルとなし、押出発泡に適する温度に冷却し、該流動ゲルをダイを通して低圧領域に押出発泡させて、発泡体を形成することにより製造される。 In the styrene resin foam used in the present invention, other additives such as styrene resin and halogen flame retardant are supplied to heating and melting means such as an extruder, and the foaming agent is added under high pressure conditions at any stage. It is produced by adding to a styrenic resin, forming a fluid gel, cooling to a temperature suitable for extrusion foaming, and extruding and foaming the fluid gel through a die to a low pressure region to form a foam.
スチレン系樹脂と発泡剤などの添加剤を加熱溶融混練する際の加熱温度、溶融混練時間および溶融混練手段についてはとくに制限はない。 There are no particular restrictions on the heating temperature, melt kneading time, and melt kneading means when heating and kneading the styrene resin and additives such as a foaming agent.
加熱温度は、使用するスチレン系樹脂が溶融する温度以上であればよいが、難燃剤などの影響による樹脂の分子劣化ができる限り抑制される温度、たとえば150〜260℃程度が好ましい。 The heating temperature may be equal to or higher than the temperature at which the styrenic resin used melts, but is preferably a temperature at which molecular degradation of the resin due to the influence of a flame retardant is suppressed as much as possible, for example, about 150 to 260 ° C.
溶融混練時間は、単位時間あたりの押出量、溶融混練手段などによって異なるので一概に決定することはできないが、スチレン系樹脂と発泡剤が均一に分散混合するのに要する時間が適宜選ばれる。 The melt-kneading time varies depending on the amount of extrusion per unit time, the melt-kneading means, etc., and thus cannot be determined in general. However, the time required for uniformly dispersing and mixing the styrene-based resin and the foaming agent is appropriately selected.
また、溶融混練手段としては、たとえばスクリュー型の押出機などがあげられるが、通常の押出発泡に用いられているものであればとくに限定はない。ただし、樹脂の分子劣化をできる限り抑えるため、スクリュー形状については、低剪断タイプのスクリューを用いる方が好ましい。
発泡成形方法にも特に制限はないが、たとえばスリットダイより圧力開放して得られた発泡体をスリットダイと密着または接して設置した成形金型および成形ロールなどを用いて、断面積の大きい板状発泡体を成形する一般的な方法を用いることができる。
The melt kneading means is, for example, a screw type extruder, but is not particularly limited as long as it is used for ordinary extrusion foaming. However, in order to suppress the molecular degradation of the resin as much as possible, it is preferable to use a low shear type screw for the screw shape.
There is no particular restriction on the foam molding method, but for example, a plate having a large cross-sectional area using a molding die and a molding roll in which a foam obtained by releasing pressure from the slit die is placed in close contact with or in contact with the slit die. A general method of forming a foam can be used.
本発明で用いられるスチレン系樹脂発泡体の厚さには特に制限はなく、用途に応じて適宜選択される。たとえば、建材などの用途に使用される断熱材の場合、好ましい断熱性、曲げ強度および圧縮強度を付与せしめるためには、シートのような薄いものよりも、通常の板状物のように厚さのあるものが好ましく、通常10〜150mm、好ましくは20〜100mmである。 There is no restriction | limiting in particular in the thickness of the styrene resin foam used by this invention, According to a use, it selects suitably. For example, in the case of a heat insulating material used for a building material or the like, in order to give preferable heat insulating properties, bending strength and compressive strength, the thickness is not as thin as a sheet but as a normal plate. Is preferable, usually 10 to 150 mm, preferably 20 to 100 mm.
本発明で用いられるスチレン系樹脂発泡体の密度は、軽量でかつ優れた断熱性および曲げ強度、圧縮強度を付与するためには、15〜50kg/m3、さらには20〜50kg/m3であることが好ましく、25〜35kg/m3であることがより好ましい。密度が15kg/m3未満であると、圧縮強度など機械的特性が低下する傾向があり、50kg/m3を超えると、断熱性が低下する傾向があるとともに、軽量とは言い難くなり、取り扱いが困難となる。 The density of the styrenic resin foam used in the present invention is 15 to 50 kg / m 3 , more preferably 20 to 50 kg / m 3 in order to give light weight and excellent heat insulation, bending strength and compressive strength. It is preferable that it is 25 to 35 kg / m 3 . If the density is less than 15 kg / m 3 , the mechanical properties such as compressive strength tend to decrease, and if it exceeds 50 kg / m 3 , the heat insulation tends to decrease and it is difficult to say that it is lightweight. It becomes difficult.
次に、本発明の複合発泡体を実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。なお、特に断らない限り、「%」は「重量%」を表す。 Next, although the composite foam of this invention is demonstrated still in detail based on an Example, this invention is not restrict | limited only to this Example. Unless otherwise specified, “%” represents “% by weight”.
実施例および比較例では、下記の化合物を用いた。
A:スチレン系樹脂
A−1:ポリスチレン(PSジャパン(株)製G9401)
B:ハロゲン系難燃剤
B−1:ヘキサブロモシクロドデカン(ALBEMARLE CORPORATION製SAYTEX HP−900)
B−2:テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)(帝人化成(株)製ファイヤガード3100)
B−3:トリス(2,3−ジブロモプロピル)イソシアヌレート(日本化成(株)製TAIC−6B)
C:含燐化合物
C−1:トリフェニルホスフェート(大八化学工業(株)製TPP)
D:発泡剤
D−1:プロパン(イワタニ(株)製無臭プロパン)
D−2:イソブタン(三井化学(株)製イソブタン)
D−3:シクロペンタン(大洋液化ガス(株)製シクロペンタン)
E:その他の発泡剤
E−1:ジメチルエーテル(三井化学(株)製ジメチルエーテル)
E−2:水(摂津市水道水)
F:その他の添加剤
F−1:タルク(林化成(株)製タルカンパウダー)
F−2:ステアリン酸バリウム(堺化学工業(株)製ステアリン酸バリウム)
F−3:ベントナイト((株)ホージュン製ベンゲルブライト11)
F−4:AEROSIL(日本アエロジル(株)製、AEROSIL)
F−5:安定剤(チバ・スペシャルティ・ケミカルズ(株)製IRGANOX B911(ヒンダードフェノール系抗酸化剤IRGANOX1076:オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートとリン系安定剤IRGAFOS168:トリス(2,4−ジ−t−ブチルフェニル)フォスファイトの1:1の混合物)
G:積層被覆材料
G−1:エポキシ系硬化樹脂(コニシ(株)製ボンドクイックメンダー、主剤主成分:変性エポキシ樹脂、硬化剤主成分:ポリチオール、主剤および硬化剤ともに粘度約200パスカル・秒、比重約1.5)
G−2:エポキシ系硬化樹脂(コニシ(株)製ボンドEセットL、主剤主成分:変性エポキシ樹脂、硬化剤主成分:変性ポリアミド樹脂、主剤および硬化剤ともに粘度約3〜4パスカル・秒、比重約1)
G−3:エポキシ系硬化樹脂(主剤主成分:旭電化工業(株)製アデカサイザーEP−13(ビスフェノールAジグリシジルエーテル)、硬化剤主成分:変性ポリアミド樹脂(コニシ(株)製ボンドEセットLの硬化剤、粘度約3〜4パスカル・秒)、比重約1)
G−4:フェノール系硬化樹脂(大日本インキ化学工業(株)製、主剤主成分:フェノライトMD−3003、粘度約0.1〜0.2パスカル・秒、硬化剤:キャタリストTD−473、樹脂比重約1)
G−5:ウレタン系硬化樹脂(セメダイン(株)製UM700、一液、樹脂比重約1)
H:ガスバリア性物質
H−1:ナイロンフィルム((株)興人製コージンコーバリアONY、厚み25マイクロメートル)
H−2:ポリアクリロニトリルフィルム(三井化学(株)製ゼクロン、厚み30マイクロメートル)
H−3:エバール(エチレン−ビニルアルコール共重合体)フィルム((株)クラレ製EF−XL、厚み15マイクロメートル)
H−4:スチレン系樹脂発泡体表面のスキン層(スチレン系樹脂組成物)
得られた発泡体に対する評価・測定方法は、以下のとおりである。
In the examples and comparative examples, the following compounds were used.
A: Styrene resin A-1: Polystyrene (G9401 manufactured by PS Japan Co., Ltd.)
B: Halogen-based flame retardant B-1: Hexabromocyclododecane (SAYTEX HP-900 manufactured by ALBEMALLE CORPORATION)
B-2: Tetrabromobisphenol A-bis (2,3-dibromopropyl ether) (fire guard 3100 manufactured by Teijin Chemicals Ltd.)
B-3: Tris (2,3-dibromopropyl) isocyanurate (TAIC-6B manufactured by Nippon Kasei Co., Ltd.)
C: Phosphorus-containing compound C-1: Triphenyl phosphate (TPP manufactured by Daihachi Chemical Industry Co., Ltd.)
D: Foaming agent D-1: Propane (odorless propane manufactured by Iwatani Corporation)
D-2: Isobutane (isobutane manufactured by Mitsui Chemicals, Inc.)
D-3: Cyclopentane (cyclopentane manufactured by Taiyo Liquefied Gas Co., Ltd.)
E: Other foaming agents E-1: Dimethyl ether (dimethyl ether manufactured by Mitsui Chemicals, Inc.)
E-2: Water (Settsu City tap water)
F: Other additives F-1: Talc (Talcan powder manufactured by Hayashi Kasei Co., Ltd.)
F-2: Barium stearate (barium stearate manufactured by Sakai Chemical Industry Co., Ltd.)
F-3: Bentonite (Bengel Bright 11 manufactured by Hojun Co., Ltd.)
F-4: AEROSIL (Nippon Aerosil Co., Ltd., AEROSIL)
F-5: Stabilizer (IRGANOX B911 manufactured by Ciba Specialty Chemicals Co., Ltd. (hindered phenol antioxidant IRGANOX1076: octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) Phosphorus stabilizer IRGAFOS 168: 1: 1 mixture of tris (2,4-di-t-butylphenyl) phosphite)
G: Laminated coating material G-1: Epoxy-based cured resin (Bond Quick Mender manufactured by Konishi Co., Ltd., main component main component: modified epoxy resin, curing agent main component: polythiol, main component and curing agent have a viscosity of about 200 Pascal / second, Specific gravity about 1.5)
G-2: Epoxy-based curable resin (Bond E set L manufactured by Konishi Co., Ltd.), main component main component: modified epoxy resin, curing agent main component: modified polyamide resin, main component and curing agent have viscosities of about 3 to 4 Pascal / second, Specific gravity 1)
G-3: Epoxy curing resin (main component main component: Asahi Denka Kogyo Co., Ltd. Adeka Sizer EP-13 (bisphenol A diglycidyl ether), curing agent main component: modified polyamide resin (Konishi Co., Ltd. Bond E set) L curing agent, viscosity about 3-4 pascal / second), specific gravity about 1)
G-4: Phenolic curable resin (Dainippon Ink & Chemicals, Inc., main component: Phenolite MD-3003, viscosity of about 0.1-0.2 Pascal / second, curing agent: Catalyst TD-473 Resin specific gravity 1)
G-5: Urethane-based cured resin (Cemedine UM700, one component, resin specific gravity about 1)
H: Gas barrier material H-1: Nylon film (Kojin Cobarrier ONY, manufactured by Kojin Co., Ltd., thickness 25 micrometers)
H-2: Polyacrylonitrile film (Zeklon, Mitsui Chemicals, Inc., thickness 30 micrometers)
H-3: Eval (ethylene-vinyl alcohol copolymer) film (EF-XL, manufactured by Kuraray Co., Ltd., thickness 15 micrometers)
H-4: Skin layer of styrene resin foam surface (styrene resin composition)
Evaluation / measurement methods for the obtained foam are as follows.
(1)発泡体密度
押出発泡体を約200mm×100mm×25mmの直方体に切り出した後、この重量を測るとともに、ノギスで縦、横および高さの寸法を測定し、発泡体密度を、式:
発泡体密度(g/cm3)=発泡体重量(g)÷発泡体体積(cm3)
に基づいて求め、単位を(kg/m3)に換算して示した。
(1) Foam density After the extruded foam was cut into a rectangular parallelepiped of about 200 mm x 100 mm x 25 mm, this weight was measured, and the vertical, horizontal and height dimensions were measured with calipers, and the foam density was calculated using the formula:
Foam density (g / cm 3 ) = foam weight (g) ÷ foam volume (cm 3 )
And the unit was expressed in terms of (kg / m 3 ).
(2)スチレン系樹脂発泡体の気泡径
ソニック製デジタルマイクロスコープBS−D8000を用いて、スチレン系樹脂発泡体の厚さ方向断面の200倍に拡大した画像をパソコンに取り込んだ。この画像をA3用紙にプリントアウトし、任意の2箇所に厚さ方向に実寸法で1mm相当の直線を引き、それぞれこの直線を横切る気泡の数を数え、それぞれの箇所での厚さ方向の気泡径を次の式に従って算出した。
気泡径=直線の長さ1mm÷直線を横切る気泡の数
次いで、2箇所の気泡径の値を相加平均して、厚さ方向の気泡径とした。
同様に、発泡体の幅方向、長さ方向についてそれぞれ気泡径を求め、3方向の相加平均を気泡径とした。
(2) Cell diameter of styrene resin foam Using a Sonic digital microscope BS-D8000, an image enlarged 200 times the cross section in the thickness direction of the styrene resin foam was taken into a personal computer. Print this image on A3 paper, draw a straight line equivalent to 1 mm in actual dimension in the thickness direction at any two locations, count the number of bubbles crossing each straight line, and the bubbles in the thickness direction at each location The diameter was calculated according to the following formula.
Bubble diameter = length of straight line 1 mm / number of bubbles crossing the straight line Then, the value of the bubble diameter at two locations was arithmetically averaged to obtain the bubble diameter in the thickness direction.
Similarly, the bubble diameter was calculated | required about the width direction of a foam, and the length direction, respectively, and the arithmetic mean of 3 directions was made into the bubble diameter.
但し、小気泡と大気泡が混在した発泡体については、以下のように、小気泡径と大気泡径を別々に測定した。
小気泡径:押出発泡体の厚さ方向断面を200倍に拡大した写真において、海島構造での海部分の任意の2箇所に厚さ方向に実寸法で1mm相当の直線を引き、それぞれこの直線を横切る気泡の数を数え、それぞれの箇所での厚さ方向の気泡径を次の式に従って算出した。
小気泡径=直線の長さ1mm÷直線を横切る気泡の数
次いで、2箇所の小気泡径の値を相加平均して、厚さ方向の小気泡径とした。
同様に、発泡体の幅方向、長さ方向についてそれぞれ気泡径を求め、3方向の相加平均を小気泡径とした。
大気泡径:押出発泡体の厚さ方向断面を50倍に拡大した写真において、海島構造中に点在する島部分の厚さ方向の長さを10点無作為に選び、それぞれの島について厚さ方向の最大長さを測定し、相加平均することにより厚さ方向の大気泡径を求めた。同様に、発泡体の幅方向、長さ方向についてそれぞれ気泡径を求め、3方向の相加平均を大気泡径とした。
However, for the foam in which small bubbles and large bubbles were mixed, the small bubble size and the large bubble size were measured separately as follows.
Small bubble diameter: In a photograph in which the cross section in the thickness direction of the extruded foam is magnified 200 times, straight lines corresponding to 1 mm in actual dimension are drawn in the thickness direction at any two locations of the sea part in the sea-island structure. The number of bubbles crossing each other was counted, and the bubble diameter in the thickness direction at each location was calculated according to the following formula.
Small bubble diameter = length of straight line 1 mm ÷ number of bubbles crossing straight line Then, the values of small bubble diameters at two locations were arithmetically averaged to obtain a small bubble diameter in the thickness direction.
Similarly, the bubble diameter was determined for each of the width direction and the length direction of the foam, and the arithmetic average of the three directions was defined as the small bubble diameter.
Large cell diameter: In a photograph in which the cross section in the thickness direction of the extruded foam is magnified 50 times, the length in the thickness direction of the island portions scattered in the sea-island structure is randomly selected, and the thickness for each island is selected. The maximum length in the thickness direction was measured, and the large bubble diameter in the thickness direction was determined by arithmetic averaging. Similarly, the bubble diameter was obtained for each of the width direction and the length direction of the foam, and the arithmetic average of the three directions was defined as the large bubble diameter.
(3)スチレン系樹脂発泡体の小気泡面積率
小気泡と大気泡が混在した発泡体について、厚さ方向断面での気泡径0.25mm以下の小気泡の発泡体断面積あたりの占有面積比を、以下のようにして求めた。ここで、気泡径0.25mm以下の小気泡とは、円相当直径が0.25mm以下の気泡とする。
(a)発泡体の厚さ方向断面を、走査型電子顕微鏡((株)日立製作所製、S−450)を用いて30倍に拡大して写真撮影する(写真の大きさは100mm×90mm)。
(b)撮影した写真の上にOHPシートを置き、その上に厚さ方向の径が7.5mmよりも大きい気泡(実寸法が0.25mmより大きい気泡に相当する)に対応する部分を黒インキで塗りつぶして写しとる(一次処理)。
(c)画像処理装置((株)ピアス製、PIAS−II)に一次処理画像を取り込み、濃色部分と淡色部分を、即ち黒インキで塗られた部分か否かを識別する。
(d)濃色部分のうち、直径7.5mm以下の円の面積に相当する部分、すなわち、厚さ方向の径は長いが、面積的には直径7.5mm以下の円の面積にしかならない部分を淡色化して、濃色部分の補正を行なう。
(e)画像解析計算機能中の「FRACTAREA(面積率)」を用い、画像全体に占める気泡径7.5mm以下(濃淡で分割した淡色部分)の面積比を次式により求める。
小気泡占有面積率(%)=(1−濃色部分の面積÷画像全体の面積)×100
(4)熱伝導率
複合発泡体の熱伝導率をJIS A9511に準じて測定した。測定には英弘精機製HC−074を用い、スチレン系樹脂発泡体から約300mm×100mm×25mmの直方体試験片を3個切り出し、これらにエポキシ系硬化樹脂などを積層被覆処理(切り出した3個全てに同様に積層被覆処理する)した後、3個の積層被覆処理片を並べて約300mm×300mm×25mmの形としてHC−074にセットし測定した。なお、積層被覆処理後、1日目(積層被覆処理の翌日)および180日経過した発泡体について行なった。
(3) Small cell area ratio of styrene resin foams Occupied area ratio of small bubbles with a bubble diameter of 0.25 mm or less per cross-sectional area of the foam in the thickness direction of the foam in which small bubbles and large bubbles are mixed Was determined as follows. Here, a small bubble having a bubble diameter of 0.25 mm or less is a bubble having a circle equivalent diameter of 0.25 mm or less.
(A) Using a scanning electron microscope (manufactured by Hitachi, Ltd., S-450), the cross section in the thickness direction of the foam is magnified 30 times and photographed (the size of the photograph is 100 mm × 90 mm). .
(B) An OHP sheet is placed on the photographed photograph, and a portion corresponding to a bubble having a diameter in the thickness direction larger than 7.5 mm (corresponding to a bubble having an actual size larger than 0.25 mm) is blackened on the photograph. Paint with ink and copy (primary processing).
(C) The primary processing image is taken into an image processing apparatus (PIAS-II, manufactured by Pierce Co., Ltd.), and whether or not the dark color portion and the light color portion are painted with black ink is identified.
(D) Of the dark-colored portion, the portion corresponding to the area of a circle having a diameter of 7.5 mm or less, that is, the diameter in the thickness direction is long, but the area is only the area of a circle having a diameter of 7.5 mm or less. The portion is lightened and the dark portion is corrected.
(E) Using “FRACTAREA (area ratio)” in the image analysis calculation function, the area ratio of the bubble diameter of 7.5 mm or less (light color portion divided by shading) in the entire image is obtained by the following equation.
Occupied area ratio of small bubbles (%) = (1-area of dark portion / area of entire image) × 100
(4) Thermal conductivity The thermal conductivity of the composite foam was measured according to JIS A9511. For measurement, HC-074 manufactured by Eihiro Seiki was used, and three cuboidal test pieces of about 300 mm x 100 mm x 25 mm were cut out from the styrene resin foam, and an epoxy cured resin was laminated and coated on them (all three cut out) In the same manner, the three laminated coating pieces were arranged side by side and set in a shape of about 300 mm × 300 mm × 25 mm on HC-074 and measured. In addition, it carried out about the foam which passed the 1st day (the next day of a lamination | stacking coating process) and 180 days after the lamination | stacking coating process.
(5)発泡体中の発泡剤および空気量の測定
ガスクロマトグラフ((株)島津製作所製GC−9A)を使用し、積層被覆処理後180日目の複合発泡体の中央部(スチレン系樹脂発泡体部分)を切り出し、スチレン系樹脂発泡体約1gに対する残存量を分析した。得られた値を発泡剤についてはスチレン系樹脂発泡体100重量部に対する重量部数に換算した。また、空気については分圧に換算した。
(5) Measurement of foaming agent and amount of air in foam Using a gas chromatograph (GC-9A, manufactured by Shimadzu Corporation), the center of the composite foam 180 days after the laminate coating treatment (styrene resin foaming) The body part) was cut out, and the remaining amount relative to about 1 g of the styrene resin foam was analyzed. The obtained value was converted to the number of parts by weight with respect to 100 parts by weight of the styrene resin foam for the foaming agent. Air was converted to partial pressure.
(6)エポキシ系硬化樹脂の平均厚み測定
積層被覆したエポキシ系硬化樹脂の平均厚みを次のようにして求めた。
(6) Average thickness measurement of epoxy-type cured resin The average thickness of the epoxy-type cured resin which carried out lamination | stacking coating was calculated | required as follows.
まず、被覆前のスチレン系樹脂発泡体重量と、スチレン系樹脂発泡体にエポキシ系硬化樹脂を塗布し1日室温放置して乾燥させた後の重量から、塗布したエポキシ系硬化樹脂の重量を算出した。次に、エポキシ系硬化樹脂の比重を用いて、平均厚みを次式に従って算出した。
エポキシ系硬化樹脂の平均厚み=塗布したエポキシ系硬化樹脂の重量÷(塗布した面積×エポキシ系硬化樹脂の比重)
(実施例1)
ポリスチレン(A−1)100部に対して、ハロゲン系難燃剤としてヘキサブロモシクロドデカン(B−1)3部、さらにタルク(F−1)0.5部、ステアリン酸バリウム(F−2)0.25部、安定剤(F−5)0.3部とからなる混合物をドライブレンドし、得られた混合物を口径65mmと口径90mmのものを縦に連結した押出機へ約70kg/hrの割合で供給した。前記口径65mmの押出機に供給した混合物を、200℃に加熱して混練しつつ、発泡剤として、プロパン(D−1)50%およびジメチルエーテル(E―1)50%からなる発泡剤をスチレン系樹脂100部に対して8部となるように、前記口径65mmの押出機の押出方向の先端付近から前記樹脂中に圧入した。次いで口径65mmの押出機に連結された口径90mmの押出機で冷却し、さらに口径90mmの押出機に連結された冷却機にて樹脂温度を120℃に冷却し、該冷却機の先端に設けた厚さ方向2mm、幅方向50mmの長方形断面の口金より大気中へ押し出し、おおむね厚み50mm、幅150mm、のスチレン系樹脂発泡体を得た。得られた発泡体は均一なセル構造をしており、平均気泡径は0.20mm、密度は28kg/m3であった。
First, the weight of the applied epoxy-based cured resin is calculated from the weight of the styrene-based resin foam before coating and the weight after the epoxy-based cured resin is applied to the styrene-based resin foam and left to dry at room temperature for one day. did. Next, the average thickness was calculated according to the following formula using the specific gravity of the epoxy-based cured resin.
Average thickness of epoxy cured resin = weight of applied epoxy cured resin ÷ (applied area × specific gravity of epoxy cured resin)
Example 1
For 100 parts of polystyrene (A-1), 3 parts of hexabromocyclododecane (B-1) as a halogen flame retardant, 0.5 part of talc (F-1), and barium stearate (F-2) 0 About 70 kg / hr at a rate of about 70 kg / hr to an extruder in which a mixture of 25 parts and 0.3 parts of stabilizer (F-5) was dry blended and the resulting mixture was vertically connected with a diameter of 65 mm and a diameter of 90 mm Supplied with. While the mixture supplied to the extruder having a diameter of 65 mm was kneaded by heating to 200 ° C., a blowing agent composed of 50% propane (D-1) and 50% dimethyl ether (E-1) was used as a styrene-based foaming agent. The resin was press-fitted into the resin from the vicinity of the tip in the extrusion direction of the extruder having a diameter of 65 mm so as to be 8 parts with respect to 100 parts of the resin. Next, it was cooled by an extruder having a diameter of 90 mm connected to an extruder having a diameter of 65 mm, and further the resin temperature was cooled to 120 ° C. by a cooler connected to the extruder having a diameter of 90 mm, and provided at the tip of the cooler. A styrene-based resin foam having a thickness of 50 mm and a width of 150 mm was obtained by extrusion into the atmosphere from a base having a rectangular cross section with a thickness direction of 2 mm and a width direction of 50 mm. The obtained foam had a uniform cell structure, an average cell diameter of 0.20 mm, and a density of 28 kg / m 3 .
次に、得られたスチレン系樹脂発泡体を約40分放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに6面全てにエポキシ系硬化樹脂(G−1)を積層被覆し、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。積層被覆の際には、主剤と硬化剤を重量比1:1でよく混合した後、へらで塗布した。 このようにして得た複合発泡体を1日放置した後、熱伝導伝導率を測定した(積層被覆処理後1日目)。更には180日放置後についても熱伝導率を測定した。 Next, after the resulting styrene resin foam was allowed to cool for about 40 minutes, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the center of the foam, and epoxy cured resin (G -1) was laminated and coated, and a composite foam was obtained 1 hour after extrusion of the styrene resin foam. In the case of lamination coating, the main agent and the curing agent were mixed well at a weight ratio of 1: 1 and then applied with a spatula. The composite foam thus obtained was allowed to stand for 1 day, and then the thermal conductivity was measured (1 day after the laminate coating treatment). Furthermore, the thermal conductivity was also measured after standing for 180 days.
なお、エポキシ硬化樹脂の積層被覆平均厚みについては、約300mm×100mm×25mmの直方体試験片の積層被覆部分の総表面積、積層被覆に使用したエポキシ系硬化樹脂(G−1)の重量、およびエポキシ系硬化樹脂(G−1)の比重から計算した。 Regarding the average thickness of the laminated coating of the epoxy cured resin, the total surface area of the laminated coating portion of the rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm, the weight of the epoxy-based cured resin (G-1) used for the laminated coating, and the epoxy It calculated from the specific gravity of a system hardening resin (G-1).
また、180日放置後の複合発泡体については、発泡体セル中の発泡剤量および空気量を測定した。 For the composite foam after standing for 180 days, the amount of foaming agent and the amount of air in the foam cell were measured.
以上の結果を、表1に示す。 The results are shown in Table 1.
(実施例2〜3)
ハロゲン系難燃剤(B)の種類および添加量を表1に示す値とした以外は実施例1と同様にしてスチレン系樹脂発泡体を得るとともに、複合発泡体を得た。得られたスチレン系樹脂発泡体発泡体および複合発泡体の特性を表1に示す。
(Examples 2-3)
A styrene resin foam was obtained and a composite foam was obtained in the same manner as in Example 1 except that the type and addition amount of the halogen flame retardant (B) were changed to the values shown in Table 1. Table 1 shows the characteristics of the obtained styrenic resin foam and composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(比較例1)
実施例1と同様にしてスチレン系樹脂発泡体を得た。ただし、積層被覆処理は実施せず、約300mm×100mm×25mmの直方体試験片を切り出した翌日(1日目)および180日目の熱伝導率を測定し、直方体試験片を切り出した翌日(1日目)については燃焼性も評価した。
以上の測定、評価についての結果を、表1に示す。
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。
(Comparative Example 1)
A styrene resin foam was obtained in the same manner as in Example 1. However, the laminated coating treatment was not performed, and the thermal conductivity of the next day (1st day) and the 180th day after cutting out a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was measured, and the next day (1 Day 2) was also evaluated for flammability.
The results of the above measurement and evaluation are shown in Table 1.
In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
本発明の実施例である実施例1〜3と比較例1を比較して明らかなように、本発明によれば、熱伝導率の経時劣化が抑制されることがわかる。 As is clear from comparison between Examples 1 to 3, which are examples of the present invention, and Comparative Example 1, it can be seen that according to the present invention, deterioration of the thermal conductivity with time is suppressed.
(実施例4)
ポリスチレン(A−1)100部に対して、ハロゲン系難燃剤としてヘキサブロモシクロドデカン(B−1)3部、含燐化合物としてトリフェニルホスフェート(C−1)1部、さらにタルク(F−1)0.5部、ステアリン酸バリウム(F−2)0.25部および安定剤(F−5)0.3部とからなる混合物をドライブレンドし、得られた混合物を口径65mmの押出機と口径90mmの押出機を縦に連結した押出機へ約70kg/hrの割合で供給した。前記口径65mmの押出機に供給した混合物を、200℃に加熱して混練しつつ、発泡剤として、イソブタン(D−2)67%およびジメチルエーテル(E―1)33%からなる発泡剤をスチレン系樹脂100部に対して6部となるように、前記口径65mmの押出機の押出方向先端付近から前記樹脂中に圧入した。次いで口径65mmの押出機に連結された口径90mmの押出機で冷却し、さらに口径90mmの押出機に連結された冷却機で樹脂温度を120℃に冷却し、該冷却機の先端に設けた厚さ方向2mmおよび幅方向50mmの長方形断面の口金より大気中へ押し出し、おおむね厚み50mm、幅150mm、のスチレン系樹脂発泡体を得た。得られた発泡体は均一なセル構造をしており、平均気泡径は0.19mm、密度は30kg/m3であった。
Example 4
For 100 parts of polystyrene (A-1), 3 parts of hexabromocyclododecane (B-1) as a halogen-based flame retardant, 1 part of triphenyl phosphate (C-1) as a phosphorus-containing compound, and further talc (F-1 ) 0.5 parts, a mixture consisting of 0.25 parts of barium stearate (F-2) and 0.3 parts of stabilizer (F-5) was dry blended, and the resulting mixture was mixed with an extruder having a diameter of 65 mm An extruder having a diameter of 90 mm was supplied to an extruder connected vertically, at a rate of about 70 kg / hr. While the mixture supplied to the extruder having a diameter of 65 mm was kneaded by heating to 200 ° C., a foaming agent composed of 67% isobutane (D-2) and 33% dimethyl ether (E-1) was used as a styrene-based foaming agent. The resin was press-fitted into the resin from near the front end in the extrusion direction of the extruder having a diameter of 65 mm so as to be 6 parts with respect to 100 parts of the resin. Next, it is cooled with an extruder with a diameter of 90 mm connected to an extruder with a diameter of 65 mm, and further the resin temperature is cooled to 120 ° C. with a cooler connected to an extruder with a diameter of 90 mm, and the thickness provided at the tip of the cooler A styrene resin foam having a thickness of 50 mm and a width of 150 mm was obtained by extrusion into the atmosphere from a base having a rectangular cross section of 2 mm in the width direction and 50 mm in the width direction. The obtained foam had a uniform cell structure, an average cell diameter of 0.19 mm, and a density of 30 kg / m 3 .
次に、得られたスチレン系樹脂発泡体を約40分放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに6面全てにエポキシ系硬化樹脂(G−1)を積層被覆し、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。積層被覆の際には、主剤と硬化剤を重量比1:1でよく混合した後、へらで塗布した。 Next, after the resulting styrene resin foam was allowed to cool for about 40 minutes, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the center of the foam, and epoxy cured resin (G -1) was laminated and coated, and a composite foam was obtained 1 hour after extrusion of the styrene resin foam. In the case of lamination coating, the main agent and the curing agent were mixed well at a weight ratio of 1: 1 and then applied with a spatula.
このようにして得た複合発泡体を1日放置した後、熱伝導伝導率を測定した(積層被覆処理後1日目)。更には180日放置後についても熱伝導率を測定した。 The composite foam thus obtained was allowed to stand for 1 day, and then the thermal conductivity was measured (1 day after the laminate coating treatment). Furthermore, the thermal conductivity was also measured after standing for 180 days.
なお、エポキシ硬化樹脂の積層被覆厚みについては、約300mm×100mm×25mmの直方体試験片の積層被覆部分の総表面積、積層被覆に使用したエポキシ系硬化樹脂(G−1)の重量、およびエポキシ系硬化樹脂(G−1)の比重から計算した。 In addition, about the laminated coating thickness of an epoxy cured resin, the total surface area of the laminated coating part of a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm, the weight of the epoxy cured resin (G-1) used for the laminated coating, and the epoxy type It calculated from specific gravity of cured resin (G-1).
また、180日放置後の複合発泡体については、発泡体セル中の発泡剤量および空気量を測定した。 For the composite foam after standing for 180 days, the amount of foaming agent and the amount of air in the foam cell were measured.
以上の結果を、表1に示す。 The results are shown in Table 1.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例5〜6)
ハロゲン系難燃剤(B)の種類および添加量を表1に示す値とした以外は実施例4と同様にしてスチレン系樹脂発泡体を得るとともに、複合発泡体を得た。得られたスチレン系樹脂発泡体発泡体および複合発泡体の特性を表1に示す。
(Examples 5-6)
A styrene resin foam was obtained and a composite foam was obtained in the same manner as in Example 4 except that the type and addition amount of the halogen flame retardant (B) were changed to the values shown in Table 1. Table 1 shows the characteristics of the obtained styrenic resin foam and composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(比較例2)
実施例4と同様にしてスチレン系樹脂発泡体を得た。ただし、積層被覆処理は実施せず、約300mm×100mm×25mmの直方体試験片を切り出した翌日(1日目)および180日目の熱伝導率を測定した。
(Comparative Example 2)
A styrene resin foam was obtained in the same manner as in Example 4. However, the thermal conductivity was measured on the next day (first day) and the 180th day after cutting out a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm without carrying out the laminated coating treatment.
以上の測定、評価についての結果を、表1に示す。 The results of the above measurement and evaluation are shown in Table 1.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
本発明の実施例である実施例4〜6と比較例2を比較して明らかなように、本発明によれば、熱伝導率の経時劣化が抑制されることがわかる。 As is clear by comparing Examples 4 to 6, which are examples of the present invention, and Comparative Example 2, it can be seen that according to the present invention, deterioration of the thermal conductivity over time is suppressed.
(実施例7)
ポリスチレン(A−1)100部に対して、ハロゲン系難燃剤としてヘキサブロモシクロドデカン(B−1)3部、含燐化合物としてトリフェニルホスフェート(C−1)1部、さらにタルク(F−1)0.2部、ステアリン酸バリウム(F−2)0.25部、ベントナイト(F−3)1部、AEROSIL(F−4)0.1部、安定剤(F−5)0.3部とからなる混合物をドライブレンドし、得られた混合物を口径65mmと口径90mmのものを縦に連結した押出機へ約70kg/hrの割合で供給した。前記口径65mmの押出機に供給した混合物を、200℃に加熱して混練しつつ、発泡剤として、イソブタン(D−2)57%、ジメチルエーテル(E―1)29%および水(E−2)14%からなる発泡剤をスチレン系樹脂100部に対して7部となるように、前記口径65mmの押出機の先端付近(口径90mmの押出機の口金と反対側の端部側に接続される側の端部)から前記樹脂中に圧入した。次いでこれに連結された口径90mmの押出機で冷却し、さらにこれに連結された冷却機で樹脂温度を120℃に冷却し、この冷却機の先端に設けた厚さ方向2mm、幅方向50mmの長方形断面の口金より大気中へ押し出し、おおむね厚み50mm、幅150mm、のスチレン系樹脂発泡体を得た。得られた発泡体は小気泡と大気泡の混在してなるセル構造をしており、小気泡の平均気泡径は0.07mm、大気泡の平均気泡径は0.48mm、小気泡面積率は40%、密度は30kg/m3であった。
(Example 7)
For 100 parts of polystyrene (A-1), 3 parts of hexabromocyclododecane (B-1) as a halogen-based flame retardant, 1 part of triphenyl phosphate (C-1) as a phosphorus-containing compound, and further talc (F-1 ) 0.2 parts, barium stearate (F-2) 0.25 parts, bentonite (F-3) 1 part, AEROSIL (F-4) 0.1 part, stabilizer (F-5) 0.3 part The resulting mixture was dry blended, and the resultant mixture was fed at a rate of about 70 kg / hr to an extruder in which those having a diameter of 65 mm and a diameter of 90 mm were vertically connected. While the mixture supplied to the extruder having a diameter of 65 mm was kneaded while heating to 200 ° C., 57% isobutane (D-2), 29% dimethyl ether (E-1) and water (E-2) Near the tip of the 65 mm diameter extruder (connected to the end opposite to the die of the 90 mm diameter extruder) so that the foaming agent comprising 14% is 7 parts with respect to 100 parts of the styrene resin. The resin was press-fitted into the resin from the side end). Next, it is cooled by an extruder having a diameter of 90 mm connected to this, and further the resin temperature is cooled to 120 ° C. by a cooler connected to this, and the thickness direction is 2 mm and the width direction is 50 mm provided at the tip of this cooler. A styrene-based resin foam having a thickness of 50 mm and a width of 150 mm was obtained by extrusion into the atmosphere from a rectangular cross-section die. The obtained foam has a cell structure in which small bubbles and large bubbles are mixed. The average bubble diameter of small bubbles is 0.07 mm, the average bubble diameter of large bubbles is 0.48 mm, and the small bubble area ratio is The density was 40 kg and the density was 30 kg / m 3 .
次に、得られたスチレン系樹脂発泡体を約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに6面全てにエポキシ系硬化樹脂(G−1)を積層被覆し、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。積層被覆の際には、主剤と硬化剤を重量比1:1でよく混合した後、へらで塗布した。 Next, after the resulting styrene resin foam was allowed to cool for about 40 minutes, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the foam, and epoxy cured resin (G -1) was laminated and coated, and a composite foam was obtained 1 hour after extrusion of the styrene resin foam. In the case of lamination coating, the main agent and the curing agent were mixed well at a weight ratio of 1: 1 and then applied with a spatula.
このようにして得た複合発泡体を1日放置した後、熱伝導伝導率を測定した(積層被覆処理後1日目)。更には180日放置後についても熱伝導率を測定した。 The composite foam thus obtained was allowed to stand for 1 day, and then the thermal conductivity was measured (1 day after the laminate coating treatment). Furthermore, the thermal conductivity was also measured after standing for 180 days.
なお、エポキシ硬化樹脂の積層被覆厚みについては、約300mm×100mm×25mmの直方体試験片の積層被覆部分の総表面積、積層被覆に使用したエポキシ系硬化樹脂(G−1)の重量、およびエポキシ系硬化樹脂(G−1)の比重から計算した。 In addition, about the laminated coating thickness of an epoxy cured resin, the total surface area of the laminated coating part of a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm, the weight of the epoxy cured resin (G-1) used for the laminated coating, and the epoxy type It calculated from specific gravity of cured resin (G-1).
また、180日放置後の複合発泡体については、発泡体セル中の発泡剤量および空気量を測定した。 For the composite foam after standing for 180 days, the amount of foaming agent and the amount of air in the foam cell were measured.
以上の測定、評価についての結果を、表2に示す。 Table 2 shows the results of the above measurement and evaluation.
(実施例8〜15)
ハロゲン系難燃剤(B)、発泡剤(D)、の種類および添加量、積層被覆材料(G)、の種類および平均厚みを表2に示す値とした以外は、実施例7と同様にしてスチレン系樹脂発泡体を得るとともに、複合発泡体を得た。得られたスチレン系樹脂発泡体発泡体および複合発泡体の特性を表2に示す。(エポキシ系硬化樹脂(G−2)、(G−3)はいずれも(G−1)同様、主剤と硬化剤を重量比1:1で混合して用いた。)
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、実施例15を除いて基準を満たした。実施例15は全焼した。
(実施例16)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、更に18時間放置してから6面全てにエポキシ系硬化樹脂(G−1)を積層被覆した。すなわち、スチレン系樹脂発泡体押出後18時間経ってから複合発泡体を得た。熱伝導率や燃焼性の評価は、実施例7と全く同様に行った。
以上の測定、評価についての結果を、表2に示す。
(Examples 8 to 15)
Except the halogen flame retardant (B), the foaming agent (D), the type and amount added, the type of the laminated coating material (G), and the average thickness, the values shown in Table 2 were used. A styrene resin foam was obtained and a composite foam was obtained. Table 2 shows the characteristics of the obtained styrenic resin foam and composite foam. (Epoxy-based cured resins (G-2) and (G-3) were both mixed with a main agent and a curing agent at a weight ratio of 1: 1 as in (G-1).)
In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. As a result, the criteria were satisfied except for Example 15. Example 15 was burnt down.
(Example 16)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the center of the foam and left for another 18 hours. All six surfaces were coated with an epoxy-based cured resin (G-1). That is, a composite foam was obtained 18 hours after the styrene resin foam was extruded. Evaluation of thermal conductivity and combustibility was performed in the same manner as in Example 7.
Table 2 shows the results of the above measurement and evaluation.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例17)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに300mm×100mmの2面と、300mm×25mmの2面の合計4面にのみにエポキシ系硬化樹脂(G−1)を積層被覆し、スチレン系樹脂発泡体押出後1時間以内に複合発泡体を得た。熱伝導率や燃焼性の評価は、実施例7と全く同様に行った。
以上の測定、評価についての結果を、表2に示す。
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。
(Example 17)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the foam and immediately 300 mm × 100 mm 2 The epoxy cured resin (G-1) was laminated and coated only on a total of four surfaces of the surface and two surfaces of 300 mm × 25 mm, and a composite foam was obtained within 1 hour after extrusion of the styrene resin foam. Evaluation of thermal conductivity and combustibility was performed in the same manner as in Example 7.
Table 2 shows the results of the above measurement and evaluation.
In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例18)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに300mm×100mmの2面にのみにエポキシ系硬化樹脂(G−1)を積層被覆し、スチレン系樹脂発泡体押出後1時間以内に複合発泡体を得た。熱伝導率や燃焼性の評価は、実施例7と全く同様に行った。
以上の測定、評価についての結果を、表2に示す。
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。
(Example 18)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the foam and immediately 300 mm × 100 mm 2 An epoxy-based cured resin (G-1) was laminated and coated only on the surface, and a composite foam was obtained within 1 hour after extrusion of the styrene-based resin foam. Evaluation of thermal conductivity and combustibility was performed in the same manner as in Example 7.
Table 2 shows the results of the above measurement and evaluation.
In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例19)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに300mm×100mmの1面にのみにエポキシ系硬化樹脂(G−1)を積層被覆し、スチレン系樹脂発泡体押出後1時間以内に複合発泡体を得た。熱伝導率や燃焼性の評価は、実施例7と全く同様に行った。但し、熱伝導率測定時に3個の積層被覆処理片を並べる際には、積層被覆処理した面が同じ面になるようにした。
以上の測定、評価についての結果を、表2に示す。
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。
(Example 19)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the foam, and immediately, 300 mm × 100 mm 1 An epoxy-based cured resin (G-1) was laminated and coated only on the surface, and a composite foam was obtained within 1 hour after extrusion of the styrene-based resin foam. Evaluation of thermal conductivity and combustibility was performed in the same manner as in Example 7. However, when the three laminated coating pieces were arranged at the time of measuring the thermal conductivity, the surfaces subjected to the laminated coating treatment were set to be the same surface.
Table 2 shows the results of the above measurement and evaluation.
In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例20)
実施例7と全く同様にしてスチレン系樹脂発泡体を約40分間放冷したのち、押出方向に沿って約310mmの長さに切り出し、切り出した2面以外の面は切削せずそのままとした。なお、切り出した2面以外の面の最外層にはポリスチレン樹脂組成物からなるスキン層が約20〜100マイクロメートルの厚みで存在していた。
(Example 20)
The styrenic resin foam was allowed to cool for about 40 minutes in exactly the same manner as in Example 7, and then cut out to a length of about 310 mm along the extrusion direction, and the surfaces other than the cut out two surfaces were left uncut. In addition, the skin layer which consists of a polystyrene resin composition existed in thickness of about 20-100 micrometers in the outermost layer of surfaces other than the cut-out 2 surface.
次に、このスキン付スチレン系樹脂発泡体に、実施例7と全く同様にしてエポキシ系硬化樹脂(G−1)を積層被覆して、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。
このようにして得た複合発泡体を1日放置した後、複合発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに熱伝導伝導率を測定した(積層被覆処理後1日目)。更には、同様にして得た別の複合発泡体を180日目に約300mm×100mm×25mmの直方体試験片に切り出し、すぐに熱伝導伝導率を測定した。
Next, this skin-attached styrene resin foam was laminated and coated with an epoxy-based cured resin (G-1) in exactly the same manner as in Example 7, and the composite foam was formed in 1 hour after extrusion of the styrene resin foam. Obtained.
After leaving the composite foam thus obtained for 1 day, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the center of the composite foam, and the thermal conductivity was immediately measured (after laminating coating treatment 1 Day). Furthermore, another composite foam obtained in the same manner was cut into a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm on the 180th day, and the thermal conductivity was measured immediately.
なお、エポキシ硬化樹脂の積層被覆厚みについては、積層被覆部分の総表面積、積層被覆に使用したエポキシ系硬化樹脂(G−1)の重量、およびエポキシ系硬化樹脂(G−1)の比重から計算した。 In addition, about the laminated coating thickness of an epoxy cured resin, it calculates from the total surface area of a laminated coating part, the weight of the epoxy-type cured resin (G-1) used for laminated coating, and the specific gravity of an epoxy-type cured resin (G-1). did.
また、180日放置後の複合発泡体については、発泡体セル中の発泡剤量および空気量を測定した。 For the composite foam after standing for 180 days, the amount of foaming agent and the amount of air in the foam cell were measured.
以上の測定、評価についての結果を、表2に示す。 Table 2 shows the results of the above measurement and evaluation.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例21)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに6面全てにエポキシ系硬化樹脂(G−1)を積層被覆するべく、へらで塗布するとともに、硬化する前にナイロンフィルム(H−1)を更にエポキシ系硬化樹脂(G−1)の上から6面すべてに被覆し(すなわちナイロンフィルム層はエポキシ系硬化樹脂層の外側)、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。熱伝導率や燃焼性の評価は、実施例7と全く同様に行った。
(Example 21)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the foam, and epoxy was immediately applied to all six surfaces. In order to laminate and coat the system-cured resin (G-1) with a spatula, before curing, the nylon film (H-1) is further coated on all six surfaces of the epoxy-based cured resin (G-1). (In other words, the nylon film layer is outside of the epoxy-based cured resin layer), and a composite foam was obtained 1 hour after the extrusion of the styrene-based resin foam. Evaluation of thermal conductivity and combustibility was performed in the same manner as in Example 7.
以上の複合発泡体の測定、評価についての結果を、表2に示す。 Table 2 shows the results of measurement and evaluation of the composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例22〜23)
ナイロンフィルム(H−1)の代わりにポリアクリロニトリルフィルム(H−2)、エバールフィルム(H−3)を用いた以外は、実施例21と全く同様にして複合発泡体を得た。
(Examples 22 to 23)
A composite foam was obtained in exactly the same manner as in Example 21, except that the polyacrylonitrile film (H-2) and the eval film (H-3) were used instead of the nylon film (H-1).
以上の複合発泡体の測定、評価についての結果を、表2に示す。 Table 2 shows the results of measurement and evaluation of the composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例24)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、3日間そのまま放置した。3日後にエポキシ系硬化樹脂(G−1)およびナイロンフィルム(H−1)を実施例21と全く同様にして積層被覆して、複合発泡体を得た。
(Example 24)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the center of the foam and allowed to stand for 3 days. Three days later, an epoxy cured resin (G-1) and a nylon film (H-1) were laminated and coated in the same manner as in Example 21 to obtain a composite foam.
以上の複合発泡体の測定、評価についての結果を、表2に示す。 Table 2 shows the results of measurement and evaluation of the composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(実施例25)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに6面全てにナイロンフィルム(H−1)を積層被覆した。この際、直方体試験片の表面全面に、まずホットメルトタイプのフィルム(日本マタイ(株)製エルファンNT−120)置き、その上からナイロンフィルム(H−1)を重ね、その後ナイロンフィルム(H−1)の上から約120℃に昇温したアイロンで圧着して接着させた。
(Example 25)
A styrenic resin foam was obtained in exactly the same manner as in Example 7 and allowed to cool for about 40 minutes. After that, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the center of the foam, and immediately nylon was applied to all six sides. The film (H-1) was laminated and coated. At this time, a hot melt type film (Erphan NT-120 manufactured by Nippon Matai Co., Ltd.) is first placed on the entire surface of the rectangular parallelepiped test piece, and a nylon film (H-1) is stacked thereon, and then a nylon film (H -1) It was bonded by pressing with an iron heated to about 120 ° C. from above.
その後、すぐに6面全てにエポキシ系硬化樹脂(G−1)を実施例7と同様にして積層被覆し(すなわちナイロンフィルム層はスチレン系樹脂発泡体とエポキシ系硬化樹脂層の間)、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。 Immediately thereafter, all six surfaces were laminated and coated with the epoxy cured resin (G-1) in the same manner as in Example 7 (that is, the nylon film layer was between the styrene resin foam and the epoxy cured resin layer), and styrene. A composite foam was obtained 1 hour after the extrusion of the resin foam.
以上の複合発泡体の測定、評価についての結果を、表2に示す。 Table 2 shows the results of measurement and evaluation of the composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。
(比較例3)
実施例7と全く同様にしてスチレン系樹脂発泡体を得た。ただし、積層被覆処理は実施せず、約300mm×100mm×25mmの直方体試験片を切り出した翌日(1日目)および180日目の熱伝導率を測定した。
In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(Comparative Example 3)
A styrene resin foam was obtained in exactly the same manner as in Example 7. However, the thermal conductivity was measured on the next day (first day) and the 180th day after cutting out a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm without carrying out the laminated coating treatment.
以上のスチレン系樹脂発泡体の測定、評価についての結果を、表3に示す。 Table 3 shows the results of measurement and evaluation of the above styrene resin foam.
(比較例4)
ハロゲン難燃剤を用いない点を除いて、実施例7と全く同様にしてスチレン系樹脂発泡体を得た。ただし、積層被覆処理は実施せず、約300mm×100mm×25mmの直方体試験片を切り出した翌日(1日目)および180日目の熱伝導率を測定した。
(Comparative Example 4)
A styrene resin foam was obtained in exactly the same manner as in Example 7 except that no halogen flame retardant was used. However, the thermal conductivity was measured on the next day (first day) and the 180th day after cutting out a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm without carrying out the laminated coating treatment.
以上のスチレン系樹脂発泡体の測定、評価についての結果を、表3に示す。 Table 3 shows the results of measurement and evaluation of the above styrene resin foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、全焼した。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. When it was done, it burned down.
(比較例5)
実施例7と全く同様にしてスチレン系樹脂発泡体を約40分間放冷したのち、押出方向に沿って約310mmの長さに切り出し、切り出した2面以外の面はそのままとした。なお、切り出した2面以外の面にはポリスチレン樹脂組成物からなるスキン層が約20〜100マイクロメートルの厚みで存在していた。
次に、このスキン付スチレン系樹脂発泡体のまま積層被覆処理は実施せず、1日放置した後、スキン付スチレン系樹脂発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに熱伝導伝導率を測定した。更には180日放置後についても、スキン付スチレン系樹脂発泡体として放置しておき、180日目に約300mm×100mm×25mmの直方体試験片に切り出し、すぐに熱伝導伝導率を測定した。
以上のスチレン系樹脂発泡体の測定、評価についての結果を、表3に示す。
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。
(Comparative Example 5)
The styrenic resin foam was allowed to cool for about 40 minutes in the same manner as in Example 7, and then cut out to a length of about 310 mm along the extrusion direction, and the other surfaces than the cut out surfaces were left as they were. In addition, the skin layer which consists of a polystyrene resin composition existed in the thickness of about 20-100 micrometers on surfaces other than the cut-out 2 surface.
Next, without carrying out the laminate coating treatment with this skin-attached styrene resin foam, after leaving it for one day, a cuboid test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the skin-attached styrene resin foam, Immediately the thermal conductivity was measured. Further, after leaving for 180 days, it was left as a styrene resin foam with skin, cut into a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm on the 180th day, and immediately measured for thermal conductivity.
Table 3 shows the results of measurement and evaluation of the above styrene resin foam.
In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(比較例6)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに6面全てにフェノール系硬化樹脂(G−4)を積層被覆し、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。積層被覆の際には、主剤と硬化剤を重量比100:15でよく混合した後、へらで塗布した。
(Comparative Example 6)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the foam, and phenol on all six sides immediately. The system cured resin (G-4) was laminated and coated, and a composite foam was obtained in 1 hour after the extrusion of the styrene resin foam. In the case of lamination coating, the main agent and the curing agent were mixed well at a weight ratio of 100: 15 and then applied with a spatula.
その後の評価については、実施例7と全く同様に行った。 Subsequent evaluation was performed in the same manner as in Example 7.
以上の複合発泡体の測定、評価についての結果を、表3に示す。 Table 3 shows the results of the measurement and evaluation of the composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
(比較例7)
実施例7と全く同様にしてスチレン系樹脂発泡体を得て、約40分間放冷したのち、発泡体中央部分から約300mm×100mm×25mmの直方体試験片を切り出し、すぐに6面全てにウレタン系硬化樹脂(G−4)をへらで積層被覆し、スチレン系樹脂発泡体押出後1時間で複合発泡体を得た。
(Comparative Example 7)
A styrenic resin foam was obtained in exactly the same manner as in Example 7, and allowed to cool for about 40 minutes. Then, a rectangular parallelepiped test piece of about 300 mm × 100 mm × 25 mm was cut out from the central portion of the foam, and immediately urethane on all six surfaces. The system cured resin (G-4) was laminated and covered with a spatula, and a composite foam was obtained 1 hour after the extrusion of the styrene resin foam.
その後の評価については、実施例7と全く同様に行った。 Subsequent evaluation was performed in the same manner as in Example 7.
以上の複合発泡体の測定、評価についての結果を、表3に示す。 Table 3 shows the results of the measurement and evaluation of the composite foam.
なお、得られたスチレン系樹脂発泡体の難燃性について、JIS A9511測定方法Aに準じて、厚さ10mm、長さ200mmおよび幅25mmの試験片に切削した後、7日経過した時点で評価したところ、基準を満たした。 In addition, about the flame retardance of the obtained styrenic resin foam, after cutting into a test piece having a thickness of 10 mm, a length of 200 mm and a width of 25 mm in accordance with JIS A9511 measuring method A, evaluation was made when 7 days had passed. I met the criteria.
本発明の実施例である実施例7〜25と比較例3〜7を比較して明らかなように、本発明によれば、熱伝導率の経時劣化が抑制され、さらに良好な難燃性が発現することがわかる。 As is clear by comparing Examples 7 to 25 and Comparative Examples 3 to 7 which are examples of the present invention, according to the present invention, deterioration of the thermal conductivity over time is suppressed, and even better flame retardancy is achieved. It turns out that it expresses.
また、実施例7と実施例20〜25を比較して明らかなように、ガスバリア性物質を併用すると、更に、熱伝導率の経時劣化が抑制されることがわかる。 Further, as apparent from comparison between Example 7 and Examples 20 to 25, it is understood that when the gas barrier material is used in combination, deterioration of the thermal conductivity with time is further suppressed.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005014017A JP2006198933A (en) | 2005-01-21 | 2005-01-21 | Composite foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005014017A JP2006198933A (en) | 2005-01-21 | 2005-01-21 | Composite foam |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006198933A true JP2006198933A (en) | 2006-08-03 |
Family
ID=36957342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005014017A Pending JP2006198933A (en) | 2005-01-21 | 2005-01-21 | Composite foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006198933A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009050919A1 (en) * | 2007-10-17 | 2009-04-23 | Techno Polymer Co., Ltd. | Layered product and process for producing the same |
JP2012218364A (en) * | 2011-04-12 | 2012-11-12 | Jsp Corp | Multilayer extruded polystyrene resin foam board, and method of manufacturing the same |
KR101385207B1 (en) | 2013-07-31 | 2014-04-14 | 큐테크모아(주) | Treatment of the surface-enhanced expandable polystyrene and method of manufacturing thereof |
KR20160057600A (en) * | 2014-11-14 | 2016-05-24 | 명일폼테크주식회사 | Interior or exterior finish materials for building and manufacturing method thereof |
-
2005
- 2005-01-21 JP JP2005014017A patent/JP2006198933A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009050919A1 (en) * | 2007-10-17 | 2009-04-23 | Techno Polymer Co., Ltd. | Layered product and process for producing the same |
JP2012218364A (en) * | 2011-04-12 | 2012-11-12 | Jsp Corp | Multilayer extruded polystyrene resin foam board, and method of manufacturing the same |
KR101385207B1 (en) | 2013-07-31 | 2014-04-14 | 큐테크모아(주) | Treatment of the surface-enhanced expandable polystyrene and method of manufacturing thereof |
KR20160057600A (en) * | 2014-11-14 | 2016-05-24 | 명일폼테크주식회사 | Interior or exterior finish materials for building and manufacturing method thereof |
KR101656026B1 (en) | 2014-11-14 | 2016-09-22 | 명일폼테크주식회사 | Interior or exterior finish materials for building and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015093195A1 (en) | Styrene resin extruded foam and method for producing same | |
WO2002051918A1 (en) | Extruded styrene resin foam and process for producing the same | |
KR102355921B1 (en) | Method for producing styrene resin extruded foam | |
JP2008132676A (en) | Heat insulating panel | |
JP6650466B2 (en) | Extruded styrene resin foam and method for producing the same | |
JP6722753B2 (en) | Styrenic resin extruded foam and method for producing the same | |
JP2006198933A (en) | Composite foam | |
JP2008291181A (en) | Thermoplastic resin foam | |
JP2016094531A (en) | Thermoplastic resin extrusion foaming heat insulation plate | |
JP7057068B2 (en) | Insulation material containing styrene resin extruded foam and its manufacturing method | |
JP4843934B2 (en) | Thermoplastic foam having improved heat insulation and method for producing the same | |
JP2006257346A (en) | Composite foamed article and method for producing the same | |
JP7129344B2 (en) | Extruded styrenic resin foam and method for producing same | |
JP7011422B2 (en) | Styrene-based resin extruded foam and its manufacturing method | |
JP2019189811A (en) | Styrenic resin extrusion expanded material | |
JP2007284486A (en) | Cross-linked polyolefinic resin foam | |
JP2002194129A (en) | Styrenic resin extrusion foam and method of manufacturing the same | |
JP2022032685A (en) | Method for producing styrenic resin foam by extrusion foaming, and produced foam, and foamable resin composition used in production method | |
KR20180074778A (en) | Styrenic resin extruded foam and method for producing the same | |
JP2007154006A (en) | Thermoplastic foam improved in heat insulating property and method for producing the same | |
JP4101684B2 (en) | Styrenic resin foam plate and manufacturing method thereof | |
JP2006188654A (en) | Manufacturing method of extruded and foamed body of polystyrenic resin | |
JP3194706U (en) | Composite board for ceiling | |
JP3976592B2 (en) | Styrenic resin extruded foam and method for producing the same | |
KR20180077230A (en) | Styrenic resin extruded foam and method for producing the same |