JP2006198816A - Mold - Google Patents
Mold Download PDFInfo
- Publication number
- JP2006198816A JP2006198816A JP2005011051A JP2005011051A JP2006198816A JP 2006198816 A JP2006198816 A JP 2006198816A JP 2005011051 A JP2005011051 A JP 2005011051A JP 2005011051 A JP2005011051 A JP 2005011051A JP 2006198816 A JP2006198816 A JP 2006198816A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- heat transfer
- temperature
- heat
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
本発明はプラスチックスの成形等における金型に関し、詳しくは簡単な構造で温度分布が均一であって、しかも設定金型温度への温度調節を迅速に行うことのできる金型に関する。 The present invention relates to a mold for molding plastics and the like, and more particularly, to a mold that has a simple structure, a uniform temperature distribution, and can be quickly adjusted to a set mold temperature.
従来、金型温度の調節方法としては、固定金型及び可動金型にそれぞれ内設した熱媒体通路に、温調器で所定温度に温調した熱媒体を強制循環させることにより金型温度を調節するものや、特開平05-169453に示すように、水を固定金型及び可動側金型の各空所に注入し、水の熱容量と相変態を使って温度制御を行うものがあった(例えば、特許文献1参照)。
特許文献1によれば、金型の内部の温度を直接金型設定温度に設定することができ、金型の温度分布も均一なものとなる、というものである。
Conventionally, as a method of adjusting the mold temperature, the mold temperature is controlled by forcibly circulating a heat medium adjusted to a predetermined temperature by a temperature controller in a heat medium passage provided in each of the fixed mold and the movable mold. There are those that adjust, and as shown in JP-A-05-169453, water is injected into each space of the fixed mold and the movable mold, and the temperature is controlled using the heat capacity and phase transformation of the water. (For example, refer to Patent Document 1).
According to
しかしながら、上記従来の技術においては、次に記載するような問題点があった。
(1)金型温度の調節は、温調器で所定温度に温調した熱媒体を強制循環させ、熱伝導によって行われるため、金型の熱媒体通路の入口と出口での熱媒体の温度に温度差が発生する。その結果、金型の温度分布が不均一となり、成形品に局部収縮などが発生して成形不良を生じ易い。
(2)熱媒体を強制循環させるために大容量のポンプを備えた温調器を必要とすることから、装置が大型となり高価なものとなる。
(3)水の熱容量と相変態を使う場合は、水の沸点100℃が限界となり、更なる高温での成形を要求される場合には、油を高温で使わざるを得なくて危険を伴う。また、熱容量が金型の形状で部分部分で異なるため、均一な温度になるには成形時間が長くなる。
However, the above conventional technique has the following problems.
(1) The mold temperature is adjusted by forcibly circulating a heat medium adjusted to a predetermined temperature by a temperature controller and conducting heat. Therefore, the temperature of the heat medium at the inlet and outlet of the heat medium passage of the mold is controlled. Temperature difference occurs. As a result, the temperature distribution of the mold becomes non-uniform and local shrinkage or the like occurs in the molded product, which tends to cause molding defects.
(2) Since a temperature controller having a large-capacity pump is required to forcibly circulate the heat medium, the apparatus becomes large and expensive.
(3) When using heat capacity and phase transformation of water, the boiling point of water is limited to 100 ° C, and when molding at higher temperatures is required, oil must be used at high temperatures and is dangerous. . In addition, since the heat capacity varies depending on the shape of the mold, the molding time becomes longer to achieve a uniform temperature.
本発明は、上記従来技術の有する問題点に鑑みてなされたものであって、簡単な構造で温度分布が均一であって、しかも設定金型温度への温度調節を迅速に行うことのできる金型を提供することを目的とするものである。 The present invention has been made in view of the above-described problems of the prior art, and has a simple structure, a uniform temperature distribution, and can be quickly adjusted to a set mold temperature. The purpose is to provide a mold.
上記目的を達成するため、本発明者らは鋭意検討を重ねた。その結果、驚くべきことに伝熱機構の中間部に断熱部である空隙を複数設けることにより、簡単な構造にて温度分布が均一であって、しかも設定金型温度への温度調節を迅速に行うことのできる金型が得られることを見出し、この知見に基づいて本発明を完成するに至った。 In order to achieve the above object, the present inventors have made extensive studies. As a result, surprisingly, by providing a plurality of gaps that are heat insulation parts in the middle part of the heat transfer mechanism, the temperature distribution is uniform with a simple structure, and the temperature adjustment to the set mold temperature can be performed quickly. The inventors have found that a mold that can be performed is obtained, and have completed the present invention based on this finding.
従来、伝熱による金型温度調節機構を備えた金型では、伝熱機構の中間部に断熱部である空隙を設けることは、伝熱を考える上で不利と考えられてきたが、本発明者らは鋭意検討を重ねた結果、金型の中間部に断熱部をもった伝熱部を設けることで熱伝導の拡散を制御し、一方向への伝熱速度が向上することを知見し、この知見に基づいて本発明を完成するに至った。
但し、空隙からなる複数の断熱部をもった伝熱部を設けることが必要であって、空隙からなる複数の断熱部と伝熱部とで構成される層を介することにより、熱伝導の拡散を制御し、一方向への伝熱速度が向上するものである。従って、金型内に単なる大きな空間部(空所)を設けたとしても目的を達成することはできない。
Conventionally, in a mold provided with a mold temperature control mechanism by heat transfer, it has been considered that it is disadvantageous in considering heat transfer to provide a gap as a heat insulating part in the middle part of the heat transfer mechanism. As a result of intensive studies, they found that the heat transfer rate was improved by controlling the diffusion of heat conduction by providing a heat transfer part with a heat insulation part in the middle part of the mold. Based on this finding, the present invention has been completed.
However, it is necessary to provide a heat transfer part having a plurality of heat insulation parts composed of voids, and diffusion of heat conduction is performed via a layer composed of a plurality of heat insulation parts composed of voids and the heat transfer part. And the heat transfer rate in one direction is improved. Therefore, even if a simple large space (vacant space) is provided in the mold, the object cannot be achieved.
即ち、請求項1に係る本発明は、加熱又は冷却用の媒体を用いて伝熱により金型温度を調節する金型温度調節機構を備えた金型において、伝熱される金型部位の少なくとも一部に伝熱方向に対して略直角となる方向に、空隙からなる複数の断熱部を有する伝熱部を設けたことを特徴とする金型を提供するものである。
請求項2に係る本発明は、伝熱部における空隙の割合が、体積にて30%以上97%以下である請求項1記載の金型を提供するものである。
That is, the present invention according to
The present invention according to
本発明によれば、温度分布が均一であって、しかも設定金型温度への温度調節を迅速に行うことのできる金型が得られる。
また、本発明によれば、装置が大型となったり、或いは高価なものとなったりすることなく、簡単な構造で温度分布が均一な金型が得られる。
さらに、本発明によれば、加熱用の媒体を用いて伝熱で金型温度を上げるとき、或いは加熱用の媒体を用いて伝熱で金型温度を下げるとき、金型形状に合わせ適当な箇所に、好ましくは伝熱が遅い箇所に、空隙からなる複数の断熱部を設けて伝熱速度を変えることで、金型部分の形状が異なることに起因する温度ムラがなくなり、金型温度の不均一が解消され均一な金型温度が実現できる。そのことにより、得られる成形品各部の温度が均一となって高精度の成形品を作成することができる。
即ち、例えば加熱用の媒体を用いて伝熱により金型温度を調節する金型温度調節機構を備えた金型の場合、熱媒体から供給される熱を従来伝熱が遅れた部位に複数の空隙を設けることで、昇温を早め、金型全体を均一に早く昇温することができる。冷却用の媒体を用いる場合は、この逆のことがいえることになる。
また、金型を均一に昇温できるため、成形品各部位の温度ムラが無くなり、収縮が均一になって高精度な成形品を作成することができる。
According to the present invention, it is possible to obtain a mold having a uniform temperature distribution and capable of quickly adjusting the temperature to the set mold temperature.
Further, according to the present invention, a mold having a simple structure and a uniform temperature distribution can be obtained without making the apparatus large or expensive.
Furthermore, according to the present invention, when the mold temperature is increased by heat transfer using a heating medium, or when the mold temperature is decreased by heat transfer using a heating medium, an appropriate shape is selected according to the mold shape. By providing a plurality of heat insulating portions made of voids at locations where heat transfer is slow and changing the heat transfer rate, temperature unevenness due to different shapes of the mold portions is eliminated, and the mold temperature is reduced. Unevenness is eliminated and uniform mold temperature can be realized. Thereby, the temperature of each part of the obtained molded product becomes uniform, and a highly accurate molded product can be created.
That is, for example, in the case of a mold having a mold temperature adjustment mechanism that adjusts the mold temperature by heat transfer using a heating medium, a plurality of heat supplied from the heat medium is transferred to a portion where heat transfer is conventionally delayed. By providing the gap, the temperature can be raised quickly, and the entire mold can be heated uniformly and quickly. The opposite is true when a cooling medium is used.
Further, since the temperature of the mold can be raised uniformly, the temperature unevenness of each part of the molded product is eliminated, the shrinkage becomes uniform, and a highly accurate molded product can be created.
以下、本発明の実施の形態を示す。
請求項1に係る本発明は、金型に関し、加熱又は冷却用の媒体を用いて伝熱により金型温度を調節する金型温度調節機構を備えた金型において、伝熱される金型部位の少なくとも一部に伝熱方向に対して略直角となる方向に、空隙からなる複数の断熱部を有する伝熱部を設けたことを特徴とするものである。
熱媒体を例にとって説明すると、本発明は、金型をその内部で熱媒体と熱交換させて金型温度を調節するにあたり、伝熱による熱の拡散を防ぐ機構を設けることで伝熱速度を高め、金型温度の上昇を迅速に行うものであって、温度分布に違いの起こる場所(例えば、伝熱の遅い場所)にこのような熱の拡散を防ぐ機構を設けることで、金型温度を均一にすることを特徴とするものである。
Embodiments of the present invention will be described below.
The present invention according to
The heat medium will be described as an example. In the present invention, the heat transfer rate is increased by providing a mechanism for preventing heat diffusion due to heat transfer when adjusting the mold temperature by exchanging heat between the mold and the heat medium. The temperature of the mold is increased quickly and the temperature of the mold is increased by providing a mechanism to prevent such heat diffusion at a place where the temperature distribution is different (for example, a place where heat transfer is slow). Is uniform.
以下、本発明を図面により詳細に説明する。図1は、請求項1に係る本発明の金型1の一態様を示す断面図であって、カップケースの製造用金型であるが、これに限定されるものではない。
図中、符号1Aは上金型(可動金型)であり、符号1Bは下金型(固定金型)である。
上金型1Aの内部には、加熱又は冷却用の媒体の流路2が形成されており、この流路2内に供給される加熱又は冷却用の媒体を用いて伝熱により金型温度を調節するようにされている。
これと同様に、下金型1Bの内部には、加熱又は冷却用の媒体の流路3が形成されており、この流路3内に供給される加熱又は冷却用の媒体を用いて伝熱により金型温度を調節するようにされている。
なお、流路3の形状、構造等は、図面に示したものに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the
In the figure,
A heating or cooling
Similarly, a flow path 3 for a heating or cooling medium is formed inside the
In addition, the shape, structure, etc. of the flow path 3 are not limited to what was shown in drawing.
請求項1に係る本発明は、このような加熱又は冷却用の媒体を用いて伝熱により金型温度を調節する金型温度調節機構を備えた金型1(1Aと1B)において、伝熱される金型部位の少なくとも一部に伝熱方向に対して略直角となる方向に、空隙からなる複数の断熱部を有する伝熱部4を設けたことを特徴とするものである。
The present invention according to
ここで伝熱方向とは、図1においては上下方向を指している。
即ち、上金型1Aで言えば、加熱用の媒体を用いる場合には、図1の上部、つまり上金型1Aにおける媒体流路2から上金型1Aの下端部へと向かう方向(下方向)が伝熱方向である。また、冷却用の媒体を用いる場合には、伝熱が逆となるから、上金型1Aの下端部から媒体流路2へと向かう方向(上方向)が伝熱方向である。
一方、下金型1Bで言えば、加熱用の媒体を用いる場合には、下金型1Bにおける媒体流路3から下金型1Bの上端部へと向かう方向(上方向)が伝熱方向である。また、冷却用の媒体を用いる場合には、伝熱が逆となるから、下金型1Bの上端部から媒体流路3へと向かう方向(下方向)が伝熱方向である。
Here, the heat transfer direction indicates the vertical direction in FIG.
That is, in the case of using the
On the other hand, in the
伝熱される金型部位の少なくとも一部には、このような伝熱方向に対して略直角となる方向に、つまり図1において左右方向に、空隙からなる複数の断熱部を有する伝熱部4が設けられている。
図2は、図1のA−A’線断面図である。また、図3は、図1のB−B’線断面図である。
空隙からなる複数の断熱部を有する伝熱部4は、断面でみたときに、空隙と伝熱部とが交互に配置されているような構造のものであってもよいし、そうでなくともよい。要は、熱伝導を早めたりするように、空隙と伝熱部とが混合されたような構造となっていればよい。
At least a part of the mold part to which heat is transferred has a
2 is a cross-sectional view taken along line AA ′ of FIG. 3 is a cross-sectional view taken along line BB ′ of FIG.
The
空隙からなる複数の断熱部を有する伝熱部4は、例えば、図4に示すように、2つの金型材料の間に球状物を挟み接合することにより形成したものであってもよいし、或いは、球状物の代わりに台形状物などを挟み接合することにより形成したものであってもよい。要するに、空隙からなる複数の断熱部を有する伝熱部4を形成できるものであれば、2つの金型材料の間に挟むものの形状は限定されない。
空隙からなる複数の断熱部を有する伝熱部4としては、さらには、図5に示すように、2つの金型材料の間にパンチングメタル(打抜金網)を挟み接合することにより形成したものであってもよい。パンチングメタル(打抜金網)に開けられている孔の形状は特に制限されず、丸孔、角孔等、様々なものを用いることができる。
なお、図2、図3に示されるものは、2つの金型材料の間に、パンチングメタル(打抜金網)を挟み接合することにより形成したものである。このようにパンチングメタル(打抜金網)を挟み接合する場合には、パンチングメタル(打抜金網)を挟み接合する箇所の金型材料に、パンチングメタル(打抜金網)の大きさに相当する凹みを設けておく。
製作上からすると、このようなパンチングメタル(打抜金網)を用いたものがよいが、金型温度を均一にする観点からすると、金型材料と同じ材質の球状物や台形状物などを2つの金型材料の間に挟み接合することにより形成したものが好ましい。
接合は、パルス通電接合や拡散接合を始めとして、公知の接合手段により行うことができる。なお、パルス通電による接合処理等は常法により行えばよい。
The
As shown in FIG. 5, the
2 and FIG. 3 are formed by sandwiching and bonding a punching metal (punched metal net) between two mold materials. When punching metal (punch metal mesh) is sandwiched and joined in this way, a dent corresponding to the size of the punching metal (punch metal mesh) is added to the mold material at the location where the punch metal (punch metal mesh) is sandwiched and joined. Is provided.
From the viewpoint of production, it is preferable to use such a punching metal (punched metal net). However, from the viewpoint of making the mold temperature uniform, spherical or trapezoidal objects made of the same material as the mold material are used. Those formed by sandwiching and bonding between two mold materials are preferable.
The joining can be performed by a known joining means including pulse current joining and diffusion joining. In addition, what is necessary is just to perform the joining process by pulse energization, etc. by a conventional method.
このようにして設ける伝熱部における空隙の割合は特に制限されないが、請求項2に記載したように、体積にて30%以上97%以下であることが好ましい。
ここで伝熱部における空隙の割合が30%未満であると、加熱用の媒体を用いる場合には伝熱加速効果(或いは冷却用の媒体を用いる場合には伝熱減速効果)が充分に得られないため好ましくない。
一方、伝熱部における空隙の割合が97%を超えると、断熱効果が大きくなり過ぎるため好ましくない。
The ratio of the voids in the heat transfer section thus provided is not particularly limited, but as described in
Here, when the ratio of voids in the heat transfer section is less than 30%, a heat transfer acceleration effect (or a heat transfer deceleration effect when a cooling medium is used) is sufficiently obtained when a heating medium is used. Since it is not possible, it is not preferable.
On the other hand, when the ratio of the voids in the heat transfer part exceeds 97%, the heat insulation effect becomes too large, which is not preferable.
なお、2つの金型材料の間に球状物を挟み接合することにより、空隙からなる複数の断熱部を有する伝熱部4を形成する場合、球状物の大きさは特に限定されないが、通常、直径が0.5〜1.5mm程度である。また、パンチングメタル(打抜金網)を挟み接合することにより、空隙からなる複数の断熱部を有する伝熱部4を形成する場合、その穴径は特に限定されないが、通常、穴径が0.2〜1.5mm程度である。
In addition, the size of the spherical object is not particularly limited when the
加熱又は冷却用の媒体を用いて伝熱により金型温度を調節する金型温度調節機構については、通常用いられているものを用いればよい。 What is necessary is just to use what is used normally about the mold temperature adjustment mechanism which adjusts mold temperature by heat transfer using the medium for heating or cooling.
以上の如き本発明によれば、例えば熱媒体を用いて伝熱で金型温度を上げる時、金型形状に合わせて伝熱速度を変えることで金型部分の形状が異なることに起因する温度ムラがなくなり、金型温度の不均一が解消され均一な金型温度が実現できる。そのことにより、成形品各部の温度が均一となって高精度の成形品を作成することができる。 According to the present invention as described above, for example, when the mold temperature is increased by heat transfer using a heat medium, the temperature caused by the difference in the shape of the mold part by changing the heat transfer speed according to the mold shape. Unevenness is eliminated, non-uniformity of the mold temperature is eliminated, and a uniform mold temperature can be realized. Thereby, the temperature of each part of the molded product becomes uniform, and a highly accurate molded product can be created.
以下、本発明を実施例等により説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES Hereinafter, although an Example etc. demonstrate this invention, this invention is not limited by these.
試験例1
SUS420J2の2つの円柱(直径20mm)間に、同材質の直径1.0mmのボールを敷き詰め、接合温度1030℃(±5℃)、接合電流密度540A/cm2、加圧力10MPaの条件にてパルス通電接合を行って、図4に示すようなサンプル(1)を得た。
得られたサンプル(1)について、その下部を加熱する加熱試験を行い、3分毎に温度を測定した。特に、成形時間を考慮すると、例えば3分から6分の間のように、早い時間において温度が速やかに上昇していることが好ましい。
伝熱方向は、図4の下部から上部へ向かう方向となる。なお、周囲の風の影響を排除するように遮蔽板を設けた。温度測定は、サンプル(1)中心部から上へ5mmの位置に深さ10mmで直径1.8mmの穴を開け、熱電対で測定することにより行った。
その結果を、ボールを挟まない母材の結果と共に、図6に示す。図6においては、得られたサンプル(1)の結果を「ボール」と表示し、ボールを挟まない母材の結果を「母材」と表示した。
Test example 1
A ball of 1.0 mm diameter made of the same material is spread between two cylinders (
About the obtained sample (1), the heating test which heats the lower part was done, and temperature was measured every 3 minutes. In particular, in consideration of the molding time, it is preferable that the temperature rises quickly in an early time, for example, between 3 minutes and 6 minutes.
The heat transfer direction is a direction from the lower part to the upper part in FIG. In addition, the shielding board was provided so that the influence of the surrounding wind might be excluded. The temperature was measured by opening a hole with a depth of 10 mm and a diameter of 1.8 mm at a position 5 mm upward from the center of the sample (1) and measuring with a thermocouple.
The result is shown in FIG. 6 together with the result of the base material that does not sandwich the ball. In FIG. 6, the result of the obtained sample (1) is displayed as “ball”, and the result of the base material that does not sandwich the ball is displayed as “base material”.
図6によれば、ボールを間に挟んでパルス通電接合されたサンプル(1)の温度上昇グラフと母材との比較から、明らかに温度上昇はボールを挟んだサンプル(1)の方が早い。つまり、伝熱における熱拡散を防ぐように空隙を設けることで伝熱の速度が上がっていることが分かる。
ボールを敷き詰めることで形成される空隙の体積は、理論上52%となるが、接合時の圧力でボールが変形し空隙量を減ずることから、空隙の体積は30%以上であれば伝熱加速効果が得られることが分かった。また、空隙の体積が97%を超えると母材の伝熱機構と同じ昇温を示すことも分かった。
このことから、伝熱加速構造をとるには、空隙の体積割合を30%から97%以内に設定することが必要であると考えられる。
According to FIG. 6, from the comparison of the temperature rise graph of the sample (1) pulse-welded with the ball in between and the base material, the temperature rise is clearly faster in the sample (1) with the ball in between. . That is, it can be seen that the speed of heat transfer is increased by providing a gap so as to prevent heat diffusion in heat transfer.
The void volume formed by spreading the ball is theoretically 52%, but the ball is deformed by the pressure at the time of joining and the void volume is reduced, so heat transfer acceleration is achieved if the void volume is 30% or more. It turns out that an effect is acquired. It has also been found that when the void volume exceeds 97%, the temperature rise is the same as the heat transfer mechanism of the base material.
From this, it is considered that in order to adopt the heat transfer acceleration structure, it is necessary to set the volume ratio of the voids within 30% to 97%.
試験例2
試験例1において、間に挟む材料をボールからSUSのメッシュ板(パンチングメタル;穴径:直径0.2mm)にしたこと以外は、試験例1と同様にして、図5に示すようなサンプル(2)を得た。
得られたサンプル(2)について、その下部を加熱する加熱試験を行い、3分毎に温度を測定した。なお、周囲の風の影響を排除するように遮蔽板を設けた。温度測定は、図5に示した3つの測定点(各円柱の中心部から各5mmの位置と端面の計3箇所)に、それぞれ深さ10mmで直径1.8mmの穴を開け、熱電対で測定することにより行った。
Test example 2
In Test Example 1, a sample as shown in FIG. 5 was obtained in the same manner as Test Example 1 except that the material sandwiched between the balls was changed to a SUS mesh plate (punching metal; hole diameter: 0.2 mm diameter). 2) was obtained.
About the obtained sample (2), the heating test which heats the lower part was done, and temperature was measured every 3 minutes. In addition, the shielding board was provided so that the influence of the surrounding wind might be excluded. The temperature measurement was performed by drilling holes with a depth of 10 mm and a diameter of 1.8 mm at the three measurement points shown in FIG. 5 (total of 3 positions each 5 mm from the center of each cylinder and the end face). This was done by measuring.
結果を、図7に示す。図7においては、各測定点の番号で示した。
図7によれば、均一に温度が上昇していることが分かる。
The results are shown in FIG. In FIG. 7, each measurement point number is shown.
As can be seen from FIG. 7, the temperature rises uniformly.
試験例3
試験例1と同様にしてボールを挟んで得たサンプル(3)3と、試験例2と同様にしてSUSのメッシュ板を挟んで得たサンプル(4)と、何も挟まない母材[サンプル(5)]とについて、試験例1と同様にして、下部を加熱する加熱試験を行い、3分毎に温度を測定した。
結果を図8に示す。図8においては、得られたサンプル(3)の結果を「ボール」と表示し、得られたサンプル(4)の結果を「メッシュ」と表示し、何も挟まない母材[サンプル(5)]の結果を「母材」と表示した。
Test example 3
Sample (3) 3 obtained by sandwiching a ball in the same manner as in Test Example 1, sample (4) obtained by sandwiching a SUS mesh plate in the same manner as in Test Example 2, and a base material [Sample] (5)], a heating test for heating the lower part was performed in the same manner as in Test Example 1, and the temperature was measured every 3 minutes.
The results are shown in FIG. In FIG. 8, the result of the obtained sample (3) is displayed as “ball”, the result of the obtained sample (4) is displayed as “mesh”, and a base material [sample (5) that holds nothing] ] Was displayed as “base material”.
図8によれば、何も挟まない母材[サンプル(5)]と比べて、試験例1と同様にしてボールを挟んで得たサンプル(3)、及び、試験例2と同様にしてSUSのメッシュ板を挟んで得たサンプル(4)は、成形時間と関係の深い3分から6分の間のように、早い時間において温度が速やかに上昇していることが分かる。 According to FIG. 8, sample (3) obtained by sandwiching the balls in the same manner as in Test Example 1 and SUS in the same manner as in Test Example 2 as compared with the base material [Sample (5)] that does not sandwich anything. It can be seen that the sample (4) obtained by sandwiching the mesh plate has a rapid rise in the early time, such as between 3 and 6 minutes, which is closely related to the molding time.
実施例1
図1、2、3に示す如き金型(本発明の金型)を用い、ガラスファイバー40%含有PPS樹脂を320℃で射出してカップケース(カップ外径:直径30mm)の成形を行った。
この金型は、上金型1と下金型1Bとで構成されており、各金型には、パルス通電接合によりSUSのメッシュ板(パンチングメタル;穴径:直径0.2mm)を挟んで形成された、空隙からなる複数の断熱部を有する伝熱部4が形成されている。なお、パルス通電による接合処理は常法により行った。
また、上金型1の内部には、加熱又は冷却用の媒体の流路2が形成されており、下金型1Bの内部には、加熱又は冷却用の媒体の流路3が形成されていて、この流路3内に供給される加熱又は冷却用の媒体を用いて伝熱により金型温度を調節するようにされている。
Example 1
A cup case (cup outer diameter: 30 mm diameter) was molded by injecting 40% glass fiber-containing PPS resin at 320 ° C. using the mold shown in FIGS. .
This mold is composed of an
A heating or cooling
得られたカップケースについて、レーザ変位計で底面のそりを測定した。形状精度(Pv値)は3.51μmであった。得られたカップ底面の等高線図を図9に示す。
なお、比較のために、従来の金型(空隙からなる複数の断熱部を有する伝熱部4が形成されていないこと以外は、図1と同様の金型)を用い、同様にしてカップケースの成形を行い、レーザ変位計で底面のそりを測定した。形状精度(Pv値)は6.35μmであった。得られたカップ底面の等高線図を図10に示す。
About the obtained cup case, the curvature of the bottom face was measured with a laser displacement meter. The shape accuracy (Pv value) was 3.51 μm. A contour map of the obtained cup bottom is shown in FIG.
For comparison, a cup case is similarly used using a conventional mold (a mold similar to that shown in FIG. 1 except that the
その結果、図1、2、3に示す如き金型(本発明の金型)を用いた場合、形状精度(Pv値)に優れた製品が得られることが分かった。 As a result, it was found that a product excellent in shape accuracy (Pv value) can be obtained when using the mold (the mold of the present invention) as shown in FIGS.
本発明によれば、金型の昇温を早め、金型全体を均一に早く昇温することができ、また、金型を均一に昇温できるため、成形品各部位の温度ムラが無くなり、収縮が均一になって高精度な成形品を作成することができる。
従って、本発明は、射出成形など樹脂の成形用金型をはじめとして各種金型に、さらにはコンピューターのCPUの冷却用にも適用することができる。
According to the present invention, the temperature rise of the mold can be accelerated, the entire mold can be uniformly heated quickly, and the mold can be uniformly heated, so there is no temperature unevenness in each part of the molded product, Shrinkage becomes uniform and a highly accurate molded product can be produced.
Therefore, the present invention can be applied to various molds including resin molds such as injection molding, and further to cooling a CPU of a computer.
1 金型
1A 上金型(可動金型)
1B 下金型(固定金型)
2 加熱又は冷却用の媒体の流路(上金型)
3 加熱又は冷却用の媒体の流路(下金型)
4 空隙からなる複数の断熱部を有する伝熱部
1
1B Lower mold (fixed mold)
2 Heating or cooling medium flow path (upper mold)
3 Heating or cooling medium flow path (lower mold)
4 Heat transfer part having a plurality of heat insulation parts consisting of gaps
Claims (2)
The mold according to claim 1, wherein a ratio of voids in the heat transfer section is 30% or more and 97% or less by volume.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005011051A JP2006198816A (en) | 2005-01-19 | 2005-01-19 | Mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005011051A JP2006198816A (en) | 2005-01-19 | 2005-01-19 | Mold |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006198816A true JP2006198816A (en) | 2006-08-03 |
Family
ID=36957235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005011051A Withdrawn JP2006198816A (en) | 2005-01-19 | 2005-01-19 | Mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006198816A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015345A (en) * | 2005-07-11 | 2007-01-25 | Bridgestone Corp | Rubber crawler manufacturing device and method |
-
2005
- 2005-01-19 JP JP2005011051A patent/JP2006198816A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015345A (en) * | 2005-07-11 | 2007-01-25 | Bridgestone Corp | Rubber crawler manufacturing device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling | |
Au et al. | A scaffolding architecture for conformal cooling design in rapid plastic injection moulding | |
Wang et al. | Heating/cooling channels design for an automotive interior part and its evaluation in rapid heat cycle molding | |
EP2520385A1 (en) | Casting method and casting device for cast-metal object | |
CN105562692A (en) | Sintering mold | |
US20180214948A1 (en) | Method for manufacturing three-dimensional shaped object and three-dimensional shaped object | |
CN108367350A (en) | For the method for increasing material manufacturing, component and for the device of increasing material manufacturing | |
Xie et al. | Influence of processing parameters on micro injection molded weld line mechanical properties of polypropylene (PP) | |
JP5758735B2 (en) | Mold | |
Renkó et al. | Comparison of cooling simulations of injection moulding tools created with cutting machining and additive manufacturing | |
KR100771170B1 (en) | Die with cooling channel of mesh structure and manufacturing method thereof | |
JP6962080B2 (en) | Laminated modeling equipment and laminated modeling method | |
JP2006198816A (en) | Mold | |
JP2005138366A (en) | Precise die | |
EP3433645B1 (en) | System and method for conformal cooling during a lens manufacturing process | |
Saifullah et al. | Cycle time reduction in injection moulding with conformal cooling channels | |
JP4714491B2 (en) | Manufacturing method of resin molded product, mold for resin molding, plastic optical element and display device, and image forming apparatus | |
JP6191356B2 (en) | Mold and injection molding method | |
JP5106270B2 (en) | Lattice substrate casting equipment for lead-acid batteries | |
Lee et al. | Effect of warpage on the operation of a rapid cooling and heating device | |
Ali et al. | Optimization of additive manufacturing for layer sticking and dimensional accuracy | |
CN113631346B (en) | Zero or low draft angle injection molding method and system | |
JP2017159624A (en) | Insert molding method and insert molding apparatus | |
JP2007137008A (en) | Manufacturing process of resin molding | |
Schwicker et al. | Strength Optimization and Strength Prediction of Fused Deposition Modelled Specimens Based on Process Parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080401 |