JP2006196739A - Method for manufacturing electronic component using ferroelectric material - Google Patents

Method for manufacturing electronic component using ferroelectric material Download PDF

Info

Publication number
JP2006196739A
JP2006196739A JP2005007390A JP2005007390A JP2006196739A JP 2006196739 A JP2006196739 A JP 2006196739A JP 2005007390 A JP2005007390 A JP 2005007390A JP 2005007390 A JP2005007390 A JP 2005007390A JP 2006196739 A JP2006196739 A JP 2006196739A
Authority
JP
Japan
Prior art keywords
polarization
ferroelectric
wafer
electronic component
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005007390A
Other languages
Japanese (ja)
Inventor
Shozo Nakao
庄三 中尾
Yumiko Oshima
由美子 大島
Hirobumi Tajika
博文 多鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005007390A priority Critical patent/JP2006196739A/en
Publication of JP2006196739A publication Critical patent/JP2006196739A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electronic component using a ferroelectric material used for a tuning fork for sensor or the like at low cost through the improvement of production efficiency by solving the problems that the requirement for individual polarization process lowers productivity to cause an increase in cost. <P>SOLUTION: The method for manufacturing the electronic component using the ferroelectric material in obtaining the intended electronic component by machining the wafer with a lower electrode, a ferroelectric substance, and an upper electrode sequentially film-formed comprises the steps of polarizing the ferroelectric substance after machining the upper electrode and the ferroelectric substance on the wafer, and machining the lower electrode and silicon substrate afterwards. The work in large unit can downsize the facility to lower the cost, and suppress a variation in characteristics to improve a quality and reliability. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はセンサ用の音叉やアクチュエータ等に使用される強誘電体材料を用いた電子部品の製造方法に関するものである。   The present invention relates to a method of manufacturing an electronic component using a ferroelectric material used for a tuning fork or an actuator for a sensor.

強誘電体材料の一つであるPbTiO3−PbZrO3系圧電材料(以下、PZT系圧電材料という)は優れた圧電特性を示すため、センサ用の音叉やアクチュエータ等に広く用いられており、このPZT系圧電音叉を使用した音叉やアクチュエータ等が開発されている。このPZT系圧電音叉を使用した音叉は、シリコン基板上にPZT系圧電材料を成膜した後、機械加工や分極処理等を行う製造方法が一般的に用いられている。 PbTiO 3 —PbZrO 3 piezoelectric material (hereinafter referred to as PZT piezoelectric material), which is one of the ferroelectric materials, exhibits excellent piezoelectric characteristics, and is widely used for tuning forks and actuators for sensors. Tuning forks, actuators and the like using PZT type piezoelectric tuning forks have been developed. A tuning fork using this PZT type piezoelectric tuning fork generally uses a manufacturing method in which a PZT type piezoelectric material is formed on a silicon substrate and then machined or polarized.

図13はこの種の従来の音叉を製造する際の強誘電体を分極させる方法を示した概念図であり、図13において20aと20bは音叉を示し、この音叉20a,20bは、シリコン基板21上に下部電極22、強誘電体23、上部電極24を順次成膜してウエハ25を作製し、このウエハ25を機械加工することにより個片化して所望の構成の音叉20a,20bを得るようにしたものである。   FIG. 13 is a conceptual diagram showing a method of polarizing a ferroelectric when manufacturing this type of conventional tuning fork. In FIG. 13, 20a and 20b indicate tuning forks, and these tuning forks 20a and 20b are silicon substrates 21. A lower electrode 22, a ferroelectric material 23, and an upper electrode 24 are sequentially formed on the wafer 25 to produce a wafer 25. The wafer 25 is machined to be separated into individual pieces to obtain tuning forks 20a and 20b having a desired configuration. It is a thing.

26は電圧発生器であり、この電圧発生器26の一端の電圧出力端子を上記各音叉20a,20bの上部電極24に接続し、他端のGND端子を各音叉20a,20bの下部電極22に接続した状態で、各音叉20a,20bを例えば150℃の高温に加熱した後、電圧発生器26から電圧を印加して強誘電体23の分極(ポーリング)処理を行うようにしたものであった。   A voltage generator 26 has a voltage output terminal at one end of the voltage generator 26 connected to the upper electrode 24 of each tuning fork 20a, 20b and a GND terminal at the other end connected to the lower electrode 22 of each tuning fork 20a, 20b. In a connected state, each tuning fork 20a, 20b was heated to a high temperature of, for example, 150 ° C., and then a voltage was applied from the voltage generator 26 to perform polarization (polling) processing of the ferroelectric 23. .

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平5−70245号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP-A-5-70245

しかしながら上記従来の強誘電体材料を用いた電子部品の製造方法では、ウエハ25を機械加工することにより所望の構成の音叉20a,20bを作製し、この後で分極処理を行うという製造方法であるために、上述のようにして作製された音叉20a,20bには当然のことながら上部電極24の加工、強誘電体23の加工、下部電極22の加工が既に完了し、かつ音叉20a,20bの電極パターンも完成している。   However, the above-described conventional method for manufacturing an electronic component using a ferroelectric material is a manufacturing method in which a tuning fork 20a, 20b having a desired configuration is manufactured by machining a wafer 25, and then a polarization process is performed. Therefore, as a matter of course, the tuning forks 20a and 20b manufactured as described above have already completed the processing of the upper electrode 24, the processing of the ferroelectric 23, and the processing of the lower electrode 22, and the tuning forks 20a and 20b. The electrode pattern is also complete.

従って、これらの音叉20a,20bに分極処理を行う場合には、夫々の音叉20a,20bの上部電極24と下部電極22に電圧を供給するための電圧発生器26、ならびにこの電圧発生器26と各音叉20a,20bを接続するための電圧供給用プローブとが個々に必要になり、設備コストが高くなるばかりでなく、設備が大型化するという課題があった。   Therefore, when performing polarization processing on these tuning forks 20a, 20b, a voltage generator 26 for supplying a voltage to the upper electrode 24 and the lower electrode 22 of each tuning fork 20a, 20b, and this voltage generator 26 A voltage supply probe for connecting each tuning fork 20a, 20b is required individually, which not only increases the equipment cost but also increases the size of the equipment.

さらに、近年、音叉の小型化に伴ってウエハ上に多数の音叉を製造できるようになってきたことから、多数の音叉に個別に電圧を印加させるためには多数の電圧発生器が必要になり、結果としてこのように多くの音叉に一度に確実に電圧を印加して分極処理を行うためにはコスト的に高くなるという問題があった。   Furthermore, in recent years, as tuning forks have become smaller, it has become possible to manufacture a large number of tuning forks on a wafer, and in order to individually apply voltages to a large number of tuning forks, a large number of voltage generators are required. As a result, there has been a problem in that it is expensive to apply a voltage to such a large number of tuning forks at once to perform the polarization treatment.

また、多数の音叉に夫々個々の電圧発生器から個別に電圧を印加して分極処理を行う方法においては、分極処理後の音叉の特性のバラツキを抑えることが困難であり、性能面における課題をも有したものであった。   Also, in the method of performing polarization processing by individually applying a voltage to each of many tuning forks from individual voltage generators, it is difficult to suppress variations in the characteristics of the tuning fork after polarization processing, and this causes problems in performance. Also had.

本発明はこのような従来の課題を解決し、低コストで高信頼性の電子部品を製造することが可能な、強誘電体材料を用いた電子部品の製造方法を提供することを目的とするものである。   An object of the present invention is to solve such a conventional problem and to provide a method for manufacturing an electronic component using a ferroelectric material, which can manufacture a highly reliable electronic component at a low cost. Is.

上記課題を解決するために本発明は、シリコン基板上に下部電極と強誘電体と上部電極を順次成膜してウエハを作製し、このウエハを機械加工して所望の構成の電子部品を得る強誘電体材料を用いた電子部品の製造方法において、上記ウエハの上部電極及び強誘電体の加工を行った後に強誘電体を分極させる分極処理を行い、この後で下部電極及びシリコン基板の加工を行って所望の構成の電子部品を得るという方法にしたものである。   In order to solve the above-mentioned problems, the present invention produces a wafer by sequentially forming a lower electrode, a ferroelectric and an upper electrode on a silicon substrate, and machining the wafer to obtain an electronic component having a desired configuration. In a method of manufacturing an electronic component using a ferroelectric material, after processing the upper electrode and the ferroelectric of the wafer, a polarization process is performed to polarize the ferroelectric, and thereafter processing of the lower electrode and the silicon substrate is performed. To obtain an electronic component having a desired configuration.

以上のように本発明による製造方法は、電極加工工程前に分極処理を行うことにより大きな単位で作業を行うことができるため、設備を削減してコストを低減すると共に生産効率を高め、かつ特性のバラツキを抑えて品質、信頼性の向上を図ることが可能になるという格別の効果が得られるものである。   As described above, since the manufacturing method according to the present invention can perform work in large units by performing polarization treatment before the electrode processing step, the equipment is reduced, the cost is reduced, the production efficiency is increased, and the characteristics are increased. It is possible to obtain an extraordinary effect that it is possible to improve quality and reliability by suppressing the variation of the above.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1〜4に記載の発明について説明する。
(Embodiment 1)
Hereinafter, the invention described in the first to fourth aspects of the present invention will be described using the first embodiment.

図1は本発明の実施の形態1による強誘電体材料を用いた電子部品の製造方法の製造工程を示したフローチャートであり、以下、この図1のフローチャートを参照しながら本実施の形態による強誘電体材料を用いた電子部品の製造方法について説明する。   FIG. 1 is a flowchart showing a manufacturing process of an electronic component manufacturing method using a ferroelectric material according to the first embodiment of the present invention. Hereinafter, the strong process according to the present embodiment will be described with reference to the flowchart of FIG. A method for manufacturing an electronic component using a dielectric material will be described.

まず、図2は最初の工程となる成膜工程を説明するためのウエハの構成を示した断面図であり、図1において1はシリコン基板であり、このシリコン基板1上に白金等の導電性部材からなる下部電極2をスパッタ法等により形成する。続いて、この下部電極2上に強誘電体特性を示すPZTの強誘電体3をスパッタ法等により形成する。さらに、この強誘電体3上に金等の導電性部材からなる上部電極4をスパッタ法等により形成する。このようにして、シリコン基板1上に、下部電極2と上部電極4間に強誘電体3が挟まれた構造のウエハ5を作製することにより成膜工程が完了する。   First, FIG. 2 is a cross-sectional view showing the structure of a wafer for explaining the first film formation step. In FIG. 1, reference numeral 1 denotes a silicon substrate, and a conductive material such as platinum is provided on the silicon substrate 1. A lower electrode 2 made of a member is formed by sputtering or the like. Subsequently, a PZT ferroelectric 3 having ferroelectric characteristics is formed on the lower electrode 2 by sputtering or the like. Further, an upper electrode 4 made of a conductive member such as gold is formed on the ferroelectric 3 by a sputtering method or the like. In this manner, the film forming process is completed by manufacturing the wafer 5 having the structure in which the ferroelectric 3 is sandwiched between the lower electrode 2 and the upper electrode 4 on the silicon substrate 1.

続いて、次の工程である上部電極加工工程(1)について図3を用いて説明すると、上記ウエハ5に形成された上部電極4を音叉の電極形状に加工し、強誘電体3を露出させる。この結果、音叉の電極を形成する箇所の上部電極4は図8に示すように複数の列(A列〜H列)に分割される。このように複数に分割された中の一例としてのA列は、図9に示すように、中央部に音叉6が複数並列に配置されており、また両端に電圧供給用端子7と電圧測定用端子8も同時に作製されている。また、この複数の音叉6と電圧供給用端子7、電圧測定用端子8は連結部9,10によって接続されている。なお、B列〜H列は、上記A列と音叉6の数が異なるのみで、それ以外は同様に形成されたものであるため、ここでの説明は省略する。   Next, the upper electrode processing step (1), which is the next step, will be described with reference to FIG. 3. The upper electrode 4 formed on the wafer 5 is processed into a tuning fork electrode shape to expose the ferroelectric 3. . As a result, the upper electrode 4 where the tuning fork electrode is to be formed is divided into a plurality of rows (rows A to H) as shown in FIG. As shown in FIG. 9, the row A as an example divided into a plurality of parts as described above has a plurality of tuning forks 6 arranged in parallel at the center, and a voltage supply terminal 7 and a voltage measuring terminal at both ends. The terminal 8 is also produced at the same time. Further, the plurality of tuning forks 6, the voltage supply terminal 7, and the voltage measurement terminal 8 are connected by connecting portions 9 and 10. The B column to the H column are the same except that the number of the tuning fork 6 is different from that of the A column.

続いて、次の工程である強誘電体加工工程(1)について図4を用いて説明すると、上記図3において強誘電体3が露出した部分を、図8に示すように、+COM1及び+COM2の下部電極2が露出するように強誘電体3の加工を行う。   Next, the ferroelectric processing step (1), which is the next step, will be described with reference to FIG. 4. The exposed portion of the ferroelectric 3 in FIG. The ferroelectric 3 is processed so that the lower electrode 2 is exposed.

続いて、次の工程である分極工程について図5を用いて説明すると、まず電圧発生器11Aを用意し、この電圧発生器11Aの一端の電圧出力端子を電流測定器12Aの一端のHi側に接続し、さらに電流測定器12Aの他端のLow側をA列の電圧供給用端子7と接続する。また、電圧発生器11Aの他端のGND端子は+COM1と接続し、共に接地する。さらに、B列〜H列においても同様に、電圧発生器11B〜11Hの電圧出力端子を電流測定器12B〜12Hの一端のHi側に接続し、さらに電流測定器12B〜12Hの他端のLow側をB列〜H列の電圧供給用端子7と接続し、電圧発生器11B〜11Hの他端のGND端子は+COM1と接続し、共に接地し、この状態でウエハ5を150℃の高温に加熱する。   Next, the polarization process, which is the next process, will be described with reference to FIG. 5. First, a voltage generator 11A is prepared, and the voltage output terminal at one end of the voltage generator 11A is connected to the Hi side at one end of the current measuring instrument 12A. Further, the low side of the other end of the current measuring device 12A is connected to the voltage supply terminal 7 in the A column. The GND terminal at the other end of the voltage generator 11A is connected to + COM1 and grounded together. Further, in the B row to the H row, similarly, the voltage output terminals of the voltage generators 11B to 11H are connected to the Hi side of one end of the current measuring devices 12B to 12H, and the other end of the current measuring devices 12B to 12H is Low. The other side of the voltage generators 11B to 11H is connected to + COM1 and grounded together, and the wafer 5 is brought to a high temperature of 150 ° C. in this state. Heat.

次に、電圧発生器11AからA列の電圧供給用端子7に電圧(分極電圧)を印加する。このとき、図10に示すように、分極電圧印加時に一定時間後に分極電圧が例えば20Vの一定になるまで分極電圧を上昇させ、分極電圧が一定になった後、十分な時間、一定の分極電圧を印加し続ける。   Next, a voltage (polarization voltage) is applied from the voltage generator 11A to the voltage supply terminal 7 in the A column. At this time, as shown in FIG. 10, when the polarization voltage is applied, the polarization voltage is increased until the polarization voltage becomes constant, for example, 20 V after a certain time, and after the polarization voltage becomes constant, the polarization voltage is kept constant for a sufficient time. Continue to apply.

この分極電圧印加状態のときに強誘電体3が分極(ポーリング)処理されるものであり、この強誘電体3の分極中には分極電流が流れる。この分極電流は、図11に示すようにリーク電流、吸収電流、熱刺激電流の3種類から構成され、分極電圧印加時にはリーク電流が流れ続ける。また、分極電圧印加直後には吸収電流が流れ、十分な時間が経過した後に吸収電流は流れなくなる。ここで、この吸収電流が流れる時間(吸収時間)は数μ秒程度であり、さらに吸収電流が流れなくなってから十分な時間が経過すると、熱刺激電流が増大し始める。   When the polarization voltage is applied, the ferroelectric 3 is polarized (polling), and a polarization current flows during the polarization of the ferroelectric 3. As shown in FIG. 11, this polarization current is composed of three types of leakage current, absorption current, and thermal stimulation current, and the leakage current continues to flow when a polarization voltage is applied. Also, an absorption current flows immediately after application of the polarization voltage, and the absorption current does not flow after a sufficient time has elapsed. Here, the time during which the absorption current flows (absorption time) is about several microseconds, and when a sufficient time elapses after the absorption current stops flowing, the thermal stimulation current starts to increase.

そこで、この分極電圧印加中に、この分極電流を監視することとし、吸収時間が経過した後において、分極電流が所定の電流値を超えた場合に分極電圧を降下させる。このとき、分極電圧は分極時の電圧より十分低い電圧(冷却電圧)、例えば5Vになるまで一定間隔で降下させるものとし、このような作業をA列〜H列全てにおいて、個々に行う。   Therefore, the polarization current is monitored during application of the polarization voltage, and the polarization voltage is lowered when the polarization current exceeds a predetermined current value after the absorption time has elapsed. At this time, the polarization voltage is lowered at a constant interval until the polarization voltage is sufficiently lower than the voltage at the time of polarization (cooling voltage), for example, 5 V, and such operations are performed individually in all the A to H columns.

次に、A列〜H列全ての分極電圧が冷却電圧になった後、冷却電圧を印加した状態でウエハ5の温度を室温まで冷却し、冷却を終えたら電圧発生器11A〜11Hの出力電圧、すなわち分極電圧を0Vまで降下して電圧印加を終了する。   Next, after the polarization voltages of all the columns A to H become the cooling voltage, the temperature of the wafer 5 is cooled to room temperature with the cooling voltage applied, and when the cooling is finished, the output voltages of the voltage generators 11A to 11H That is, the polarization voltage is lowered to 0 V and the voltage application is finished.

続いて、次の工程である上部電極加工工程(2)について説明すると、ウエハ5の上部電極4の連結部9,10を加工し、連結部9,10の上部電極4を切断加工することにより、各音叉6の上部電極4部分を分離する。   Next, the upper electrode processing step (2) as the next step will be described. By processing the connecting portions 9 and 10 of the upper electrode 4 of the wafer 5 and cutting the upper electrode 4 of the connecting portions 9 and 10. The upper electrode 4 portion of each tuning fork 6 is separated.

続いて、次の工程である強誘電体加工工程(2)について説明すると、ウエハ5の強誘電体3の連結部9,10を加工し、連結部9,10の強誘電体3を切断加工することにより、各音叉6間の強誘電体3部分を分離する。   Next, the ferroelectric processing step (2), which is the next step, will be described. The connecting portions 9 and 10 of the ferroelectric 3 of the wafer 5 are processed, and the ferroelectric 3 of the connecting portions 9 and 10 is cut. By doing so, the ferroelectric 3 portion between the tuning forks 6 is separated.

続いて、次の工程である下部電極加工工程について図6を用いて説明すると、ウエハ5の下部電極2の露出している箇所の所定の部分のみを加工することにより、各音叉6の下部電極2部分を分離する。   Subsequently, the lower electrode processing step, which is the next step, will be described with reference to FIG. 6. By processing only a predetermined portion of the exposed portion of the lower electrode 2 of the wafer 5, the lower electrode of each tuning fork 6 is processed. Separate the two parts.

続いて、次の工程であるシリコン基板加工工程について図7を用いて説明すると、ウエハ5のシリコン基板1の露出している箇所の所定の部分のみを加工することにより、各音叉6のシリコン基板1部分を分離し、これにより所定の形状の音叉6が得られるようになるものである。   Subsequently, the silicon substrate processing step as the next step will be described with reference to FIG. 7. By processing only a predetermined portion of the exposed portion of the silicon substrate 1 of the wafer 5, the silicon substrate of each tuning fork 6 is processed. By separating one part, a tuning fork 6 having a predetermined shape can be obtained.

このように本実施の形態による強誘電体材料を用いた電子部品の製造方法は、加工工程の途中で分極処理を行うことにより大きな単位で作業を行うことができるため、分極処理の際に必要となる上部電極及び下部電極への電圧供給用プローブや配線を最小限にすることが可能になり、これにより分極装置のコストを大幅に削減することができるばかりでなく、分極中に流れる分極電流を監視しながら分極電圧を制御して分極を行うようにしたことによって安定した分極を行うことができるようになり、特性のバラツキを抑えて品質、信頼性の向上を図ることが可能となるものである。   As described above, the method of manufacturing an electronic component using the ferroelectric material according to the present embodiment can be performed in a large unit by performing the polarization process in the middle of the processing process. It is possible to minimize the voltage supply probe and wiring to the upper electrode and the lower electrode, which can greatly reduce the cost of the polarization device, as well as the polarization current flowing during polarization By controlling the polarization voltage while monitoring the polarization, it becomes possible to perform stable polarization, and it is possible to improve quality and reliability by suppressing variation in characteristics It is.

(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項5に記載の発明について説明する。
(Embodiment 2)
Hereinafter, the invention according to claim 5 of the present invention will be described using the second embodiment.

本実施の形態は、上記実施の形態1による強誘電体材料を用いた電子部品の製造方法の分極工程以降の工程が一部異なるようにしたものであり、これ以外は実施の形態1と同様であるために同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ以下に図面を用いて説明する。   In the present embodiment, the steps after the polarization step of the electronic component manufacturing method using the ferroelectric material according to the first embodiment are partially different, and the other steps are the same as in the first embodiment. Therefore, the same reference numerals are given to the same parts, and detailed description thereof is omitted, and only different parts will be described below with reference to the drawings.

図12は本発明の実施の形態2による強誘電体材料を用いた電子部品の製造方法の中で、分極工程を終えた状態を示した断面図であり、図12において、13は上部電極加工工程(1)において放電加工により除去された切断部、14はこの切断部13により分離された上部電極4と下部電極2を電気的に接続した接続部であり、この接続部14は金を蒸着することにより形成したものであり、このように上部電極4と下部電極2を電気的に接続した状態で分極工程を行った以降の各加工工程を行うようにしたものである。   FIG. 12 is a cross-sectional view showing a state in which the polarization process is completed in the method of manufacturing an electronic component using the ferroelectric material according to the second embodiment of the present invention. In FIG. The cut portion removed by electric discharge machining in step (1), 14 is a connection portion that electrically connects the upper electrode 4 and the lower electrode 2 separated by the cut portion 13, and this connection portion 14 deposits gold. In this way, each processing step after the polarization step is performed in a state where the upper electrode 4 and the lower electrode 2 are electrically connected is performed.

このように本実施の形態による強誘電体材料を用いた電子部品の製造方法は、強誘電体3を分極させる分極処理を行った以降の各加工工程を、ウエハ5に形成された上部電極4と下部電極2を電気的に接続して同電位にした状態で行うようにしたことにより、分極処理を行った強誘電体3の分極が劣化したり、また、進行したりすることがないようになるものであり、強誘電体3の性能を十分に発揮し、さらに優れた性能の強誘電体材料を用いた電子部品を安定して製造することが可能になるものである。   As described above, in the method of manufacturing an electronic component using the ferroelectric material according to the present embodiment, the upper electrode 4 formed on the wafer 5 is subjected to each processing step after the polarization process for polarizing the ferroelectric 3 is performed. And the lower electrode 2 are electrically connected and set at the same potential, so that the polarization of the ferroelectric 3 subjected to the polarization treatment does not deteriorate or progress. Thus, the performance of the ferroelectric 3 can be sufficiently exhibited, and an electronic component using a ferroelectric material having further excellent performance can be stably manufactured.

本発明による強誘電体材料を用いた電子部品の製造方法は、ウエハ上に音叉を製造する場合の分極装置等の設備コストの削減、生産効率向上による製造コストの削減が図れると共に、特性のバラツキを抑えて品質、信頼性の向上を図ることが可能になるという効果を有し、強誘電体材料を用いた音叉やアクチュエータ等の電子部品の製造方法等として有用である。   The method of manufacturing an electronic component using a ferroelectric material according to the present invention can reduce the equipment cost of a polarization device and the like when manufacturing a tuning fork on a wafer, and can reduce the manufacturing cost by improving the production efficiency, as well as the variation in characteristics. It is effective as a method for manufacturing electronic parts such as tuning forks and actuators using a ferroelectric material.

本発明の実施の形態1による強誘電体材料を用いた電子部品の製造方法の製造工程を示したフローチャートThe flowchart which showed the manufacturing process of the manufacturing method of the electronic component using the ferroelectric material by Embodiment 1 of this invention 同成膜工程を説明するウエハの断面図Cross-sectional view of wafer explaining the film formation process 同上部電極加工工程(1)を説明するウエハの断面図Sectional drawing of the wafer explaining the upper electrode processing step (1) 同強誘電体加工工程(1)を説明するウエハの断面図Sectional view of wafer explaining the same ferroelectric processing step (1) 同分極工程を説明するウエハの断面図Wafer cross-sectional view explaining the polarization process 同下部電極加工工程を説明するウエハの断面図Wafer sectional view explaining the lower electrode machining process 同シリコン基板加工工程を説明するウエハの断面図Sectional view of the wafer explaining the silicon substrate processing process 同上部電極加工工程(1)と強誘電体加工工程(1)を終えたウエハの平面図Plan view of wafer after finishing upper electrode processing step (1) and ferroelectric processing step (1) 同上部電極加工工程(1)と強誘電体加工工程(1)を終えたA列の平面図Plan view of row A after finishing upper electrode processing step (1) and ferroelectric processing step (1) 同分極工程における分極電圧と時間、ウエハ温度の関係を示した特性図Characteristic diagram showing the relationship between polarization voltage, time, and wafer temperature in the same polarization process 同分極工程における分極電流を示した特性図Characteristic diagram showing polarization current in the same polarization process 本発明の実施の形態2による分極工程を終えた状態を示した断面図Sectional drawing which showed the state which finished the polarization process by Embodiment 2 of this invention 従来の音叉を分極する方法を説明する概念図Conceptual diagram explaining a conventional method of polarizing a tuning fork

符号の説明Explanation of symbols

1 シリコン基板
2 下部電極
3 強誘電体
4 上部電極
5 ウエハ
6 音叉
7 電圧供給用端子
8 電圧測定用端子
9,10 連結部
11A〜11H 電圧発生器
12A〜12H 電流測定器
13 切断部
14 接続部
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Lower electrode 3 Ferroelectric material 4 Upper electrode 5 Wafer 6 Tuning fork 7 Voltage supply terminal 8 Voltage measurement terminal 9,10 Connection part 11A-11H Voltage generator 12A-12H Current measurement device 13 Cutting part 14 Connection part

Claims (5)

シリコン基板上に下部電極と強誘電体と上部電極を順次成膜してウエハを作製し、このウエハを機械加工して所望の構成の電子部品を得る強誘電体材料を用いた電子部品の製造方法において、上記ウエハの上部電極及び強誘電体の加工を行った後に強誘電体を分極させる分極処理を行い、この後で下部電極及びシリコン基板の加工を行って所望の構成の電子部品を得るようにした強誘電体材料を用いた電子部品の製造方法。 Manufacture of electronic components using ferroelectric materials that produce a wafer by fabricating a wafer by sequentially depositing a lower electrode, a ferroelectric, and an upper electrode on a silicon substrate, and machining the wafer to obtain an electronic component of a desired configuration In the method, after processing the upper electrode and the ferroelectric of the wafer, a polarization process for polarizing the ferroelectric is performed, and then the lower electrode and the silicon substrate are processed to obtain an electronic component having a desired configuration. An electronic component manufacturing method using the ferroelectric material thus made. 強誘電体を分極させる分極処理が、ウエハを複数の列に分割し、この分割された列毎に分極させるようにした請求項1に記載の強誘電体材料を用いた電子部品の製造方法。 2. The method of manufacturing an electronic component using a ferroelectric material according to claim 1, wherein the polarization process for polarizing the ferroelectric material divides the wafer into a plurality of rows and polarizes the divided rows. 強誘電体を分極させる分極処理が、分極中に流れる分極電流を測定し、この分極電流により分極電圧を制御して分極させるようにした請求項1に記載の強誘電体材料を用いた電子部品の製造方法。 The electronic component using the ferroelectric material according to claim 1, wherein the polarization process for polarizing the ferroelectric material measures a polarization current flowing during the polarization, and controls the polarization voltage to control the polarization. Manufacturing method. 分極電圧の制御が、分極電流が所定の値以上になった後、分極電圧を降下させるように制御するものである請求項3に記載の強誘電体材料を用いた電子部品の製造方法。 4. The method of manufacturing an electronic component using a ferroelectric material according to claim 3, wherein the polarization voltage is controlled such that the polarization voltage is lowered after the polarization current becomes a predetermined value or more. 強誘電体を分極させる分極処理を行った以降の各加工工程を、ウエハに形成された上部電極と下部電極を電気的に接続して同電位にした状態で行うようにした請求項1に記載の強誘電体材料を用いた電子部品の製造方法。 2. The respective processing steps after the polarization processing for polarizing the ferroelectric are performed in a state where the upper electrode and the lower electrode formed on the wafer are electrically connected to have the same potential. Of manufacturing electronic parts using any ferroelectric material.
JP2005007390A 2005-01-14 2005-01-14 Method for manufacturing electronic component using ferroelectric material Withdrawn JP2006196739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007390A JP2006196739A (en) 2005-01-14 2005-01-14 Method for manufacturing electronic component using ferroelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007390A JP2006196739A (en) 2005-01-14 2005-01-14 Method for manufacturing electronic component using ferroelectric material

Publications (1)

Publication Number Publication Date
JP2006196739A true JP2006196739A (en) 2006-07-27

Family

ID=36802561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007390A Withdrawn JP2006196739A (en) 2005-01-14 2005-01-14 Method for manufacturing electronic component using ferroelectric material

Country Status (1)

Country Link
JP (1) JP2006196739A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
JP2012054317A (en) * 2010-08-31 2012-03-15 Hitachi Cable Ltd Substrate provided with piezoelectric thin film and manufacturing method thereof
JP2015060875A (en) * 2013-09-17 2015-03-30 株式会社リコー Electro-mechanical conversion element, liquid droplet ejection head and ink jet recording device
WO2019054336A1 (en) * 2017-09-12 2019-03-21 日本碍子株式会社 Method for producing piezoelectric element
WO2023188586A1 (en) * 2022-03-30 2023-10-05 住友精密工業株式会社 Method for manufacturing ferroelectric film-forming substrate and ferroelectric film-forming substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
US8567026B2 (en) 2008-06-17 2013-10-29 Fujifilm Corporation Piezoelectric film poling method
JP2012054317A (en) * 2010-08-31 2012-03-15 Hitachi Cable Ltd Substrate provided with piezoelectric thin film and manufacturing method thereof
JP2015060875A (en) * 2013-09-17 2015-03-30 株式会社リコー Electro-mechanical conversion element, liquid droplet ejection head and ink jet recording device
WO2019054336A1 (en) * 2017-09-12 2019-03-21 日本碍子株式会社 Method for producing piezoelectric element
JPWO2019054336A1 (en) * 2017-09-12 2020-08-27 日本碍子株式会社 Piezoelectric element manufacturing method
JP7201603B2 (en) 2017-09-12 2023-01-10 日本碍子株式会社 Piezoelectric element manufacturing method
WO2023188586A1 (en) * 2022-03-30 2023-10-05 住友精密工業株式会社 Method for manufacturing ferroelectric film-forming substrate and ferroelectric film-forming substrate

Similar Documents

Publication Publication Date Title
CN101989642B (en) Commonly-poled piezoeletric device
DE102004058879B4 (en) MEMS microphone and method of manufacture
CN100530735C (en) Process for fabricating piezoelectric element
JP2005302917A5 (en)
JP2006196739A (en) Method for manufacturing electronic component using ferroelectric material
JP2009204393A5 (en)
JP2009302445A (en) Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
US9142750B2 (en) Piezoelectric element with electrodes allowing substrate strain and method for manufacturing the same
JP4796657B1 (en) Switch device and test device
CN104752602B (en) Possesses the manufacture method of the sensor element of PZT film
JP2671871B2 (en) Piezoelectric transformer and manufacturing method thereof
JP2009230847A (en) Head slider, magnetic disk device, and method of manufacturing head slider
JP5394435B2 (en) Manufacturing method, switch device, transmission path switching device, and test device
JP2007251150A (en) Piezo-component and method for manufacturing the same and method for determining disposition structure of electrode in component
WO2001023185A1 (en) Ink jet head, method of manufacturing ink jet head and ink jet recorder
US20160327445A1 (en) High temperature flexural mode piezoelectric dynamic pressure sensor
CN102684630A (en) Wafer and method of manufacturing package product
JP7049256B2 (en) Piezoelectric transformer manufacturing method and piezoelectric transformer
JP2013026195A (en) Switching device, manufacturing method of the same, transmission channel switching device, and testing device
CN110299445A (en) The production method of thermoelectricity micro-refrigerator (variant)
JP2005340631A (en) Piezoelectric element component and electronic equipment
JP2002118305A (en) Multielectrode piezoelectric device wiring method, and multielectrode piezoelectric device
JPH04273186A (en) Polarization method of block-like piezoelectric
JP2015018968A5 (en)
US8656740B2 (en) Manufacturing method of glass-sealed package, and glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080829