JP2006196714A - Cooler for electronic component - Google Patents

Cooler for electronic component Download PDF

Info

Publication number
JP2006196714A
JP2006196714A JP2005006938A JP2005006938A JP2006196714A JP 2006196714 A JP2006196714 A JP 2006196714A JP 2005006938 A JP2005006938 A JP 2005006938A JP 2005006938 A JP2005006938 A JP 2005006938A JP 2006196714 A JP2006196714 A JP 2006196714A
Authority
JP
Japan
Prior art keywords
pump
electronic component
drive motor
coolant
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005006938A
Other languages
Japanese (ja)
Inventor
Riichiro Hibiya
利一郎 日比谷
Yoshinori Tangi
芳則 丹木
Tsuneo Ueyasu
恒雄 上保
Toyohiro Kawahara
豊弘 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2005006938A priority Critical patent/JP2006196714A/en
Priority to US11/191,020 priority patent/US20060151151A1/en
Publication of JP2006196714A publication Critical patent/JP2006196714A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a cooler and reduce its driving sound by improving the driving efficiencies of its compressing pump and its air-cooling fan. <P>SOLUTION: In the cooler, there are disposed on a cooling-liquid circulating flow passage 13 a radiator 25 having an air-cooling fan 15 and a cooling-liquid tank 14 having a heat sink for electronic components and having a compressing pump 18 for a forced circulation. Further, a pump/fan driving unit 27 is interposed between the cooling-liquid tank 14 and the radiator 25, and the air-cooling fan 15 and the compressing pump 18 are coupled in a drivable way to a single driving motor 20. Also, the compressing pump 18 so has a magnet rotor 19 stored in a rotatable way in the cooling-liquid tank 14, and so has a rotor driver 22 provided fixedly in the end of the output shaft 21 of the driving motor 20 as to rotate and drive magnetically the magnet rotor 19 by the rotor driver 22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電子部品冷却装置に関するものであり、特に、コンピュータ等の電子部品の水冷方式に適用して好適な電子部品冷却装置に関するものである。   The present invention relates to an electronic component cooling apparatus, and more particularly to an electronic component cooling apparatus suitable for application to a water cooling system for electronic components such as computers.

従来、電子機器の部品、例えばパソコンのCPUに用いられる水冷方式を採用した冷却装置においては、冷却液タンクの冷却液をラジエータ側に圧送するため、冷却液タンクの内部又は外部に圧送ポンプが設けたものがある。図4は、此種の電子部品冷却装置1の一例を示す全体構成図である。   Conventionally, in a cooling device adopting a water cooling method used for electronic parts, for example, a CPU of a personal computer, a pump is provided inside or outside the coolant tank to pump the coolant in the coolant tank to the radiator side. There is something. FIG. 4 is an overall configuration diagram showing an example of this type of electronic component cooling apparatus 1.

図4において、2は空冷ファン3を備えたラジエータであり、4は圧送ポンプ5を備えた冷却液タンクである。該冷却液タンク4とラジエータ2とは流体流路6により接続されている。又、7は熱源たるCPU(電子部品)を冷却するための電子部品用ヒートシンクである。ヒートシンク7とラジエータ2は流体流路8により接続され、且つ、ヒートシンク7と冷却液タンク4は流体流路9により接続されている。   In FIG. 4, 2 is a radiator provided with an air cooling fan 3, and 4 is a coolant tank provided with a pressure feed pump 5. The coolant tank 4 and the radiator 2 are connected by a fluid flow path 6. Reference numeral 7 denotes a heat sink for electronic components for cooling a CPU (electronic component) as a heat source. The heat sink 7 and the radiator 2 are connected by a fluid flow path 8, and the heat sink 7 and the coolant tank 4 are connected by a fluid flow path 9.

前記の構成において、冷却液タンク4内の冷却液Cは、圧送ポンプ5によりラジエータ2を経てヒートシンク7に供給された後に、冷却液タンク4に戻されて、再び前記同様に冷却液Cが循環供給される。この電子部品冷却装置1では、空冷ファン3と圧送ポンプ5は、それぞれ別々の駆動モータにより駆動されている(例えば、特許文献1)。
特開2004−304076号公報
In the above-described configuration, the coolant C in the coolant tank 4 is supplied to the heat sink 7 via the radiator 2 by the pressure feed pump 5 and then returned to the coolant tank 4 so that the coolant C circulates again in the same manner as described above. Supplied. In the electronic component cooling apparatus 1, the air cooling fan 3 and the pressure feed pump 5 are driven by separate drive motors (for example, Patent Document 1).
JP 2004-304076 A

従来の上記冷却装置1は、冷却液用圧送ポンプ5を駆動する駆動モータと、空冷ファン3を駆動する駆動モータとが互いに独立別個に設けられているので、電子部品冷却装置全体として、圧送ポンプ5及び空冷ファン3に対する駆動効率が悪いという問題がある。また、駆動モータはポンプ用とファン用の2台を必要とするため、2台の駆動モータを設置するための場所(スペース)が広くなって、小型化が図れないと共にコスト高を招き、加えて、各々の駆動モータから発生する騒音も大きくなる。   Since the conventional cooling device 1 is provided with a drive motor for driving the coolant pump 5 and a drive motor for driving the air cooling fan 3 separately and independently from each other, the entire electronic component cooling device has a pressure pump. 5 and the air cooling fan 3 have a problem of poor driving efficiency. Moreover, since the drive motor requires two units for the pump and the fan, the space (space) for installing the two drive motors is widened, so that the size cannot be reduced and the cost is increased. Thus, the noise generated from each drive motor also increases.

そこで、駆動モータによる圧送ポンプ及び空冷ファンの駆動効率を向上させると共に騒音を抑制し、且つ、電子部品冷却装置の小型化を図るために解決すべき技術的課題が生じてくるのであり、本発明は該課題を解決することを目的とする。   Therefore, there is a technical problem to be solved in order to improve the driving efficiency of the pumping pump and the air cooling fan by the drive motor, to suppress noise, and to reduce the size of the electronic component cooling device. Aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、圧送ポンプと、空冷ファン付きラジエータと、電子部品用ヒートシンクとを、冷却液循環経路上に配置して成る電子部品冷却装置において、前記圧送ポンプの駆動源と、前記ラジエータの空冷ファンの駆動源とを単一の駆動モータにより形成した電子部品冷却装置を提供する。   The present invention has been proposed in order to achieve the above object, and the invention according to claim 1 is characterized in that a pump, a radiator with an air cooling fan, and a heat sink for electronic components are arranged on a coolant circulation path. In the electronic component cooling apparatus, the electronic component cooling apparatus in which the drive source of the pumping pump and the drive source of the air cooling fan of the radiator are formed by a single drive motor is provided.

この構成によれば、前記空冷ファン及び圧送ポンプの駆動源が単一の駆動モータで構成されているので、1台の駆動モータにより前記空冷ファンと圧送ポンプが駆動される。即ち、空冷ファンによるラジエータに対する空冷作用と、圧送ポンプによる冷却液に対する強制循環作用とが1台の駆動モータの運転により行われる。   According to this configuration, since the driving source of the air cooling fan and the pressure pump is constituted by a single drive motor, the air cooling fan and the pressure pump are driven by one drive motor. That is, the air cooling action for the radiator by the air cooling fan and the forced circulation action for the coolant by the pressure feed pump are performed by the operation of one drive motor.

請求項2記載の発明は、上記空冷ファンは、上記駆動モータの出力軸の一端部に直結され、且つ、該出力軸の他端部に上記圧送ポンプが直結されている請求項1記載の電子部品冷却装置を提供する。   According to a second aspect of the present invention, in the electronic device according to the first aspect, the air cooling fan is directly connected to one end portion of the output shaft of the drive motor, and the pumping pump is directly connected to the other end portion of the output shaft. A component cooling device is provided.

この構成によれば、前記駆動モータの出力軸に空冷ファン及び圧送ポンプが直結されているので、出力軸の回転により空冷ファンと圧送ポンプの双方が同時に直接駆動され、空冷ファン及び圧送ポンプと出力軸との間にギアを設ける必要がない。   According to this configuration, since the air cooling fan and the pressure pump are directly connected to the output shaft of the drive motor, both the air cooling fan and the pressure pump are directly driven simultaneously by the rotation of the output shaft. There is no need to provide a gear between the shaft.

請求項3記載の発明は、上記圧送ポンプは、冷却液タンク内に回転自在に収容されたマグネットロータ部と、上記駆動モータの出力軸の端部に固設したロータ駆動部とを有し、該ロータ駆動部の回転によって前記マグネットロータ部が磁気的に回転駆動される請求項1又は2記載の電子部品冷却装置を提供する。   The invention according to claim 3 is characterized in that the pressure pump has a magnet rotor part rotatably accommodated in a coolant tank, and a rotor drive part fixed to the end of the output shaft of the drive motor, The electronic component cooling device according to claim 1 or 2, wherein the magnet rotor part is magnetically driven to rotate by the rotation of the rotor driving part.

この構成によれば、前記ロータ駆動部が前記出力軸と一体に回転することにより、冷却液タンク内のマグネットロータ部が磁気的に回転駆動され、冷却液タンク内の冷却液がラジエータ側に圧送される。   According to this configuration, when the rotor driving unit rotates integrally with the output shaft, the magnet rotor unit in the cooling liquid tank is magnetically driven to rotate, and the cooling liquid in the cooling liquid tank is pumped to the radiator side. Is done.

請求項4記載の発明は、上記圧送ポンプは、冷却液タンク内に回転自在に収容された羽根部材を有し、該羽根部材の軸部が上記駆動モータの出力軸の端部に直結されていることを特徴とする請求項1又は2記載の電子部品冷却装置を提供する。   According to a fourth aspect of the present invention, the pressure pump includes a blade member rotatably accommodated in a coolant tank, and a shaft portion of the blade member is directly connected to an end portion of the output shaft of the drive motor. An electronic component cooling device according to claim 1 or 2, wherein the electronic component cooling device is provided.

この構成によれば、前記圧送ポンプの羽根部材を駆動モータの出力軸に直結したので、羽根部材が出力軸と一体に回転することにより、冷却液タンク内の冷却液がラジエータ側に圧送される。   According to this configuration, since the blade member of the pressure pump is directly connected to the output shaft of the drive motor, the blade member rotates integrally with the output shaft, so that the coolant in the coolant tank is pumped to the radiator side. .

請求項1記載の発明は、前記空冷ファン及び圧送ポンプを駆動するために、従来2台の駆動モータが必要であったのが、1台の駆動モータで済むので、従来に較べて該モータ動力の駆動伝達効率が大幅に向上すると共に、駆動モータの設置スペースを半減でき、空冷ファンと圧送ポンプの駆動部の小型化を実現することができる。さらに、本発明は、駆動モータ1台分のコストダウンが図れるばかりでなく、駆動モータから発生する騒音を半分に抑制することができる。   According to the first aspect of the present invention, two drive motors are conventionally required to drive the air-cooling fan and the pressure feed pump, but only one drive motor is required. The drive transmission efficiency of the motor can be greatly improved, the installation space of the drive motor can be halved, and the drive unit of the air cooling fan and the pressure feed pump can be downsized. Furthermore, the present invention not only can reduce the cost for one drive motor, but also can suppress the noise generated from the drive motor in half.

請求項2記載の発明は、上記出力軸により空冷ファン及び圧送ポンプが直接駆動され、中間ギアを省略できるので、請求項1記載の効果に加えて、空冷ファン及び圧送ポンプの円滑な同期運転が確保されるだけでなく、構造がシンプルであり、部品点数を低減化させることができる。   In the invention described in claim 2, since the air cooling fan and the pressure pump are directly driven by the output shaft and the intermediate gear can be omitted, in addition to the effect of claim 1, smooth synchronous operation of the air cooling fan and the pressure pump can be achieved. In addition to being ensured, the structure is simple and the number of parts can be reduced.

請求項3記載の発明は、冷却液タンク内に圧送ポンプのマグネットロータ部が収容され、且つ、該マグネットロータ部は回転軸受け部を有しないので、請求項1又は2記載の効果に加えて、一層の小型化が図られるだけでなく、軸受け用シール部材が不要になり、且つ、液漏れの心配がないという優れた効果を奏する。又、マグネットロータ部は回転時に軸摺動抵抗を受けないので、より円滑な回転を確保できるのみならず、回転駆動時に生じる騒音を一層効果的に抑制することができる。   In the invention according to claim 3, since the magnet rotor part of the pressure feed pump is accommodated in the coolant tank, and the magnet rotor part does not have the rotating bearing part, in addition to the effect according to claim 1 or 2, In addition to the further miniaturization, the bearing sealing member is unnecessary, and there is an excellent effect that there is no fear of liquid leakage. In addition, since the magnet rotor portion does not receive shaft sliding resistance during rotation, not only smooth rotation can be ensured, but also noise generated during rotation driving can be more effectively suppressed.

請求項4記載の発明は、冷却液タンク内に圧送ポンプの羽根部材が収容され、且つ、該羽根部材が駆動モータの出力軸により直接駆動されるので、請求項1又は2記載の効果に加えて、一層の小型化が図られるだけでなく、構造が簡単で製作が容易であるうえに、駆動モータから圧送ポンプへの回転駆動力の伝達効率を更に高めることができる。   In the invention described in claim 4, since the blade member of the pressure feed pump is accommodated in the coolant tank, and the blade member is directly driven by the output shaft of the drive motor, the effect of claim 1 or 2 is added. Thus, not only can the size be further reduced, but the structure is simple and easy to manufacture, and the transmission efficiency of the rotational driving force from the drive motor to the pressure pump can be further increased.

本発明は、圧送ポンプと、空冷ファン付きラジエータと、電子部品用ヒートシンクとを、冷却液循環経路上に配置して成る電子部品冷却装置において、前記圧送ポンプの駆動源と、前記ラジエータの空冷ファンの駆動源とを単一の駆動モータにより形成したことにより、モータ駆動効率の向上、駆動装置部の小型化、並びにモータ駆動に伴う騒音の抑制という目的を達成した。   The present invention provides an electronic component cooling apparatus in which a pressure feed pump, a radiator with an air cooling fan, and a heat sink for electronic components are arranged on a coolant circulation path, the drive source of the pressure feed pump, and the air cooling fan of the radiator By forming the drive source with a single drive motor, the objectives of improving motor drive efficiency, downsizing the drive unit, and suppressing noise associated with motor drive were achieved.

以下、本発明の一実施の形態を図1乃至図3に従って説明する。本実施例は、空冷ファン15を備えたラジエータ25と、電子部品用ヒートシンク12と、冷却液強制循環用圧送ポンプ18を備えた冷却液タンク14とを循環経路13,24により冷却液再循環可能に接続した強制水冷方式のCPUクーラー装置において、空冷ファン15の駆動モータ20の動力を使って、圧送ポンプ18をも同時に回転駆動させるようにしたものである。なお、本実施例では、圧送ポンプ18と冷却液タンク14は、装置の更なる小型化を実現するために、一体構造に形成しているが、別体構造に形成することも勿論可能である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In this embodiment, a coolant 25 including an air cooling fan 15, a heat sink 12 for electronic components, and a coolant tank 14 provided with a pressure feed pump 18 for forced circulation of coolant can be recirculated with coolant through circulation paths 13 and 24. In the forced water cooling type CPU cooler device connected to, the pump pump 18 is also rotated at the same time using the power of the drive motor 20 of the air cooling fan 15. In the present embodiment, the pumping pump 18 and the coolant tank 14 are formed in an integral structure in order to realize further downsizing of the apparatus, but can of course be formed in a separate structure. .

図1は、一実施の形態に係る電子部品冷却装置11の全体構成図である。電子部品冷却装置11は、電子部品用金属製ヒートシンク12として機能するCPU用水冷ヘッドを具備している。該ヒートシンク12は、発熱源となるCPUに接触して、CPUの発生熱を冷却液(冷却水又はグリコール系の不凍液)Cに移して放出させる。又、ヒートシンク12の流入口には、流体流路13を介して冷却液(リザーブ)タンク14が接続され、冷却液タンク14には冷却液Cが蓄えられている。   FIG. 1 is an overall configuration diagram of an electronic component cooling device 11 according to an embodiment. The electronic component cooling device 11 includes a CPU water-cooling head that functions as a metal heat sink 12 for electronic components. The heat sink 12 is in contact with the CPU serving as a heat generation source, and transfers the heat generated by the CPU to the cooling liquid (cooling water or glycol-based antifreezing liquid) C for release. A coolant tank 14 is connected to the inlet of the heat sink 12 via a fluid flow path 13, and the coolant C is stored in the coolant tank 14.

図2に示すように、冷却液タンク14の一側壁、他側壁にはそれぞれ流入口16、流出口17が形成されている。更に、冷却液タンク14には、冷却液Cをヒートシンク12側に強制循環させるための回転式圧送ポンプ18が具備されている。この圧送ポンプ18は、円板型のマグネットロータ部19と円板型のロータ駆動部22とにより構成され、該ロータ駆動部22は、駆動モータ20の出力軸21の一端部に固設されている。又、前記マグネットロータ部19は、冷却液タンク14内に回転自在に収容されている。   As shown in FIG. 2, an inlet 16 and an outlet 17 are formed on one side wall and the other side wall of the coolant tank 14, respectively. Further, the coolant tank 14 is provided with a rotary pressure feed pump 18 for forcibly circulating the coolant C to the heat sink 12 side. The pumping pump 18 includes a disc-shaped magnet rotor portion 19 and a disc-shaped rotor driving portion 22, and the rotor driving portion 22 is fixed to one end portion of the output shaft 21 of the driving motor 20. Yes. The magnet rotor portion 19 is rotatably accommodated in the coolant tank 14.

また、マグネットロータ部19の表面には、複数枚の羽根23が一体に形成され、該羽根23は流入口16側に突出している。更に、マグネットロータ部19及びロータ駆動部22は、冷却液タンク14の壁面を介して、互いに同芯上にて対向して近接配置され、これら各対向面の周縁部には、複数のN極とS極が円周方向に交互に着磁されている。   A plurality of blades 23 are integrally formed on the surface of the magnet rotor portion 19, and the blades 23 protrude toward the inlet 16. Further, the magnet rotor unit 19 and the rotor driving unit 22 are arranged close to each other on the same core via the wall surface of the coolant tank 14, and a plurality of N poles are provided at the peripheral portions of these opposing surfaces. And S poles are alternately magnetized in the circumferential direction.

従って、ロータ駆動部22の回転によって、マグネットロータ部19が磁気的に回転駆動され、流入口16から冷却液タンク14内に冷却液Cが流入すると同時に、流出口17から冷却液Cが流出する。流出した冷却液Cは、流体流路13を通ってヒートシンク12側に供給される。   Accordingly, the rotation of the rotor drive unit 22 causes the magnet rotor unit 19 to be rotationally driven magnetically, so that the coolant C flows into the coolant tank 14 from the inlet 16 and at the same time the coolant C flows out from the outlet 17. . The coolant C that has flowed out is supplied to the heat sink 12 through the fluid flow path 13.

前記ヒートシンク12の流出口は、流体流路24を介して、ラジエータ25の流入口26に接続されている。これにより、CPUを冷却した後の冷却液Cは、流体流路24を通ってラジエータ25に供給される。このラジエータ25は、冷却液Cから熱を奪って空気中に排出する。   An outlet of the heat sink 12 is connected to an inlet 26 of a radiator 25 through a fluid flow path 24. Thereby, the coolant C after cooling the CPU is supplied to the radiator 25 through the fluid flow path 24. The radiator 25 takes heat from the coolant C and discharges it into the air.

ラジエータ25と冷却液タンク14との間には、ポンプ・ファン駆動ユニット27が配設されている。該ポンプ・ファン駆動ユニット27は、1台の駆動モータ20と、該駆動モータ20の一側(図2における左側)に近接配置された空冷ファン15と、前記駆動モータ20の他側(図2における右側)に近接配置されたロータ駆動部22とから成る。   A pump / fan drive unit 27 is disposed between the radiator 25 and the coolant tank 14. The pump / fan drive unit 27 includes one drive motor 20, an air cooling fan 15 disposed close to one side of the drive motor 20 (left side in FIG. 2), and the other side of the drive motor 20 (FIG. 2). And the rotor drive unit 22 disposed close to the right side.

駆動モータ20の出力軸21の一端部には、前述の如くロータ駆動部22が固設直結されていると共に、出力軸21の他端部には、空冷ファン15が固設直結されている。   As described above, the rotor drive unit 22 is fixed and directly connected to one end portion of the output shaft 21 of the drive motor 20, and the air cooling fan 15 is fixed and directly connected to the other end portion of the output shaft 21.

上記構成からなる電子部品冷却装置11は、駆動モータ20の出力軸21を回転させると、空冷ファン15及びロータ駆動部22の双方が同期して回転駆動される。そして、空冷ファン15の回転によりラジエータ25が空冷され、冷却液Cから熱を奪って空気中に排出する。   In the electronic component cooling device 11 having the above configuration, when the output shaft 21 of the drive motor 20 is rotated, both the air cooling fan 15 and the rotor drive unit 22 are rotationally driven in synchronization. Then, the radiator 25 is cooled by the rotation of the air cooling fan 15, takes heat from the coolant C and discharges it into the air.

又、ロータ駆動部22の回転により、圧送ポンプ18のマグネットロータ部19も磁気的に一体回転する。そして、マグネットロータ部19と共に回転する羽根23の水流作用により、ラジエータ25側の冷却液Cが流入口16から冷却液タンク14内に流入し、同時に、該冷却液タンク14の流出口17から冷却液Cが流出する。この流出した冷却液Cは、流体流路13を経て、ヒートシンク12側に強制的に供給される。   Further, due to the rotation of the rotor drive unit 22, the magnet rotor unit 19 of the pressure feed pump 18 is also magnetically rotated integrally. Then, the coolant C on the radiator 25 side flows into the coolant tank 14 from the inlet 16 by the water flow action of the blades 23 rotating together with the magnet rotor portion 19, and at the same time, the coolant C cools from the outlet 17 of the coolant tank 14. Liquid C flows out. The coolant C that has flowed out is forcibly supplied to the heat sink 12 side through the fluid flow path 13.

而して、該ヒートシンク12は、CPUの発生熱を冷却液Cに移動させて、CPUの冷却を行う。該冷却後の冷却液Cは、流体流路24及びラジエータ25を経て、冷却液タンク14に戻されたあと、前記同様に、圧送ポンプ18によりヒートシンク12側に強制循環される。   Thus, the heat sink 12 cools the CPU by transferring the heat generated by the CPU to the coolant C. The cooled cooling liquid C is returned to the cooling liquid tank 14 through the fluid flow path 24 and the radiator 25, and then forcibly circulated to the heat sink 12 side by the pumping pump 18 as described above.

ここで、圧送ポンプ18のマグネットロータ部19は、ベアリングレスで磁気的に回転するので、ロータ回転時に軸受け摺動抵抗が生ぜず、液漏れの恐れがなくシール部材を必要としない。   Here, since the magnet rotor portion 19 of the pumping pump 18 is magnetically rotated without bearings, no bearing sliding resistance is generated when the rotor rotates, there is no risk of liquid leakage, and no seal member is required.

又、空冷ファン15及び圧送ポンプ18は、単一の駆動モータ20により直動されるので、1台の駆動モータ20で空冷ファン15及び圧送ポンプ18が駆動され、ラジエータ25に対する空冷と、冷却液Cに対する強制循環とが同時に実施される。   Further, since the air cooling fan 15 and the pressure pump 18 are directly moved by a single drive motor 20, the air cooling fan 15 and the pressure pump 18 are driven by a single drive motor 20, and the air cooling for the radiator 25 and the cooling liquid are performed. The forced circulation for C is performed simultaneously.

従って、モータ動力の駆動伝達効率が向上すると共に、ポンプ・ファン駆動ユニット27の設置空間が縮小して、その分だけ装置の小型化が可能になる。さらに、従来2台必要であったモータの数が1台で済むので、駆動モータ20から生ずる騒音が小さくなる。又、空冷ファン15及び圧送ポンプ18と出力軸21との間にギアを設ける必要がないので、構造がシンプルであり部品点数を低減できる。   Therefore, the drive transmission efficiency of the motor power is improved and the installation space of the pump / fan drive unit 27 is reduced, and the apparatus can be downsized accordingly. Furthermore, since the number of motors conventionally required is two, noise generated from the drive motor 20 is reduced. Further, since it is not necessary to provide a gear between the air cooling fan 15 and the pressure feed pump 18 and the output shaft 21, the structure is simple and the number of parts can be reduced.

本実施例に係るポンプは、マグネット回転駆動式のものに限らず、他のタイプのポンプも採用できる。例えば、図3に示すように、冷却液タンク14内に回転自在に収容された羽根部材29を有し、この羽根部材29の軸部が、駆動モータ20の出力軸21の一端部に直結されてなる圧送ポンプ28も採用できる。   The pump according to the present embodiment is not limited to a magnet rotation drive type, and other types of pumps may be employed. For example, as shown in FIG. 3, the blade member 29 is rotatably accommodated in the coolant tank 14, and the shaft portion of the blade member 29 is directly connected to one end portion of the output shaft 21 of the drive motor 20. It is also possible to adopt a pressure feed pump 28 formed as follows.

このように構成しても、圧送ポンプ28と空冷ファン15の駆動効率が向上し、電子部品冷却装置の小型化が可能になる。更に、構造がシンプルであるのみならず、モータ駆動の静音性が増大する。なお、図3中の符号30は、出力軸21のタンク貫通箇所に装着したシール部材30である。   Even if comprised in this way, the drive efficiency of the pumping pump 28 and the air cooling fan 15 improves, and the electronic component cooling device can be reduced in size. Furthermore, not only is the structure simple, but the quietness of the motor drive increases. In addition, the code | symbol 30 in FIG. 3 is the sealing member 30 with which the tank penetration part of the output shaft 21 was mounted | worn.

尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明の一実施の形態を示し、電子部品冷却装置の全体構成図。1 is an overall configuration diagram of an electronic component cooling device according to an embodiment of the present invention. 一実施の形態に係るファン・ポンプ駆動ユニットの構成例を説明する部分断面図。The fragmentary sectional view explaining the example of composition of the fan pump drive unit concerning one embodiment. 一実施の形態に係るファン・ポンプ駆動ユニットの他の構成例を説明する部分断面図。The fragmentary sectional view explaining the other example of composition of the fan pump drive unit concerning one embodiment. 従来例を示し、電子部品冷却装置の全体構成図。The conventional example is shown and the whole block diagram of an electronic component cooling device.

符号の説明Explanation of symbols

1 冷却装置
2 ラジエータ
3 空冷ファン
4 冷却液タンク
5 圧送ポンプ
6 流体流路
7 ヒートシンク
8 流体流路
11 電子部品冷却装置
12 電子部品冷却用ヒートシンク
13 流体流路(冷却液循環経路)
14 冷却液タンク
15 空冷ファン
16 流入口
17 流出口
18 圧送ポンプ
19 マグネットロータ部
20 駆動モータ
21 出力軸
22 ロータ駆動部
23 羽根
24 流体流路(冷却液循環経路)
25 ラジエータ
26 流入口
27 ポンプ・ファン駆動ユニット
28 圧送ポンプ
29 羽根部材
30 シール部材
C 冷却液



DESCRIPTION OF SYMBOLS 1 Cooling device 2 Radiator 3 Air cooling fan 4 Coolant tank 5 Pressure feed pump 6 Fluid flow path 7 Heat sink 8 Fluid flow path 11 Electronic component cooling device 12 Electronic component cooling heat sink 13 Fluid flow path (coolant circulation path)
Reference Signs List 14 Coolant Tank 15 Air Cooling Fan 16 Inlet 17 Outlet 18 Pressure Pump 19 Magnet Rotor 20 Drive Motor 21 Output Shaft 22 Rotor Driver 23 Blade 24 Fluid Channel (Coolant Circulation Route)
25 Radiator 26 Inlet 27 Pump / Fan Drive Unit 28 Pump Pump 29 Blade Member 30 Seal Member C Coolant



Claims (4)

圧送ポンプと、空冷ファン付きラジエータと、電子部品用ヒートシンクとを、冷却液循環経路上に配置して成る電子部品冷却装置において、前記圧送ポンプの駆動源と、前記ラジエータの空冷ファンの駆動源とを単一の駆動モータにより形成したことを特徴とする電子部品冷却装置。   In an electronic component cooling apparatus comprising a pressure feed pump, a radiator with an air cooling fan, and a heat sink for electronic components arranged on a coolant circulation path, a drive source for the pressure feed pump, a drive source for the air cooling fan of the radiator, An electronic component cooling apparatus characterized by comprising a single drive motor. 上記空冷ファンは、上記駆動モータの出力軸の一端部に直結され、且つ、該出力軸の他端部に上記圧送ポンプが直結されていることを特徴とする請求項1記載の電子部品冷却装置。   2. The electronic component cooling apparatus according to claim 1, wherein the air cooling fan is directly connected to one end portion of the output shaft of the drive motor, and the pressure feed pump is directly connected to the other end portion of the output shaft. . 上記圧送ポンプは、冷却液タンク内に回転自在に収容されたマグネットロータ部と、上記駆動モータの出力軸の端部に固設したロータ駆動部とを有し、該ロータ駆動部の回転によって前記マグネットロータ部が磁気的に回転駆動されることを特徴とする請求項1又は2記載の電子部品冷却装置。   The pressure feed pump has a magnet rotor portion rotatably accommodated in a coolant tank, and a rotor drive portion fixed to an end portion of an output shaft of the drive motor. 3. The electronic component cooling apparatus according to claim 1, wherein the magnet rotor portion is magnetically rotated. 上記圧送ポンプは、冷却液タンク内に回転自在に収容された羽根部材を有し、該羽根部材の軸部が上記駆動モータの出力軸の端部に直結されていることを特徴とする請求項1又は2記載の電子部品冷却装置。



The pressure feed pump has a blade member rotatably accommodated in a coolant tank, and a shaft portion of the blade member is directly connected to an end portion of an output shaft of the drive motor. The electronic component cooling apparatus according to 1 or 2.



JP2005006938A 2005-01-13 2005-01-13 Cooler for electronic component Pending JP2006196714A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005006938A JP2006196714A (en) 2005-01-13 2005-01-13 Cooler for electronic component
US11/191,020 US20060151151A1 (en) 2005-01-13 2005-07-28 Electronic component cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005006938A JP2006196714A (en) 2005-01-13 2005-01-13 Cooler for electronic component

Publications (1)

Publication Number Publication Date
JP2006196714A true JP2006196714A (en) 2006-07-27

Family

ID=36652097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006938A Pending JP2006196714A (en) 2005-01-13 2005-01-13 Cooler for electronic component

Country Status (2)

Country Link
US (1) US20060151151A1 (en)
JP (1) JP2006196714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222692A (en) * 2010-04-08 2011-11-04 Fujitsu Ltd Cooling device and electronic device
JP2013189889A (en) * 2012-03-13 2013-09-26 Seiko Epson Corp Fluid circulation device and medical device using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490618C (en) * 2005-06-10 2009-05-20 鸿富锦精密工业(深圳)有限公司 Heat radiator
US20110186267A1 (en) * 2010-02-01 2011-08-04 Suna Display Co. Heat transfer device with anisotropic thermal conducting micro structures
KR102392820B1 (en) * 2015-05-21 2022-05-02 주식회사 브라이트론 The Cooling Fan cooled by Cooling Effect of its Surface of the Spindle Fan Blade
CN111181047B (en) * 2020-03-16 2021-03-30 山东恒和电气有限公司 Power distribution cabinet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019165A (en) * 1998-05-18 2000-02-01 Batchelder; John Samuel Heat exchange apparatus
US6327145B1 (en) * 2000-09-01 2001-12-04 Intel Corporation Heat sink with integrated fluid circulation pump
US6408937B1 (en) * 2000-11-15 2002-06-25 Sanjay K. Roy Active cold plate/heat sink
US6668911B2 (en) * 2002-05-08 2003-12-30 Itt Manufacturing Enterprises, Inc. Pump system for use in a heat exchange application
US7424907B2 (en) * 2002-10-01 2008-09-16 Enertron, Inc. Methods and apparatus for an integrated fan pump cooling module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222692A (en) * 2010-04-08 2011-11-04 Fujitsu Ltd Cooling device and electronic device
JP2013189889A (en) * 2012-03-13 2013-09-26 Seiko Epson Corp Fluid circulation device and medical device using the same

Also Published As

Publication number Publication date
US20060151151A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US6668911B2 (en) Pump system for use in a heat exchange application
JP4244703B2 (en) Cooling system
KR102108194B1 (en) Motor having function of cooling
JP2004003472A (en) Pump and engine cooling system
CN101499697B (en) Liquid cooling motor
JP4187606B2 (en) Electric motor
JP2006196714A (en) Cooler for electronic component
JP2006233966A (en) Liquid cooled heat radiation module
JP2010101576A (en) Rotary magnetic temperature regulation device
WO2013187786A1 (en) Electric pump motor cooled by closed circuit
JP2005229020A (en) Liquid-cooled system and electronic equipment having the same
JP2007181282A (en) Dynamo-electric machine
KR20090004021A (en) Single motor driven dual cooling fans system
JP3431024B1 (en) Cooling system
JP4263297B2 (en) Sealing device
JP5328322B2 (en) Air-cooled dry vacuum pump
CN102270903B (en) Through liquid-cooling self-circulation driving motor
TWI663337B (en) Dual-bladed driving device and water-cooled heat exchanger applying the dual-bladed driving device
JP5135156B2 (en) Servo motor liquid cooling structure and liquid cooling motor
JP2008312364A (en) Cooling system for electric vehicle
JP2008167575A (en) Stator of direct-drive liquid cooling motor
JP2007110828A (en) Sealed motor
JP2020054201A (en) Motor unit
JP2014136524A (en) On-vehicle unit cooling device
CN215772773U (en) Motor easy to radiate heat