JP2006195023A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2006195023A
JP2006195023A JP2005004673A JP2005004673A JP2006195023A JP 2006195023 A JP2006195023 A JP 2006195023A JP 2005004673 A JP2005004673 A JP 2005004673A JP 2005004673 A JP2005004673 A JP 2005004673A JP 2006195023 A JP2006195023 A JP 2006195023A
Authority
JP
Japan
Prior art keywords
image signal
image
frequency component
reading
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005004673A
Other languages
Japanese (ja)
Other versions
JP4661225B2 (en
Inventor
Satoshi Terada
聡 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005004673A priority Critical patent/JP4661225B2/en
Publication of JP2006195023A publication Critical patent/JP2006195023A/en
Application granted granted Critical
Publication of JP4661225B2 publication Critical patent/JP4661225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately focus for a subject of any pattern at a low cost and at high speed without increasing a circuit scale by highly accurately detecting the horizontal/vertical high frequency components of a subject image. <P>SOLUTION: A high frequency component detection circuit 6 extracts high frequency components from an image signal scanned and read in horizontal and vertical directions by a solid-state imaging device 3. A CPU 8 performs AF control by moving a lens 1 via a lens drive circuit 2 so that the value of high frequency components obtained by mixing these high frequency components obtains a peak value. This makes it possible to highly accurately detect the horizontal/vertical high frequency components of a subject image at a low cost without increasing the circuit scale. Accordingly, the subject of any pattern can be highly accurately focused at high speed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レンズにより被写体の画像を固体撮像素子に結像して画像信号を得る撮像装置に係り、特に前記レンズによる結像画像の焦点を自動的に合わせるオートフォーカス(AF)制御に関する。   The present invention relates to an imaging apparatus that obtains an image signal by forming an image of a subject on a solid-state imaging device using a lens, and more particularly to autofocus (AF) control for automatically focusing an image formed by the lens.

従来から、スチルビデオカメラなどの撮像装置では、被写体の画像をレンズにより固体撮像素子に結像し、これにより固体撮像素子を構成する画素に結像画像に対応する画像信号が蓄積される。そこで、従来のAF制御では、1フレームの画面中の測距部に対応する固体撮像素子の画素から画像信号を読み出し、得られた画像信号からハイパスフィルターを用いて高周波成分を検出すると共に、上記レンズを動かしてこの高周波成分値(またはその積分値)のピーク値を図6に示すように求めることによって、レンズの合焦位置を求めることが行われている。   2. Description of the Related Art Conventionally, in an imaging apparatus such as a still video camera, an image of a subject is formed on a solid-state image sensor by a lens, and thereby an image signal corresponding to the formed image is accumulated in pixels constituting the solid-state image sensor. Therefore, in the conventional AF control, an image signal is read from the pixel of the solid-state imaging device corresponding to the ranging unit in the screen of one frame, and a high-frequency component is detected from the obtained image signal using a high-pass filter. The focus position of the lens is obtained by moving the lens and obtaining the peak value of the high-frequency component value (or its integral value) as shown in FIG.

ところが上記した従来のAF制御では、通常、撮像素子からの画像信号の読み出し走査を水平方向に行っているため、被写体画像の水平方向の高周波成分は高精度に検出できるのに対し、垂直方向の高周波成分を高精度に検出することが困難となっている。それ故、例えば横縞模様の被写体などは焦点が合いづらいという問題があった。これを解決するための手段の一つとして、固体撮像素子からの出力画像を一旦画像メモリに記憶し、この画像メモリから画像信号を水平・垂直の双方向の走査で読み出して、水平・垂直双方向の高周波成分を高精度に検出する方法が提案されている(特許文献1参照)。
特開平5−137046号公報 (第4−5頁、第1図)
However, in the conventional AF control described above, since the scanning of the image signal from the image sensor is normally performed in the horizontal direction, the high-frequency component in the horizontal direction of the subject image can be detected with high precision, whereas in the vertical direction. It is difficult to detect high-frequency components with high accuracy. Therefore, for example, a subject with a horizontal stripe pattern has a problem that it is difficult to focus. As one means for solving this, the output image from the solid-state image sensor is temporarily stored in the image memory, and the image signal is read out from the image memory by bi-directional scanning in the horizontal and vertical directions. A method of detecting high-frequency components in the direction with high accuracy has been proposed (see Patent Document 1).
JP-A-5-137046 (page 4-5, FIG. 1)

しかしながら、上記の画像メモリを用いた方法では、垂直方向の高周波成分の検出を精度良くできるようになる反面、画像メモリが必要になるので回路規模の増加及びコストアップとなる問題がある。また、撮像素子から読み出した画像信号を画像メモリに水平方向走査で書き込みを行った後で、当該画像メモリから水平・垂直双方向の走査で画像信号を読み出してAF制御を行うため、処理に時間がかかるという懸念事項があり、この懸念は測距範囲が広がるほど顕著化するという問題がある。   However, the above-described method using the image memory can detect the high-frequency component in the vertical direction with high accuracy, but requires an image memory, resulting in an increase in circuit scale and cost. In addition, since the image signal read from the image sensor is written in the image memory by horizontal scanning, the image signal is read from the image memory by horizontal / vertical bidirectional scanning and AF control is performed. There is a concern that it will take longer, and this concern becomes more prominent as the range of measurement increases.

本発明は前記事情に鑑み案出されたものであって、本発明の目的は、回路規模を増加させることなく且つ安価に、被写体画像の水平・垂直方向の高周波成分を高精度に検出してどのようなパターンの被写体に対しても、高速で且つ精度の高い合焦を得ることができる撮像装置を提供することにある。   The present invention has been devised in view of the above circumstances, and the object of the present invention is to detect high-frequency components in the horizontal and vertical directions of a subject image with high accuracy without increasing the circuit scale and at low cost. An object of the present invention is to provide an imaging apparatus capable of obtaining high-speed and high-precision focusing on a subject having any pattern.

本発明は上記目的を達成するため、レンズにより結像された被写体の画像を光電変換して画像信号として蓄積する撮像素子と、前記レンズを移動させるレンズ駆動手段と、前記撮像素子に蓄積された画像信号を水平方向及び垂直方向に走査して読み出す読出手段と、前記読み出された画像信号の高周波成分を抽出する高周波成分抽出手段と、前記水平方向に走査して読み出された画像信号から抽出された高周波成分と前記垂直方向に走査して読み出された画像信号から抽出された高周波成分を混合する混合手段と、前記混合された高周波成分値またはこの高周波成分の積分値がピークとなる位置に前記レンズ駆動手段を制御して移動させる合焦点制御手段とを具備することを特徴とする。   In order to achieve the above-mentioned object, the present invention achieves the above-described purpose by an image sensor that photoelectrically converts an image of a subject imaged by a lens and stores it as an image signal, a lens driving unit that moves the lens, and an image sensor that is stored in the image sensor. From the reading means for scanning and reading the image signal in the horizontal direction and the vertical direction, the high frequency component extraction means for extracting the high frequency component of the read image signal, and the image signal read by scanning in the horizontal direction Mixing means for mixing the extracted high-frequency component and the high-frequency component extracted from the image signal read out by scanning in the vertical direction, and the mixed high-frequency component value or the integrated value of the high-frequency component has a peak. And a focusing control means for controlling and moving the lens driving means to a position.

また、本発明は、レンズにより結像された被写体の画像を光電変換して画像信号として蓄積する撮像素子と、前記レンズを移動させるレンズ駆動手段と、前記撮像素子に蓄積された画像信号を水平方向及び垂直方向に走査して読み出す読出手段と、前記読み出された画像信号の高周波成分を抽出する高周波成分抽出手段と、前記水平方向に走査して読み出された画像信号から抽出された高周波成分と前記垂直方向に走査して読み出された画像信号から抽出された高周波成分を比較する比較手段と、前記比較結果により前記撮像素子から画像信号を読み出す走査方向を水平方向にするか垂直方向にするかを決定する走査方向決定手段と、前記撮像素子から前記決定された走査方向で読み出された画像信号の高周波成分値またはその積分値がピークとなる位置に前記レンズ駆動手段を制御して移動させる合焦点制御手段とを具備することを特徴とする。   The present invention also provides an image sensor that photoelectrically converts an image of a subject imaged by a lens and stores it as an image signal, a lens driving unit that moves the lens, and an image signal stored in the image sensor. Reading means for scanning and reading in the vertical and vertical directions, high-frequency component extraction means for extracting high-frequency components of the read image signal, and high-frequency extracted from the image signal read by scanning in the horizontal direction Comparing means for comparing a component and a high-frequency component extracted from the image signal read out by scanning in the vertical direction, and a scanning direction for reading out the image signal from the image sensor according to the comparison result is set to a horizontal direction or a vertical direction A scanning direction determining means for determining whether or not a high frequency component value of an image signal read out from the image sensor in the determined scanning direction or an integrated value thereof is a peak value. Characterized by comprising a focus control means for moving and controlling said lens drive means to a position.

このように本発明では、撮像素子より水平方向及び垂直方向に走査して読み出された画像信号から高周波成分を抽出し、これら高周波成分を混合した高周波成分値またはその積分値がピークとなる位置にレンズを移動させてAF制御を行うことにより、或いは、当初、撮像素子より水平方向及び垂直方向に走査して読み出された画像信号の高周波成分を比較し、以降、例えばレベルが高い高周波成分が得られる走査方向で撮像素子より画像信号を読み出してAF制御を行うことによって画像メモリを用いる必要をなくし、それ故、装置の回路規模を大きくすることなく且つ安価に、被写体画像の水平・垂直双方向の高周波成分を高精度に検出でき、どのようなパターンの被写体に対しても精度の良い合焦を得ることができる。また、撮像素子を水平方向に走査して読み出した画像信号を画像メモリに書き込み、次にこの画像メモリから水平及び垂直方向に走査して画像信号を読み出す必要がないため、AF制御のための信号処理時間を短くでき、どのような被写体に対しても高速で且つ精度の高い合焦を得ることができる。   As described above, in the present invention, the high frequency component is extracted from the image signal read out by scanning in the horizontal direction and the vertical direction from the image sensor, and the position where the high frequency component value obtained by mixing these high frequency components or the integrated value thereof becomes a peak. The high-frequency component of the image signal read out by moving the lens to the AF control or initially scanning the image sensor in the horizontal direction and the vertical direction is compared. Therefore, it is not necessary to use an image memory by reading out an image signal from the image sensor in the scanning direction in which the image is obtained and performing AF control. Therefore, the horizontal / vertical direction of the subject image can be reduced without increasing the circuit scale of the apparatus and at a low cost. Bidirectional high-frequency components can be detected with high accuracy, and accurate focusing can be obtained for any pattern of subjects. In addition, since it is not necessary to scan the image sensor in the horizontal direction and write the image signal read into the image memory, and then scan the image memory in the horizontal and vertical directions to read out the image signal. The processing time can be shortened, and high-speed and high-precision focusing can be obtained for any subject.

本発明によれば、撮像素子より水平方向及び垂直方向に走査して読み出した画像信号から高周波成分を抽出し、これら高周波成分を混合した高周波成分値またはその積分値がピーク値を得るようにレンズを移動させてAF制御を行うことにより、或いは、当初、撮像素子より水平方向及び垂直方向に走査して読み出した画像信号の高周波成分を比較し、以降、例えばレベルが高い高周波成分が得られる走査方向で撮像素子より画像信号を読み出してAF制御を行うことにより、画像メモリを用いる必要を無くすことができ、それ故、装置の回路規模を増やすこと無く、どのようなパターンの被写体に対しても高速で且つ精度の高い合焦を安価に得ることができる。   According to the present invention, the high frequency component is extracted from the image signal read out by scanning in the horizontal direction and the vertical direction from the image sensor, and the high frequency component value obtained by mixing these high frequency components or the integrated value thereof obtains the peak value. The high-frequency component of the image signal read out by scanning the image sensor at the beginning in the horizontal direction and the vertical direction is compared, and thereafter, for example, high-frequency component with a high level is obtained. By reading out the image signal from the image sensor in the direction and performing AF control, it is possible to eliminate the need to use an image memory. Therefore, it can be applied to any pattern subject without increasing the circuit scale of the apparatus. High-speed and high-precision focusing can be obtained at low cost.

回路規模を増加させることなく且つ安価に、被写体画像の水平・垂直方向の高周波成分は高精度に検出してどのようなパターンの被写体に対しても高速で且つ精度の高い合焦を得る目的を、撮像素子より水平方向及び垂直方向に走査して読み出された画像信号から高周波成分を抽出し、これら高周波成分を混合した高周波成分値またはその積分値がピーク値を得るようにレンズを移動させてAF制御を行うことによって、或いは、当初、撮像素子より水平方向及び垂直方向に走査して読み出した画像信号の高周波成分を比較し、以降、例えばレベルが高い高周波成分が得られる走査方向で撮像素子より画像信号を読み出してAF制御を行うことによって実現した。   The purpose is to detect the high-frequency components in the horizontal and vertical directions of the subject image with high accuracy without increasing the circuit scale and to obtain high-speed and high-precision focusing for any pattern subject. The high-frequency component is extracted from the image signal read by scanning in the horizontal and vertical directions from the image sensor, and the lens is moved so that the high-frequency component value obtained by mixing these high-frequency components or the integrated value thereof has a peak value. By performing AF control, or by comparing the high-frequency components of the image signal initially read by scanning in the horizontal and vertical directions from the image sensor, for example, imaging is performed in the scanning direction in which a high-frequency component having a high level is obtained thereafter. This was realized by reading the image signal from the element and performing AF control.

図1は、本発明の第1の実施形態に係る撮像装置の構成を示したブロック図である。撮像装置は、被写体を固体撮像素子3に結像させるレンズ1、レンズ1を移動させるレンズ駆動回路2、被写体の画像を光電変換して画像信号として蓄積する固体撮像素子3、アナログ画像信号をデジタル画像信号に変換するA/D変換回路4、画像信号に各種処理を施す信号処理回路5、画像信号から高周波成分を検波する高周波成分検波回路6、固体撮像素子3の画像読み出し走査方向及び読み出しタイミング等を制御するタイミング制御回路7、撮像動作やAF制御等の個別制御及び装置全体の制御を行うCPU8を有して構成される。   FIG. 1 is a block diagram showing a configuration of an imaging apparatus according to the first embodiment of the present invention. The imaging apparatus includes a lens 1 that forms an image of a subject on a solid-state imaging device 3, a lens driving circuit 2 that moves the lens 1, a solid-state imaging device 3 that photoelectrically converts an image of the subject and stores it as an image signal, and digitally converts an analog image signal. An A / D conversion circuit 4 for converting to an image signal, a signal processing circuit 5 for performing various processes on the image signal, a high-frequency component detection circuit 6 for detecting a high-frequency component from the image signal, an image readout scanning direction and readout timing of the solid-state imaging device 3 And a timing control circuit 7 for controlling the CPU, and a CPU 8 for performing individual control such as imaging operation and AF control and control of the entire apparatus.

次に本実施形態のAF制御動作について説明する。レンズ1により被写体の画像が固体撮像素子3に結像され、結像された画像に対応する画像信号が撮像素子3の画素に蓄積される。固体撮像素子3の画素から結像画像に対応する画像信号がタイミング制御回路7により読み出されてA/D変換回路4に出力される。その際、タイミング制御回路7はCPU8の制御により、まず、図2(A)に示すように固体撮像素子3の各画素から画像信号を水平方向に走査して読み出し、次に図2(B)に示すように垂直方向に走査して読み出すように、画像信号の読み出し走査方向の切り換えを行う。   Next, the AF control operation of this embodiment will be described. An image of a subject is formed on the solid-state image sensor 3 by the lens 1, and an image signal corresponding to the formed image is accumulated in the pixels of the image sensor 3. An image signal corresponding to the formed image is read from the pixels of the solid-state imaging device 3 by the timing control circuit 7 and output to the A / D conversion circuit 4. At that time, under the control of the CPU 8, the timing control circuit 7 first scans and reads the image signal from each pixel of the solid-state imaging device 3 as shown in FIG. As shown in FIG. 2, the scanning direction of the image signal is switched so as to scan and read in the vertical direction.

図3はタイミング制御回路7により固体撮像素子3から画像信号が読み出される動作を説明するタイミングチャートである。画像信号は固体撮像素子3から垂直同期信号100で区切られる1フレーム毎に交互に切り換わる水平走査読み出しと垂直走査読み出しにより読み出される。   FIG. 3 is a timing chart for explaining an operation in which an image signal is read from the solid-state imaging device 3 by the timing control circuit 7. The image signal is read out from the solid-state imaging device 3 by horizontal scanning readout and vertical scanning readout that are switched alternately every frame divided by the vertical synchronization signal 100.

A/D変換回路4は上記のように読み出された画像信号をデジタル化して信号処理回路5と高周波成分検波回路6に出力する。高周波成分検波回路6は水平走査で読み出しされた画像信号及び垂直走査で読み出された画像信号のそれぞれの高周波成分を検波して抽出し、得られ高周波成分をCPU8に出力する。CPU8は内蔵のRAM等のメモリに水平走査読み出しされた画像信号の高周波成分と、垂直走査読み出しされた画像信号の高周波成分を保持し、これら両高周波成分を加算するなどして混合する。この時、CPU8はレンズ駆動回路2を制御して図3に示すタイミングでレンズ1を移動すると共に、この混合した高周波成分のレベル変化を監視し、この高周波成分値(またはその積分値)のピークレベルが出る位置にレンズ1を移動することによりレンズ1を合焦点位置に持ってくる。   The A / D conversion circuit 4 digitizes the image signal read out as described above and outputs it to the signal processing circuit 5 and the high frequency component detection circuit 6. The high frequency component detection circuit 6 detects and extracts the high frequency components of the image signal read out in the horizontal scan and the image signal read out in the vertical scan, and outputs the obtained high frequency component to the CPU 8. The CPU 8 holds the high-frequency component of the image signal read out in the horizontal scan and the high-frequency component of the image signal read out in the vertical scan in a memory such as a built-in RAM and mixes them by adding these high-frequency components. At this time, the CPU 8 controls the lens driving circuit 2 to move the lens 1 at the timing shown in FIG. 3, and monitors the level change of the mixed high frequency component, and the peak of the high frequency component value (or its integrated value). By moving the lens 1 to the position where the level comes out, the lens 1 is brought to the in-focus position.

ところで、上記したAF制御を行うために、固体撮像素子3から画像信号を読み出す画素の範囲は、図4(A)に示すように固体撮像素子3の全画素から読み出すか、或いは、図4(B)に示すような測距枠内の画素からのみ画像信号を読み出すかの2方法がある。   By the way, in order to perform the AF control described above, the range of pixels from which the image signal is read from the solid-state image sensor 3 is read from all the pixels of the solid-state image sensor 3 as shown in FIG. There are two methods of reading out image signals only from pixels within the distance measurement frame as shown in B).

本実施形態によれば、固体撮像素子3から画像信号を水平走査方向及び垂直走査方向の双方向で読み出し、それにより得られた画像信号の高周波成分値(またはその積分値)のピークが得られる位置にレンズ1を移動してAF制御を行うため、被写体画像の水平方向の高周波成分は勿論、垂直方向の高周波成分をも高精度に検出することができ、例えば横縞模様の被写体等を撮影する際にも精度良くフォーカスを合わせることができ、被写体のパターンによって焦点が合わせにくいということがなくなり、常に円滑なAF制御を行うことができる。   According to the present embodiment, the image signal is read from the solid-state imaging device 3 in both the horizontal scanning direction and the vertical scanning direction, and the peak of the high-frequency component value (or its integrated value) of the obtained image signal is obtained. Since the lens 1 is moved to the position and AF control is performed, not only the horizontal high-frequency component of the subject image but also the vertical high-frequency component can be detected with high accuracy. For example, a subject having a horizontal stripe pattern is photographed. In this case, it is possible to focus accurately, and it is not difficult to focus by the pattern of the subject, and smooth AF control can always be performed.

また、本実施形態では水平・垂直双方向の走査により得られた画像信号の高周波成分をCPU8のRAMなどのメモリに保持してAF制御を行うため、従来のように回路規模が大きく且つ高価な画像メモリを用いる必要がないため、上記効果を装置の回路規模を大きくすることなく且つ安価に実現することができる。   In this embodiment, since the high-frequency component of the image signal obtained by the horizontal / vertical bidirectional scanning is held in a memory such as the RAM of the CPU 8 and AF control is performed, the circuit scale is large and expensive as in the prior art. Since it is not necessary to use an image memory, the above effect can be realized at low cost without increasing the circuit scale of the apparatus.

さらに、本実施形態では、高周波成分をRAMなどのメモリに保存するだけであるため、処理に時間がかからず、応答度の良い高速なAF制御を行うことができる。特に、図4(B)に示すように測距枠内の画素からのみ画像信号を読み出す方法では、画素の読み出し範囲が限られるため、より高速な処理ができ、AF制御をより高速に行うことができる。尚、図4(A)に示すように全画素から画像信号を読み出す方法では、AF制御の対象画像信号が多いため処理速度は落ちるが、対象画像信号が多い分、AF制御の精度を向上させることができる。   Furthermore, in this embodiment, since the high-frequency component is only stored in a memory such as a RAM, the processing does not take time, and high-speed AF control with good responsiveness can be performed. In particular, as shown in FIG. 4B, in the method of reading the image signal only from the pixels in the distance measurement frame, the pixel reading range is limited, so that higher-speed processing can be performed and AF control is performed at higher speed. Can do. As shown in FIG. 4A, in the method of reading image signals from all pixels, the processing speed decreases because there are many target image signals for AF control, but the accuracy of AF control is improved by the amount of target image signals. be able to.

図5は、本発明の第2の実施形態に係る撮像装置における画像信号読出し走査方向切換タイミングを示したタイミングチャートである。但し、本例の構成は上記した第1の実施形態と同様であるため、以下同一の構成を持つ各部についてはその構成動作を省略し、以下、その動作の特徴部分を説明する。   FIG. 5 is a timing chart showing image signal readout scanning direction switching timing in the imaging apparatus according to the second embodiment of the present invention. However, since the configuration of this example is the same as that of the first embodiment described above, the configuration operation of each unit having the same configuration is omitted, and the characteristic part of the operation will be described below.

次に本実施形態のAF制御について説明する。当初、固体撮像素子3から1フレームについて画像信号の水平走査読み出しを行い、次のフレームについて垂直走査読み出しを行う。その時、CPU8は水平走査読み出しした画像信号の高周波成分と、垂直走査読み出しした画像信号の高周波成分のレベルを比較し、以降の読み出し走査方向をレベルの高い方向に決定する。例えば垂直走査読み出しした画像信号の高周波成分レベルの方が高い場合は、以降、固体撮像素子3から垂直走査して画像信号を読み出し、それにより得られた高周波成分値(またはその積分値)がピークとなる位置にレンズ1を移動して、AF制御を行う。   Next, the AF control of this embodiment will be described. Initially, horizontal scanning readout of an image signal is performed for one frame from the solid-state imaging device 3, and vertical scanning readout is performed for the next frame. At that time, the CPU 8 compares the level of the high-frequency component of the image signal read out by horizontal scanning and the level of the high-frequency component of the image signal read out by vertical scanning, and determines the subsequent reading scanning direction as a higher level direction. For example, if the high-frequency component level of the image signal read out by vertical scanning is higher, the image signal is read out from the solid-state imaging device 3 by vertical scanning and the high-frequency component value (or its integrated value) obtained thereby is peaked. The lens 1 is moved to a position where AF is performed, and AF control is performed.

尚、本実施形態でも、第1の実施形態と同様にAF制御を行うために、固体撮像素子3から画像信号を読み出す画素の範囲は、固体撮像素子3の全画素から読み出すか、或いは、測距枠内の画素からのみ画像信号を読み出すかの2方法がある。   In the present embodiment as well, in order to perform AF control as in the first embodiment, the range of pixels from which image signals are read from the solid-state image sensor 3 is read from all the pixels of the solid-state image sensor 3 or is measured. There are two methods of reading out image signals only from pixels within the distance frame.

本実施形態によれば、画像信号の高周波成分のレベルが高い方の走査方向で固体撮像素子3から画像信号を読み出すため、被写体のパターンによって高周波成分が得やすい走査方向で画像信号を固体撮像素子3から読み出すため、例えば被写体が横縞模様であった場合には、垂直走査方向で画像信号を固体撮像素子3から読み出し、それにより得られた高周波成分のピークが得られる位置にレンズ1を移動するので、第1に示した実施の形態と同様の効果がある。特に本実施形態では、双方向走査による読み出しで得られた高周波成分の混合などを行わないでAF制御を行うことができるため、CPU8の負担を減らすことができる。   According to the present embodiment, the image signal is read from the solid-state imaging device 3 in the scanning direction in which the level of the high-frequency component of the image signal is higher. For example, when the subject has a horizontal stripe pattern, the image signal is read from the solid-state imaging device 3 in the vertical scanning direction, and the lens 1 is moved to a position where the peak of the high-frequency component obtained thereby can be obtained. Therefore, there is an effect similar to that of the first embodiment. In particular, in the present embodiment, since the AF control can be performed without mixing the high frequency components obtained by reading by bidirectional scanning, the burden on the CPU 8 can be reduced.

尚、本発明は上記実施の形態に限定されることなく、その要旨を逸脱しない範囲において、具体的な構成、機能、作用、効果において、他の種々の形態によっても実施することができる。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can implement also with another various form in a concrete structure, a function, an effect | action, and an effect.

本発明の第1の実施形態に係る撮像装置の構成を示したブロック図である。1 is a block diagram illustrating a configuration of an imaging apparatus according to a first embodiment of the present invention. 図1に示した固体撮像装置から画像信号を読み出す際の走査方向を示した図である。It is the figure which showed the scanning direction at the time of reading an image signal from the solid-state imaging device shown in FIG. 図1に示した固体撮像装置から画像信号を読み出す際の走査方向切換タイミングを示したタイミングチャートである。2 is a timing chart showing scanning direction switching timing when an image signal is read from the solid-state imaging device shown in FIG. 1. 図1に示した固体撮像装置から画像信号を読み出す範囲を示したタイミングチャートである。2 is a timing chart showing a range in which an image signal is read from the solid-state imaging device shown in FIG. 本発明の第2の実施形態に係る撮像装置における画像信号読出し走査方向切換タイミングを示したタイミングチャートである。6 is a timing chart illustrating image signal readout scanning direction switching timing in an imaging apparatus according to a second embodiment of the present invention. 固体撮像素子から読み出した画像信号より抽出した高周波成分を用いた従来のAF制御方法を説明する特性図である。It is a characteristic view explaining the conventional AF control method using the high frequency component extracted from the image signal read from the solid-state image sensor.

符号の説明Explanation of symbols

1……レンズ、2……レンズ駆動回路、3……固体撮像素子、4……A/D変換回路、6……高周波成分検波回路、7……タイミング制御回路、8……CPU。   DESCRIPTION OF SYMBOLS 1 ... Lens, 2 ... Lens drive circuit, 3 ... Solid-state image sensor, 4 ... A / D conversion circuit, 6 ... High frequency component detection circuit, 7 ... Timing control circuit, 8 ... CPU.

Claims (8)

レンズにより結像された被写体の画像を光電変換して画像信号として蓄積する撮像素子と、
前記レンズを移動させるレンズ駆動手段と、
前記撮像素子に蓄積された画像信号を水平方向及び垂直方向に走査して読み出す読出手段と、
前記読み出された画像信号の高周波成分を抽出する高周波成分抽出手段と、
前記水平方向に走査して読み出された画像信号から抽出された高周波成分と前記垂直方向に走査して読み出された画像信号から抽出された高周波成分を混合する混合手段と、
前記混合された高周波成分値またはその積分値がピークとなる位置に前記レンズ駆動手段を制御して移動させる合焦点制御手段と、
を具備することを特徴とする撮像装置。
An image sensor that photoelectrically converts an image of a subject imaged by a lens and stores it as an image signal;
Lens driving means for moving the lens;
Reading means that scans and reads out the image signal accumulated in the image sensor in the horizontal direction and the vertical direction;
High-frequency component extraction means for extracting a high-frequency component of the read image signal;
Mixing means for mixing the high-frequency component extracted from the image signal read by scanning in the horizontal direction and the high-frequency component extracted from the image signal read by scanning in the vertical direction;
A focusing control means for controlling and moving the lens driving means to a position where the mixed high-frequency component value or its integrated value reaches a peak;
An imaging apparatus comprising:
前記読出手段は、前記撮像素子から画像信号を読み出す際に、その読み出し走査方向を水平方向と垂直方向のいずれかに1フレーム毎に交互に切り換えることを特徴とする請求項1記載の撮像装置。   2. The image pickup apparatus according to claim 1, wherein, when reading out an image signal from the image pickup device, the reading unit alternately switches the reading scanning direction between the horizontal direction and the vertical direction for each frame. 前記読出手段は、前記撮像素子の全画素より前記画像信号を読み出すことを特徴とする請求項1記載の撮像装置。   The image pickup apparatus according to claim 1, wherein the reading unit reads the image signal from all pixels of the image pickup device. 前記読出手段は、前記撮像素子の所定範囲の画素より前記画像信号を読み出すことを特徴とする請求項1記載の撮像装置。   The imaging apparatus according to claim 1, wherein the reading unit reads the image signal from pixels in a predetermined range of the imaging element. レンズにより結像された被写体の画像を光電変換して画像信号として蓄積する撮像素子と、
前記レンズを移動させるレンズ駆動手段と、
前記撮像素子に蓄積された画像信号を水平方向及び垂直方向に走査して読み出す読出手段と、
前記読み出された画像信号の高周波成分を抽出する高周波成分抽出手段と、
前記水平方向に読み出された画像信号から抽出された高周波成分と前記垂直方向に読み出された画像信号から抽出された高周波成分を比較する比較手段と、
前記比較結果により前記撮像素子から画像信号を読み出す走査方向を水平方向にするか垂直方向にするかを決定する走査方向決定手段と、
前記撮像素子から前記決定された走査方向で読み出された画像信号の高周波成分値またはその積分値がピークとなる位置に前記レンズ駆動手段を制御して移動させる合焦点制御手段と、
を具備することを特徴とする撮像装置。
An image sensor that photoelectrically converts an image of a subject imaged by a lens and stores it as an image signal;
Lens driving means for moving the lens;
Reading means that scans and reads out the image signal accumulated in the image sensor in the horizontal direction and the vertical direction;
High-frequency component extraction means for extracting a high-frequency component of the read image signal;
Comparison means for comparing the high-frequency component extracted from the image signal read in the horizontal direction with the high-frequency component extracted from the image signal read in the vertical direction;
A scanning direction determining means for determining whether a scanning direction for reading an image signal from the imaging element is a horizontal direction or a vertical direction based on the comparison result;
A focusing control means for controlling and moving the lens driving means to a position where the high-frequency component value of the image signal read out from the image sensor in the determined scanning direction or the integral value thereof reaches a peak;
An imaging apparatus comprising:
前記読出手段は、当初、前記撮像素子から1フレーム毎に、画像信号の水平方向読み出しと垂直方向読み出しを交互に行った後、前記決定された走査方向で前記撮像素子から画像信号を読み出すことを特徴とする請求項5記載の撮像装置。   The reading means initially reads the image signal from the image pickup device in the determined scanning direction after alternately performing horizontal reading and vertical reading of the image signal for each frame from the image pickup device. The imaging apparatus according to claim 5, wherein: 前記読出手段は、前記撮像素子の全画素より前記画像信号を読み出すことを特徴とする請求項5記載の撮像装置。   The imaging apparatus according to claim 5, wherein the reading unit reads the image signal from all pixels of the imaging element. 前記読出手段は、前記撮像素子の所定範囲の画素より前記画像信号を読み出すことを特徴とする請求項5記載の撮像装置。
The imaging apparatus according to claim 5, wherein the reading unit reads the image signal from pixels in a predetermined range of the imaging element.
JP2005004673A 2005-01-12 2005-01-12 Imaging device Expired - Fee Related JP4661225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004673A JP4661225B2 (en) 2005-01-12 2005-01-12 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004673A JP4661225B2 (en) 2005-01-12 2005-01-12 Imaging device

Publications (2)

Publication Number Publication Date
JP2006195023A true JP2006195023A (en) 2006-07-27
JP4661225B2 JP4661225B2 (en) 2011-03-30

Family

ID=36801170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004673A Expired - Fee Related JP4661225B2 (en) 2005-01-12 2005-01-12 Imaging device

Country Status (1)

Country Link
JP (1) JP4661225B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081422A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Photographing apparatus
CN101882310A (en) * 2010-06-10 2010-11-10 上海电力学院 Method for detecting digital zoom times of digital photo
KR101098217B1 (en) * 2009-02-27 2011-12-27 가시오게산키 가부시키가이샤 Imaging apparatus, auto-focusing method and recording medium
US8890998B2 (en) 2010-08-11 2014-11-18 Samsung Electronics Co., Ltd. Focusing apparatus, focusing method and medium for recording the focusing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097784A (en) * 1983-11-01 1985-05-31 Sanyo Electric Co Ltd Automatic focus controlling circuit
JPS6238083A (en) * 1985-08-13 1987-02-19 Canon Inc Focus adjusting device
JPS62186214A (en) * 1986-02-10 1987-08-14 Olympus Optical Co Ltd Automatic focus adjuster
JPS62199174A (en) * 1986-02-27 1987-09-02 Canon Inc Focal point detector
JPS63179665A (en) * 1987-01-20 1988-07-23 Matsushita Electric Ind Co Ltd Automatic focusing adjustment circuit
JPS63215172A (en) * 1987-03-03 1988-09-07 Victor Co Of Japan Ltd Automatic focusing device
JPH022791A (en) * 1988-06-16 1990-01-08 Matsushita Electric Ind Co Ltd Automatic focus adjusting device
JPH05344405A (en) * 1992-06-10 1993-12-24 Fuji Photo Film Co Ltd Automatic focus adjusting device
JPH06205269A (en) * 1993-01-06 1994-07-22 Matsushita Electric Ind Co Ltd Automatic focus adjustment device and video camera
JP2000209509A (en) * 1999-01-19 2000-07-28 Canon Inc Solid state image pickup device and image pickup system
JP2004151608A (en) * 2002-11-01 2004-05-27 Fuji Photo Optical Co Ltd Autofocus system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097784A (en) * 1983-11-01 1985-05-31 Sanyo Electric Co Ltd Automatic focus controlling circuit
JPS6238083A (en) * 1985-08-13 1987-02-19 Canon Inc Focus adjusting device
JPS62186214A (en) * 1986-02-10 1987-08-14 Olympus Optical Co Ltd Automatic focus adjuster
JPS62199174A (en) * 1986-02-27 1987-09-02 Canon Inc Focal point detector
JPS63179665A (en) * 1987-01-20 1988-07-23 Matsushita Electric Ind Co Ltd Automatic focusing adjustment circuit
JPS63215172A (en) * 1987-03-03 1988-09-07 Victor Co Of Japan Ltd Automatic focusing device
JPH022791A (en) * 1988-06-16 1990-01-08 Matsushita Electric Ind Co Ltd Automatic focus adjusting device
JPH05344405A (en) * 1992-06-10 1993-12-24 Fuji Photo Film Co Ltd Automatic focus adjusting device
JPH06205269A (en) * 1993-01-06 1994-07-22 Matsushita Electric Ind Co Ltd Automatic focus adjustment device and video camera
JP2000209509A (en) * 1999-01-19 2000-07-28 Canon Inc Solid state image pickup device and image pickup system
JP2004151608A (en) * 2002-11-01 2004-05-27 Fuji Photo Optical Co Ltd Autofocus system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081422A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Photographing apparatus
KR101098217B1 (en) * 2009-02-27 2011-12-27 가시오게산키 가부시키가이샤 Imaging apparatus, auto-focusing method and recording medium
US8223255B2 (en) 2009-02-27 2012-07-17 Casio Computer Co., Ltd. Imaging apparatus, auto-focusing method and recording medium
CN101882310A (en) * 2010-06-10 2010-11-10 上海电力学院 Method for detecting digital zoom times of digital photo
US8890998B2 (en) 2010-08-11 2014-11-18 Samsung Electronics Co., Ltd. Focusing apparatus, focusing method and medium for recording the focusing method
US9288383B2 (en) 2010-08-11 2016-03-15 Samsung Electronics Co., Ltd. Focusing apparatus, focusing method and medium for recoring the focusing method

Also Published As

Publication number Publication date
JP4661225B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US7945151B2 (en) Focus control method and unit determining in-focus lens position based on read times of the autofocus areas and focus lens position and time
JP3848230B2 (en) AUTOFOCUS DEVICE, IMAGING DEVICE, AUTOFOCUS METHOD, PROGRAM, AND STORAGE MEDIUM
JP4862312B2 (en) Imaging device and focus control device
CN1976387A (en) Solid-state image-pickup device, method of driving solid-state image-pickup device and image-pickup apparatus
JP5213813B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
KR20150074641A (en) Auto focus adjusting method and auto focus adjusting apparatus
JP7271188B2 (en) Control device, imaging device, control method, and program
JP4661225B2 (en) Imaging device
JP2004140479A (en) Solid-state imaging apparatus, camera apparatus, and control method thereof
JP4701111B2 (en) Pattern matching system and subject tracking system
JP2004208089A (en) Projector, imaging device, and program for trapezoid correction
JP2006235719A (en) Imaging method and imaging apparatus
US9282234B2 (en) Focus adjustment apparatus and method, and image capturing apparatus
JP5263023B2 (en) Imaging device
JP2008016961A (en) Imaging apparatus and read control method
JP2012220890A (en) Focus adjustment device
JP4574559B2 (en) Imaging device, focus position detection device, and focus position detection method
JP5159295B2 (en) Automatic focusing device and imaging device
US20070188630A1 (en) Imaging apparatus
JP4930134B2 (en) Imaging device
JP4681899B2 (en) Imaging apparatus and imaging method
JPH09326954A (en) Image input device
US20180020150A1 (en) Control apparatus, image capturing apparatus, control method, and storage medium
JP2013150170A (en) Imaging apparatus and microscope system
JP2009194469A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees