JP2006194701A - Oscillation gyro - Google Patents

Oscillation gyro Download PDF

Info

Publication number
JP2006194701A
JP2006194701A JP2005005636A JP2005005636A JP2006194701A JP 2006194701 A JP2006194701 A JP 2006194701A JP 2005005636 A JP2005005636 A JP 2005005636A JP 2005005636 A JP2005005636 A JP 2005005636A JP 2006194701 A JP2006194701 A JP 2006194701A
Authority
JP
Japan
Prior art keywords
vibrator
signal
bias
compensation amount
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005005636A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
尋之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2005005636A priority Critical patent/JP2006194701A/en
Publication of JP2006194701A publication Critical patent/JP2006194701A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillation gyro which generates an angular velocity signal ωa which represents a precisely compensated bias fluctuating, according to the temperature change of a vibrator and has a structure that is high in reliability and simple in structure. <P>SOLUTION: A detection signal 101b represents the angular velocity ω the vibrator 1 receives. The resonance frequency of the vibrator 1 is a function of the temperature of the vibrator 1. A self-excited oscillation section 2 undergoes self-excited oscillation at the resonance frequency of the vibrator 1. A signal 102 by the self-excited oscillation turns into a waveform-shaped signal 103 with its frequency information being retained, and the frequency of the signal 103 is measured by a frequency measurement section 81. The output 181 of the frequency measurement section 81, which is frequency data, is outputted as the temperature signal 181, since it corresponds to the temperature of the vibrator 1. A bias compensation amount calculating section 82, on the basis of the temperature data represented by the temperature signal 181, generates a bias compensation amount signal 108. An analog adder 9 adds the bias compensation amount signal 108 to an angular velocity signal 107, to generate the angular velocity signal ωa with the bias compensated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機械的な共振周波数で振動する振動子と、該振動子の角速度に応じたコリオリ力により該振動子に生じる振動を検出振動として検出する検出回路とを有する振動ジャイロに関し、特に温度によるバイアス及びスケールファクタの変動の補正が可能な振動ジャイロの補償量演算部に関する。   The present invention relates to a vibrating gyroscope having a vibrator that vibrates at a mechanical resonance frequency, and a detection circuit that detects a vibration generated in the vibrator by a Coriolis force according to an angular velocity of the vibrator as a detection vibration. The present invention relates to a compensation amount calculation unit of a vibration gyro capable of correcting variations in bias and scale factor due to the above.

振動ジャイロの基本原理は、例えば非特許文献1に記載されている。この種の振動ジャイロで振動子として、U字形、4脚形、6脚形等の音叉型振動子や音辺形といった各種形状のものが用いられている。振動子をなす振動体の材料としては、エリンバ等の恒弾性材料、シリコン又は水晶、タンタル酸リチウム、ニオブ酸リチウム、ランガサイト等の圧電性単結晶が用いられる。振動体が恒弾性材料やシリコンであるときは、振動体に圧電セラミックでなる圧電素子を貼付し、その圧電素子には電極を蒸着する。振動体が圧電性単結晶でなるときは、電極を蒸着する。電極としては、駆動信号を加えるための駆動電極および検出振動を取り出すための検出電極がある。   The basic principle of the vibration gyro is described in Non-Patent Document 1, for example. As this type of vibratory gyro, vibrators having various shapes such as tuning fork vibrators such as U-shaped, quadruped, and hexapods and horns are used. As the material of the vibrator forming the vibrator, a constant elastic material such as Elinba, or a piezoelectric single crystal such as silicon or quartz, lithium tantalate, lithium niobate, or langasite is used. When the vibrating body is a constant elastic material or silicon, a piezoelectric element made of piezoelectric ceramic is attached to the vibrating body, and an electrode is deposited on the piezoelectric element. When the vibrating body is made of a piezoelectric single crystal, an electrode is deposited. The electrodes include a drive electrode for applying a drive signal and a detection electrode for extracting detection vibration.

6脚形振動子の振動ジャイロの例が特許文献1又は特許文献2に記載されている。図8は、特許文献1又は特許文献2に記載の音叉型振動ジャイロの基本構造及びその作動を説明するための図である。但し、6脚形振動子は、矩形板状の胴部の両端部に駆動用3脚および検出用の3脚をそれぞれ等間隔に配置してなるが、その3脚のうちの中央の脚は、振動の安定化のためものであり、作用原理の説明では重要ではないので、図8には中央脚を省略した4脚形の振動子を挙げた。図8の振動子は、胴部10と、駆動脚(特許文献1では、駆動側アーム)111と、検出脚(特許文献1では、検出側アーム)112とでなる。駆動脚111は励振用駆動脚111a及び111bでなる。検出脚112は振動用検出脚112a及び112bでなる。   An example of a vibration gyro of a hexapod vibrator is described in Patent Document 1 or Patent Document 2. FIG. 8 is a diagram for explaining the basic structure and operation of the tuning fork type vibration gyro described in Patent Document 1 or Patent Document 2. However, the hexapodal vibrator has three driving legs and three detection legs arranged at equal intervals on both ends of a rectangular plate-shaped body part. Since this is for stabilizing the vibration and is not important in the explanation of the operation principle, FIG. 8 shows a quadruped vibrator in which the central leg is omitted. The vibrator shown in FIG. 8 includes a body portion 10, a driving leg (driving side arm in Patent Document 1) 111, and a detecting leg (detecting side arm in Patent Document 1) 112. The drive leg 111 includes excitation drive legs 111a and 111b. The detection leg 112 includes vibration detection legs 112a and 112b.

図8(A)は音叉型振動ジャイロに対する回転の入力がないときの振動子の状態を表し、同図(B)は音叉型振動ジャイロに対し回転の入力があるときの振動子の状態を表す。励振用駆動脚111a及び111bは、互いに対をなし、逆位相で振動する。振動用検出脚112a及び112bは、互いに対をなし、逆位相で振動する。胴部10は、直方体であり、その平面形(上面10aの形)は正方形である(正方形である必要は必ずしもない)。胴部10における各面は、上面を符号10aで現し、底面(図に現れていない)を符号10bで現し、駆動脚111側の端面を符号10cで現し、検出脚112側の端面(図に現れていない)を符号10dで現し、一方の側面を符号10eで現し、他方の側面(図に現れていない)を符号10fで表すこととする。上面10a及び底面10bを主面と称する   FIG. 8A shows the state of the vibrator when there is no rotation input to the tuning fork type vibration gyro, and FIG. 8B shows the state of the vibrator when there is a rotation input to the tuning fork type vibration gyro. . The excitation drive legs 111a and 111b are paired with each other and vibrate in opposite phases. The vibration detection legs 112a and 112b are paired with each other and vibrate in opposite phases. The trunk | drum 10 is a rectangular parallelepiped, The planar shape (shape of the upper surface 10a) is a square (it does not necessarily need to be a square). Each surface of the body 10 has a top surface represented by reference numeral 10a, a bottom surface (not shown in the figure) represented by reference numeral 10b, an end surface on the drive leg 111 side represented by reference numeral 10c, and an end surface on the detection leg 112 side (in the figure). (Not appearing) is represented by reference numeral 10d, one side surface is represented by reference numeral 10e, and the other side surface (not appearing in the figure) is represented by reference numeral 10f. The upper surface 10a and the bottom surface 10b are called main surfaces.

胴部10、励振用駆動脚111a及び111b並びに振動用検出脚112a及び112bは、1つの圧電単結晶体でなり、一枚の板状の圧電単結晶から切り出された形をなす。胴部10、励振用駆動脚111a,111b及び振動用検出脚112a,112bの厚みは同一である。励振用駆動脚111a及び111bが励振されていない状態、即ち静止状態では、励振用駆動脚111a,111bの軸及び振動用検出脚112a,112bの軸は、胴部10の端面10c及び10dにそれぞれ垂直である。励振用駆動脚111a及び振動用検出脚112aの軸は同一の軸線上にある。同様に、励振用駆動脚111b及び振動用検出脚112bの軸も同一の軸線上にある。また、胴部10の重心を通り、側面10e平行な面に関し、励振用駆動脚111a及び111bは対称であり、また振動用検出脚112a及び112bも対称である。励振用駆動脚111a,111b及び振動用検出脚112a,112bには駆動用電極及び検出用電極がそれぞれ設けてある(これら電極の図示は省略されている。)。   The body 10, the excitation drive legs 111 a and 111 b, and the vibration detection legs 112 a and 112 b are made of one piezoelectric single crystal, and are cut out from a single plate-like piezoelectric single crystal. The body 10, the excitation drive legs 111 a and 111 b and the vibration detection legs 112 a and 112 b have the same thickness. In a state where the excitation drive legs 111a and 111b are not excited, that is, in a stationary state, the axes of the excitation drive legs 111a and 111b and the axes of the vibration detection legs 112a and 112b are respectively on the end surfaces 10c and 10d of the body part 10. It is vertical. The axes of the excitation drive leg 111a and the vibration detection leg 112a are on the same axis. Similarly, the axes of the excitation drive leg 111b and the vibration detection leg 112b are on the same axis. In addition, the excitation drive legs 111a and 111b are symmetrical and the vibration detection legs 112a and 112b are also symmetrical with respect to a plane that passes through the center of gravity of the body portion 10 and is parallel to the side surface 10e. Excitation drive legs 111a and 111b and vibration detection legs 112a and 112b are provided with drive electrodes and detection electrodes, respectively (the illustration of these electrodes is omitted).

このような図8の構造の音叉型振動ジャイロにおける駆動用電極に励振用の交流電圧を印加すると、励振用駆動脚111a及び111bは、上面10aに平行な平面内において互いに反対方向に、即ち逆位相に、振動する。この振動が、音叉型振動ジャイロにおける駆動振動である。駆動振動は、胴部10の主面(上面10a及び底面10b)に平行な平面内における振動であり、このような主面に平行な平面内における振動を面内振動と称する。面内振動は、図8(A)において矢印Ha及びHbで現してある。この状態で、角速度ωの回転が図8(B)の入力軸回りに入力されると、脚振動による脚端速度に比例してコリオリ力が発生するので、コリオリ力は脚振動と90度位相がずれた同じ周波数の振動になる。この振動は、コリオリ力に基づく振動という意味で、コリオリ振動と称することにする。脚端の変位が±aの範囲になるように脚が振動をしているとき、その脚端速度の絶対値は、脚端の変位が±aの時にゼロであり、脚端の変位がゼロの時に最大となる。図8の構造の音叉型振動ジャイロでは、角速度ωの回転が図8(B)の入力軸回りに入力されたとき、励振用駆動脚111a及び111bにコリオリ力が作用し、コリオリ振動Ca及びCbがそれぞれ生じる。コリオリ振動Ca及びCbは、胴部10の主面に直交する方向の振動であり、その位相は互いに逆である。胴部10の主面に直交する方向の振動を面垂直振動と称する。   When an AC voltage for excitation is applied to the drive electrode in the tuning fork type vibration gyro having the structure shown in FIG. 8, the excitation drive legs 111a and 111b are opposite to each other in the plane parallel to the upper surface 10a, that is, reverse. Vibrates in phase. This vibration is drive vibration in the tuning fork type vibration gyro. The drive vibration is vibration in a plane parallel to the main surface (the upper surface 10a and the bottom surface 10b) of the trunk portion 10, and such vibration in a plane parallel to the main surface is referred to as in-plane vibration. In-plane vibration is indicated by arrows Ha and Hb in FIG. In this state, when the rotation of the angular velocity ω is input around the input shaft in FIG. 8B, a Coriolis force is generated in proportion to the leg end velocity due to the leg vibration. It becomes the vibration of the same frequency. This vibration is referred to as Coriolis vibration in the sense of vibration based on Coriolis force. When the leg vibrates so that the displacement of the leg end is in the range of ± a, the absolute value of the leg end velocity is zero when the displacement of the leg end is ± a, and the displacement of the leg end is zero. It becomes the maximum at the time of. In the tuning fork type vibration gyro having the structure shown in FIG. 8, when the rotation of the angular velocity ω is inputted around the input shaft shown in FIG. 8B, Coriolis force acts on the excitation drive legs 111a and 111b, and the Coriolis vibrations Ca and Cb. Each occurs. The Coriolis vibrations Ca and Cb are vibrations in a direction perpendicular to the main surface of the body portion 10, and their phases are opposite to each other. The vibration in the direction perpendicular to the main surface of the body portion 10 is referred to as surface vertical vibration.

胴部10は、板状であるので、その主面に平行な方向の振動、即ち面内振動に対しては極めて高い剛性を有し、他方主面に直交する方向の振動、即ち面垂直振動に対しては相対的に低い剛性を示す。そこで、励振用駆動脚111a,111bに生じる振動のうちで、面内振動である駆動振動Ha及びHbは、振動用検出脚112a,112bには殆ど伝搬せず、他方面垂直振動であるコリオリ振動Ca及びCbは高い効率で振動用検出脚112a,112bに伝搬する。振動用検出脚112a及び112bに伝搬したコリオリ振動が、音叉型振動ジャイロにおける検出振動Da及びDbである。音叉型振動ジャイロは、検出振動Da及びDbにより振動用検出脚112a及び112bに現れる電圧を検出用電極で電気信号として取り出すことにより、角速度ωを検出する。   Since the body portion 10 is plate-shaped, it has extremely high rigidity against vibration in a direction parallel to the main surface, that is, in-plane vibration, and vibration in a direction orthogonal to the main surface, that is, surface vertical vibration. Shows relatively low rigidity. Therefore, among the vibrations generated in the excitation drive legs 111a and 111b, the drive vibrations Ha and Hb that are in-plane vibrations hardly propagate to the vibration detection legs 112a and 112b, and the other surface vertical vibrations are Coriolis vibrations. Ca and Cb propagate to the vibration detection legs 112a and 112b with high efficiency. The Coriolis vibrations propagated to the vibration detection legs 112a and 112b are detected vibrations Da and Db in the tuning fork type vibration gyro. The tuning fork type vibration gyro detects the angular velocity ω by taking out the voltage appearing on the vibration detection legs 112a and 112b as an electric signal with the detection electrodes by the detection vibrations Da and Db.

音叉型振動ジャイロでは、振動用検出脚112a,112bに現れる駆動振動成分がノイズであり、検出振動成分(Da,Db)が信号である。そこで、振動用検出脚112a,112bにおける検出振動成分(Da,Db)に対する駆動振動成分の比が信号対雑音比(S/N比)となるので、角速度ωを高い精度で検出するには、振動用検出脚112a,112bに漏れ、現れる駆動振動成分を低減する必要がある。振動用検出脚112a,112bに漏れる駆動振動成分は、信号成分[検出振動成分(Da,Db)]に対するバイアスとなり、このバイアスが不安定であれば、角速度ωの検出精度は低下する。バイアスは、振動ジャイロに角速度ωの入力がないときにも検出脚に現れる振動に起因する信号である。バイアスが生じる原因としては、振動子の形状誤差、電極形成誤差、振動子支持構造による振動子の部分的な拘束などがある。   In the tuning fork type vibration gyro, the drive vibration component appearing on the vibration detection legs 112a and 112b is noise, and the detected vibration component (Da, Db) is a signal. Therefore, since the ratio of the drive vibration component to the detected vibration component (Da, Db) in the vibration detection legs 112a, 112b becomes a signal-to-noise ratio (S / N ratio), in order to detect the angular velocity ω with high accuracy, It is necessary to reduce the drive vibration component that leaks and appears in the vibration detection legs 112a and 112b. The drive vibration component leaking to the vibration detection legs 112a and 112b becomes a bias for the signal component [detected vibration component (Da, Db)]. If this bias is unstable, the detection accuracy of the angular velocity ω is lowered. The bias is a signal resulting from vibration appearing on the detection leg even when the angular velocity ω is not input to the vibration gyro. The causes of the bias include a shape error of the vibrator, an electrode formation error, and partial restriction of the vibrator due to the vibrator support structure.

図7は、振動ジャイロの機能ブロック図である。振動ジャイロにおける音叉型振動子として、図8には4脚形の振動子を挙げたが、図7の振動ジャイロでは図示の簡略化のために、振動子はU字形とした。振動ジャイロでは、振動子を励振するための駆動信号を振動子に供給することにより、振動子に入力される角速度ωを表す検出信号を振動子から取得する。振動子の脚数が変われば、駆動信号および検出信号の数および位相が変わるが、振動子の脚数に拘わらずが、振動ジャイロの基本構成は変わらない。したがって、図8の4脚形の振動子を備える振動ジャイロも、図7と同様な機能ブロック図の回路で実現できる。図7において、振動子1は、圧電性単結晶製の振動体に駆動電極および検出電極を蒸着してなる。   FIG. 7 is a functional block diagram of the vibrating gyroscope. As a tuning fork type vibrator in the vibrating gyroscope, a quadruped vibrator is shown in FIG. 8, but in the vibrating gyroscope of FIG. 7, the vibrator is U-shaped for simplification of illustration. In the vibrating gyroscope, a detection signal representing the angular velocity ω input to the vibrator is acquired from the vibrator by supplying a driving signal for exciting the vibrator to the vibrator. If the number of legs of the vibrator changes, the number and phase of the drive signal and detection signal change, but the basic configuration of the vibrating gyroscope does not change regardless of the number of legs of the vibrator. Therefore, the vibration gyro provided with the quadruped vibrator of FIG. 8 can also be realized by the circuit of the functional block diagram similar to FIG. In FIG. 7, the vibrator 1 is formed by vapor-depositing a drive electrode and a detection electrode on a vibrating body made of a piezoelectric single crystal.

図7の振動ジャイロは、振動子1、自励発信部2、波形整形部3、位相部4、交流増幅部5、同期検波部6および直流増幅部7でなる。自励発信部2は、振動子1を共振手段とする発信回路であり、駆動信号102を生成する。振動子1は、駆動信号102により励振され、電極に現れる電気信号を帰還信号101aとして自励発信部2に帰還するとともに、外部から角速度ωの入力があったときに検出電極に現れる検出信号101bは交流増幅部5へ出力する。波形整形部3は、コンパレータ等でなり、駆動信号102の波形を整形し、波形整形駆動信号103を出力する。位相部4は、波形整形駆動信号103の位相を移送し、参照信号104を生成する。交流増幅部5は、交流信号である検出信号101bを増幅し、増幅検出信号105を出力する。同期検波部6は、参照信号104でもって増幅検出信号105の同期検波を行い、検波信号106を出力する。直流増幅部7は、直流信号である検波信号106を増幅し、直流増幅した検波信号を角速度信号ωaとして出力する。   7 includes a vibrator 1, a self-excited transmission unit 2, a waveform shaping unit 3, a phase unit 4, an AC amplification unit 5, a synchronous detection unit 6, and a DC amplification unit 7. The self-excited transmission unit 2 is a transmission circuit that uses the vibrator 1 as a resonance means, and generates a drive signal 102. The vibrator 1 is excited by the drive signal 102 and returns an electric signal appearing on the electrode to the self-excited transmission unit 2 as a feedback signal 101a, and a detection signal 101b appearing on the detection electrode when an angular velocity ω is input from the outside. Is output to the AC amplifier 5. The waveform shaping unit 3 is composed of a comparator or the like, shapes the waveform of the drive signal 102, and outputs a waveform shaping drive signal 103. The phase unit 4 moves the phase of the waveform shaping drive signal 103 and generates a reference signal 104. The AC amplifying unit 5 amplifies the detection signal 101b that is an AC signal, and outputs an amplified detection signal 105. The synchronous detection unit 6 performs synchronous detection of the amplified detection signal 105 with the reference signal 104 and outputs a detection signal 106. The direct current amplifier 7 amplifies the detection signal 106 which is a direct current signal, and outputs the direct current amplified detection signal as an angular velocity signal ωa.

振動ジャイロの振動子1は、角速度ωを表す検出信号101bを出力するが、検出信号101bは微弱であり、しかも駆動信号102とは位相を90°異にする交流信号である。そこで、振動ジャイロでは、角速度信号ωaを得るために、検出信号101bを交流増幅部5でまず増幅して交流の信号105を出力するとともに、同期検波部6で同期検波することにより、その交流信号105を直流の検波信号106に変換した後、直流増幅部7でさらに増幅している。また、その同期検波部6で用いる参照信号104を生成するために、駆動信号102の波形を波形整形部3で整形し、移相部4おいて位相調整を行っている。   The vibrator 1 of the vibration gyro outputs a detection signal 101b representing the angular velocity ω, but the detection signal 101b is weak and is an AC signal whose phase is 90 ° different from that of the drive signal 102. Therefore, in the vibration gyro, in order to obtain the angular velocity signal ωa, the detection signal 101b is first amplified by the AC amplification unit 5 to output the AC signal 105, and the AC signal 105 is synchronously detected by the synchronous detection unit 6. 105 is converted into a DC detection signal 106 and then further amplified by the DC amplifier 7. Further, in order to generate the reference signal 104 used in the synchronous detection unit 6, the waveform of the drive signal 102 is shaped by the waveform shaping unit 3, and the phase adjustment is performed by the phase shift unit 4.

「超音波エレクトロニクス振動論―応用と基礎―」、宮川義朗著、朝倉書店"Ultrasonic electronics vibration theory-application and basics", Yoshiro Miyagawa, Asakura Shoten 特開2001-255152JP 2001-255152 A 特開2001-208545JP 2001-208545 A 特開平05-288555JP 05-288555 A

振動ジャイロでは、先に図8を参照して説明したように、振動子1の形状誤差や電極形成誤差、振動子搭載構造の影響等によって、振動ジャイロに入力される実際の角速度ωがゼロの場合にも、出力の角速度信号ωaがゼロにならない場合があり、入力角速度ωがゼロのときに出力される角速度信号ωaはバイアスと称される。振動子1に温度変動があると、振動子1の弾性係数、寸法、機械的な歪などが変動する。そこで、バイアスは振動子1の温度により変動する。   In the vibration gyro, as described above with reference to FIG. 8, the actual angular velocity ω input to the vibration gyro is zero due to the shape error of the vibrator 1, the electrode formation error, the influence of the vibrator mounting structure, and the like. In some cases, the output angular velocity signal ωa may not be zero, and the angular velocity signal ωa output when the input angular velocity ω is zero is referred to as a bias. If the vibrator 1 has temperature fluctuation, the elastic coefficient, dimensions, mechanical strain, etc. of the vibrator 1 will fluctuate. Therefore, the bias varies depending on the temperature of the vibrator 1.

また、振動ジャイロに温度変化が加わると、振動子1の圧電的な特性変動あるいは電気回路の電気的な特性変動により、同期検波部6の入力信号105と参照信号104との位相関係が変動する。この位相の変動は、角速度計測における感度の変化となって表れる。感度が変動すると、振動ジャイロの出力信号である角速度信号ωaが変動し、やはり角速度信号ωaの測定誤差となる。この感度変化に起因する測定誤差は、振動ジャイロという測定器におけるスケールファクタの変化といえる。   Further, when a temperature change is applied to the vibration gyroscope, the phase relationship between the input signal 105 and the reference signal 104 of the synchronous detection unit 6 changes due to the piezoelectric characteristic change of the vibrator 1 or the electric characteristic change of the electric circuit. . This variation in phase appears as a change in sensitivity in angular velocity measurement. When the sensitivity fluctuates, the angular velocity signal ωa, which is the output signal of the vibration gyroscope, fluctuates, again resulting in a measurement error of the angular velocity signal ωa. The measurement error due to this sensitivity change can be said to be a change in scale factor in a measuring instrument called a vibration gyroscope.

図5は、特許文献3で示された補償量演算部を有する振動ジャイロの機能ブロック図である。図5において、15は振動子1近傍に設置された温度センサ、18は補償量演算部、9はアナログ加算器である。補償量演算部18は、A/D変換器、PLD(プログラマブルロジックデバイス)及びD/A変換器を縦続に接続してなる。図5の符号1乃至7で示す要素は、図7におけるものと同じ作用をする。図5の回路では、直流増幅部7の出力107(バイアス補償前の角速度信号)は、アナログ加算器9の一方の入力端に接続されている。補償量演算部18は、温度センサ15の出力である温度信号115にA/D変換器でA/D変換を施すことによりディジタル化温度信号を生成し、PLDでそのディジタル化温度信号を処理することによりバイアス補償量信号を生成し、このバイアス補償量信号にD/A変換器でD/A変換を施し、アナログ化したバイアス補償量信号118をアナログ加算器9の他方の入力端に入力している。かくして、図5の振動ジャイロは、符号15,18及び9の要素を図7の要素に付加することにより、アナログ加算器9の出力として、バイアスが補償された角速度信号ωaを得ている。バイアスは、振動子1の温度変動に応じて変動するが、バイアス補償量信号118は温度信号115に基づき補正されているので、バイアス補償量信号118により環境温度に拘わらず、バイアスは補償される。特許文献3では、直流増幅部7の出力107はバイアスを含んだ角速度信号であるが、角速度信号ωaはそのバイアス成分を除いた角速度ωを表すとされている。バイアスは、振動子1の温度変動に応じて変動するが、バイアス補償量信号118は温度信号115に基づき補正されているので、バイアス補償量信号118により環境温度に拘わらず、バイアスを補償する技術が、特許文献3から一応覗われる。   FIG. 5 is a functional block diagram of a vibrating gyroscope having a compensation amount calculation unit disclosed in Patent Document 3. In FIG. 5, 15 is a temperature sensor installed in the vicinity of the vibrator 1, 18 is a compensation amount calculation unit, and 9 is an analog adder. The compensation amount calculation unit 18 is formed by connecting an A / D converter, a PLD (programmable logic device), and a D / A converter in cascade. Elements indicated by reference numerals 1 to 7 in FIG. 5 operate in the same manner as in FIG. In the circuit of FIG. 5, the output 107 (the angular velocity signal before bias compensation) of the DC amplification unit 7 is connected to one input terminal of the analog adder 9. The compensation amount calculation unit 18 generates a digitized temperature signal by performing A / D conversion on the temperature signal 115 output from the temperature sensor 15 by an A / D converter, and processes the digitized temperature signal by the PLD. Thus, the bias compensation amount signal is generated, the D / A conversion is performed on the bias compensation amount signal by the D / A converter, and the analog bias compensation amount signal 118 is input to the other input terminal of the analog adder 9. ing. Thus, the vibration gyro of FIG. 5 obtains an angular velocity signal ωa whose bias is compensated as an output of the analog adder 9 by adding the elements of 15, 18 and 9 to the elements of FIG. The bias varies according to the temperature variation of the vibrator 1, but since the bias compensation amount signal 118 is corrected based on the temperature signal 115, the bias is compensated by the bias compensation amount signal 118 regardless of the environmental temperature. . In Patent Document 3, the output 107 of the DC amplification unit 7 is an angular velocity signal including a bias, but the angular velocity signal ωa is assumed to represent an angular velocity ω excluding the bias component. Although the bias varies according to the temperature variation of the vibrator 1, the bias compensation amount signal 118 is corrected based on the temperature signal 115. Therefore, the bias compensation signal 118 compensates the bias regardless of the environmental temperature. However, it can be seen from Patent Document 3 for the time being.

しかしながら、図5に挙げた特許文献3の振動ジャイロでは、温度センサ15が振動子1近傍に設置されたとしても、温度センサ15は振動子1そのものの温度を計測しているわけではないので、バイアス補償量信号118には補正誤差が不可避である。また、振動子1近傍への温度センサ15を設置することは、工数や部品費の増大を伴うので、特許文献3の方式では、環境温度に応じたバイアス補償という機能付与のために振動ジャイロの製造費が増大することは避けられない。そのうえ、温度センサの設置をする特許文献3の方式には、温度センサの複雑な支持構造や脆弱な配線によって、振動ジャイロの信頼性が損なわれるという欠点がある。   However, in the vibration gyro of Patent Document 3 shown in FIG. 5, even if the temperature sensor 15 is installed in the vicinity of the vibrator 1, the temperature sensor 15 does not measure the temperature of the vibrator 1 itself. A correction error is inevitable in the bias compensation amount signal 118. In addition, since the installation of the temperature sensor 15 in the vicinity of the vibrator 1 entails an increase in man-hours and parts costs, the method of Patent Document 3 uses a vibration gyro for providing a function of bias compensation according to the environmental temperature. Increasing manufacturing costs is inevitable. In addition, the method of Patent Document 3 in which the temperature sensor is installed has a drawback that the reliability of the vibration gyro is impaired due to the complicated support structure of the temperature sensor and fragile wiring.

さらに、振動ジャイロに温度変化が加わるとき、振動子1の圧電的な特性変動あるいは電気回路特性の電気的な変動により、同期検波部6での入力信号105と参照信号104との位相関係が変動する。この位相変動は角速度信号ωaに対して感度の変化となって表れるが、特許文献3の方法ではその感度の補正をすることができない。   Further, when a temperature change is applied to the vibration gyroscope, the phase relationship between the input signal 105 and the reference signal 104 in the synchronous detector 6 varies due to the piezoelectric characteristic variation of the vibrator 1 or the electrical circuit characteristic variation. To do. This phase variation appears as a change in sensitivity with respect to the angular velocity signal ωa, but the sensitivity cannot be corrected by the method of Patent Document 3.

そこで、本発明の目的は、簡潔な構造で信頼性があり、適正なバイアス補償又は感度補正の少なくとも一方を可能とする補償量演算部を備える振動ジャイロの提供にある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a vibration gyro including a compensation amount calculation unit that is reliable with a simple structure and is capable of at least one of proper bias compensation and sensitivity correction.

前述の課題を解決するために本発明は次の手段を提供する。   In order to solve the above-mentioned problems, the present invention provides the following means.

(1)振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段と、該振動子が該角速度を受けていないときにおけるコリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有する振動ジャイロにおいて、
前記バイアス補償量生成手段は、前記共振周波数に応じて前記バイアス補償量を生成することを特徴とする振動ジャイロ。
(1) Using the vibrator, one resonance frequency of the vibrator as a drive signal, vibrator driving means for driving the vibrator, and Coriolis vibration appearing in the vibrator according to the angular velocity received by the vibrator A bias compensation amount generating means for generating a bias compensation amount for compensating a bias which is an output value of the Coriolis vibration detecting means when the vibrator is not receiving the angular velocity, and a Coriolis vibration detecting means In a vibration gyro having a bias removing unit that generates an angular velocity signal that does not include the bias by combining the output and the bias compensation amount, and removing the bias from the output of the Coriolis vibration detecting unit.
The bias compensation amount generating means generates the bias compensation amount according to the resonance frequency.

(2)前記バイアス補償量生成手段は、前記共振周波数を計測し、計測した周波数に対応する値を前記振動子の温度データとして出力する周波数計測部と、該温度データに基づき前記バイアス補償量を生成するバイアス補償量演算部とを備え、
前記バイアス補償量演算部は、温度を変数とする多項式又はルックアップテーブルを予め記憶しており、前記温度データに対応する前記バイアス補償量を該多項式又はルックアップテーブルにより求める
ことを特徴とする前記(1)に記載の振動ジャイロ。
(2) The bias compensation amount generating means measures the resonance frequency and outputs a value corresponding to the measured frequency as temperature data of the vibrator, and calculates the bias compensation amount based on the temperature data. A bias compensation amount calculation unit to generate,
The bias compensation amount calculation unit stores in advance a polynomial or a lookup table having a temperature as a variable, and obtains the bias compensation amount corresponding to the temperature data by the polynomial or the lookup table. The vibrating gyroscope according to (1).

(3)振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段とを有し、
前記コリオリ振動検出手段は、前記駆動信号の位相を移送することにより参照信号生成する移相部と、前記振動子の出力のコリオリ振動を該参照信号で同期検波する同期検波部とを備えてなる振動ジャイロにおいて、
前記共振周波数の変化に基づく位相補正量信号を生成し、該位相補正量信号を前記移相部に供給する位相量補正手段を備え、
前記位相量補正手段は、前記振動子の温度変動に起因する前記コリオリ振動と前記参照信号との位相差の変動量を補正するだけの大きさの位相を前記位相補正量信号で表し、
前記移相部は、前記位相補正量信号で表される位相補正量だけ前記参照信号の位相を移相する
ことを特徴とする振動ジャイロ。
(3) A vibrator, a vibrator driving means for driving the vibrator, and a Coriolis vibration appearing in the vibrator according to an angular velocity received by the vibrator, using a resonance frequency of the vibrator as a drive signal And means for
The Coriolis vibration detection means includes a phase shift unit that generates a reference signal by transferring the phase of the drive signal, and a synchronous detection unit that synchronously detects Coriolis vibration of the output of the vibrator using the reference signal. In vibration gyro,
A phase correction amount signal is generated based on a change in the resonance frequency, and the phase correction amount signal is supplied to the phase shift unit.
The phase amount correction means represents, as the phase correction amount signal, a phase having a magnitude sufficient to correct a variation amount of the phase difference between the Coriolis vibration and the reference signal caused by temperature fluctuation of the vibrator.
The phase shift unit shifts the phase of the reference signal by a phase correction amount represented by the phase correction amount signal.

(4)前記振動子が前記角速度を受けていないときにおける前記コリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有し、
前記バイアス補償量生成手段は、前記共振周波数に基づき前記振動子の温度データを取得し、該温度データに応じて前記バイアス補償量を生成する
ことを特徴とする前記(3)に記載の振動ジャイロ。
(4) a bias compensation amount generating means for generating a bias compensation amount for compensating a bias that is an output value of the Coriolis vibration detecting means when the vibrator does not receive the angular velocity; A bias removing unit that generates an angular velocity signal that does not include the bias by combining the output and the bias compensation amount, and removing the bias from the output of the Coriolis vibration detecting unit;
The vibration gyro according to (3), wherein the bias compensation amount generation unit acquires temperature data of the vibrator based on the resonance frequency, and generates the bias compensation amount according to the temperature data. .

上記本発明によれば、振動子1の共振周波数が振動子1自体の温度に応じて変動することを利用し、振動子1の温度を計測するので、温度計測位置に伴うバイアス補償誤差が生じない。また本発明によれば、バイアス補償だけでなく、環境温度による感度の変動も補正する補償量演算部を有する振動ジャイロが提供できる。さらに、本発明によれば、温度センサが不要であるので、簡単な構造で小型化が可能であり、また制作費も低廉な信頼性の高い振動ジャイロを提供できる。   According to the present invention, since the temperature of the vibrator 1 is measured by utilizing the fact that the resonance frequency of the vibrator 1 varies according to the temperature of the vibrator 1 itself, a bias compensation error associated with the temperature measurement position occurs. Absent. Further, according to the present invention, it is possible to provide a vibration gyro having a compensation amount calculation unit that corrects not only bias compensation but also fluctuations in sensitivity due to environmental temperature. Furthermore, according to the present invention, since a temperature sensor is not required, it is possible to provide a highly reliable vibration gyro which can be downsized with a simple structure and can be manufactured at low cost.

次に本発明の実施の形態を挙げ、図面を参照し、本発明を一層具体的に説明する。図1は、本発明の第1の実施の形態の振動ジャイロを示す機能ブロック図である。この実施の形態における補償量演算部8は、波形整形部3の出力の波形整形駆動信号103から温度データを得ている。他方、図5に示した従来の振動ジャイロにおける補償量演算部18は、温度センサ15の出力の温度信号115から温度データを得ていた。そこで、図1の実施の形態における補償量演算部8は、構成および作動において、図5の補償量演算部18とは相違する。また、図1の実施の形態では、図5の温度センサ15を要しない。その他の点において、図1の実施の形態は図5の従来の振動ジャイロと同じであるので、以下ではそれら相違点を中心に、図1の実施の形態を説明する。   Next, embodiments of the present invention will be described, and the present invention will be described more specifically with reference to the drawings. FIG. 1 is a functional block diagram showing a vibration gyro according to a first embodiment of the present invention. The compensation amount calculation unit 8 in this embodiment obtains temperature data from the waveform shaping drive signal 103 output from the waveform shaping unit 3. On the other hand, the compensation amount calculator 18 in the conventional vibration gyro shown in FIG. 5 obtains temperature data from the temperature signal 115 output from the temperature sensor 15. Therefore, the compensation amount calculation unit 8 in the embodiment of FIG. 1 is different from the compensation amount calculation unit 18 of FIG. 5 in configuration and operation. In the embodiment of FIG. 1, the temperature sensor 15 of FIG. 5 is not required. In other respects, the embodiment of FIG. 1 is the same as the conventional vibrating gyroscope of FIG. 5, and therefore, the embodiment of FIG. 1 will be described below focusing on these differences.

図1の実施の形態の補償量演算部8は、図5の従来の振動ジャイロと同様に、温度データに基づき、補償量(バイアス推定量の極性を反転した値)を演算し、その補償量を表すバイアス補償量信号108を生成し、直流増幅部7の出力信号107(バイアス補償前の角速度信号)にバイアス補償量信号108を直接加算することにより、バイアスを打ち消している。   The compensation amount calculation unit 8 of the embodiment of FIG. 1 calculates a compensation amount (a value obtained by inverting the polarity of the estimated bias amount) based on the temperature data, similarly to the conventional vibration gyro shown in FIG. The bias compensation amount signal 108 is generated, and the bias compensation amount signal 108 is directly added to the output signal 107 (the angular velocity signal before bias compensation) of the DC amplifier 7 to cancel the bias.

図3は、補償量演算部8の具体的構成例を示した第1の実施の形態(図1)の機能ブロック図である。図3の補償量演算部8は、周波数計測部81およびバイアス補償量演算部82でなる。周波数計測部81は、波形整形部3の出力の波形整形駆動信号103を受け、波形整形駆動信号103の周波数を計測する。波形整形駆動信号103の周波数は駆動信号102の周波数と同じであるから、周波数計測部81の計数値は駆動信号102の周波数を表す。その駆動信号102の周波数は、自励発信部2の発振周波数であるから、振動子1の共振周波数である。   FIG. 3 is a functional block diagram of the first embodiment (FIG. 1) showing a specific configuration example of the compensation amount calculation unit 8. The compensation amount calculation unit 8 in FIG. 3 includes a frequency measurement unit 81 and a bias compensation amount calculation unit 82. The frequency measuring unit 81 receives the waveform shaping drive signal 103 output from the waveform shaping unit 3 and measures the frequency of the waveform shaping drive signal 103. Since the frequency of the waveform shaping drive signal 103 is the same as the frequency of the drive signal 102, the count value of the frequency measuring unit 81 represents the frequency of the drive signal 102. Since the frequency of the drive signal 102 is the oscillation frequency of the self-excited transmission unit 2, it is the resonance frequency of the vibrator 1.

図6は、振動子1の共振周波数と温度との関係を示すグラフである。このように振動子1の共振周波数は、振動子1の熱膨張率や弾性率の温度係数で変動し、振動子1の温度の関数となっている。従って、図3の実施の形態における補償量演算部8では、周波数計測部81により波形整形駆動信号103の周波数を計測することにより、振動子1の温度データを得ることができる。周波数計測部81の出力信号181は、振動子1の共振周波数を表す信号であるとともに、この共振周波数が振動子1の温度に一義的に対応しているので、温度信号でもある。この実施の形態では、信号181を温度信号と称することにする。   FIG. 6 is a graph showing the relationship between the resonance frequency of the vibrator 1 and the temperature. As described above, the resonance frequency of the vibrator 1 varies with the temperature coefficient of the thermal expansion coefficient and the elastic modulus of the vibrator 1 and is a function of the temperature of the vibrator 1. Therefore, in the compensation amount calculation unit 8 in the embodiment of FIG. 3, the frequency data of the vibrator 1 can be obtained by measuring the frequency of the waveform shaping drive signal 103 by the frequency measurement unit 81. The output signal 181 of the frequency measuring unit 81 is a signal representing the resonance frequency of the vibrator 1 and is also a temperature signal because this resonance frequency uniquely corresponds to the temperature of the vibrator 1. In this embodiment, the signal 181 is referred to as a temperature signal.

図3の実施の形態における補償量演算部8は、図5の従来の振動ジャイロにおける温度センサ15出力の温度信号115の代わりに、波形整形駆動信号103の周波数を周波数計測部81で計測することにより、振動子1の温度データを得るとともに、バイアス補償量演算部82で、その温度データに応じたバイアス補償量を算出して、このバイアス補償量信号108を生成している。   The compensation amount calculation unit 8 in the embodiment of FIG. 3 measures the frequency of the waveform shaping drive signal 103 with the frequency measurement unit 81 instead of the temperature signal 115 of the temperature sensor 15 output in the conventional vibration gyro of FIG. Thus, the temperature data of the vibrator 1 is obtained, and the bias compensation amount calculation unit 82 calculates the bias compensation amount according to the temperature data to generate the bias compensation amount signal 108.

バイアス補償量演算部82は、温度を変数とする多項式あるいはルックアップテーブルを保有し、入力に対して1対1に対応する出力を生成する。多項式における係数あるいはルックアップテーブルのテーブル値を決めるために、振動ジャイロの温度試験により事前にバイアスの計測をする。温度試験は、振動ジャイロの使用環境の温度範囲の全域にわたって、一定温度間隔でバイアスを計測することにより行う。この試験より得た各温度ごとのバイアスの極性を反転した値が、各温度のバイアス補償量である。多項式で補償量を求めるときは、各温度における多項式の値が各温度における補償量となるように、多項式における各係数を計算し、バイアス補償量演算部82に記憶しておく。ルックアップテーブルで補償量を求めるときは、各温度ごとの補償量を各温度のテーブル値として、バイアス補償量演算部82に記憶しておく。   The bias compensation amount calculation unit 82 has a polynomial or a look-up table with temperature as a variable, and generates an output corresponding to one-to-one with respect to the input. In order to determine the coefficient in the polynomial or the table value of the lookup table, the bias is measured in advance by the temperature test of the vibration gyro. The temperature test is performed by measuring the bias at regular temperature intervals over the entire temperature range of the environment in which the vibration gyro is used. A value obtained by inverting the polarity of the bias at each temperature obtained from this test is the bias compensation amount at each temperature. When calculating the compensation amount using a polynomial, each coefficient in the polynomial is calculated and stored in the bias compensation amount calculation unit 82 so that the value of the polynomial at each temperature becomes the compensation amount at each temperature. When calculating the compensation amount using the lookup table, the compensation amount for each temperature is stored in the bias compensation amount calculation unit 82 as a table value for each temperature.

図1及び図3を参照して説明した本発明の第1の実施例において、自励発振部2は前述の振動子駆動手段に相当し、波形整形部3、移相部4、交流増幅部5および同期検波部6は前述のコリオリ振動検出手段に相当し、補償量演算部8は前述のバイアス補償量生成手段に相当し、直流増幅部及びアナログ加算器9は前述のバイアス除去手段に相当する。   In the first embodiment of the present invention described with reference to FIGS. 1 and 3, the self-excited oscillation unit 2 corresponds to the above-described vibrator driving means, and includes a waveform shaping unit 3, a phase shift unit 4, and an AC amplification unit. 5 and the synchronous detection unit 6 correspond to the above-mentioned Coriolis vibration detection means, the compensation amount calculation unit 8 corresponds to the above-mentioned bias compensation amount generation means, and the DC amplification unit and the analog adder 9 correspond to the above-described bias removal means. To do.

図2は本発明の第2の実施の形態の振動ジャイロを示す機能ブロック図である。振動ジャイロに温度変化が加わると、振動子1の圧電的な特性変動あるいは電気回路における電気特性の変動により、同期検波部6の入力信号である増幅検出信号105と参照信号104との位相関係が変動する。この位相変動は、角速度信号ωaの大きさの変動として表れるので、振動ジャイロの感度の変化となる。感度が変動すると、振動ジャイロの出力信号である角速度信号ωaが変動し、やはり角速度信号ωaの測定誤差となる。この感度変化に起因する測定誤差は、振動ジャイロという測定器におけるスケールファクタの変化といえる。図1の実施の形態ではその感度変化に起因する測定誤差は補正できない。   FIG. 2 is a functional block diagram showing a vibration gyro according to a second embodiment of the present invention. When a temperature change is applied to the vibration gyro, the phase relationship between the amplification detection signal 105 and the reference signal 104 that is an input signal of the synchronous detection unit 6 is changed due to the piezoelectric characteristic fluctuation of the vibrator 1 or the electric characteristic fluctuation in the electric circuit. fluctuate. Since this phase fluctuation appears as a fluctuation in the magnitude of the angular velocity signal ωa, it becomes a change in the sensitivity of the vibration gyro. When the sensitivity fluctuates, the angular velocity signal ωa, which is the output signal of the vibration gyroscope, fluctuates, again resulting in a measurement error of the angular velocity signal ωa. The measurement error due to this sensitivity change can be said to be a change in scale factor in a measuring instrument called a vibration gyroscope. In the embodiment of FIG. 1, the measurement error due to the sensitivity change cannot be corrected.

図2の実施の形態では、前記位相変動を補正するために、その変動分の大きさの位相を補正位相量として補償量演算部80で演算し、その補正位相量を表す位相補正量信号108bを移相部4に加え、参照信号104の位相をその補正位相量だけ移相することにより、同期検波部6の2つの入力信号(増幅検出信号105および参照信号104)間の位相変動を防止している。このようにして、位相補正量信号108bに応じた位相量だけ移相部4において参照信号104の位相を調整することで、温度変動に起因する感度の変動を補償し、振動ジャイロのスケールファクタの補正が可能となる。また、補償量演算部80は、図1の実施の形態における補償量演算部8と同様に、バイアス補償量108を生成し、角速度信号107におけるバイアスを補償する機能も備える。   In the embodiment of FIG. 2, in order to correct the phase variation, the phase of the magnitude of the variation is calculated as a correction phase amount by the compensation amount calculation unit 80, and the phase correction amount signal 108b representing the correction phase amount is obtained. Is added to the phase shifter 4 and the phase of the reference signal 104 is shifted by the amount of the corrected phase, thereby preventing phase fluctuation between the two input signals (the amplified detection signal 105 and the reference signal 104) of the synchronous detector 6. is doing. In this way, by adjusting the phase of the reference signal 104 by the phase shift unit 4 by the phase amount corresponding to the phase correction amount signal 108b, the sensitivity variation due to the temperature variation is compensated, and the scale factor of the vibration gyro Correction is possible. The compensation amount calculation unit 80 also has a function of generating the bias compensation amount 108 and compensating for the bias in the angular velocity signal 107, similarly to the compensation amount calculation unit 8 in the embodiment of FIG.

図4は、補償量演算部80の具体的構成例を示した第2の実施の形態の機能ブロック図である。補償量演算部80は、周波数計測部81、バイアス補償量演算部82および感度補正演算部83でなる。図4の補償量演算部80における周波数計測部81およびバイアス補償量演算部82は、図3の補償量演算部8におけるものと同じである。バイアスに対する補償量と感度に対する補正量は異なるので、補償量演算部80は、バイアス補償量演算部82とは別に、感度補正演算部83を備えている。感度補正演算部83は、図3の実施の形態におけるバイアス補償量演算部82と同様に、温度を変数とする多項式あるいはルックアップテーブルを保有し、入力に対して1対1に対応する出力を生成する。多項式の係数値あるいはルックアップテーブルのテーブル値を決めるために、振動ジャイロの温度試験を行い、温度変動に起因する増幅検出信号105と参照信号104との間の位相の変動量を事前に計測する。この位相変動量の極性を反転した値を補正位相量として生成するように、多項式の係数あるいはルックアップテーブルのテーブル値を決定する。感度補正演算部83における係数またはテーブル値は、前述のバイアス補償量演算部82における係数値またはテーブル値と同様に決める。感度補正演算部83は、予め記憶している多項式あるいはルックアップテーブルに、温度信号181を適用し、補正位相量を演算し、補正位相量を表す位相補正量信号108bを生成する。   FIG. 4 is a functional block diagram of the second embodiment showing a specific configuration example of the compensation amount calculation unit 80. The compensation amount calculation unit 80 includes a frequency measurement unit 81, a bias compensation amount calculation unit 82, and a sensitivity correction calculation unit 83. The frequency measurement unit 81 and the bias compensation amount calculation unit 82 in the compensation amount calculation unit 80 in FIG. 4 are the same as those in the compensation amount calculation unit 8 in FIG. Since the compensation amount for the bias and the correction amount for the sensitivity are different, the compensation amount calculation unit 80 includes a sensitivity correction calculation unit 83 separately from the bias compensation amount calculation unit 82. Similar to the bias compensation amount calculation unit 82 in the embodiment of FIG. 3, the sensitivity correction calculation unit 83 has a polynomial or look-up table with temperature as a variable, and outputs an output corresponding to one-to-one with respect to the input. Generate. In order to determine the coefficient value of the polynomial or the table value of the lookup table, a temperature test of the vibration gyroscope is performed, and the amount of phase fluctuation between the amplified detection signal 105 and the reference signal 104 due to temperature fluctuation is measured in advance. . A polynomial coefficient or a table value of a lookup table is determined so that a value obtained by inverting the polarity of the phase variation amount is generated as a correction phase amount. The coefficient or table value in the sensitivity correction calculation unit 83 is determined in the same manner as the coefficient value or table value in the bias compensation amount calculation unit 82 described above. The sensitivity correction calculation unit 83 applies the temperature signal 181 to a polynomial or lookup table stored in advance, calculates a correction phase amount, and generates a phase correction amount signal 108b representing the correction phase amount.

図2及び図4を参照して説明した本発明の第2の実施例において、自励発振部2は前述の振動子駆動手段に相当し、波形整形部3、移相部4、交流増幅部5および同期検波部6は前述のコリオリ振動検出手段に相当し、補償量演算部80はバイアス補償量生成手段に相当し、直流増幅部及びアナログ加算器9は前述のバイアス除去手段に相当し、感度補正演算部は前述の位相量補正手段に相当する。   In the second embodiment of the present invention described with reference to FIGS. 2 and 4, the self-excited oscillation unit 2 corresponds to the above-described vibrator driving unit, and includes a waveform shaping unit 3, a phase shift unit 4, and an AC amplification unit. 5 and the synchronous detection unit 6 correspond to the above-mentioned Coriolis vibration detection means, the compensation amount calculation unit 80 corresponds to the bias compensation amount generation means, the DC amplification unit and the analog adder 9 correspond to the above-described bias removal means, The sensitivity correction calculation unit corresponds to the aforementioned phase amount correction means.

なお、以上には図面を参照して本発明の実施の形態を具体的に説明したが、本発明がこれらの実施の形態に限定されるものでないことは勿論である。例えば、上記実施の形態における補償量演算部8,80(バイアス補償量生成手段に相当)の入力信号は、波形整形された駆動信号103であったが、波形整形された駆動信号103に代えて駆動信号102又は帰還信号101aでも差し支えない。駆動信号102および帰還信号101aの周波数は振動子1の温度情報を含むからである。さらに、振動子1の表面であって駆動電極が配置されている面に駆動電極とは別の電極を固着し、その別の電極から取り出した信号を、駆動信号103に代えて、補償量演算部8,80の入力信号としてもよい。補償量演算部8,80の入力信号の信号源に関する上記の事項は、振動子1の脚の形状がU字形、4脚形、6脚形等のいずれであるかに拘わらず、同じである。   Although the embodiments of the present invention have been specifically described above with reference to the drawings, it goes without saying that the present invention is not limited to these embodiments. For example, the input signal of the compensation amount calculation units 8 and 80 (corresponding to the bias compensation amount generation means) in the above embodiment is the drive signal 103 with the waveform shaping, but it is replaced with the drive signal 103 with the waveform shaping. The drive signal 102 or the feedback signal 101a may be used. This is because the frequencies of the drive signal 102 and the feedback signal 101a include temperature information of the vibrator 1. Further, an electrode different from the drive electrode is fixed to the surface of the vibrator 1 on which the drive electrode is disposed, and a signal extracted from the other electrode is replaced with the drive signal 103 to calculate a compensation amount. The input signals of the units 8 and 80 may be used. The above-mentioned matters regarding the signal source of the input signals of the compensation amount calculation units 8 and 80 are the same regardless of whether the leg shape of the vibrator 1 is U-shaped, quadruped, hexapoded, or the like. .

本発明の第1の実施の形態の補償量演算部を有する振動ジャイロを示す機能ブロック図である。FIG. 2 is a functional block diagram showing a vibration gyro having a compensation amount calculation unit according to the first embodiment of the present invention. 本発明の第2の実施の形態の補償量演算部を有する振動ジャイロを示す機能ブロック図である。It is a functional block diagram which shows the vibration gyro which has a compensation amount calculating part of the 2nd Embodiment of this invention. 補償量演算部8の具体的構成例を示す第1の実施の形態の機能ブロック図である。3 is a functional block diagram of a first embodiment showing a specific configuration example of a compensation amount calculation unit 8. FIG. 補償量演算部80の具体的構成例を示す第2の実施の形態の機能ブロック図である。6 is a functional block diagram of a second embodiment showing a specific configuration example of a compensation amount calculation unit 80. FIG. 温度センサで温度データを取得することにより、バイアス補償を行う従来の振動ジャイロの機能ブロック図である。It is a functional block diagram of the conventional vibration gyro which performs bias compensation by acquiring temperature data with a temperature sensor. 振動子における温度と共振周波数との関係を示すグラフである。It is a graph which shows the relationship between the temperature in a vibrator | oscillator, and the resonant frequency. 振動ジャイロの基本機能を示す図であり、補償量演算部を有しないジャイロの機能ブロック図である。It is a figure which shows the basic function of a vibration gyro, and is a functional block diagram of a gyro which does not have a compensation amount calculating part. 駆動脚と検出脚とを胴部で結合した構造の音叉型振動ジャイロの作動原理を説明する図である。It is a figure explaining the principle of operation of a tuning fork type vibration gyro having a structure in which a driving leg and a detection leg are coupled by a body part.

符号の説明Explanation of symbols

1 振動子
2 自励発振部
3 波形整形部
4 移相部
5 交流増幅部
6 同期検波部
7 直流増幅部
8,18,80 補償量演算部
9 アナログ加算器
10 胴部
10a 胴部上面
10b 胴部底面
10c、10d 胴部端面
10e、10f 胴部側面
15 温度センサ
81 周波数計測部
82 バイアス補償量演算部
83 感度補正演算部
101a 帰還信号
101b 検出信号
102 駆動信号
103 波形整形された駆動信号
104 参照信号
105 増幅された検出信号
106 検波信号
108,118 バイアス補償量信号
108b 補正位相量信号
111a,111b 励振用駆動脚
112a,112b 振動用検出脚
115,181 温度信号
ω 角速度
ωa 角速度信号
Ca,Cb コリオリ振動
Ha、Hb 駆動振動
Da、Db 検出振動
DESCRIPTION OF SYMBOLS 1 Vibrator 2 Self-excited oscillation part 3 Waveform shaping part 4 Phase shift part 5 AC amplification part 6 Synchronous detection part 7 DC amplification part 8, 18, 80 Compensation amount calculation part 9 Analog adder 10 Body part 10a Body upper surface 10b Body Bottom surface 10c, 10d Body end surface 10e, 10f Body side surface 15 Temperature sensor 81 Frequency measurement unit 82 Bias compensation amount calculation unit 83 Sensitivity correction calculation unit 101a Feedback signal 101b Detection signal 102 Drive signal 103 Waveform-shaped drive signal 104 Signal 105 Amplified detection signal 106 Detection signal 108, 118 Bias compensation amount signal 108b Correction phase amount signal 111a, 111b Excitation drive leg 112a, 112b Vibration detection leg 115, 181 Temperature signal ω Angular velocity ωa Angular velocity signal Ca, Cb Coriolis Vibration Ha, Hb Drive vibration Da, Db Detection vibration

Claims (4)

振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段と、該振動子が該角速度を受けていないときにおけるコリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有する振動ジャイロにおいて、
前記バイアス補償量生成手段は、前記共振周波数に応じて前記バイアス補償量を生成することを特徴とする振動ジャイロ。
A vibrator, vibrator driving means for driving the vibrator using one resonance frequency of the vibrator as a drive signal, and means for detecting Coriolis vibration appearing in the vibrator according to an angular velocity received by the vibrator; A bias compensation amount generating means for generating a bias compensation amount for compensating a bias which is an output value of the Coriolis vibration detecting means when the vibrator does not receive the angular velocity; an output of the Coriolis vibration detecting means; A vibration gyro having a bias removing unit that generates an angular velocity signal that does not include the bias by combining with a bias compensation amount and removing the bias from the output of the Coriolis vibration detecting unit.
The bias compensation amount generating means generates the bias compensation amount according to the resonance frequency.
前記バイアス補償量生成手段は、前記共振周波数を計測し、計測した周波数に対応する値を前記振動子の温度データとして出力する周波数計測部と、該温度データに基づき前記バイアス補償量を生成するバイアス補償量演算部とを備え、
前記バイアス補償量演算部は、温度を変数とする多項式又はルックアップテーブルを予め記憶しており、前記温度データに対応する前記バイアス補償量を該多項式又はルックアップテーブルにより求める
ことを特徴とする請求項1に記載の振動ジャイロ。
The bias compensation amount generation means measures the resonance frequency and outputs a value corresponding to the measured frequency as temperature data of the vibrator, and a bias that generates the bias compensation amount based on the temperature data A compensation amount calculation unit,
The bias compensation amount calculation unit stores in advance a polynomial or a lookup table having a temperature as a variable, and obtains the bias compensation amount corresponding to the temperature data by the polynomial or the lookup table. The vibrating gyroscope according to Item 1.
振動子と、該振動子の1つの共振周波数を駆動信号として、該振動子を駆動する振動子駆動手段と、該振動子が受ける角速度に応じて該振動子に現れるコリオリ振動を検出する手段とを有し、
前記コリオリ振動検出手段は、前記駆動信号の位相を移送することにより参照信号生成する移相部と、前記振動子の出力のコリオリ振動を該参照信号で同期検波する同期検波部とを備えてなる振動ジャイロにおいて、
前記共振周波数の変化に基づく位相補正量信号を生成し、該位相補正量信号を前記移相部に供給する位相量補正手段を備え、
前記位相量補正手段は、前記振動子の温度変動に起因する前記コリオリ振動と前記参照信号との位相差の変動量を補正するだけの大きさの位相を前記位相補正量信号で表し、
前記移相部は、前記位相補正量信号で表される位相補正量だけ前記参照信号の位相を移相する
ことを特徴とする振動ジャイロ。
A vibrator, vibrator driving means for driving the vibrator using one resonance frequency of the vibrator as a drive signal, and means for detecting Coriolis vibration appearing in the vibrator according to an angular velocity received by the vibrator; Have
The Coriolis vibration detection means includes a phase shift unit that generates a reference signal by transferring the phase of the drive signal, and a synchronous detection unit that synchronously detects Coriolis vibration of the output of the vibrator using the reference signal. In vibration gyro,
A phase correction amount signal is generated based on a change in the resonance frequency, and the phase correction amount signal is supplied to the phase shift unit.
The phase amount correction means represents, as the phase correction amount signal, a phase having a magnitude sufficient to correct a variation amount of the phase difference between the Coriolis vibration and the reference signal caused by temperature fluctuation of the vibrator.
The phase shift unit shifts the phase of the reference signal by a phase correction amount represented by the phase correction amount signal.
前記振動子が前記角速度を受けていないときにおける前記コリオリ振動検出手段の出力値であるバイアスを補償するためのバイアス補償量を生成するバイアス補償量生成手段と、該コリオリ振動検出手段の出力と該バイアス補償量との合成をし、該コリオリ振動検出手段の出力から該バイアスを除くことにより、該バイアスを含まない角速度信号を生成するバイアス除去手段とを有し、
前記バイアス補償量生成手段は、前記共振周波数に基づき前記振動子の温度データを取得し、該温度データに応じて前記バイアス補償量を生成する
ことを特徴とする請求項3に記載の振動ジャイロ。
Bias compensation amount generating means for generating a bias compensation amount for compensating a bias that is an output value of the Coriolis vibration detecting means when the vibrator does not receive the angular velocity; an output of the Coriolis vibration detecting means; A bias removing unit that generates an angular velocity signal that does not include the bias by combining the bias compensation amount and removing the bias from the output of the Coriolis vibration detecting unit;
4. The vibration gyro according to claim 3, wherein the bias compensation amount generation unit acquires temperature data of the vibrator based on the resonance frequency and generates the bias compensation amount according to the temperature data.
JP2005005636A 2005-01-12 2005-01-12 Oscillation gyro Pending JP2006194701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005636A JP2006194701A (en) 2005-01-12 2005-01-12 Oscillation gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005636A JP2006194701A (en) 2005-01-12 2005-01-12 Oscillation gyro

Publications (1)

Publication Number Publication Date
JP2006194701A true JP2006194701A (en) 2006-07-27

Family

ID=36800901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005636A Pending JP2006194701A (en) 2005-01-12 2005-01-12 Oscillation gyro

Country Status (1)

Country Link
JP (1) JP2006194701A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071692A (en) * 2005-09-07 2007-03-22 Nec Tokin Corp Oscillator for piezoelectric oscillation gyro
JP2007139642A (en) * 2005-11-21 2007-06-07 Japan Aviation Electronics Industry Ltd Vibration gyro
JP2007205975A (en) * 2006-02-03 2007-08-16 Japan Aviation Electronics Industry Ltd Oscillation gyroscope
JP2010054438A (en) * 2008-08-29 2010-03-11 Hitachi Ltd Angular velocity detector
WO2011045909A1 (en) * 2009-10-13 2011-04-21 パナソニック株式会社 Angular velocity sensor
JP2011085417A (en) * 2009-10-13 2011-04-28 Panasonic Corp Angular velocity sensor
JP2011153880A (en) * 2010-01-27 2011-08-11 Panasonic Corp Angular velocity sensor
JP2011153881A (en) * 2010-01-27 2011-08-11 Panasonic Corp Angular velocity sensor
RU2480713C1 (en) * 2011-09-21 2013-04-27 Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") Method of algorithmic compensation for solid state wave gyro rate temperature drift
CN105892293A (en) * 2016-04-06 2016-08-24 苏州大学 Silicon micro-machined gyroscope digital driving closed loop control system
CN112556723A (en) * 2020-12-03 2021-03-26 重庆两江卫星移动通信有限公司 Temperature and phase compensation based correlation demodulation optimization method and gyro control system
CN117109637A (en) * 2023-10-19 2023-11-24 四川图林科技有限责任公司 Temperature drift error correction compensation method for hemispherical resonator gyroscope

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071692A (en) * 2005-09-07 2007-03-22 Nec Tokin Corp Oscillator for piezoelectric oscillation gyro
JP2007139642A (en) * 2005-11-21 2007-06-07 Japan Aviation Electronics Industry Ltd Vibration gyro
JP4535989B2 (en) * 2005-11-21 2010-09-01 日本航空電子工業株式会社 Vibrating gyro
JP2007205975A (en) * 2006-02-03 2007-08-16 Japan Aviation Electronics Industry Ltd Oscillation gyroscope
JP4536016B2 (en) * 2006-02-03 2010-09-01 日本航空電子工業株式会社 Vibrating gyro
JP2010054438A (en) * 2008-08-29 2010-03-11 Hitachi Ltd Angular velocity detector
US9435647B2 (en) 2009-10-13 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor
WO2011045909A1 (en) * 2009-10-13 2011-04-21 パナソニック株式会社 Angular velocity sensor
JP2011085417A (en) * 2009-10-13 2011-04-28 Panasonic Corp Angular velocity sensor
US10359285B2 (en) 2009-10-13 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor and method for correcting angular velocity sensor
CN102686976A (en) * 2009-10-13 2012-09-19 松下电器产业株式会社 Angular velocity sensor
JP2011153880A (en) * 2010-01-27 2011-08-11 Panasonic Corp Angular velocity sensor
JP2011153881A (en) * 2010-01-27 2011-08-11 Panasonic Corp Angular velocity sensor
RU2480713C1 (en) * 2011-09-21 2013-04-27 Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") Method of algorithmic compensation for solid state wave gyro rate temperature drift
CN105892293A (en) * 2016-04-06 2016-08-24 苏州大学 Silicon micro-machined gyroscope digital driving closed loop control system
CN105892293B (en) * 2016-04-06 2018-07-24 苏州大学 A kind of silicon micro-gyroscope digital driving closed-loop control system
CN112556723A (en) * 2020-12-03 2021-03-26 重庆两江卫星移动通信有限公司 Temperature and phase compensation based correlation demodulation optimization method and gyro control system
CN117109637A (en) * 2023-10-19 2023-11-24 四川图林科技有限责任公司 Temperature drift error correction compensation method for hemispherical resonator gyroscope
CN117109637B (en) * 2023-10-19 2023-12-19 四川图林科技有限责任公司 Temperature drift error correction compensation method for hemispherical resonator gyroscope

Similar Documents

Publication Publication Date Title
JP2006194701A (en) Oscillation gyro
US5585562A (en) Vibration-sensing gyro
US8746033B2 (en) Angular velocity sensor
JPH09170927A (en) Vibration type angular velocity detecting device
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JPH08152328A (en) Angular speed sensor and its using method
JP3336605B2 (en) Angular velocity sensor
EP2572162B1 (en) Angular rate sensor with improved ageing properties
JP4763565B2 (en) Phase compensation synchronous detection circuit, vibration gyro
KR100198308B1 (en) Vibrating gyroscope
JP2010286371A (en) Physical quantity detector, abnormality diagnosis system of the same, and abnormality diagnosis method of the same
JP3966719B2 (en) Angular velocity measuring device
JP2006250643A (en) Abnormality detection device for angular velocity sensor
US20070277614A1 (en) Vibration sensor
JP5151934B2 (en) Vacuum gauge
JPH10260043A (en) Angular velocity detecting device
JP2548679B2 (en) Vibrating gyroscope
JP2004361320A (en) Method of exciting oscillator, method of measuring physical quantity, and instrument for measuring physical quantity
JP4591787B2 (en) Vibrator and angular velocity measuring device
JP2006023268A (en) Method for adjusting sensitivity in gyro sensor
JP2005308530A (en) Angular speed/acceleration composite sensor
JP3035161B2 (en) Vibrating gyroscope
JPH07128069A (en) Angular speed sensor
JPH08304446A (en) Piezoelectric displacement sensor
Padovani et al. In-Plane and Out-of-Plane FM Accelerometers with 130 DB Dynamic Range Through Nems-Based Oscillators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090515