JP2006194486A - Melting furnace - Google Patents

Melting furnace Download PDF

Info

Publication number
JP2006194486A
JP2006194486A JP2005004848A JP2005004848A JP2006194486A JP 2006194486 A JP2006194486 A JP 2006194486A JP 2005004848 A JP2005004848 A JP 2005004848A JP 2005004848 A JP2005004848 A JP 2005004848A JP 2006194486 A JP2006194486 A JP 2006194486A
Authority
JP
Japan
Prior art keywords
molten slag
melting furnace
discharge passage
protruding portion
tubular discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005004848A
Other languages
Japanese (ja)
Other versions
JP4073916B2 (en
Inventor
Hiroyuki Hosoda
博之 細田
Tadashi Ito
正 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005004848A priority Critical patent/JP4073916B2/en
Publication of JP2006194486A publication Critical patent/JP2006194486A/en
Application granted granted Critical
Publication of JP4073916B2 publication Critical patent/JP4073916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a melting furnace with superior maintainability. <P>SOLUTION: In a gasification melting furnace for combustibles, the combustibles are gasified, and then ash contents are melted in the melting furnace. The gasification melting furnace for combustibles is characterized by that a molten slag outlet is opened for discharging molten slag, a tubular discharge passage is extended downward from the molten slag outlet, a protruding part protruding more inward than an inner circumferential rim of the tubular discharge passage is provided on an inner face of the tubular discharge passage to check a downward flow by contacting the molten slag, and the protruding part is detachably provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、灰分を溶融させる溶融炉に関し、特に、灰分を溶融スラグ化して排出する溶融炉に関する。   The present invention relates to a melting furnace for melting ash, and more particularly to a melting furnace for discharging ash into molten slag.

最終処分場延命化のために、廃棄物や可燃物を焼却処理することにより発生する灰などの焼却残渣を溶融させて有効利用可能なスラグにする溶融炉が用いられている。
このような、溶融炉としては、可燃物をガス化した後に、該ガス化により生じた可燃性ガスを燃焼させて可燃物中の灰分を溶融するガス化溶融炉や不燃物、焼却残渣や飛灰等の灰分をプラズマ、アーク、電気ヒーター、化石燃料などを用いて溶融させる灰溶融炉などの溶融炉が用いられている。
中でも、ガス化溶融炉は、エネルギーの有効利用の観点から広く用いられている。
このような、ガス化溶融炉は、通常、内部が炭化ケイ素やアルミナ質などの耐火物で構成され灰が溶融される炉本体部が備えられ、該炉本体部で溶融された灰(溶融スラグ)が排出される溶融スラグ排出部が備えられている。このガス化溶融炉では、ガス化炉にて廃棄物等がガス化されて、通常、可燃性ガス、可燃性の固形分と灰に分解され、可燃性ガス、可燃性の固形分とともに灰が炉本体部に導入され可燃性ガスおよび可燃性の固形分の燃焼により灰の溶融温度以上の温度(例えば1300℃)に加熱され、灰が溶融スラグ化される。このような灰の溶融が継続されると、やがて、溶融スラグは、溶融スラグ排出口から、管状の排出路を通り、溶融スラグ排出口の下方に配された水槽などに流下され水砕スラグとされる。
In order to extend the life of the final disposal site, a melting furnace is used that melts incineration residues such as ash generated by incineration of waste and combustible materials into slag that can be effectively used.
As such a melting furnace, after combustible material is gasified, the combustible gas generated by the gasification is combusted to melt the ash content in the combustible material, incombustible material, incineration residue and flying. A melting furnace such as an ash melting furnace that melts ash such as ash using plasma, arc, electric heater, fossil fuel, or the like is used.
Among these, gasification melting furnaces are widely used from the viewpoint of effective use of energy.
Such a gasification melting furnace is usually provided with a furnace body portion in which the inside is composed of a refractory material such as silicon carbide or alumina and the ash is melted, and the ash (molten slag) melted in the furnace body portion. ) Is provided. In this gasification and melting furnace, wastes are gasified in the gasification furnace and are usually decomposed into combustible gas, combustible solids and ash, and ash is produced together with combustible gas and combustible solids. The ash is introduced into the furnace body and heated to a temperature higher than the melting temperature of ash (for example, 1300 ° C.) by combustion of combustible gas and combustible solids, and the ash is melted into slag. If such ash melting continues, the molten slag will eventually flow from the molten slag outlet through the tubular outlet and into a water tank or the like disposed below the molten slag outlet. Is done.

ところで、近年、ダイオキシンや重金属などの人体に対する影響が認知され、このような溶融炉においても、炉内部で作業員が作業する回数や時間を減少させるなどのメンテナンス性に優れたものが要望されている。しかし、このような溶融炉においては、溶融スラグなどの付着によって管状排出路の閉塞が生じることが知られており、年間(あるいは月間)に所定の回数で付着物を除去するメンテナンス作業が実施されている。また、溶融炉の内壁は、通常、前述のような材料で構成されているため衝撃に弱く(割れ易く)、付着した溶融スラグを除去するために慎重な作業を必要としメンテナンス作業に長い時間がかかるという問題を有している。   By the way, in recent years, the influence on human bodies such as dioxins and heavy metals has been recognized, and even in such a melting furnace, there is a demand for an excellent maintainability such as reducing the number of times and time required for workers to work inside the furnace. Yes. However, in such a melting furnace, it is known that the tubular discharge passage is blocked due to adhesion of molten slag, etc., and maintenance work is performed to remove the deposits a predetermined number of times (or months). ing. Also, the inner wall of the melting furnace is usually made of the material as described above, so it is vulnerable to impact (easy to break), requires careful work to remove the adhering molten slag, and requires a long time for maintenance work. It has such a problem.

このような問題に対して、溶融スラグが管状排出路の内壁に付着することを抑制させて溶融スラグ除去作業の回数を減少させメンテナンス性を向上させることが考えられる。このことに対し、特許文献1には、出滓部として管状の排出路が記載され、この管状排出路の上端部に、内周縁よりも中心寄りに凸出した凸出部を設けることで管状排出路の内壁から離れた場所において溶融スラグを流下させることが図示されている。
しかし、このような溶融炉においては、上述のように凸出形状を有するため、管状排出路の内壁面などに比べ、より割れ易いものとなっており、より慎重な取り扱いが必要となる。また、このような凸出部が溶融スラグに侵食され補修を要する場合には、必要部分のハツリ作業を行った後、型枠を組んで作り直すという多大な作業工数をかけて補修することが必要となる。したがって、ガス化溶融炉や灰溶融炉のごとく、従来の溶融炉においては、メンテナンス回数ならびに時間を減少させること、すなわち、メンテナンス性に優れた溶融炉を提供することが困難であるという問題を有している。
In order to solve such a problem, it is conceivable to suppress the adhesion of the molten slag to the inner wall of the tubular discharge passage, thereby reducing the number of operations for removing the molten slag and improving the maintainability. On the other hand, in Patent Document 1, a tubular discharge path is described as a protruding portion, and the upper end portion of the tubular discharge path is provided with a protruding portion that protrudes closer to the center than the inner peripheral edge. It is illustrated that the molten slag flows down at a location away from the inner wall of the discharge channel.
However, in such a melting furnace, since it has a protruding shape as described above, it is more easily cracked than the inner wall surface of the tubular discharge passage, and requires more careful handling. In addition, when such a protruding part is eroded by molten slag and needs repair, it is necessary to repair it by enormous man-hours of reworking the formwork after reworking the necessary part. It becomes. Therefore, conventional melting furnaces, such as gasification melting furnaces and ash melting furnaces, have a problem that it is difficult to reduce the number of maintenance operations and time, that is, to provide a melting furnace with excellent maintainability. is doing.

特開平6−11130号公報JP-A-6-11130

本発明の課題は、上記問題点に鑑み、メンテナンス性に優れた溶融炉を提供することにある。   The subject of this invention is providing the melting furnace excellent in maintainability in view of the said problem.

本発明は、前記課題を解決すべく、可燃物をガス化した後に、灰分を溶融炉にて溶融する可燃物のガス化溶融炉であって、該ガス化溶融炉には、溶融スラグが排出される溶融スラグ排出口が開口され、該溶融スラグ排出口から下方に向けて延在する管状排出路が設けられ、前記管状排出路上端部には、管状排出路の内面に溶融スラグが接触して流下するのを抑制し得るように管状排出路の内周縁よりも内方に凸出した凸出部が備えられ、且つ、該凸出部が着脱自在に設けられていることを特徴とする可燃物のガス化溶融炉を提供する。   In order to solve the above problems, the present invention is a gasification melting furnace for combustible materials in which ash is melted in a melting furnace after gasification of the combustible materials, and molten slag is discharged into the gasification melting furnace. The molten slag discharge port is opened, and a tubular discharge passage extending downward from the molten slag discharge port is provided, and the molten slag contacts the inner surface of the tubular discharge passage at the upper end of the tubular discharge passage. A protruding portion that protrudes inward from the inner peripheral edge of the tubular discharge passage is provided, and the protruding portion is detachably provided. A gasification melting furnace for combustible materials is provided.

本発明によれば、溶融炉の管状排出炉が、上端部に管状排出路の内周縁よりも内方に凸出した凸出部が備えられているために、管状排出路の内周縁よりも中心寄りの位置において溶融スラグを流下させて管状排出路の内面に溶融スラグが接触して流下することを抑制し、付着したスラグを除去する作業回数を減少させ得る。また、前記凸出部が着脱自在に設けられていることから、凸出部に付着したスラグを除去したり、凸出部の補修が必要な場合に、新しい部材と取り替えるだけでよく作業時間を短縮させ得る。したがって、溶融炉をメンテナンス性に優れたものとし得る。   According to the present invention, the tubular discharge furnace of the melting furnace is provided with a protruding portion that protrudes inward from the inner peripheral edge of the tubular discharge passage at the upper end portion, so that it is more than the inner peripheral edge of the tubular discharge passage. The molten slag can flow down at a position closer to the center to prevent the molten slag from coming into contact with the inner surface of the tubular discharge passage, and the number of operations for removing the attached slag can be reduced. In addition, since the protruding portion is detachably provided, it is only necessary to remove slag adhering to the protruding portion or to replace the protruding portion with a new member when it is necessary to repair the protruding portion. Can be shortened. Therefore, the melting furnace can be made excellent in maintainability.

以下に、本発明の好ましい実施の形態について図1を参照して説明する。
まず、本実施形態のガス化溶融炉10について説明する。本実施形態のガス化溶融炉10には、可燃物を分解して可燃性のガスと灰とを産出するガス化部2と、該ガス化部2から可燃性ガスならびに灰を導入して溶融スラグ3として排出する灰溶融部1とを備えている。
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG.
First, the gasification melting furnace 10 of this embodiment is demonstrated. In the gasification melting furnace 10 of the present embodiment, a combustible material is decomposed to produce combustible gas and ash, and combustible gas and ash are introduced from the gasification unit 2 and melted. The ash melting part 1 discharged as slag 3 is provided.

前記灰溶融部1は、灰を可燃性ガスとともに燃焼させ溶融スラグ化させる炉本体部4と、該炉本体部4の下位に配されて前記炉本体部4と連通され、前記溶融スラグの排出を行う溶融スラグ排出部5とを備えている。
また、溶融スラグ排出部5の下方には、溶融スラグを冷却し水砕スラグとするためのスラグ冷却水槽6が配されている。
The ash melting part 1 is disposed below the furnace body part 4 to combust ash with combustible gas to form molten slag, and communicates with the furnace body part 4 to discharge the molten slag. And a molten slag discharge part 5 for performing
A slag cooling water tank 6 for cooling the molten slag to form a granulated slag is disposed below the molten slag discharge part 5.

前記炉本体部4は、垂直方向に配された縦長の略円筒形状とされ、用途などによって異なるが、通常、内径1〜3mとされ、炭化ケイ素やアルミナ質などの耐火煉瓦、キャスタブル耐火物などにより内壁が構成され、耐熱レンガなどの断熱性部材を介して、鋼板などの外壁が設けられている。前記炉本体部4は、上端部が閉塞され、下端部が開口されている。また、上端部には、灰を可燃性ガスならびに空気もしくは酸素などの助燃性気体とともに導入する灰供給口41を備え、下端部は、中央部に比べて径小な絞り構造42が施され、該絞り構造42を介して溶融スラグ排出部と連通している。   The furnace body 4 has a vertically long substantially cylindrical shape arranged in the vertical direction, and varies depending on the application, etc., but usually has an inner diameter of 1 to 3 m, refractory bricks such as silicon carbide and alumina, castable refractories, etc. The inner wall is constituted by the above, and the outer wall such as a steel plate is provided via a heat insulating member such as a heat-resistant brick. The furnace body 4 has an upper end closed and a lower end opened. Further, the upper end portion is provided with an ash supply port 41 for introducing ash together with a combustible gas and an auxiliary combustible gas such as air or oxygen, and the lower end portion is provided with a throttle structure 42 having a smaller diameter than the center portion, The molten slag discharge portion communicates with the squeezed structure 42.

前記溶融スラグ排出部5は、すり鉢状に傾斜した底面51を備え、該底面51の最下部に開口された溶融スラグ排出口52と、該溶融スラグ排出口52に連通され、前記溶融スラグ排出口から下方に向けて延在する管状排出路53が設けられ、前記炉本体部4と同様の部材により断面略Y字状に形成されている。また、このY字形状の一方の上端部において前記炉本体部4と連通し、他方の上端部には炉本体部4にて燃焼された可燃性ガスの排ガスを排出する排気口54が形成されている。   The molten slag discharge part 5 includes a bottom 51 inclined in a mortar shape, and is connected to the molten slag discharge port 52 opened at the lowermost part of the bottom surface 51, the molten slag discharge port 52, and the molten slag discharge port A tubular discharge passage 53 extending downward from the main body 4 is provided, and is formed in a substantially Y-shaped cross section by a member similar to the furnace body 4. In addition, an exhaust port 54 is formed at one upper end portion of the Y-shape so as to communicate with the furnace main body portion 4 and discharge the exhaust gas of the combustible gas burned in the furnace main body portion 4 at the other upper end portion. ing.

前記管状排出路53は、用途によって、円管状や角管状に形成されているが、通常、内径0.5〜1.5m、長さ1.5〜3.0mの円管状とされ、下端が前記スラグ冷却水槽6の水面から約0.5mの位置となるまで水中に没するよう配されている。また、管状排出路53の上端部は、内周縁よりも中心寄りの位置において溶融スラグを流下させて管状排出路53の内面に溶融スラグが接触して流下するのを抑制し得るように、通常、管状排出路53の内周縁よりも内方に5〜10cm凸出した凸出部55が備えられている。該凸出部55は、溶融炉のメンテナンス性をより高め得る点から、取り扱い易い大きさに分割されたものを組み合わせて形成されていることが好ましい。さらに、その分割された分割片は、製造が容易で、しかも、分割片の取り替え時に特定の分割片を特定の個所に取付けるという煩雑な手間が生じることを防止できる点から、分割片同士が同一の形状を有していることが好ましい。   The tubular discharge passage 53 is formed into a circular tube or a rectangular tube depending on the application, but is usually a circular tube having an inner diameter of 0.5 to 1.5 m and a length of 1.5 to 3.0 m, and has a lower end. The slag cooling water tank 6 is arranged so as to be immersed in water until it reaches a position of about 0.5 m from the water surface. Further, the upper end portion of the tubular discharge passage 53 is usually arranged so that the molten slag can flow down at a position closer to the center than the inner peripheral edge and the molten slag can be prevented from coming into contact with the inner surface of the tubular discharge passage 53 and flowing down. Further, a protruding portion 55 is provided that protrudes 5 to 10 cm inward from the inner peripheral edge of the tubular discharge passage 53. The protruding portion 55 is preferably formed by combining those divided into sizes that are easy to handle from the viewpoint that the maintainability of the melting furnace can be further improved. Furthermore, the divided pieces are easy to manufacture, and the divided pieces are the same because the troublesome work of attaching the specific divided pieces to specific places when replacing the divided pieces can be prevented. It is preferable to have the shape of

このような、複数の分割片を用いて前記凸出部を形成する場合の一例を、図2及び図3を参照しつつ説明すると、管状排出路53の上端部には、分割片56として厚さ10〜60mmのSUS304ステンレス鋼板が8枚用いられて凸出部が形成されている。前記分割片56は、溶融スラグ3を集合させて、より素早く排出させ、分割片56が溶融スラグ3により侵食されたり、分割片56にスラグが固化して付着したりすることを抑制し、分割片56の取り替え期間を延長させ得る優れた点を有することから、2枚ずつが断面V字の樋状となるように組み合わされて、管状排出路53の上縁部に取付けられている。   An example of the case where the protruding portion is formed using a plurality of divided pieces will be described with reference to FIGS. 2 and 3. The upper end portion of the tubular discharge passage 53 has a thickness as a divided piece 56. Eight SUS304 stainless steel plates having a thickness of 10 to 60 mm are used to form protruding portions. The divided piece 56 collects the molten slag 3 and discharges it more quickly, and prevents the divided piece 56 from being eroded by the molten slag 3 or the slag solidifying and adhering to the divided piece 56. Since the replacement period of the piece 56 has an excellent point that can be extended, the two pieces are combined in a bowl shape with a V-shaped cross section and attached to the upper edge of the tubular discharge passage 53.

前記分割片56は、図4に示すように、分割片56に設けられた取付け穴58と溶融炉の底面51に取付けられたアンカーピン59とを嵌め合わせることにより取付けることができる。また、要すれば、アンカーピン59と分割片56とを溶接やねじ止めなどの固定手段により固定させてもよい。   As shown in FIG. 4, the split piece 56 can be attached by fitting an attachment hole 58 provided in the split piece 56 and an anchor pin 59 attached to the bottom surface 51 of the melting furnace. If necessary, the anchor pin 59 and the split piece 56 may be fixed by fixing means such as welding or screwing.

また、これら炉本体部4、溶融スラグ排出部5の必要個所には耐熱ガラスなどによる内部観察用窓や、各種センサーなどの検知手段、該検知手段を元に溶融炉の運転を制御する制御手段などが適宜設けられている。   In addition, necessary portions of the furnace body 4 and the molten slag discharge part 5 include internal observation windows made of heat-resistant glass, detection means such as various sensors, and control means for controlling the operation of the melting furnace based on the detection means. Etc. are provided as appropriate.

次に、本実施形態のガス化溶融炉10の運転方法についてガス化部2から可燃性ガスならびに灰を導入して溶融スラグ化し、排出する場合を例に挙げて説明する。
ガス化部2では、可燃物をガス化させて可燃性ガス、可燃性固形分と灰とを発生させる。このとき、要すれば、ガス化部2からチャーなどの可燃性固形物が多く産出される燃焼条件を選択することも可能である。
ガス化部2から可燃性ガスとともに排出された灰を、加圧空気により加速し前記灰供給口から灰溶融部1に導入させる。この時、灰をより長く炉本体部内に滞留させ得るように、炉本体部内において旋回流Aを生じるよう灰を導入させる。
この炉本体部では、導入された可燃性ガスを燃焼させることにより内部を通常1300℃程度に保っている。そして、前述のように旋回しながら炉本体部4を落下する間に、灰を溶融させる。また、前記旋回流Aにより溶融した灰(溶融スラグ3)を炉本体部4の内壁に付着させ、この壁面において集合して、液滴状態とさせる。
そうすることで、溶融スラグを自重で流下させ、炉本体部4から溶融スラグ排出部5へと移動させる。
Next, the operation method of the gasification melting furnace 10 of the present embodiment will be described by taking as an example the case where combustible gas and ash are introduced from the gasification section 2 to form molten slag and discharged.
In the gasification part 2, combustible material is gasified and combustible gas, combustible solid content, and ash are generated. At this time, if necessary, it is possible to select a combustion condition in which a large amount of combustible solids such as char are produced from the gasification unit 2.
The ash discharged from the gasification unit 2 together with the combustible gas is accelerated by pressurized air and introduced into the ash melting unit 1 from the ash supply port. At this time, the ash is introduced so as to generate a swirl flow A in the furnace body so that the ash can stay in the furnace body longer.
In the furnace main body, the inside is normally kept at about 1300 ° C. by burning the introduced combustible gas. Then, the ash is melted while dropping the furnace body 4 while turning as described above. Further, the ash (molten slag 3) melted by the swirling flow A is attached to the inner wall of the furnace main body 4 and gathers on the wall surface to form a droplet.
By doing so, the molten slag is caused to flow down by its own weight, and is moved from the furnace body 4 to the molten slag discharge unit 5.

溶融スラグ排出部5では、前述したすり鉢形状の底面51により炉本体部4から流下させた溶融スラグ3を溶融スラグ排出部5の最下部に集合させ、該最下部に開口された溶融スラグ排出口52から、管状排出路53を通過させて、スラグ冷却水槽6へと流下させる。
また、一方で溶融スラグ排出部5に開口された排気口54から炉本体部4で燃焼された可燃性ガスの排ガスを排出させる。なお、ここでは詳述しないが、この排ガスはボイラーなどの熱交換器により熱を有効に利用することができる。
In the molten slag discharge part 5, the molten slag 3 flowed down from the furnace main body part 4 by the mortar-shaped bottom surface 51 is collected at the lowest part of the molten slag discharge part 5, and the molten slag discharge port opened at the lowermost part From 52, it passes through the tubular discharge passage 53 and flows down to the slag cooling water tank 6.
On the other hand, the exhaust gas of the combustible gas burned in the furnace body 4 is discharged from the exhaust port 54 opened in the molten slag discharge unit 5. Although not described in detail here, the exhaust gas can effectively use heat by a heat exchanger such as a boiler.

さらに、この排ガスを排気口54から排出させることにより、管状排出路53に高温の排ガスが流入することを抑制でき、管状排出路53の凸出部55の下位の雰囲気の温度を1000〜1200℃程度に保持させることができる。
また、溶融スラグ3を溶融スラグ排出口52から、管状排出路53を通過させて、スラグ冷却水槽6へと流下させる場合には、管状排出路53の上端部に設けた凸出部55により溶融スラグ3を管状排出路53の中央部に誘導して、管状排出路53の壁面に接触しないよう流下させる。
Further, by discharging the exhaust gas from the exhaust port 54, it is possible to suppress high-temperature exhaust gas from flowing into the tubular discharge passage 53, and the temperature of the atmosphere below the protruding portion 55 of the tubular discharge passage 53 is set to 1000 to 1200 ° C. Can be held to the extent.
Further, when the molten slag 3 is caused to flow from the molten slag discharge port 52 through the tubular discharge passage 53 and flow down to the slag cooling water tank 6, the molten slag 3 is melted by the protruding portion 55 provided at the upper end portion of the tubular discharge passage 53. The slag 3 is guided to the central portion of the tubular discharge passage 53 so as to flow down so as not to contact the wall surface of the tubular discharge passage 53.

また、流下させた溶融スラグは、スラグ冷却水槽6に投入し、水砕スラグ3aとしてベルトコンベアなどで搬出する。
なお、前記凸出部55が溶融スラグ3により侵食され、溶融スラグ3が管状排出路53の壁面に接触して流下されるおそれが生じた場合においては、分割片56をアンカーピン59から抜き取ることにより素早く新しい凸出部55の形成を行うことができる。
以上のように、本実施形態においては、運転状態が安定していることからメンテナンス時期が予測でき、溶融炉内の状況を検知するための特別な装置や、点検作業などの工数を削減し得る有利な点を有することからガス化部から可燃性ガスならびに灰を導入して溶融スラグ化し排出するガス化溶融炉について説明したが、本発明においては、溶融炉をガス化溶融炉に限定するものではなく、不燃物、焼却残渣や飛灰等の灰分をプラズマ、アーク、電気ヒーター、化石燃料などを用いて溶融させる灰溶融炉も本発明の意図する範囲である。
Moreover, the molten slag which flowed down is thrown into the slag cooling water tank 6, and is carried out by the belt conveyor etc. as the granulated slag 3a.
When the protruding portion 55 is eroded by the molten slag 3 and the molten slag 3 may come into contact with the wall surface of the tubular discharge passage 53 and flow down, the divided piece 56 is removed from the anchor pin 59. Thus, the new protruding portion 55 can be formed quickly.
As described above, in this embodiment, since the operation state is stable, the maintenance time can be predicted, and the number of man-hours such as a special device for detecting the situation in the melting furnace and inspection work can be reduced. Since the gasification melting furnace which introduces combustible gas and ash from the gasification section and melts and slags and discharges it has been described because it has advantages, in the present invention, the melting furnace is limited to the gasification melting furnace Instead, an ash melting furnace that melts incombustibles, incineration residue, fly ash and other ash using plasma, arc, electric heater, fossil fuel, and the like is also within the intended scope of the present invention.

なお、本実施形態においては、衝撃に強く(割れたりするおそれが低く)、慎重な作業を必要としない点においてメンテナンス性に優れ、しかも炭素鋼など他の金属材料と比べて、クロムが含有されて耐熱性が向上されている点、および、ニッケルが含有されて高温時の粘りが付与されている点などから、溶融スラグにより侵食されることを抑制でき、単位期間における取り替え回数を減少させ得る有利な効果を有することから前記凸出部をステンレス鋼で形成させているが、本発明の凸出部は、その形成材料としてステンレス鋼に限定されるものではない。
なお、本実施形態においては、種々の厚み、形状の部材を調達することが容易で、外形加工などの加工手段も一般に確立されており、急な取替え要望にも迅速に対応し得る点から前記凸出部をステンレス鋼の中でもSUS304を用いて形成しているが、このような点において、SUS310S、SUS316、SUS316Lを用いていても同様の効果を得ることができる。
In this embodiment, it is strong against impact (low possibility of cracking), has excellent maintainability in that it does not require careful work, and contains chromium as compared with other metal materials such as carbon steel. It is possible to suppress erosion by molten slag because the heat resistance has been improved and the fact that it contains nickel and has high-temperature viscosity, and the number of replacements per unit period can be reduced. Although having the advantageous effect, the protruding portion is made of stainless steel, the protruding portion of the present invention is not limited to stainless steel as a forming material.
In the present embodiment, it is easy to procure members of various thicknesses and shapes, and processing means such as outer shape processing are generally established. From the point that it is possible to quickly respond to a sudden replacement request. The protruding portion is formed of stainless steel using SUS304. In this respect, the same effect can be obtained even if SUS310S, SUS316, or SUS316L is used.

また、本実施形態においては、管状排出路に炉本体部の高温気体が流入することを抑制でき、管状排出路の内壁に未処理灰などが付着、蓄積することを防止し得る点、および、前記凸出部の温度をより低下させて溶融スラグによる侵食を抑制し得る点から前記凸出部よりも上位に排気口を設け炉本体部の気体を排出しているが、本発明の溶融炉においては、前記排気口の位置が限定されるものではなく、排気口が設けられていない構造とすることもできる。   Further, in the present embodiment, it is possible to suppress the flow of high-temperature gas of the furnace main body into the tubular discharge passage, and to prevent untreated ash from adhering and accumulating on the inner wall of the tubular discharge passage, and From the point that the temperature of the protruding portion can be further lowered to suppress erosion due to molten slag, an exhaust port is provided above the protruding portion to discharge the gas in the furnace main body, but the melting furnace of the present invention However, the position of the exhaust port is not limited, and a structure in which no exhaust port is provided may be employed.

また、前記凸出部がSUS304、SUS310S、SUS316、SUS316Lで形成されている場合には、前記排気口などにより前記凸出部下位の雰囲気の温度が1000〜1200℃とすることで、前記凸出部が溶融スラグにより侵食されることを抑制する効果がより優れたものとなる。
なお、前記凸出部下位の雰囲気の温度が1000〜1200℃となっていることは、タイプKあるいは、タイプRなどのシース熱電対を用いた測定により確認することができる。
Further, when the protruding portion is formed of SUS304, SUS310S, SUS316, or SUS316L, the temperature of the atmosphere below the protruding portion is 1000 to 1200 ° C. by the exhaust port or the like. The effect of suppressing the portion from being eroded by the molten slag becomes more excellent.
In addition, it can confirm that the temperature of the atmosphere of the said convex part lower part has become 1000-1200 degreeC by the measurement using sheath thermocouples, such as Type K or Type R.

一実施形態のガス化溶融炉を示す部分断面図。The fragmentary sectional view showing the gasification melting furnace of one embodiment. 同実施形態の凸出部を示す上面図。The top view which shows the protrusion part of the embodiment. 図2のX−X’矢視断面を示す部分断面図。The fragmentary sectional view which shows the X-X 'arrow cross section of FIG. a)取付けられた分割片を示す図3のY−Y’矢視断面図。 b)取り外された分割片を示す図3のY−Y’矢視断面図。a) Y-Y 'arrow sectional drawing of FIG. 3 which shows the attached split piece. b) Y-Y 'arrow sectional drawing of FIG. 3 which shows the removed piece.

符号の説明Explanation of symbols

1 灰溶融部
2 ガス化部
3 溶融スラグ
4 炉本体部
5 溶融スラグ排出部
10 ガス化溶融炉
52 溶融スラグ排出口
53 管状排出路
54 排気口
55 凸出部
DESCRIPTION OF SYMBOLS 1 Ash melting part 2 Gasification part 3 Molten slag 4 Furnace main-body part 5 Molten slag discharge part 10 Gasification melting furnace 52 Molten slag discharge port 53 Tubular discharge path 54 Exhaust port 55 Projection part

Claims (7)

可燃物をガス化した後に、灰分を溶融炉にて溶融する可燃物のガス化溶融炉であって、
該ガス化溶融炉には、溶融スラグが排出される溶融スラグ排出口が開口され、該溶融スラグ排出口から下方に向けて延在する管状排出路が設けられ、前記管状排出路上端部には、管状排出路の内面に溶融スラグが接触して流下するのを抑制し得るように管状排出路の内周縁よりも内方に凸出した凸出部が備えられ、且つ、該凸出部が着脱自在に設けられていることを特徴とする可燃物のガス化溶融炉。
A combustible material gasification and melting furnace for melting ash in a melting furnace after gasifying combustible material,
The gasification melting furnace is provided with a molten slag discharge port through which molten slag is discharged, and is provided with a tubular discharge passage extending downward from the molten slag discharge port. A protruding portion that protrudes inward from the inner peripheral edge of the tubular discharge passage is provided so that the molten slag can be prevented from coming into contact with the inner surface of the tubular discharge passage and flowing down; A combustible material gasification melting furnace, which is detachably provided.
前記凸出部がステンレス鋼により形成されている請求項1記載の可燃物のガス化溶融炉。 The combustible material gasification and melting furnace according to claim 1, wherein the protruding portion is made of stainless steel. 排ガスが排出される排気口がさらに設けられ、該排気口が前記凸出部よりも上位に配されている請求項2記載の可燃物のガス化溶融炉。 The combustible gasification and melting furnace according to claim 2, further comprising an exhaust port through which exhaust gas is discharged, wherein the exhaust port is disposed above the protruding portion. 前記凸出部下位の雰囲気の温度が1000〜1200℃となり、前記ステンレス鋼としてSUS304、SUS316、SUS316L及びSUS310Sの何れかが用いられている請求項2又は3記載の可燃物のガス化溶融炉。 The combustible gasification melting furnace according to claim 2 or 3, wherein the temperature of the atmosphere below the protruding portion is 1000 to 1200 ° C, and any one of SUS304, SUS316, SUS316L and SUS310S is used as the stainless steel. 灰分が溶融されて溶融スラグとして排出される溶融炉であって、
該溶融炉には、溶融スラグが排出される溶融スラグ排出口が開口され、該溶融スラグ排出口から下方に向けて延在する管状排出路が設けられ、
前記管状排出路の上端部には、該管状排出路の内面に溶融スラグが接触して流下するのを抑制し得るように管状排出路の内周縁よりも内方に凸出した凸出部が備えられ、且つ、該凸出部が着脱自在に設けられていることを特徴とする溶融炉。
A melting furnace in which ash is melted and discharged as molten slag,
In the melting furnace, a molten slag discharge port through which molten slag is discharged is opened, and a tubular discharge passage extending downward from the molten slag discharge port is provided,
The upper end portion of the tubular discharge passage has a protruding portion protruding inward from the inner peripheral edge of the tubular discharge passage so as to suppress the molten slag from contacting and flowing down to the inner surface of the tubular discharge passage. A melting furnace characterized in that the protrusion is provided detachably.
前記凸出部がステンレス鋼により形成されている請求項5記載の溶融炉。 The melting furnace according to claim 5, wherein the protruding portion is made of stainless steel. 溶融スラグ排出部の気体が排出される排気口がさらに設けられ、該排気口が前記凸出部よりも上位に配されている請求項6記載の溶融炉。 The melting furnace according to claim 6, further comprising an exhaust port through which the gas from the molten slag discharge unit is discharged, wherein the exhaust port is disposed higher than the protruding portion.
JP2005004848A 2005-01-12 2005-01-12 Melting furnace Active JP4073916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004848A JP4073916B2 (en) 2005-01-12 2005-01-12 Melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004848A JP4073916B2 (en) 2005-01-12 2005-01-12 Melting furnace

Publications (2)

Publication Number Publication Date
JP2006194486A true JP2006194486A (en) 2006-07-27
JP4073916B2 JP4073916B2 (en) 2008-04-09

Family

ID=36800709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004848A Active JP4073916B2 (en) 2005-01-12 2005-01-12 Melting furnace

Country Status (1)

Country Link
JP (1) JP4073916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150569A (en) * 2007-12-19 2009-07-09 Kobelco Eco-Solutions Co Ltd Melting furnace
JP2009150568A (en) * 2007-12-19 2009-07-09 Kobelco Eco-Solutions Co Ltd Melting furnace and waste disposal system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150569A (en) * 2007-12-19 2009-07-09 Kobelco Eco-Solutions Co Ltd Melting furnace
JP2009150568A (en) * 2007-12-19 2009-07-09 Kobelco Eco-Solutions Co Ltd Melting furnace and waste disposal system

Also Published As

Publication number Publication date
JP4073916B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
EP1148295B1 (en) Gasification melting furnace for wastes and gasification melting method
JP4073916B2 (en) Melting furnace
JP4620613B2 (en) Air blowing nozzle for combustion melting furnace
JP5265168B2 (en) Melting furnace
US20040237861A1 (en) Fusion furnace, gasification fusion furnace, and method of processing waste
JP2006292180A (en) Slag discharge mechanism
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP3904379B2 (en) Dust discharge device for secondary combustion chamber
CN216460819U (en) Detachable furnace bottom and melting gasification furnace
CN109237492A (en) A kind of Ash water mechanism and the plasma waste melting furnace that gasifies
JP2006112730A (en) Clinker sticking preventive furnace wall structure for waste heat treatment furnace
WO2002086388A1 (en) Slagging combustion furnace
JP2002130632A (en) Waste gasifying melting furnace and its operation method
JP2005308231A (en) Waste melting furnace and method of blowing gas therein
JP2005083724A (en) Corrosion prevention method and apparatus of melting furnace secondary combustion chamber dust extractor
JP2001221414A (en) Combustion method for combustion melting furnace, combustion melting furnace and waste combustion melting system provided with the same
JP2010236733A (en) Gasification melting method and gasification melting facility for waste
JPH09217920A (en) Combustion melting furnace and waste disposing device
JP4859416B2 (en) Secondary combustion device
JP4972458B2 (en) Ash melting furnace combustion chamber
JP2557648Y2 (en) Heat exchanger
JP2007085562A (en) Shaft furnace type gasification melting furnace
JP2001227870A (en) Outlet structure of rotary fusion kiln
ES2361053T3 (en) GASIFICATION AND FUSION OVEN FOR WASTE AND GASIFICATION AND FUSION METHOD.
JPH06170353A (en) Ash melting/solidifying device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250