JP2006194414A - Antifriction bearing - Google Patents

Antifriction bearing Download PDF

Info

Publication number
JP2006194414A
JP2006194414A JP2005009290A JP2005009290A JP2006194414A JP 2006194414 A JP2006194414 A JP 2006194414A JP 2005009290 A JP2005009290 A JP 2005009290A JP 2005009290 A JP2005009290 A JP 2005009290A JP 2006194414 A JP2006194414 A JP 2006194414A
Authority
JP
Japan
Prior art keywords
bearing
less
rolling
deep groove
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009290A
Other languages
Japanese (ja)
Inventor
Takehiro Kudo
丈洋 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005009290A priority Critical patent/JP2006194414A/en
Publication of JP2006194414A publication Critical patent/JP2006194414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antifriction bearing with excellent acoustic performance and rotatability as well as good fretting resistance at low cost. <P>SOLUTION: A deep groove ball bearing 1 includes an outer ring 2, an inner ring 3 and a plurality of balls 4 as rolling elements arranged between the outer ring 2 and the inner ring 3 in such a manner that they can roll freely. The outer ring 2 and the inner ring 3 are formed of high-carbon chromium bearing-steel. The balls 4 are formed of martensitic stainless steel in which the size of eutectic carbide is 10μm or less, and the sphericity of the balls is 25nm or less and the surface roughness thereof is 4nmRa or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばハードディスクドライブ(HDD)装置等の情報機器などに用いられる小型モータ用軸受に最適な転がり軸受に関する。   The present invention relates to a rolling bearing optimal for a small motor bearing used in information equipment such as a hard disk drive (HDD) device.

従来、転がり軸受の材料としては、SUJ2などの軸受鋼、SUS440Cあるいは13Cr系のマルテンサイト系ステンレス鋼、SCr420あるいはSCM420などの肌焼鋼、等が使用されているが、例えばHDD装置、ビデオテープレコーダ、ファンモータなどの情報機器、音響・映像機器に用いられる小型モータ用軸受には、静粛性(音響性能)、回転非同期成分の振れ(NRRO:Non-Repeatable Run Out)などの回転性能、耐フレッチング性能、等多くの項目において高い性能が求められ、特にフレッチング磨耗によるトルク変動やトルクスパイクの発生を防止するために耐フレッチング性能に優れるマルテンサイト系ステンレス鋼が使用されている。   Conventionally, as rolling bearing materials, bearing steel such as SUJ2, martensitic stainless steel such as SUS440C or 13Cr, and case-hardened steel such as SCr420 or SCM420 are used. For example, HDD devices, video tape recorders, etc. For small motor bearings used in information equipment such as fan motors and audio / video equipment, quietness (acoustic performance), rotational performance such as non-repeatable run out (NRRO), anti-fretting High performance is required in many items such as performance, and martensitic stainless steel that is excellent in anti-fretting performance is used to prevent torque fluctuations and torque spikes due to fretting wear.

しかしながら、近年、HDD装置の高密度化に伴いディスク厚さを増してディスク剛性の強化が図られており、これによりディスク慣性が大きくなることに起因して、あるいは、低コスト化のためのヘッド数の削減に伴いディスク回転の振れが大きくなることに起因して、小型モータ用軸受の耐フレッチング性能のさらなる向上が望まれている。   However, in recent years, with the increase in the density of HDD devices, the disk thickness has been increased and the rigidity of the disk has been strengthened. This has resulted in an increase in disk inertia, or a head for cost reduction. Due to the fact that the disk runout increases with the reduction in the number, it is desired to further improve the anti-fretting performance of the small motor bearing.

そして、耐フレッチング性能を向上させる方法として、(1)封入するグリースに硫化モリブデン、硫化亜鉛などのイオウ化合物を極圧添加剤として混入する、(2)保持器に載せていたグリースを溝に封入する、(3)転動体の材料をセラミックに変更する、(4)転動体の表面を窒化処理する、等の方法が提案されている。(例えば、特許文献1参照。)。
特開平11−303874号公報
And, as a method to improve the anti-fretting performance, (1) Mix sulfur grease such as molybdenum sulfide and zinc sulfide as an extreme pressure additive in the grease to be sealed, and (2) Enclose the grease on the cage in the groove. And (3) changing the material of the rolling element to ceramic, and (4) nitriding the surface of the rolling element. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 11-303874

しかし、グリースに硫化モリブデン、硫化亜鉛などの硫黄化合物を極圧添加剤として混合した場合には転がり軸受の音響性能が低下する虞があり、また、グリースを溝に封入した場合には転がり軸受の動トルクが増大し且つ保持器の回転非同期成分の振れ(NRROfc成分)が不安定となり、転がり軸受の回転性能が低下する虞があり、また、転動体をセラミックで製作し、もしくは転動体の表面に窒化処理を施すことは、転がり軸受のコスト高を招く虞があった。   However, if grease is mixed with sulfur compounds such as molybdenum sulfide and zinc sulfide as extreme pressure additives, the acoustic performance of the rolling bearing may be reduced, and if grease is sealed in the groove, the rolling bearing The dynamic torque increases and the runout of the rotation asynchronous component of the cage (NRROfc component) may become unstable, and the rotational performance of the rolling bearing may be degraded. Also, the rolling element is made of ceramic, or the surface of the rolling element If the nitriding treatment is applied to the rolling bearing, there is a risk of increasing the cost of the rolling bearing.

また、従来のステンレス鋼は、含有するCrが濃化した粗大な共晶炭化物が多数内在しているため加工精度が低下する傾向にあり、内外輪および転動体の形状精度に依存する転がり軸受の音響性能・回転性能の面で、ステンレス鋼製のものは、例えば軸受鋼製のものに比べて劣るものであった。
これに対し、特許文献1は、粗大な共晶炭化物の形成を抑制することができるC、Cr濃度の関係を見出し、さらにSi、Mn、Cr、Mo、V等の含有量を所定のしきい値内に抑えることにより加工性の向上を図ったステンレス鋼を開示しているが、転がり軸受の音響性能・回転性能に直接に関与する内外輪や転動体の加工精度についての定量的な記載がなされていない。
In addition, conventional stainless steel tends to lower the processing accuracy due to the presence of a large amount of coarse eutectic carbide enriched in Cr, and it is a rolling bearing that depends on the shape accuracy of inner and outer rings and rolling elements. In terms of acoustic performance and rotational performance, stainless steel products are inferior to bearing steel products, for example.
On the other hand, Patent Document 1 finds a relationship between C and Cr concentrations that can suppress the formation of coarse eutectic carbides, and further sets the content of Si, Mn, Cr, Mo, V, etc. to a predetermined threshold. Although stainless steel has been disclosed to improve workability by keeping it within the value, there is a quantitative description of the machining accuracy of inner and outer rings and rolling elements that are directly related to the acoustic performance and rotational performance of rolling bearings. Not done.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、優れた音響性能、回転性能を有し、且つ優れた耐フレッチング性能を兼ね備える転がり軸受を安価に提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a rolling bearing that has excellent acoustic performance and rotational performance and also has excellent anti-fretting performance at low cost.

前述した目的を達成するために、本発明に係る転がり軸受は、外輪と、内輪と、前記外輪および前記内輪間に転動自在に配設された複数の転動体と、を備える転がり軸受であって、前記外輪および前記内輪が高炭素クロム軸受鋼からなり、前記転動体が、共晶炭化物の大きさが10μm以下であるマルテンサイト系ステンレス鋼からなり、真球度25nm以下で且つ面粗さ4nmRa以下であることを特徴としている。   In order to achieve the above-described object, a rolling bearing according to the present invention is a rolling bearing comprising an outer ring, an inner ring, and a plurality of rolling elements that are disposed between the outer ring and the inner ring so as to be capable of rolling. The outer ring and the inner ring are made of high carbon chrome bearing steel, and the rolling element is made of martensitic stainless steel having a eutectic carbide size of 10 μm or less, and has a sphericity of 25 nm or less and a surface roughness. It is characterized by being 4 nmRa or less.

本発明の転がり軸受によれば、内外輪を高炭素クロム軸受鋼により形成すると共に、転動体を共晶炭化物の大きさが10μm以下とされたマルテンサイト系ステンレス鋼から形成するようにしたので、内外輪および転動体を共に高い精度で加工することができる。特に、従来は高精度加工が困難であったステンレス鋼の加工精度を軸受鋼と同等の加工精度に向上させることができ、転動体(玉)の真球度を25nm以下、面粗さを4nmRa以下の高精度に加工することが可能となる。これにより、内外輪および転動体を高炭素クロム軸受鋼で形成した転がり軸受と同等の音響性能、回転性能を有し、且つ優れた耐フレッチング性能を兼ね備える転がり軸受を提供することができる。
さらに、比較的価格の高いマルテンサイト系ステンレス鋼を単純な形状の転動体に用い、転動体に比べ複雑な形状で且つ体積の大きな内外輪に高炭素クロム軸受鋼を用いているので、内外輪および転動体に共にマルテンサイト系ステンレス鋼を用いる場合に比べて転がり軸受を安価に提供することができる。
According to the rolling bearing of the present invention, the inner and outer rings are made of high carbon chromium bearing steel, and the rolling elements are made of martensitic stainless steel having a eutectic carbide size of 10 μm or less. Both inner and outer rings and rolling elements can be processed with high accuracy. In particular, it is possible to improve the processing accuracy of stainless steel, which has conventionally been difficult to perform with high accuracy, to the same processing accuracy as that of bearing steel. The sphericity of rolling elements (balls) is 25 nm or less, and the surface roughness is 4 nm Ra. It becomes possible to process with the following high precision. Thereby, it is possible to provide a rolling bearing having acoustic performance and rotational performance equivalent to those of a rolling bearing in which inner and outer rings and rolling elements are made of high carbon chrome bearing steel, and also having excellent anti-fretting performance.
In addition, relatively high-priced martensitic stainless steel is used for rolling elements with simple shapes, and high-carbon chromium bearing steel is used for inner and outer rings that have a complicated shape and larger volume than rolling elements. In addition, a rolling bearing can be provided at a lower cost than when martensitic stainless steel is used for both rolling elements.

以下、本発明に係る好適な実施形態を図面に基づいて詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施形態である深溝玉軸受の縦断面図である。
図1に示されるように、本発明の一実施形態である深溝玉軸受1は、外輪2および内輪3を有し、外輪2の内周面に形成された外輪軌道面2aと内輪3の外周面に形成された内輪軌道面3aとの間に転動体である複数の玉4が保持器5により転動自在に保持されている。外輪2および内輪3間の軸方向両端部には、シール6が配設されている。
FIG. 1 is a longitudinal sectional view of a deep groove ball bearing according to an embodiment of the present invention.
As shown in FIG. 1, a deep groove ball bearing 1 according to an embodiment of the present invention has an outer ring 2 and an inner ring 3, and an outer ring raceway surface 2 a formed on the inner circumferential surface of the outer ring 2 and the outer circumference of the inner ring 3. A plurality of balls 4 that are rolling elements are held by a cage 5 between the inner ring raceway surface 3 a formed on the surface so as to freely roll. Seals 6 are disposed at both axial ends between the outer ring 2 and the inner ring 3.

外輪2および内輪3は、例えばSUJ2などの高炭素クロム軸受鋼から形成されている。また、転動体である玉4は、共晶炭化物の大きさが10μm以下とされたマルテンサイト系ステンレス鋼から形成され、真球度25nm以下で且つ面粗さ4nmRa以下に加工されている。
共晶炭化物の大きさが10μm以下となるマルテンサイト系ステンレス鋼としては、例えば、重量%で、C;1.5%以下、Cr;10%以上20%以下、Mn;0.1%以上0.8%以下、Si;0.1%以上1.0%以下、N;0.2%未満を含有する合金鋼を例示することができる。
The outer ring 2 and the inner ring 3 are made of high carbon chrome bearing steel such as SUJ2. Further, the balls 4 as rolling elements are made of martensitic stainless steel having a eutectic carbide size of 10 μm or less, and are processed to have a sphericity of 25 nm or less and a surface roughness of 4 nmRa or less.
Examples of the martensitic stainless steel in which the size of the eutectic carbide is 10 μm or less include, by weight%, C: 1.5% or less, Cr: 10% or more and 20% or less, Mn: 0.1% or more and 0 An alloy steel containing 0.8% or less, Si; 0.1% or more and 1.0% or less, N: less than 0.2% can be exemplified.

本実施形態によれば、外輪2および内輪3を高炭素クロム軸受鋼により形成すると共に、転動体である玉4を共晶炭化物の大きさが10μm以下とされたマルテンサイト系ステンレス鋼から形成するようにしたので、外輪2、内輪3および玉4を共に高い精度で加工することができる。特に、従来は高精度加工が困難であったステンレス鋼の加工精度を軸受鋼と同等の加工精度に向上させることができ、玉4の真球度を25nm以下、面粗さを4nmRa以下の高精度に加工することが可能となる。これにより、内外輪および転動体を高炭素クロム軸受鋼で形成した軸受と同等の音響性能、回転性能を有し、且つ優れた耐フレッチング性能を兼ね備える深溝玉軸受1を提供することができる。
さらに、比較的価格の高いマルテンサイト系ステンレス鋼を単純な形状の玉4に用い、玉4に比べ複雑な形状で且つ体積の大きな外輪2および内輪3に高炭素クロム軸受鋼を用いているので、内外輪および転動体に共にマルテンサイト系ステンレス鋼を用いる場合に比べて深溝玉軸受1を安価に提供することができる。
According to this embodiment, the outer ring 2 and the inner ring 3 are formed of high carbon chrome bearing steel, and the balls 4 that are rolling elements are formed of martensitic stainless steel having a eutectic carbide size of 10 μm or less. Since it did in this way, the outer ring | wheel 2, the inner ring | wheel 3, and the ball | bowl 4 can be processed with high precision together. In particular, it is possible to improve the processing accuracy of stainless steel, which has conventionally been difficult to perform with high accuracy, to the same processing accuracy as that of bearing steel, and the ball 4 has a high sphericity of 25 nm or less and a surface roughness of 4 nmRa or less. It becomes possible to process with high accuracy. Thereby, it is possible to provide the deep groove ball bearing 1 having the same acoustic performance and rotational performance as the bearing in which the inner and outer rings and the rolling elements are made of high-carbon chromium bearing steel, and also having excellent anti-fretting performance.
In addition, a relatively expensive martensitic stainless steel is used for the ball 4 having a simple shape, and a high-carbon chromium bearing steel is used for the outer ring 2 and the inner ring 3 having a complicated shape and a larger volume than the ball 4. The deep groove ball bearing 1 can be provided at a lower cost than when martensitic stainless steel is used for both the inner and outer rings and the rolling elements.

本発明の効果を確認するため、外輪および内輪をSUJ2から形成し、また転動体である玉を共晶炭化物の大きさが10μm以下であるマルテンサイト系ステンレス鋼から形成した本発明に係る実施例、および当該実施例と比較するため外輪、内輪および転動体の全てをSUJ2から形成した比較例に対して行った各試験について説明する。尚、実施例および比較例の転がり軸受は、外径13mm、内径5mm、幅5mm、の深溝玉軸受である。   In order to confirm the effect of the present invention, the outer ring and the inner ring are formed from SUJ2, and the balls as rolling elements are formed from martensitic stainless steel having a eutectic carbide size of 10 μm or less. In addition, for comparison with the embodiment, each test performed on a comparative example in which all of the outer ring, the inner ring, and the rolling element are formed from SUJ2 will be described. The rolling bearings of the examples and comparative examples are deep groove ball bearings having an outer diameter of 13 mm, an inner diameter of 5 mm, and a width of 5 mm.

図2は軸受初期G値(振動加速度)の測定結果を示すグラフ、図3はNRROの測定結果を示すグラフ、図4はNRROfc(保持器のNRRO)の測定結果を示すグラフ、図5はNRROball−(玉のNRRO)の測定結果を示すグラフ、図6はNRROball+(玉のNRRO)の測定結果を示すグラフである。
また、図7から図8は、実施例および比較例の深溝玉軸受に1.5kgfの予圧を与えて70℃の環境下にて回転数5400rpmで回転させた耐久試験において、試験時間と共に変化するG値の測定結果を示し、図7は実施例の共晶炭化物10μm以下としたマルテンサイト系ステンレス鋼ボールを使用した深溝玉軸受を炭酸エステル系グリース(HF3グリース)で潤滑した場合のグラフ、図8は比較例のSUJ2ボールを使用した深溝玉軸受を炭酸エステル系グリース(HF3グリース)で潤滑した場合のグラフである。
そして、図9はG値上昇量を指標として耐フレッチング性能を示すグラフである。
2 is a graph showing the measurement result of the initial bearing G value (vibration acceleration), FIG. 3 is a graph showing the measurement result of NRRO, FIG. 4 is a graph showing the measurement result of NRROfc (NRRO of the cage), and FIG. 5 is NRROball. FIG. 6 is a graph showing the measurement result of NRROball + (ball NRRO).
FIGS. 7 to 8 change with the test time in an endurance test in which 1.5 kgf of preload was applied to the deep groove ball bearings of the example and the comparative example and rotated at a rotational speed of 5400 rpm in an environment of 70 ° C. FIG. 7 is a graph showing a case where a deep groove ball bearing using a martensitic stainless steel ball having an eutectic carbide of 10 μm or less of the example is lubricated with a carbonate ester grease (HF3 grease). 8 is a graph when a deep groove ball bearing using the SUJ2 ball of the comparative example is lubricated with a carbonate ester grease (HF3 grease).
FIG. 9 is a graph showing the anti-fretting performance using the G value increase amount as an index.

図2に示されるように、軸受初期G値に関して、実施例の深溝玉軸受は、比較例の深溝玉軸受と同等の値を示し、振動が少なく音響性能に優れていることが分かる。   As shown in FIG. 2, regarding the initial G value of the bearing, the deep groove ball bearing of the example shows the same value as the deep groove ball bearing of the comparative example, and it can be seen that there is little vibration and excellent acoustic performance.

図3から図6に示されるように、各NRROに関して、実施例の深溝玉軸受は、比較例の深溝玉軸受と同等の値を示し、回転非同期成分の振れが小さく、安定しており、回転性能に優れていることが分かる。   As shown in FIG. 3 to FIG. 6, for each NRRO, the deep groove ball bearing of the example shows the same value as the deep groove ball bearing of the comparative example, and the runout of the rotational asynchronous component is small and stable. It turns out that it is excellent in performance.

図7および図8に示されるように、実施例および比較例の深溝玉軸受のいずれも試験時間の経過に伴いG値が上昇する傾向にあるが、実施例の深溝玉軸受は、比較例の深溝玉軸受に比べてG値の変化が少なく、優れた耐久性能を有していることが分かる。   As shown in FIGS. 7 and 8, the deep groove ball bearings of the examples and comparative examples tend to increase in G value as the test time elapses. It can be seen that there is little change in the G value compared to the deep groove ball bearing, and it has excellent durability performance.

図9に示されるように、G値上昇量を指標とした耐フレッチング性能に関して、実施例の深溝玉軸受は、比較例の深溝玉軸受に比べてG値の上昇量が格段に小さく、耐フレッチング性能に優れていることが分かる。   As shown in FIG. 9, regarding the anti-fretting performance using the increase in G value as an index, the deep groove ball bearing of the example has a significantly small increase in the G value compared to the deep groove ball bearing of the comparative example, and is resistant to fretting. It turns out that it is excellent in performance.

以上の結果より、総合的に見て本発明に係る転がり軸受が優れた音響性能、回転性能を有し、且つ優れた耐フレッチング性能を兼ね備えていることが実証された。   From the above results, it was proved that the rolling bearing according to the present invention has excellent acoustic performance and rotational performance as a whole, and also has excellent anti-fretting performance.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、前述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

例えば、上述した実施形態において転がり軸受は深溝玉軸受として説明したが、これに限定されるものではなく、円筒ころ軸受、針状ころ軸受、円錐軸受、など他の形式の転がり軸受においても適用することができる。   For example, although the rolling bearing has been described as a deep groove ball bearing in the above-described embodiment, the present invention is not limited to this, and is applicable to other types of rolling bearings such as a cylindrical roller bearing, a needle roller bearing, and a conical bearing. be able to.

本発明の転がり軸受の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the rolling bearing of this invention. 実施例および比較例の軸受初期G値(振動加速度)の測定結果を示すグラフ図である。It is a graph which shows the measurement result of the bearing initial G value (vibration acceleration) of an Example and a comparative example. 実施例および比較例の深溝玉軸受のNRROの測定結果を示すグラフである。It is a graph which shows the measurement result of NRRO of the deep groove ball bearing of an example and a comparative example. 実施例および比較例の深溝玉軸受のNRROfc(保持器のNRRO)の測定結果を示すグラフである。It is a graph which shows the measurement result of NRROfc (NRRO of a cage) of the deep groove ball bearing of an example and a comparative example. 実施例および比較例の深溝玉軸受のNRROball−(玉のNRRO)の測定結果を示すグラフである。It is a graph which shows the measurement result of NRROball- (ball NRRO) of the deep groove ball bearing of an example and a comparative example. 実施例および比較例の深溝玉軸受のNRROball+(玉のNRRO)の測定結果を示すグラフである。It is a graph which shows the measurement result of NRROball + (ball NRRO) of the deep groove ball bearing of an example and a comparative example. 実施例の深溝玉軸受の耐久試験において試験時間と共に変化するG値の測定結果を示し、実施例の深溝玉軸受を炭酸エステル系グリース(HF3グリース)で潤滑した場合のグラフである。It is a graph at the time of lubricating the deep groove ball bearing of an Example with carbonate ester system grease (HF3 grease), showing the measurement result of G value which changes with test time in the endurance test of the deep groove ball bearing of an example. 比較例の深溝玉軸受の耐久試験において試験時間と共に変化するG値の測定結果を示し、比較例の深溝玉軸受を炭酸エステル系グリース(HF3グリース)で潤滑した場合のグラフである。It is a graph at the time of lubricating the deep groove ball bearing of a comparative example with carbonate ester system grease (HF3 grease), showing the measurement result of G value which changes with test time in the endurance test of the deep groove ball bearing of a comparative example. 実施例および比較例の深溝玉軸受のG値上昇量を指標とした耐フレッチング性能を示すグラフである。It is a graph which shows the fretting-proof performance which used the amount increase of G value of the deep groove ball bearing of the Example and the comparative example as a parameter | index.

符号の説明Explanation of symbols

1 深溝玉軸受(転がり軸受)
2 外輪
3 内輪
4 玉(転動体)
5 保持器
1 Deep groove ball bearing (rolling bearing)
2 Outer ring 3 Inner ring 4 Ball (rolling element)
5 Cage

Claims (1)

外輪と、内輪と、前記外輪および前記内輪間に転動自在に配設された複数の転動体と、を備える転がり軸受であって、
前記外輪および前記内輪が高炭素クロム軸受鋼からなり、
前記転動体が、共晶炭化物の大きさが10μm以下であるマルテンサイト系ステンレス鋼からなり、真球度25nm以下で且つ面粗さ4nmRa以下であることを特徴とする転がり軸受。
A rolling bearing comprising an outer ring, an inner ring, and a plurality of rolling elements arranged to roll between the outer ring and the inner ring,
The outer ring and the inner ring are made of high carbon chrome bearing steel,
The rolling bearing is characterized in that the rolling element is made of martensitic stainless steel having a eutectic carbide size of 10 μm or less, and has a sphericity of 25 nm or less and a surface roughness of 4 nmRa or less.
JP2005009290A 2005-01-17 2005-01-17 Antifriction bearing Pending JP2006194414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009290A JP2006194414A (en) 2005-01-17 2005-01-17 Antifriction bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009290A JP2006194414A (en) 2005-01-17 2005-01-17 Antifriction bearing

Publications (1)

Publication Number Publication Date
JP2006194414A true JP2006194414A (en) 2006-07-27

Family

ID=36800656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009290A Pending JP2006194414A (en) 2005-01-17 2005-01-17 Antifriction bearing

Country Status (1)

Country Link
JP (1) JP2006194414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573804A (en) * 2012-07-23 2014-02-12 宁波市鄞州金鑫轴承五金有限公司 Bearing with nonmagnetic inner ring
CN103573803A (en) * 2012-07-23 2014-02-12 宁波市鄞州金鑫轴承五金有限公司 Single-groove four-corner contact bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573804A (en) * 2012-07-23 2014-02-12 宁波市鄞州金鑫轴承五金有限公司 Bearing with nonmagnetic inner ring
CN103573803A (en) * 2012-07-23 2014-02-12 宁波市鄞州金鑫轴承五金有限公司 Single-groove four-corner contact bearing

Similar Documents

Publication Publication Date Title
WO2012099120A1 (en) Roller bearing
JP2006329218A (en) Rolling bearing cage
JP2007010114A (en) Rolling bearing for transmission
JP2006194414A (en) Antifriction bearing
JP2008240806A (en) Ball bearing
JP2006329265A (en) Rolling bearing
JP2006071022A (en) Rolling bearing
JP2002349580A (en) Rolling bearing
WO2013015291A1 (en) Roller bearing for hard disk swing arms
JP2003139147A (en) Rolling device
JP2010002032A (en) Rolling bearing for transmission
JP2006112559A (en) Tapered roller bearing
JPH1082424A (en) Holder for rolling bearing
JP4322641B2 (en) Cylindrical roller bearing
JP2002349581A (en) Roller
JP2004084768A (en) Rolling bearing device
US6942392B2 (en) Rolling bearing of a small motor for an information-processing device
WO2015194492A1 (en) Rolling bearing
JP2564193Y2 (en) Ball bearings for spindle motors of information equipment
JP2007040481A (en) Rolling bearing
JP2005090718A (en) Ball bearing and bearing device
JP2005076732A (en) Resin ball-cage for double row roller bearing and double row roller bearing
JP2006002875A (en) Rolling bearing for swing arm and rolling bearing device
JP2002206540A (en) Rolling bearing
JP2002327753A (en) Retainer and rolling bearing using the same