JP2003139147A - Rolling device - Google Patents

Rolling device

Info

Publication number
JP2003139147A
JP2003139147A JP2001335474A JP2001335474A JP2003139147A JP 2003139147 A JP2003139147 A JP 2003139147A JP 2001335474 A JP2001335474 A JP 2001335474A JP 2001335474 A JP2001335474 A JP 2001335474A JP 2003139147 A JP2003139147 A JP 2003139147A
Authority
JP
Japan
Prior art keywords
rolling
outer ring
raceway groove
rolling device
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001335474A
Other languages
Japanese (ja)
Inventor
Hideyuki Uyama
英幸 宇山
Koji Ueda
光司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001335474A priority Critical patent/JP2003139147A/en
Publication of JP2003139147A publication Critical patent/JP2003139147A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness

Abstract

PROBLEM TO BE SOLVED: To provide a rolling device suitable for use under corrosive environment or environment requiring non-magnetism, superior in wear resistance. SOLUTION: In a deep groove ball bearing comprising an inner ring 1, an outer ring 2, and a plurality of rolling elements 3 rollably arranged between the inner ring 1 and the outer ring 2, each of the inner ring 1 and the outer ring 2 is formed of a β type or α+β type titanium alloy and a surface roughness Ra of each raceway surface 1a, 2a is made 0.05-0.7 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、転がり軸受,ボー
ルねじ,直動案内装置等の転動装置に係り、特に、半導
体製造装置,液晶製造装置,化学繊維製造装置,食品用
機械等のような水,塩水,化学薬品,腐食性ガス等の腐
食性環境下において使用される装置や、半導体製造装
置,液晶製造装置,X線又は電子線を使用する計測装
置,磁場を利用する機械装置等のような非磁性が要求さ
れる環境下において使用される装置に好適に適用される
転動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling device such as a rolling bearing, a ball screw and a linear motion guide device, and more particularly to a semiconductor manufacturing device, a liquid crystal manufacturing device, a chemical fiber manufacturing device, a food processing machine and the like. Equipment used in corrosive environments such as fresh water, salt water, chemicals, corrosive gases, etc., semiconductor manufacturing equipment, liquid crystal manufacturing equipment, measuring equipment using X-rays or electron beams, mechanical equipment utilizing magnetic fields, etc. The present invention relates to a rolling device suitably applied to a device used in an environment where non-magnetism is required.

【0002】[0002]

【従来の技術】従来、転がり軸受等の転動装置を構成す
る素材としては、主に高炭素クロム軸受鋼や肌焼鋼のよ
うな鉄鋼材料が一般的に使用されていた。近年、転動装
置の使用環境は多様化しており、水,塩水,酸,アルカ
リ等の腐食性環境下で使用される場合もあるため、この
ような高い耐食性が要求される環境下で使用される場合
には、素材としてステンレス鋼が使用されていた。
2. Description of the Related Art Conventionally, steel materials such as high carbon chrome bearing steel and case hardening steel have generally been generally used as materials for forming rolling devices such as rolling bearings. In recent years, the operating environment of rolling devices has been diversified and may be used in corrosive environments such as water, salt water, acids and alkalis, so it is used in environments where such high corrosion resistance is required. In this case, stainless steel was used as the material.

【0003】しかしながら、近年、転動装置の使用環境
がより過酷となってきており、ステンレス鋼でも耐食性
が不十分である場合が出てきた。このような過酷な環境
下でも転がり寿命の優れた転がり軸受として、チタン合
金で軌道輪が構成され、セラミックで転動体が構成され
た転がり軸受が、特開平11−223221号公報に開
示されている。一方、半導体製造装置,液晶製造装置,
X線又は電子線を使用する計測装置等のように、磁場を
利用した装置や磁場が乱れることによって測定精度が低
下する装置が数多く使用されるようになってきている。
このような装置に使用される転動装置は、作動によって
周辺の磁場を乱すことがないように非磁性が要求される
ので、非磁性ステンレス鋼やベリリウム銅で構成されて
いる。
However, in recent years, the operating environment of rolling devices has become more severe, and in some cases stainless steel has insufficient corrosion resistance. As a rolling bearing having an excellent rolling life even under such a harsh environment, a rolling bearing in which a bearing ring is made of titanium alloy and rolling elements are made of ceramics is disclosed in JP-A-11-223221. . On the other hand, semiconductor manufacturing equipment, liquid crystal manufacturing equipment,
A large number of devices such as measuring devices using X-rays or electron beams, which use a magnetic field and whose measurement accuracy is deteriorated due to disturbance of the magnetic field, have been used.
The rolling device used in such a device is made of non-magnetic stainless steel or beryllium copper because it is required to be non-magnetic so as not to disturb the surrounding magnetic field by its operation.

【0004】しかしながら、電子線等を用いる分析装置
又は測定装置では、転動装置を構成する転動部材がわず
かに磁化するだけでも、精度不良の原因になるおそれが
あるので、比透磁率が1.04〜1.002程度である
従来の非磁性ステンレス鋼は使用できない。そこで、よ
り完全に近い非磁性が要求される場合には、比透磁率が
1.001以下のベリリウム銅が用いられる場合が多
い。例えば、実開平5−79042号公報には、内外輪
がベリリウム銅で構成され、転動体がセラミックで構成
された転がり軸受が開示されている。
However, in an analyzer or measuring device using an electron beam or the like, even if the rolling member constituting the rolling device is slightly magnetized, it may cause a precision failure, so that the relative permeability is 1 or less. Conventional non-magnetic stainless steel, which is about .04 to 1.002, cannot be used. Therefore, when more perfect non-magnetism is required, beryllium copper having a relative magnetic permeability of 1.001 or less is often used. For example, Japanese Utility Model Laid-Open No. 5-79042 discloses a rolling bearing in which the inner and outer races are made of beryllium copper and the rolling elements are made of ceramics.

【0005】[0005]

【発明が解決しようとする課題】チタン合金は、非磁性
又は高い耐食性が要求される環境下で使用される転動装
置の素材として好適であるが、一般に耐摩耗性に劣って
いる。そのため、冷間加工又はショットピーニング等に
より強化して耐摩耗性を向上させたチタン合金が使用さ
れる場合が多い。しかしながら、強化のために冷間加工
又はショットピーニング等を行なうと、これらの工程数
が増えることによりコストアップとなるという問題があ
るので、このような問題をさらに改善する必要があっ
た。
Titanium alloys are suitable as materials for rolling devices used in environments where non-magnetic properties or high corrosion resistance are required, but they are generally inferior in wear resistance. Therefore, in many cases, a titanium alloy that is strengthened by cold working or shot peening to improve wear resistance is used. However, if cold working or shot peening or the like is performed for strengthening, there is a problem in that the number of these steps increases, resulting in an increase in cost. Therefore, it is necessary to further improve such a problem.

【0006】一方、ベリリウム銅については、その構成
元素であるベリリウムから生成される化合物の一部が環
境負荷物質とされており、社会的に環境問題が今後さら
に重視されることが予想されるため、ベリリウム銅の使
用に制約を受けるおそれがある。また、転動装置におい
ては、内方部材,外方部材と転動体との接触部で高い面
圧が生じるが、ベリリウム銅は硬さがHv400程度で
あるため、硬さ不足のため摩耗が生じやすい。そのた
め、転動装置が使用されている機械装置内の他の部位が
摩耗粉によって汚染され、該機械装置の寿命が短くなっ
てしまうおそれがあるという問題もあった。
On the other hand, with regard to beryllium copper, a part of the compound produced from its constituent element, beryllium, is regarded as an environmentally hazardous substance, and it is expected that environmental issues will be further emphasized socially in the future. , There may be restrictions on the use of beryllium copper. Further, in the rolling device, a high surface pressure is generated at the contact portion between the inner member and the outer member and the rolling element, but since beryllium copper has a hardness of about Hv400, wear occurs due to insufficient hardness. Cheap. Therefore, there is also a problem that other parts in the mechanical device in which the rolling device is used may be contaminated by the abrasion powder and the life of the mechanical device may be shortened.

【0007】そこで、本発明は、上記のような従来の転
動装置の有する問題点を解決し、腐食性環境下や非磁性
が要求される環境下において好適に使用可能で、しかも
優れた耐摩耗性を有する転動装置を提供することを課題
とする。
Therefore, the present invention solves the problems of the conventional rolling device as described above, and can be suitably used in a corrosive environment or an environment where non-magnetism is required, and has excellent resistance. An object is to provide a rolling device having wear resistance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次のような構成からなる。すなわち、本発
明に係る請求項1の転動装置は、内方部材と、外方部材
と、前記内方部材と前記外方部材との間に転動自在に配
設された複数の転動体と、を備える転動装置において、
前記内方部材,前記外方部材,及び前記転動体のうち少
なくとも一つを、β型又はα+β型チタン合金で構成
し、その転走面の表面粗さRaを0.05〜0.7μm
としたことを特徴とする。
In order to solve the above problems, the present invention has the following structure. That is, the rolling device according to claim 1 of the present invention is an inner member, an outer member, and a plurality of rolling elements rotatably arranged between the inner member and the outer member. In a rolling device including,
At least one of the inner member, the outer member, and the rolling element is made of a β-type or α + β-type titanium alloy, and the rolling surface has a surface roughness Ra of 0.05 to 0.7 μm.
It is characterized by

【0009】また、本発明に係る請求項2の転動装置
は、外面に断面円弧状の軌道溝を有する内方部材と、該
内方部材の軌道溝に対向する断面円弧状の軌道溝を有し
て前記内方部材の外方に配置された外方部材と、前記両
軌道溝間に転動自在に配設された複数の転動体と、を備
え、前記転動体の転動を介して前記内方部材及び前記外
方部材の一方が他方に対して変位する転動装置におい
て、前記内方部材及び前記外方部材のうち少なくとも変
位しない方の部材をβ型又はα+β型チタン合金で構成
し、その軌道溝の曲率半径を前記転動体の直径の53〜
60%としたことを特徴とする。
According to a second aspect of the present invention, the rolling device includes an inner member having an outer raceway groove having an arcuate cross section, and an inner raceway groove having an arcuate cross section opposed to the inner raceway groove. An outer member having the outer member arranged outside the inner member, and a plurality of rolling elements rotatably arranged between the two raceway grooves are provided. In the rolling device in which one of the inner member and the outer member is displaced with respect to the other, at least one of the inner member and the outer member that is not displaced is a β type or α + β type titanium alloy. And the radius of curvature of the raceway groove is 53 to the diameter of the rolling element.
It is characterized by being 60%.

【0010】チタン合金製の転動装置において摩耗が生
じる原因は、転動体と内・外方部材との間に生じるすべ
りである。そこで、本発明者らは、すべりを抑制するこ
とにより転動装置の耐摩耗性を向上させた。以下に、詳
細に説明する。チタン合金は、常温においては表面に数
nmの極薄い酸化膜が形成されている。しかし、この酸
化膜は摺動時に破壊される場合があり、その際に化学的
に活性なチタンの金属面が表面に露出するので、摺動の
相手材と凝着摩耗を起こしやすくなる。そのため、チタ
ン合金は、一般に耐摩耗性に劣ると考えられている。
The cause of wear in the rolling device made of titanium alloy is the slip between the rolling element and the inner and outer members. Therefore, the present inventors have improved the wear resistance of the rolling device by suppressing slippage. The details will be described below. The titanium alloy has an extremely thin oxide film of several nm formed on the surface at room temperature. However, this oxide film may be destroyed during sliding, and at that time, the chemically active metal surface of titanium is exposed on the surface, so that it is likely to cause cohesive wear with the sliding counterpart material. Therefore, titanium alloys are generally considered to have poor wear resistance.

【0011】転がり軸受等の転動装置は、転動体と内・
外方部材との接触部にすべりが生じるので、転動部材を
チタン合金で構成した場合は、すべりが大きくなると前
記酸化膜が破壊されてチタン合金に摩耗が生じやすくな
る。また、すべりが生じると摩擦による発熱も生じる
が、チタン合金は比熱が小さいので発熱による温度上昇
も大きくなり、焼付きや摩耗を生じやすくなる。そこ
で、本発明は、転動体と内・外方部材との接触部におけ
るすべりを抑制することによって、チタン合金で構成さ
れた転動部材(内方部材,外方部材,転動体)の摩耗を
抑制したものである。
Rolling devices such as rolling bearings are
When the rolling member is made of a titanium alloy, the oxide film is broken and the titanium alloy is apt to be worn when the rolling member is made of titanium alloy, because slippage occurs at the contact portion with the outer member. Further, when slippage occurs, heat is also generated due to friction, but since the titanium alloy has a small specific heat, the temperature rise due to heat generation is large, and seizure or wear is likely to occur. Therefore, the present invention suppresses wear of rolling members (inner member, outer member, rolling member) made of a titanium alloy by suppressing slippage at the contact portion between the rolling member and the inner / outer member. It was suppressed.

【0012】鉄鋼材料のヤング率は200GPa程度で
あるのに対して、チタン合金のヤング率は100〜12
0GPa程度と小さいため、転動体と内・外方部材との
接触面積が大きくなる傾向がある。すべりを抑制するた
めには、転動体と内・外方部材との接触面積を小さくす
ることが有効である。一般に使用されている高炭素クロ
ム鋼製の転がり玉軸受においては、その転走面(内外輪
の軌道面及び転動体の転動面)の表面粗さRaは0.0
1〜0.04μmであるが、本発明の転動装置において
は、その転走面(内・外方部材の軌道面及び転動体の転
動面)の表面粗さRaを0.05〜0.7μmとした。
前述したようにチタン合金はヤング率が小さいので、転
動体と内・外方部材との接触面積が大きくなるが、表面
粗さRaを大きくすることによって局部的な接触面積が
小さくなるので、すべりを抑制することができる。
While the Young's modulus of steel materials is about 200 GPa, the Young's modulus of titanium alloys is 100-12.
Since it is as small as 0 GPa, the contact area between the rolling element and the inner / outer member tends to be large. In order to suppress slippage, it is effective to reduce the contact area between the rolling element and the inner / outer member. In a commonly used rolling ball bearing made of high carbon chrome steel, the surface roughness Ra of its rolling surfaces (race surfaces of inner and outer rings and rolling surfaces of rolling elements) is 0.0.
Although it is 1 to 0.04 μm, in the rolling device of the present invention, the surface roughness Ra of the rolling surface (the raceway surface of the inner / outer member and the rolling surface of the rolling element) is 0.05 to 0. It was set to 0.7 μm.
As described above, since titanium alloy has a small Young's modulus, the contact area between the rolling element and the inner / outer member is large, but by increasing the surface roughness Ra, the local contact area is decreased, so that the slip Can be suppressed.

【0013】表面粗さRaが0.05μm未満である
と、すべりを抑制する効果が小さい。また、表面粗さR
aが0.7μm超過であると、転動装置の作動精度が悪
くなる。このような問題点がより生じにくくするために
は、転走面の表面粗さRaを0.1〜0.5μmとする
ことがより好ましい。一方、通常の転動装置において
は、内方部材及び外方部材が備える断面円弧状の軌道溝
の曲率半径は、転動体の直径の52%程度である。例え
ば、一般に使用されている高炭素クロム鋼製の転がり軸
受においては、その内輪及び外輪が備える断面円弧状の
軌道溝の曲率半径は、JISにも規定されているよう
に、転動体の直径の52%程度である。
When the surface roughness Ra is less than 0.05 μm, the effect of suppressing slippage is small. Also, the surface roughness R
If a exceeds 0.7 μm, the operating accuracy of the rolling device deteriorates. In order to make such a problem less likely to occur, it is more preferable to set the surface roughness Ra of the rolling surface to 0.1 to 0.5 μm. On the other hand, in a normal rolling device, the radius of curvature of the raceway groove having an arcuate cross section provided in the inner member and the outer member is about 52% of the diameter of the rolling element. For example, in a commonly used rolling bearing made of high carbon chrome steel, the radius of curvature of the raceway groove having an arcuate cross section provided in the inner ring and the outer ring is, as stipulated in JIS, the diameter of the rolling element. It is about 52%.

【0014】しかしながら、転動装置を構成する内方部
材及び外方部材のうち変位(回転運動や直線運動)しな
い方の部材(以降は固定部材と記す)においては、転動
装置が作動することによって軌道面に作用する負荷の負
荷圏が固定されており、この部分(負荷圏)が選択的に
摩耗する。よって、固定部材が備える断面円弧状の軌道
溝の曲率半径を、通常の転動装置における基準値である
転動体の直径の52%よりも大きくし、転動体の直径の
53〜60%とすれば、転動体と固定部材との接触部に
おける接触面積が小さくなるので、接触部におけるすべ
りを抑制することができる。
However, of the inner member and the outer member that constitute the rolling device, the one that does not displace (rotational motion or linear motion) (hereinafter referred to as the fixed member) must operate the rolling device. The load zone of the load acting on the track surface is fixed by this, and this portion (load zone) is selectively worn. Therefore, the radius of curvature of the raceway groove having an arcuate cross section of the fixing member is set to be larger than 52% of the diameter of the rolling element, which is the standard value in a normal rolling device, and 53 to 60% of the diameter of the rolling element. In this case, the contact area at the contact portion between the rolling element and the fixing member becomes small, so that slippage at the contact portion can be suppressed.

【0015】固定部材の軌道溝の曲率半径が転動体の直
径の53%未満であると、転動体と固定部材との接触面
積が大きくなるので、すべりを抑制する効果が不十分と
なり耐摩耗性が不十分となる。また、固定部材の軌道溝
の曲率半径が転動体の直径の60%超過であると、転動
体と固定部材との接触面積が小さくなりすぎて、接触部
における面圧が高くなるため、転がり寿命が低下する。
さらに、転動装置としての剛性も低下する。
If the radius of curvature of the raceway groove of the fixing member is less than 53% of the diameter of the rolling element, the contact area between the rolling element and the fixing member becomes large, so that the effect of suppressing slip is insufficient and wear resistance is increased. Is insufficient. Further, if the radius of curvature of the raceway groove of the fixing member exceeds 60% of the diameter of the rolling element, the contact area between the rolling element and the fixing member becomes too small, and the surface pressure at the contact portion increases, resulting in rolling life. Is reduced.
Further, the rigidity of the rolling device is also reduced.

【0016】このような問題点がより生じにくくするた
めには、固定部材の軌道溝の曲率半径を、転動体の直径
の54〜57%とすることがより好ましい。なお、アキ
シアル平面による断面形状が円弧状でない軌道溝を有す
る転動装置、例えば、断面形状が曲率中心の異なる2つ
の同一円弧を組合せた略V字状であるゴシックアーク溝
を軌道溝として有する直動案内装置,ボールねじ等の転
動装置にも、本発明は適用可能である。このようなゴシ
ックアーク溝を有する転動装置の場合には、固定部材が
備えるゴシックアーク溝の前記2つの円弧の曲率半径
を、転動体の直径の53〜60%とすれば、前述と同様
のすべり抑制効果が得られ、耐摩耗性が向上する。
In order to make such problems less likely to occur, it is more preferable that the radius of curvature of the raceway groove of the fixing member is 54 to 57% of the diameter of the rolling element. It should be noted that a rolling device having a raceway groove having a non-arcuate cross-section by an axial plane, for example, a straight groove having a substantially V-shaped Gothic arc groove in which two identical arcs having different curvature centers are combined as a raceway groove. The present invention can be applied to rolling devices such as a motion guide device and a ball screw. In the case of a rolling device having such a Gothic arc groove, if the radius of curvature of the two arcs of the Gothic arc groove provided in the fixing member is set to 53 to 60% of the diameter of the rolling element, the same as above. A slip suppressing effect is obtained, and wear resistance is improved.

【0017】また、転動装置が転がり軸受である場合に
は、軌道溝の周方向の形状が内輪と外輪とで異なる場合
があるため、外輪と転動体との接触面積の方が、内輪と
転動体との接触面積よりもやや大きくなり、すべりが発
生しやすい傾向がある。よって、外輪のすべりを抑制す
ることが重要であり、外輪の軌道溝の曲率半径を内輪の
軌道溝の曲率半径よりも大きくすることが好ましい。外
輪の軌道溝の曲率半径が転動体の直径の53〜60%と
なっていれば、内輪の軌道溝の曲率半径は転動体の直径
の51%以上53%未満でも差し支えない。
Further, when the rolling device is a rolling bearing, the circumferential shape of the raceway groove may be different between the inner ring and the outer ring. Therefore, the contact area between the outer ring and the rolling element is different from that of the inner ring. It becomes slightly larger than the contact area with the rolling elements, and slippage tends to occur. Therefore, it is important to suppress slippage of the outer ring, and it is preferable to make the radius of curvature of the raceway groove of the outer ring larger than the radius of curvature of the raceway groove of the inner ring. If the radius of curvature of the raceway groove of the outer ring is 53 to 60% of the diameter of the rolling element, the radius of curvature of the raceway groove of the inner ring may be 51% or more and less than 53% of the diameter of the rolling element.

【0018】さらに、外面に断面円弧状の軌道溝を有す
る内方部材と、該内方部材の軌道溝に対向する断面円弧
状の軌道溝を有して前記内方部材の外方に配置された外
方部材と、前記両軌道溝間に転動自在に配設された複数
の転動体と、を備え、前記転動体の転動を介して前記内
方部材及び前記外方部材の一方が他方に対して変位する
転動装置において、前記内方部材及び前記外方部材のう
ち少なくとも変位しない方の部材をβ型又はα+β型チ
タン合金で構成し、その軌道溝の表面(転走面)の表面
粗さRaを0.05〜0.7μmとするとともに、その
軌道溝の曲率半径を前記転動体の直径の53〜60%と
したことを特徴とする転動装置は、すべりの抑制効果が
高く、耐摩耗性が特に優れているので好ましい。
Further, an inner member having an outer raceway groove section having an arcuate cross section, and an inner raceway groove groove having an arcuate section section opposed to the inner raceway groove section are disposed outside the inner member. An outer member and a plurality of rolling elements that are rotatably arranged between the two raceway grooves, and one of the inner member and the outer member is rolled by rolling the rolling element. In the rolling device displacing with respect to the other, at least one of the inner member and the outer member that does not displace is made of β type or α + β type titanium alloy, and the surface of the raceway groove (rolling surface) Has a surface roughness Ra of 0.05 to 0.7 μm and a radius of curvature of the raceway groove of 53 to 60% of the diameter of the rolling element. The rolling device has a slip suppressing effect. Is preferable and abrasion resistance is particularly excellent, which is preferable.

【0019】本発明に係る転動装置の転動部材(内方部
材,外方部材,転動体)の素材として使用可能なチタン
合金は、溶体化処理及び時効処理による析出硬化によっ
て高い硬度が得られるα+β型又はβ型(nearβ型
も含む)チタン合金である。具体的には、AMS491
1等のTi−6Al−4V系合金、AMS4972等の
Ti−8Al−1Mo−1V系合金、AMS4976等
のTi−6Al−2Sn−4Zr−2Mo系合金、AM
S4914等のTi−15V−3Cr−3Sn−3Al
系合金、AMS4918等のTi−6Al−6V−2S
n系合金、AMS4995等のTi−5Al−2Sn−
2Zr−4Cr−4Mo系合金、AMS4981等のT
i−6Al−2Sn−4Zr−6Mo系合金、AMS4
959等のTi−13V−11Cr−3Al系合金、株
式会社神戸製鋼所のKS15−5−3等のTi−15M
o−5Zr−3Al系合金、大同特殊鋼株式会社のDA
T51等のTi−22V−4Al系合金などがあげられ
る。
The titanium alloy that can be used as the material of the rolling members (inner member, outer member, rolling element) of the rolling device according to the present invention has high hardness due to precipitation hardening by solution treatment and aging treatment. Α + β type or β type (including near β type) titanium alloys. Specifically, AMS491
1 etc. Ti-6Al-4V type alloy, AMS4972 etc. Ti-8Al-1Mo-1V type alloy, AMS4976 etc. Ti-6Al-2Sn-4Zr-2Mo type alloy, AM
Ti-15V-3Cr-3Sn-3Al such as S4914
Type alloy, Ti-6Al-6V-2S such as AMS4918
n-5 alloy, Ti-5Al-2Sn- such as AMS4995
2Zr-4Cr-4Mo alloy, T such as AMS4981
i-6Al-2Sn-4Zr-6Mo alloy, AMS4
959, etc., Ti-13V-11Cr-3Al based alloy, Kobe Steel, Ltd. KS15-5-3, etc., Ti-15M.
o-5Zr-3Al alloy, DA of Daido Steel Co., Ltd.
Ti-22V-4Al-based alloys such as T51 are listed.

【0020】また、内・外方部材と転動体との接触部に
生じる高い面圧に耐えるために、チタン合金で構成され
た転動部材の表面硬さは、耐摩耗性及び耐荷重性の面か
ら、Hv400以上とすることが好ましい。Hv400
未満であると、硬さが不足して耐摩耗性及び耐荷重性が
不十分となるため、すべりを抑制しても転がり寿命が低
下する。耐摩耗性及び耐荷重性をより十分なものとする
ためには、表面硬さはHv450以上とすることがより
好ましい。
Further, in order to withstand the high surface pressure generated at the contact portion between the inner / outer member and the rolling element, the surface hardness of the rolling member made of a titanium alloy is of wear resistance and load resistance. From the viewpoint, it is preferable that the Hv is 400 or more. Hv400
If it is less than 1, the hardness is insufficient and the wear resistance and load resistance are insufficient, so that the rolling life is reduced even if slip is suppressed. The surface hardness is more preferably Hv450 or higher in order to further improve the wear resistance and load resistance.

【0021】なお、チタン合金で構成された転動部材
に、酸化処理を施す又は潤滑性被膜を設ける等の表面処
理を行うことによって、耐摩耗性及び摺動性を向上させ
てもよい。加熱酸化処理又は陽極酸化処理を施すことに
よって、表面に厚さ20nm以上のルチル型又はアナタ
ーゼ型の酸化チタンが形成し、耐摩耗性及び摺動性が向
上する。また、フッ素油焼付け膜等の潤滑性被膜を設け
ることによって、耐摩耗性及び摺動性が向上する。
The rolling member made of titanium alloy may be subjected to surface treatment such as oxidation treatment or provision of a lubricious coating to improve wear resistance and slidability. By performing the heat oxidation treatment or the anodization treatment, rutile type or anatase type titanium oxide having a thickness of 20 nm or more is formed on the surface, and wear resistance and slidability are improved. Further, by providing a lubricating coating such as a fluorine oil baking coating, abrasion resistance and slidability are improved.

【0022】本発明に係る転動装置の転動体の素材とし
ては、チタン合金,鉄鋼材料,セラミック等が使用可能
であるが、非磁性又は高耐食性が求められる用途では、
セラミック製の転動体を使用することが好ましい。例え
ば、窒化ケイ素系,炭化ケイ素系,酸化アルミニウム
系,酸化ジルコニウム系等のセラミック製転動体であ
る。また、非磁性と同時に導電性を求められる場合に
は、TiN等を含有する導電性セラミック製転動体を使
用したり、又は、窒化ケイ素等の導電性を有していない
セラミック製転動体に導電性を有するTiNコーティン
グ等の被膜を設けたものを使用することが好ましい。
As the material of the rolling element of the rolling device according to the present invention, titanium alloys, steel materials, ceramics, etc. can be used, but in applications requiring non-magnetic or high corrosion resistance,
Preference is given to using ceramic rolling elements. For example, it is a ceramic rolling element made of silicon nitride, silicon carbide, aluminum oxide, zirconium oxide or the like. In addition, when conductivity is required at the same time as non-magnetic property, a conductive ceramic rolling element containing TiN or the like is used, or a conductive ceramic rolling element having no conductivity such as silicon nitride is used. It is preferable to use a film provided with a film such as a TiN coating having properties.

【0023】また、本発明に係る転動装置には、内方部
材と外方部材との間に転動体を保持する保持器を用いる
ことができる。用いられる保持器の素材は、保持器とし
て使用可能な耐熱性を有するものであれば、特に限定さ
れるものではない。例えば、ポリアミド,フッ素樹脂等
の樹脂製保持器、黄銅製保持器、SUS304等のオー
ステナイト系ステンレス鋼製保持器等があげられる。た
だし、グリース等の潤滑剤が使用できない用途では、自
己潤滑性のある素材(例えばフッ素樹脂等)で構成され
た保持器を使用することが好ましい。
Further, the rolling device according to the present invention may use a cage for holding the rolling element between the inner member and the outer member. The material of the cage used is not particularly limited as long as it has heat resistance that can be used as a cage. Examples thereof include resin cages such as polyamide and fluororesin, brass cages, austenitic stainless steel cages such as SUS304. However, in applications where a lubricant such as grease cannot be used, it is preferable to use a cage made of a self-lubricating material (for example, fluororesin).

【0024】また、本発明に係る転動装置は、その用途
に応じて、シール等の密封装置を備えていてもよいし備
えていなくてもよい。シールの素材は、シールとして使
用可能な耐熱性を有するものであれば、特に限定される
ものではない。例えば、ニトリルゴム等のゴム製シール
があげられ、非磁性が要求される用途では、SUS30
4等のオーステナイト系ステンレス鋼製シール又は工業
用純チタン製シールがあげられる。
Further, the rolling device according to the present invention may or may not be provided with a sealing device such as a seal, depending on its application. The material of the seal is not particularly limited as long as it has heat resistance that can be used as the seal. For example, rubber seals such as nitrile rubber can be cited. For applications requiring non-magnetism, SUS30
Examples thereof include austenitic stainless steel seals such as No. 4 and industrial pure titanium seals.

【0025】さらに、本発明に係る転動装置には、その
内部にグリースを封入してもよい。用いられるグリース
の種類は特に限定されるものではないが、転動装置が真
空中で使用される場合には、真空用フッ素グリースを使
用することが好ましい。次に、本発明の転動装置の好適
な用途について説明する。本発明に係る転動装置に用い
られるチタン合金は、比透磁率が1.001以下という
高レベルの非磁性を有しているため、本発明に係る転動
装置は非磁性が要求される用途に好適に使用することが
できる。
Further, the rolling device according to the present invention may be filled with grease inside. The type of grease used is not particularly limited, but when the rolling device is used in vacuum, it is preferable to use fluorine grease for vacuum. Next, preferred applications of the rolling device of the present invention will be described. Since the titanium alloy used in the rolling device according to the present invention has a high level of non-magnetic property having a relative magnetic permeability of 1.001 or less, the rolling device according to the present invention is used in applications requiring non-magnetism. Can be suitably used.

【0026】例えば、半導体製造装置,液晶製造装置,
医療機器,X線又は電子線を使用した計測装置等のよう
に、磁場環境下で転動装置が使用される場合は、磁場に
よって転動装置に引力が作用し動きが不安定になること
もなく、また作動によって周辺磁場を乱すこともないた
め、好適に使用することができる。また、上記装置にお
いて、電子線等の近くで転動装置が使用される場合で
も、転動装置が作動することによって電子線等を乱すこ
とがないため、測定精度の低下等が生じることがなく好
適に使用することができる。
For example, semiconductor manufacturing equipment, liquid crystal manufacturing equipment,
When a rolling device is used in a magnetic field environment, such as a medical device or a measuring device using X-rays or electron beams, an attractive force may act on the rolling device due to the magnetic field, and the movement may become unstable. Since it does not disturb the peripheral magnetic field due to its operation, it can be preferably used. Further, in the above device, even when the rolling device is used near the electron beam or the like, since the electron beam or the like is not disturbed by the operation of the rolling device, the measurement accuracy is not deteriorated. It can be used preferably.

【0027】また、本発明に係る転動装置に用いられる
チタン合金は、耐食性が非常に優れているため、本発明
に係る転動装置は高い耐食性が要求される用途に好適に
使用することができる。例えば、半導体洗浄装置,半導
体製造装置,液晶製造装置,化学繊維製造装置等のよう
に、酸,アルカリ等の薬品や腐食性ガス等と接触するよ
うな腐食性環境下において転動装置が使用される場合で
も、チタン合金はステンレス鋼と比較して非常に腐食し
にくいので、腐食のために転動装置の寿命が低下するこ
とがほとんどない。
Further, since the titanium alloy used in the rolling device according to the present invention has very excellent corrosion resistance, the rolling device according to the present invention can be suitably used in applications requiring high corrosion resistance. it can. For example, a rolling device is used in a corrosive environment such as a semiconductor cleaning device, a semiconductor manufacturing device, a liquid crystal manufacturing device, a chemical fiber manufacturing device, or the like, which is in contact with chemicals such as acids and alkalis or corrosive gases. In this case, the titanium alloy is much less likely to corrode than stainless steel, and therefore, the corrosion hardly reduces the life of the rolling device.

【0028】なお、本発明は種々の転動装置に適用する
ことができる。例えば、転がり軸受,ボールねじ,リニ
アガイド装置,直動ベアリング等である。転がり軸受に
は、深溝玉軸受,アンギュラ玉軸受,自動調心玉軸受,
円筒ころ軸受,円すいころ軸受,自動調心ころ軸受,針
状ころ軸受等のラジアル形の転がり軸受や、スラスト玉
軸受,スラストころ軸受等のスラスト形の転がり軸受な
ど各種形式があるが、負荷荷重等の使用条件に応じて軸
受形式を選択することにより、好適に使用することがで
きる。
The present invention can be applied to various rolling devices. For example, rolling bearings, ball screws, linear guide devices, linear motion bearings, and the like. Rolling bearings include deep groove ball bearings, angular ball bearings, self-aligning ball bearings,
There are various types such as radial type rolling bearings such as cylindrical roller bearings, tapered roller bearings, self-aligning roller bearings and needle roller bearings, and thrust type rolling bearings such as thrust ball bearings and thrust roller bearings. It can be preferably used by selecting the bearing type according to the usage conditions such as.

【0029】また、本発明における前記内方部材とは、
転動装置が転がり軸受の場合には内輪、同じくボールね
じの場合にはねじ軸、同じくリニアガイド装置の場合に
は案内レール、同じく直動ベアリングの場合には軸をそ
れぞれ意味する。また、前記外方部材とは、転動装置が
転がり軸受の場合には外輪、同じくボールねじの場合に
はナット、同じくリニアガイド装置の場合にはスライ
ダ、同じく直動ベアリングの場合には外筒をそれぞれ意
味する。
The inner member in the present invention means
When the rolling device is a rolling bearing, it means an inner ring, when it is a ball screw, it means a screw shaft, when it is a linear guide device, it means a guide rail, and when it is a linear motion bearing, it means a shaft. Further, the outer member means an outer ring when the rolling device is a rolling bearing, a nut when the ball screw is the same, a slider when the linear guide device is the same, and an outer cylinder when the rolling device is the linear motion bearing. Mean respectively.

【0030】[0030]

【発明の実施の形態】本発明に係る転動装置の実施の形
態を、図面を参照しつつ詳細に説明する。 〔第一実施形態〕図1は、本発明に係る転動装置の一実
施形態である深溝玉軸受(呼び番号:6001)の部分
縦断面図である。この深溝玉軸受は、内輪1と、外輪2
と、内輪1と外輪2との間に転動自在に配設された複数
の転動体3と、転動体3を保持するフッ素樹脂製の保持
器4と、を備えている。そして、内輪1及び外輪2は、
表1に示すようなチタン合金、すなわち、Ti−6Al
−4V,Ti−15Mo−5Zr−3Al(株式会社神
戸製鋼所製KS15−5−3),及びTi−22V−4
Al(大同特殊鋼株式会社製DAT51合金)で構成さ
れており、転動体3は窒化ケイ素系セラミック製のボー
ルである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a rolling device according to the present invention will be described in detail with reference to the drawings. First Embodiment FIG. 1 is a partial vertical sectional view of a deep groove ball bearing (nominal number: 6001) which is an embodiment of the rolling device according to the present invention. This deep groove ball bearing has an inner ring 1 and an outer ring 2
And a plurality of rolling elements 3 rotatably arranged between the inner ring 1 and the outer ring 2, and a fluororesin cage 4 for holding the rolling elements 3. Then, the inner ring 1 and the outer ring 2 are
Titanium alloys as shown in Table 1, namely Ti-6Al
-4V, Ti-15Mo-5Zr-3Al (KS15-5-3 manufactured by Kobe Steel, Ltd.), and Ti-22V-4.
The rolling element 3 is made of Al (DAT51 alloy manufactured by Daido Steel Co., Ltd.), and the rolling elements 3 are balls made of silicon nitride ceramics.

【0031】[0031]

【表1】 [Table 1]

【0032】内輪1及び外輪2は、素材(棒材)に溶体
化処理及び時効処理を施して製造されたものである。溶
体化処理は、750〜950℃で1時間保持した後、水
冷又はガス冷で室温付近まで冷却することにより行なっ
た。また、時効処理は、400〜650℃で4〜60時
間保持した後、炉冷することにより行なった。このよう
な処理を行なった後、棒材に旋削加工を施して内輪1及
び外輪2の形状に加工した。そして、これらの転走面
(軌道面1a,2a)に、条件(切り込み量及び送り速
度)を変えて研削加工を施す又は施さないことにより、
転走面の表面粗さRaが種々異なるものを製造した(表
1を参照)。
The inner ring 1 and the outer ring 2 are manufactured by subjecting a material (bar material) to solution treatment and aging treatment. The solution treatment was carried out by holding at 750 to 950 ° C. for 1 hour and then cooling to near room temperature with water cooling or gas cooling. The aging treatment was carried out by holding at 400 to 650 ° C. for 4 to 60 hours and then cooling the furnace. After performing such a treatment, the bar material was turned to be processed into the shapes of the inner ring 1 and the outer ring 2. Then, by changing the conditions (cutting amount and feed rate) to these rolling surfaces (raceways 1a, 2a) and performing or not grinding,
Various rolling surface roughnesses Ra were produced (see Table 1).

【0033】次に、上記のような深溝玉軸受(実施例1
〜6及び比較例1〜4)について回転試験を行い、その
耐摩耗性を評価した結果について説明する。なお、比較
例4の玉軸受は、内輪及び外輪がSUS440Cで構成
され、転動体が窒化ケイ素で構成されている。回転試験
は5%塩化ナトリウム水溶液中で無潤滑下で行い、その
条件は、ラジアル荷重49N、アキシアル荷重10N、
回転速度500min-1である。このような条件で20
時間回転させた後に外輪の質量を測定し、回転前からの
質量の減少量を算出した。そして、摩耗による質量減少
量(摩耗減量)によって、玉軸受の耐摩耗性を評価し
た。なお、表1及び後述する図2のグラフに示した摩耗
減量は、比較例1の軸受の摩耗減量を1.0とした場合
の相対値で示してある。
Next, the deep groove ball bearing as described above (Example 1)
6 and Comparative Examples 1 to 4) were subjected to a rotation test, and the results of evaluating the wear resistance thereof will be described. In the ball bearing of Comparative Example 4, the inner ring and the outer ring were made of SUS440C, and the rolling elements were made of silicon nitride. The rotation test was performed in a 5% sodium chloride aqueous solution without lubrication under the conditions of radial load 49N, axial load 10N,
The rotation speed is 500 min −1 . 20 under these conditions
The mass of the outer ring was measured after rotating for a period of time, and the amount of decrease in mass from before the rotation was calculated. Then, the wear resistance of the ball bearing was evaluated by the amount of mass reduction (wear reduction) due to wear. The wear reductions shown in Table 1 and the graph of FIG. 2 described later are shown as relative values when the wear reduction of the bearing of Comparative Example 1 is 1.0.

【0034】実施例1〜6の玉軸受は、表1から明らか
なように、内輪及び外輪の転走面の表面粗さRaが好適
な範囲内にあるため、摩耗減量が少なく耐摩耗性に優れ
ていた。それに対して、比較例1の玉軸受は、内輪及び
外輪の転走面の表面粗さRaが小さいため、転動体と軌
道輪とのすべりが大きくなり、その結果、摩耗減量が大
きかった。また、比較例2及び3の玉軸受は、内輪及び
外輪の転走面の表面粗さRaが大きいため、軸受の回転
精度が低下し、その結果、摩耗減量が大きかった。さら
に、比較例4の玉軸受は、内輪及び外輪が耐食性に劣る
SUS440Cで構成されているため、腐食を伴う摩耗
が生じて摩耗減量が大きかった。
As can be seen from Table 1, the ball bearings of Examples 1 to 6 have the surface roughness Ra of the rolling surfaces of the inner ring and the outer ring within the preferable range, so that the wear loss is small and the wear resistance is high. Was excellent. On the other hand, in the ball bearing of Comparative Example 1, since the surface roughness Ra of the rolling surfaces of the inner ring and the outer ring was small, the sliding between the rolling elements and the race was large, and as a result, the wear reduction was large. Further, in the ball bearings of Comparative Examples 2 and 3, since the rolling surfaces of the inner ring and the outer ring had large surface roughness Ra, the rotation accuracy of the bearing was lowered, and as a result, the wear reduction was large. Furthermore, in the ball bearing of Comparative Example 4, since the inner ring and the outer ring were made of SUS440C having poor corrosion resistance, wear accompanied by corrosion occurred and the wear loss was large.

【0035】表1に記載の内輪及び外輪の転走面の表面
粗さRaと摩耗減量とをグラフ化したものを図2に示
す。このグラフから分かるように、転走面の表面粗さR
aが0.05〜0.7μmの範囲においては、摩耗減量
が少なかった。特に、0.1〜0.5μmの範囲におい
て、摩耗減量が非常に少なかった。 〔第二実施形態〕内輪及び外輪が表2に示すチタン合金
で構成されている玉軸受(実施例7〜13及び比較例5
〜8)について回転試験を行い、その耐摩耗性(摩耗減
量)を評価した。
FIG. 2 shows a graph of the surface roughness Ra of the rolling surfaces of the inner ring and the outer ring and the wear reduction shown in Table 1. As can be seen from this graph, the surface roughness R of the rolling surface
When a was in the range of 0.05 to 0.7 μm, the wear loss was small. In particular, the wear loss was very small in the range of 0.1 to 0.5 μm. [Second Embodiment] A ball bearing in which the inner ring and the outer ring are composed of the titanium alloys shown in Table 2 (Examples 7 to 13 and Comparative Example 5).
~ 8) was subjected to a rotation test to evaluate its wear resistance (wear loss).

【0036】[0036]

【表2】 [Table 2]

【0037】なお、これらの玉軸受の構成及び軌道輪の
製造方法(溶体化処理,時効処理)は、玉軸受が呼び番
号608である点と、旋削加工及び研削加工によって内
輪及び外輪が有する断面円弧状の軌道溝の曲率半径が種
々異なるものを製造した点(表2を参照)と、を除いて
は第一実施形態と同様であるので、その説明は省略す
る。回転試験は1×10-3〜1×10-1Paの真空中で
無潤滑下で行い、その条件は、ラジアル荷重30N、ア
キシアル荷重5N、回転速度500min-1である。こ
のような条件で20時間回転させた後に外輪の質量を測
定し、回転前からの質量の減少量を算出した。そして、
この摩耗による質量減少量(摩耗減量)によって、玉軸
受の耐摩耗性を評価した。なお、表2及び後述する図3
のグラフに示した摩耗減量は、比較例1の軸受の摩耗減
量を1.0とした場合の相対値で示してある。
The structure of these ball bearings and the method of manufacturing the races (solution treatment, aging treatment) are such that the ball bearings have the reference number 608 and the cross-sections of the inner and outer rings due to turning and grinding. The description is omitted because it is the same as that of the first embodiment except that the arc-shaped raceway grooves having different radii of curvature are manufactured (see Table 2). The rotation test is performed in a vacuum of 1 × 10 −3 to 1 × 10 −1 Pa without lubrication under the conditions of a radial load of 30 N, an axial load of 5 N and a rotation speed of 500 min −1 . After rotating for 20 hours under such conditions, the mass of the outer ring was measured, and the amount of decrease in mass before the rotation was calculated. And
The wear resistance of the ball bearing was evaluated by the amount of mass reduction (wear reduction) due to this wear. In addition, Table 2 and FIG.
The wear loss shown in the graph is a relative value when the wear loss of the bearing of Comparative Example 1 is 1.0.

【0038】チタン合金はヤング率が低いため、転動体
と軌道輪の接触面積は鉄鋼材料製の転がり軸受の場合よ
りも大きくなるが、軌道溝の曲率半径を通常(転動体の
直径の52%)よりも大きくすることによって前記接触
面積を小さくすることができ、その結果、すべりが抑制
され耐摩耗性が向上する。実施例7〜13の玉軸受は、
表2から分かるように、外輪の軌道溝の曲率半径が通常
(52%)よりも大きいので、摩耗減量が少なく耐摩耗
性が優れていた。
Since the titanium alloy has a low Young's modulus, the contact area between the rolling element and the race is larger than that of the rolling bearing made of steel material, but the radius of curvature of the raceway groove is usually (52% of the diameter of the rolling element). The contact area can be made smaller by increasing the ratio to more than 4), and as a result, slippage is suppressed and wear resistance is improved. The ball bearings of Examples 7 to 13 are
As can be seen from Table 2, since the radius of curvature of the raceway groove of the outer ring is larger than usual (52%), the wear loss was small and the wear resistance was excellent.

【0039】また、転がり軸受においては、固定部材で
ある外輪と転動体との接触面積の方が、回転部材である
内輪と転動体との接触面積よりも大きくなる。よって、
チタン合金製の軌道輪を用いる場合は外輪の方がすべり
が大きくなるので、外輪の方が摩耗しやすい。実施例
7,8の玉軸受は、内輪の軌道溝の曲率半径は通常と同
レベルであるが、外輪の軌道溝の曲率半径が通常よりも
大きいので、摩耗を抑制することができた。
Further, in the rolling bearing, the contact area between the outer ring, which is the fixed member, and the rolling element is larger than the contact area between the inner ring, which is the rotating member, and the rolling element. Therefore,
When a titanium alloy bearing ring is used, the outer ring is more slippery, so the outer ring is more likely to wear. In the ball bearings of Examples 7 and 8, the radius of curvature of the raceway groove of the inner ring was at the same level as usual, but the radius of curvature of the raceway groove of the outer ring was larger than usual, so wear could be suppressed.

【0040】さらに、実施例12,13の玉軸受は、外
輪の軌道溝の曲率半径が通常よりも大きいことに加え
て、内輪及び外輪の転走面の表面粗さRaも前述のよう
な好適な範囲内にあるため、摩耗減量がより少なく耐摩
耗性が非常に優れていた。それに対して、比較例5,6
の玉軸受は、外輪の軌道溝の曲率半径が通常と同レベル
であるので、外輪と転動体との接触面積が大きくなり、
その結果、摩耗減量が多かった。また、比較例7,8の
玉軸受は、外輪の軌道溝の曲率半径が大きすぎるため、
外輪と転動体との接触面積は小さくなりすべりは抑制さ
れるものの、逆に接触面の面圧が高くなって摩耗減量が
多かった。
Further, in the ball bearings of Examples 12 and 13, in addition to the radius of curvature of the raceway groove of the outer ring being larger than usual, the surface roughness Ra of the rolling surfaces of the inner ring and the outer ring is also suitable as described above. Since it was within the range, wear loss was smaller and wear resistance was very excellent. On the other hand, Comparative Examples 5 and 6
In this ball bearing, the radius of curvature of the raceway groove of the outer ring is at the same level as usual, so the contact area between the outer ring and the rolling elements increases,
As a result, the wear loss was large. Further, in the ball bearings of Comparative Examples 7 and 8, since the radius of curvature of the raceway groove of the outer ring is too large,
Although the contact area between the outer ring and the rolling element was reduced and slippage was suppressed, the surface pressure on the contact surface was increased and wear loss was large.

【0041】表2に記載の外輪の軌道溝の曲率半径と摩
耗減量とをグラフ化したものを図3に示す。このグラフ
から分かるように、軌道溝の曲率半径が転動体の直径D
aの53〜60%の範囲において、摩耗減量が少なかっ
た。特に、54〜57%の範囲において、摩耗減量が非
常に少なかった。 〔第三実施形態〕第二実施形態とほぼ同様の構成の玉軸
受を用いて、非磁性が要求される環境下で好適に使用可
能か否か(非磁性を有するか否か)を確認する試験を行
った。玉軸受の内輪及び外輪を構成する材料、内輪及び
外輪の転走面の表面粗さRa、内輪及び外輪の曲率半径
は表3に示す通りである。
FIG. 3 shows a graph of the radius of curvature of the raceway groove of the outer ring and the wear reduction shown in Table 2. As can be seen from this graph, the radius of curvature of the raceway groove is the diameter D of the rolling element.
The wear loss was small in the range of 53 to 60% of a. Especially, in the range of 54 to 57%, the wear loss was very small. [Third Embodiment] By using a ball bearing having substantially the same configuration as in the second embodiment, it is confirmed whether or not it can be suitably used in an environment where non-magnetism is required (whether or not it has non-magnetism). The test was conducted. Table 3 shows the materials forming the inner and outer races of the ball bearing, the surface roughness Ra of the rolling surfaces of the inner and outer races, and the radii of curvature of the inner and outer races.

【0042】[0042]

【表3】 [Table 3]

【0043】ここで、図4に示す磁束密度の変化を測定
する装置を用いて行った非磁性の確認試験の方法につい
て説明する。試験軸受10を回転軸11に装着し、固定
された永久磁石12,12の間で200rpmで回転さ
せた。そして、テスラーメーター13で磁束密度を測定
して、軸受10の回転によって周辺の磁場が変動するか
否かを判定した。軸受の回転による磁束密度の変動の有
無を、表3に併せて示す。なお、磁束密度の変化が0.
1mT以下の場合を「磁束密度の変動なし」と判定し、
0.1mT超過の場合を「磁束密度の変動あり」と判定
した。
Now, a method of a non-magnetic confirmation test performed using the apparatus for measuring the change in magnetic flux density shown in FIG. 4 will be described. The test bearing 10 was mounted on the rotating shaft 11 and rotated at 200 rpm between the fixed permanent magnets 12, 12. Then, the magnetic flux density was measured by the Tesler meter 13 to determine whether or not the surrounding magnetic field fluctuates due to the rotation of the bearing 10. Table 3 also shows whether or not the magnetic flux density varies due to the rotation of the bearing. The change in magnetic flux density is 0.
When it is 1 mT or less, it is judged as "no change in magnetic flux density",
The case of exceeding 0.1 mT was judged to be “fluctuation of magnetic flux density”.

【0044】実施例14〜16の玉軸受は、内輪及び外
輪が比透磁率1.001以下という高レベルの非磁性を
有するチタン合金で構成され、転動体及び保持器も比透
磁率1.001以下という高レベルの非磁性を有する材
料で構成されている。よって、転がり軸受の回転により
磁束密度の変化が生じることがないので、非磁性が要求
される環境下でも好適に使用することができる。それに
対して、比較例9の玉軸受は、内輪及び外輪が強磁性で
あるSUS440Cで構成されているため、転がり軸受
の回転により磁束密度の変化が生じる。よって、非磁性
が要求される環境下では使用できない。
In the ball bearings of Examples 14 to 16, the inner ring and the outer ring were made of a titanium alloy having a high level of non-magnetic property with a relative magnetic permeability of 1.001 or less, and the rolling elements and the cage also had a relative magnetic permeability of 1.001. It is composed of a material having a high level of non-magnetism as follows. Therefore, since the magnetic flux density does not change due to the rotation of the rolling bearing, it can be suitably used even in an environment where non-magnetism is required. On the other hand, in the ball bearing of Comparative Example 9, since the inner ring and the outer ring are made of SUS440C, which is ferromagnetic, the rotation of the rolling bearing causes a change in the magnetic flux density. Therefore, it cannot be used in an environment where non-magnetism is required.

【0045】なお、上記の第一〜第三実施形態は本発明
の一例を示したものであって、本発明はこれらの実施形
態に限定されるものではない。例えば、上記の各実施形
態においては、転動体にセラミックス製の転動体を用
い、保持器にはフッ素樹脂製の保持器を用いたが、玉軸
受の使用温度に耐える耐熱性を有する素材であれば、転
動体及び保持器の素材は上記のものに限定されるもので
はない。
The first to third embodiments described above are examples of the present invention, and the present invention is not limited to these embodiments. For example, in each of the above-described embodiments, the rolling element made of ceramics is used as the rolling element and the cage made of fluororesin is used as the retainer, but any material having heat resistance to withstand the operating temperature of the ball bearing may be used. For example, the materials of the rolling elements and the cage are not limited to those described above.

【0046】また、半導体製造装置や電子線を使用する
測定装置等のように、玉軸受に非磁性が要求される用途
においては、セラミック,チタン合金等の非磁性材料で
転動体を構成し、樹脂,SUS304等のオーステナイ
ト系ステンレス鋼,工業用純チタン,チタン合金等の非
磁性材料で保持器を構成することが好ましい。さらに、
腐食性ガス,化学薬品等の腐食性環境下で使用される場
合には、セラミック,チタン合金等の高耐食性材料で転
動体で構成し、樹脂,SUS304等のオーステナイト
系ステンレス鋼,工業用純チタン,チタン合金等の高耐
食性材料で保持器を構成することが好ましい。
In applications where ball bearings are required to be non-magnetic, such as semiconductor manufacturing equipment and measuring equipment using electron beams, rolling elements are made of non-magnetic materials such as ceramics and titanium alloys. The cage is preferably made of resin, austenitic stainless steel such as SUS304, non-magnetic material such as industrial pure titanium, titanium alloy. further,
When used in a corrosive environment such as corrosive gas and chemicals, it is composed of rolling elements made of highly corrosion-resistant material such as ceramics and titanium alloys, resin, austenitic stainless steel such as SUS304, and industrial pure titanium. The cage is preferably made of a highly corrosion-resistant material such as titanium alloy.

【0047】さらにまた、上記の各実施形態において
は、転動装置として深溝玉軸受を例示して説明したが、
本発明は、他の種類の転がり軸受に対して適用可能であ
ることは言うまでもない。具体的には、アンギュラ玉軸
受,自動調心玉軸受,円筒ころ軸受,円すいころ軸受,
針状ころ軸受,自動調心ころ軸受等のラジアル形の転が
り軸受や、スラスト玉軸受,スラストころ軸受等のスラ
スト形の転がり軸受があげられる。
Furthermore, in each of the above-mentioned embodiments, the deep groove ball bearing is exemplified as the rolling device, but
It goes without saying that the present invention is applicable to other types of rolling bearings. Specifically, angular contact ball bearings, self-aligning ball bearings, cylindrical roller bearings, tapered roller bearings,
Examples include radial type rolling bearings such as needle roller bearings and self-aligning roller bearings, and thrust type rolling bearings such as thrust ball bearings and thrust roller bearings.

【0048】さらに、本発明は、転がり軸受のみならず
他の種類の様々な転動装置に対して適用することができ
る。例えば、ボールねじ,直動案内装置,直動ベアリン
グ等である。
Furthermore, the present invention can be applied not only to rolling bearings but also to various types of rolling devices of other types. For example, a ball screw, a linear motion guide device, a linear motion bearing, or the like.

【0049】[0049]

【発明の効果】以上説明したように、本発明に係る転動
装置は、腐食性環境下や非磁性が要求される環境下にお
いて好適に使用可能で、しかも優れた耐摩耗性を有す
る。
As described above, the rolling device according to the present invention can be suitably used in a corrosive environment or an environment where non-magnetism is required, and has excellent wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る転動装置の一実施形態である深溝
玉軸受の構成を示す部分縦断面図である。
FIG. 1 is a partial vertical cross-sectional view showing the structure of a deep groove ball bearing which is an embodiment of a rolling device according to the present invention.

【図2】内輪及び外輪の転走面の表面粗さRaと摩耗減
量との相関を示すグラフである。
FIG. 2 is a graph showing the correlation between the surface roughness Ra of the rolling surfaces of the inner ring and the outer ring and the wear loss.

【図3】外輪の軌道溝の曲率半径と摩耗減量との相関を
示すグラフである。
FIG. 3 is a graph showing the correlation between the radius of curvature of the raceway groove of the outer ring and the wear reduction.

【図4】転がり軸受の非磁性の確認試験の方法を説明す
る図である。
FIG. 4 is a diagram illustrating a method of a non-magnetic confirmation test of a rolling bearing.

【符号の説明】[Explanation of symbols]

1 内輪 1a 軌道面 2 外輪 2a 軌道面 3 転動体 1 inner ring 1a Orbital plane 2 outer ring 2a Orbital surface 3 rolling elements

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J101 AA01 AA02 AA12 AA32 AA42 AA52 AA62 BA01 BA10 BA51 BA53 BA54 BA55 BA70 DA12 FA08 FA48 GA53 GA55    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3J101 AA01 AA02 AA12 AA32 AA42                       AA52 AA62 BA01 BA10 BA51                       BA53 BA54 BA55 BA70 DA12                       FA08 FA48 GA53 GA55

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内方部材と、外方部材と、前記内方部材
と前記外方部材との間に転動自在に配設された複数の転
動体と、を備える転動装置において、前記内方部材,前
記外方部材,及び前記転動体のうち少なくとも一つを、
β型又はα+β型チタン合金で構成し、その転走面の表
面粗さRaを0.05〜0.7μmとしたことを特徴と
する転動装置。
1. A rolling device comprising an inner member, an outer member, and a plurality of rolling elements rotatably disposed between the inner member and the outer member, wherein: At least one of an inner member, the outer member, and the rolling element,
A rolling device comprising a β-type or α + β-type titanium alloy and having a surface roughness Ra of its rolling surface of 0.05 to 0.7 μm.
【請求項2】 外面に断面円弧状の軌道溝を有する内方
部材と、該内方部材の軌道溝に対向する断面円弧状の軌
道溝を有して前記内方部材の外方に配置された外方部材
と、前記両軌道溝間に転動自在に配設された複数の転動
体と、を備え、前記転動体の転動を介して前記内方部材
及び前記外方部材の一方が他方に対して変位する転動装
置において、 前記内方部材及び前記外方部材のうち少なくとも変位し
ない方の部材をβ型又はα+β型チタン合金で構成し、
その軌道溝の曲率半径を前記転動体の直径の53〜60
%としたことを特徴とする転動装置。
2. An inner member having a raceway groove having an arcuate cross-section on its outer surface, and a raceway groove having an arcuate cross-section facing the raceway groove of the inner member and arranged outside of the inner member. An outer member and a plurality of rolling elements that are rotatably arranged between the two raceway grooves, and one of the inner member and the outer member is rolled by rolling the rolling element. In the rolling device displacing with respect to the other, at least one of the inner member and the outer member that is not displaced is made of β type or α + β type titanium alloy,
The radius of curvature of the raceway groove is set to 53 to 60 of the diameter of the rolling element.
% Rolling device.
JP2001335474A 2001-10-31 2001-10-31 Rolling device Pending JP2003139147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335474A JP2003139147A (en) 2001-10-31 2001-10-31 Rolling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335474A JP2003139147A (en) 2001-10-31 2001-10-31 Rolling device

Publications (1)

Publication Number Publication Date
JP2003139147A true JP2003139147A (en) 2003-05-14

Family

ID=19150459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335474A Pending JP2003139147A (en) 2001-10-31 2001-10-31 Rolling device

Country Status (1)

Country Link
JP (1) JP2003139147A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001124A1 (en) * 2004-06-25 2006-01-05 Ntn Corporation Rolling bearing
WO2006003792A1 (en) * 2004-07-05 2006-01-12 Ntn Corporation Roller bearing for automobile
WO2006003793A1 (en) * 2004-07-05 2006-01-12 Ntn Corporation Tapered roller bearing
DE102006051641A1 (en) * 2006-11-02 2008-05-08 Schaeffler Kg Rolling bearing for dry-running or lubricated applications, such as food processing, has bearing rings, which are made of stainless steel and rolling body or bearing rings consists of corrosion resistant titanium alloy
JP2009222139A (en) * 2008-03-17 2009-10-01 Nsk Ltd Rolling bearing and rolling bearing with alignment ring
US7938583B2 (en) 2006-04-13 2011-05-10 Ntn Corporation Rolling bearing
JP2013145058A (en) * 2013-03-28 2013-07-25 Nsk Ltd Roll bearing
JPWO2014080650A1 (en) * 2012-11-21 2017-01-05 京セラ株式会社 Pressure vessel and spacecraft equipped with the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001124A1 (en) * 2004-06-25 2006-01-05 Ntn Corporation Rolling bearing
US9033584B2 (en) 2004-06-25 2015-05-19 Ntn Corporation Rolling bearing
WO2006003792A1 (en) * 2004-07-05 2006-01-12 Ntn Corporation Roller bearing for automobile
WO2006003793A1 (en) * 2004-07-05 2006-01-12 Ntn Corporation Tapered roller bearing
US9074621B2 (en) 2004-07-05 2015-07-07 Ntn Corporation Roller bearing for automobiles
US7938583B2 (en) 2006-04-13 2011-05-10 Ntn Corporation Rolling bearing
DE102006051641A1 (en) * 2006-11-02 2008-05-08 Schaeffler Kg Rolling bearing for dry-running or lubricated applications, such as food processing, has bearing rings, which are made of stainless steel and rolling body or bearing rings consists of corrosion resistant titanium alloy
JP2009222139A (en) * 2008-03-17 2009-10-01 Nsk Ltd Rolling bearing and rolling bearing with alignment ring
JPWO2014080650A1 (en) * 2012-11-21 2017-01-05 京セラ株式会社 Pressure vessel and spacecraft equipped with the same
JP2013145058A (en) * 2013-03-28 2013-07-25 Nsk Ltd Roll bearing

Similar Documents

Publication Publication Date Title
JP3724480B2 (en) Rolling device
JP2003074566A (en) Rolling device
JP2510374B2 (en) Sliding / rolling bearings with rolling elements
JP2003139147A (en) Rolling device
US7786637B2 (en) Touchdown bearing
JP4513775B2 (en) Rolling device for rolling mill roll neck
JP2004332899A (en) Solid lubrication rolling bearing
JP3811596B2 (en) Rolling motion parts
JP2003139139A (en) Rolling device
JPS63180722A (en) Anticorrosive and durable bearing
JP2003120689A (en) Rolling device
JP2709119B2 (en) Lubrication-free rolling bearing
JP2006046380A (en) Ball bearing
JP2002147473A (en) Ball bearing for fishing tool and processing method therefor
JP2010255682A (en) Dlc film separation preventive method of rolling sliding member and usage of rolling support device
JP2006308080A (en) Rolling bearing
JP3535896B2 (en) Bearing parts
JP2006250313A (en) Rolling device
JP2001248708A (en) Rolling device
JPH084773A (en) Solid lubricating rolling bearing
JP2005249045A (en) Rolling device
JP2007100870A (en) Rolling device
WO2023021786A1 (en) Rolling bearing
JP2004084768A (en) Rolling bearing device
JP3931913B2 (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724