JP2006193709A - Composite ion exchange membrane and its manufacturing method - Google Patents

Composite ion exchange membrane and its manufacturing method Download PDF

Info

Publication number
JP2006193709A
JP2006193709A JP2005223990A JP2005223990A JP2006193709A JP 2006193709 A JP2006193709 A JP 2006193709A JP 2005223990 A JP2005223990 A JP 2005223990A JP 2005223990 A JP2005223990 A JP 2005223990A JP 2006193709 A JP2006193709 A JP 2006193709A
Authority
JP
Japan
Prior art keywords
ionic group
polymer
ion exchange
exchange membrane
composite ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005223990A
Other languages
Japanese (ja)
Inventor
Kota Kitamura
幸太 北村
Satoshi Takase
敏 高瀬
Masahiro Yamashita
全広 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005223990A priority Critical patent/JP2006193709A/en
Publication of JP2006193709A publication Critical patent/JP2006193709A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrocarbon-based ion exchange membrane used for a fuel cell fueled by hydrogen and a methanol aqueous solution and significantly improved in durability which has been its defect so far. <P>SOLUTION: The composite ion exchange membrane comprising a polymer having an ionizable group and a polymer having no ionizable group in its molecules, and its manufacturing method are provided. The composite ion exchange membrane is characterized in that both the polymer containing the ionizable group and the polymer containing no ionizable group are soluble in the same organic solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解質膜に関係し、詳しくは優れた耐久性を有する複合イオン交換膜に関するものである。   The present invention relates to an electrolyte membrane, and more particularly to a composite ion exchange membrane having excellent durability.

高分子固体電解質をイオン伝導体として用いる電気化学的装置の例として、水電解槽や燃料電池を挙げることができる。これらに用いられる高分子膜は、カチオン交換膜として高いプロトン伝導率を有すると共に化学的、熱的、電気化学的および力学的に十分安定なものでなくてはならない。このため、長期にわたり使用できるものとして、主に米デュポン社製の「ナフィオン(登録商標)」を代表例とするパーフルオロカーボンスルホン酸膜が使用されてきた。現在、特に注目されている固体高分子形燃料電池分野においては、燃料である水素ガスの透過が大きいなどの特性面での課題に加え、フッ素を含むため廃棄時の環境汚染や、発電時に発生するフッ酸が燃料電池のシステムを腐食するなど燃料電池の実用化に向けた障害として指摘されている。また、メタノール水溶液を用いる燃料電池においても、メタノール透過性が高すぎるという問題があり、実用化の障害となっている。   Examples of electrochemical devices that use polymer solid electrolytes as ion conductors include water electrolyzers and fuel cells. The polymer membrane used for these must have high proton conductivity as a cation exchange membrane and be sufficiently stable chemically, thermally, electrochemically and mechanically. For this reason, perfluorocarbon sulfonic acid membranes, mainly “Nafion (registered trademark)” manufactured by DuPont, USA, have been used as long-term usable products. In the polymer electrolyte fuel cell field, which is currently attracting particular attention, in addition to problems in characteristics such as the large permeation of hydrogen gas, which is a fuel, it contains fluorine, causing environmental pollution during disposal and during power generation This is pointed out as an obstacle to the practical application of fuel cells, such as the fact that hydrofluoric acid corrodes the fuel cell system. In addition, a fuel cell using an aqueous methanol solution has a problem that methanol permeability is too high, which is an obstacle to practical use.

一方、パーフルオロカーボンスルホン酸膜に代わる電解質膜として、ポリエーテルエーテルケトンやポリエーテルスルホン、ポリスルホンなどのポリマーにスルホン酸基などイオン性基を導入した、いわゆる炭化水素系高分子固体電解質が近年盛んに検討されている。しかしながら、炭化水素系高分子固体電解質はパーフルオロカーボンスルホン酸に比べて水和・膨潤しやすく寸法変化が大きいため、乾燥・湿潤の繰り返しにより破断してしまうなど機械的な特性に問題があると指摘されている。   On the other hand, as electrolyte membranes that replace perfluorocarbon sulfonic acid membranes, so-called hydrocarbon polymer solid electrolytes, in which ionic groups such as sulfonic acid groups are introduced into polymers such as polyetheretherketone, polyethersulfone, and polysulfone, have recently become popular. It is being considered. However, it is pointed out that the hydrocarbon polymer solid electrolyte is hydrated and swollen more easily than perfluorocarbon sulfonic acid, and its dimensional change is large. Has been.

高分子固体電解質膜の機械的強度を向上させ、寸法変化を抑制する方法として、高分子固体電解質膜に種々の補強材を組み合わせた複合高分子固体電解質膜が提案されている。延伸多孔ポリテトラフルオロエチレン膜の空隙部にイオン交換樹脂であるパーフルオロカーボンスルホン酸ポリマーを含浸し、一体化した複合高分子固体電解質膜(例えば、特許文献1参照)が、パーフルオロカーボンスルホン酸ポリマーの膜内に補強材としてフィブリル化されたポリテトラフルオロエチレンが分散された複合高分子固体電解質膜(例えば、特許文献2参照)が、それぞれ記載されている。しかしながら、元素としてフッ素を含んでいることには変わりなく、廃棄時の環境汚染や、発電時に発生するフッ酸の問題は依然として解決されていない。   As a method for improving the mechanical strength of the polymer solid electrolyte membrane and suppressing dimensional changes, a composite polymer solid electrolyte membrane in which various reinforcing materials are combined with the polymer solid electrolyte membrane has been proposed. A composite polymer solid electrolyte membrane (see, for example, Patent Document 1) obtained by impregnating a perfluorocarbon sulfonic acid polymer, which is an ion exchange resin, in the voids of the stretched porous polytetrafluoroethylene membrane is an integral part of the perfluorocarbon sulfonic acid polymer. A composite polymer solid electrolyte membrane (for example, see Patent Document 2) in which fibrillated polytetrafluoroethylene is dispersed as a reinforcing material in the membrane is described. However, it still contains fluorine as an element, and the problems of environmental pollution during disposal and hydrofluoric acid generated during power generation are still not solved.

一方、高分子固体電解質を炭化水素系の補強材で補強したものとして、ポリベンゾオキサゾール多孔膜と高分子固体電解質を複合化した高分子固体電解質膜(例えば、特許文献3参照)が記載されている。しかしながら、これらの方法で作成された複合膜は、実際に燃料電池で発電を繰り返すと、補強材である多孔膜と高分子固体電解質の水やメタノール中での膨潤性が異なるため、界面が剥離したことにより起こったと推定される水素ガスやメタノールの透過量の経時的な増加あるため、耐久性は不十分である。   On the other hand, as a polymer solid electrolyte reinforced with a hydrocarbon-based reinforcing material, a polymer solid electrolyte membrane (for example, see Patent Document 3) in which a polybenzoxazole porous membrane and a polymer solid electrolyte are combined is described. Yes. However, the composite membranes prepared by these methods are peeled off at the interface because the swelling properties of the porous membrane, which is a reinforcing material, and the solid polymer electrolyte in water and methanol differ when the power generation is actually repeated in the fuel cell. Durability is inadequate because there is an increase in the permeation amount of hydrogen gas and methanol estimated to have occurred.

また、多孔性基材中に浸透させたモノマーからイオン伝導性を有するポリマーを重合した電解質膜もある(例えば特許文献4参照)。しかしながら、この方法では、空隙内をポリマーで完全に充填することが困難で、欠陥等が形成されるため水素ガスリークやメタノール透過を十分抑止できない、プロトン伝導性が十分でないなどの問題がある。   There is also an electrolyte membrane obtained by polymerizing a polymer having ion conductivity from a monomer permeated into a porous substrate (see, for example, Patent Document 4). However, this method has a problem that it is difficult to completely fill the voids with the polymer, and defects and the like are formed, so that hydrogen gas leak and methanol permeation cannot be sufficiently suppressed, and proton conductivity is not sufficient.

特開平8−162132号公報JP-A-8-162132 特開2001−35508号公報JP 2001-35508 A 国際公開第WO00/22684号パンフレットInternational Publication No. WO00 / 22684 Pamphlet 特開2002−83612号公報JP 2002-83612 A

本発明は従来技術の課題を背景になされたものであって、炭化水素系高分子固体電解質膜の課題であった機械的強度の不足および補強膜の課題であった耐久性の不足を解決する複合イオン交換膜に関するものである。   The present invention has been made against the background of the problems of the prior art, and solves the shortage of mechanical strength, which is a problem of hydrocarbon-based polymer solid electrolyte membranes, and the lack of durability, which is a problem of reinforcing membranes. The present invention relates to a composite ion exchange membrane.

本発明者らは上記課題を解決するため、鋭意研究した結果、ついに本発明を完成するに至った。すなわち本発明は、以下の複合イオン交換膜とその製造方法である。   As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, this invention is the following composite ion exchange membranes and the manufacturing method.

1.分子中にイオン性基を有しているポリマーとイオン性基を有しないポリマーから構成されることを特徴とする複合イオン交換膜であって、該イオン性基含有ポリマーと該イオン性基非含有ポリマーが同一の有機溶媒に可溶であることを特徴とする複合イオン交換膜。 1. A composite ion exchange membrane comprising a polymer having an ionic group in a molecule and a polymer having no ionic group, wherein the ionic group-containing polymer and the ionic group-free A composite ion exchange membrane, wherein the polymer is soluble in the same organic solvent.

2.イオン性基含有ポリマーおよびイオン性基非含有ポリマーが同一の有機極性溶媒に可溶であることを特徴とする上記1に記載の複合イオン交換膜。 2. 2. The composite ion exchange membrane as described in 1 above, wherein the ionic group-containing polymer and the ionic group-free polymer are soluble in the same organic polar solvent.

3.イオン性基含有ポリマーが、スルホン酸基、ホスホン酸基、リン酸基のいずれか1種以上の基を含有することを特徴とする上記1または2に記載の複合イオン交換膜。 3. 3. The composite ion exchange membrane according to 1 or 2 above, wherein the ionic group-containing polymer contains at least one group selected from a sulfonic acid group, a phosphonic acid group, and a phosphoric acid group.

4.イオン性基非含有ポリマーが、ポリアミドイミドであることを特徴とする上記1〜3のいずれかに記載の複合イオン交換膜。 4). 4. The composite ion exchange membrane as described in any one of 1 to 3 above, wherein the ionic group-free polymer is polyamideimide.

5.イオン性基非含有ポリマー溶液を相分離により多孔膜とした後、イオン性基非含有ポリマーが可溶な有機溶媒に溶解したイオン性基含有ポリマーを多孔膜の空隙に充填し、有機溶媒を除去することを特徴とする複合イオン交換膜の製造方法。 5. After the ionic group-free polymer solution is made into a porous membrane by phase separation, the ionic group-containing polymer dissolved in the organic solvent in which the ionic group-free polymer is soluble is filled into the void of the porous membrane, and the organic solvent is removed. A method for producing a composite ion exchange membrane, comprising:

6.同一の有機溶媒に可溶であるイオン性基含有ポリマーと該イオン性基非含有ポリマーから構成される複合イオン交換膜の製造方法であって、イオン性基非含有ポリマー溶液を相分離により多孔膜とした後、イオン性基非含有ポリマーを溶解しない有機溶媒に溶解したイオン性基含有ポリマーを多孔膜の空隙に充填し、有機溶媒を除去することを特徴とする複合イオン交換膜の製造方法。 6). A method for producing a composite ion exchange membrane composed of an ionic group-containing polymer that is soluble in the same organic solvent and the ionic group-free polymer, wherein the ionic group-free polymer solution is separated into a porous membrane by phase separation. After that, a method for producing a composite ion exchange membrane, comprising filling a void in the porous membrane with an ionic group-containing polymer dissolved in an organic solvent that does not dissolve the ionic group-free polymer, and removing the organic solvent.

本発明の方法を用いると、イオン性基非含有ポリマーからなる補強効果を有する多孔膜は、イオン性基含有ポリマーが溶解した有機溶媒に可溶であることから、イオン性基含有ポリマー溶液で該多孔膜の空隙が充填されると、該多孔膜の表面および内部空隙の表面が部分的に有機溶媒で溶解した状態となる。その後、熱処理等により溶媒を除去するとイオン性基非含有ポリマーとイオン性基含有ポリマーの境界部分で混在し、イオン性基非含有ポリマーとイオン性基含有ポリマー(多孔材)が強固に結合した状態となる。その結果、従来技術の補強膜の欠点である燃料電池での発電繰り返し時に起こっていると考えられる界面剥離が生じなくなるため、水素ガスやメタノールの透過量が経時的に変化することなく耐久性に優れた高分子固体電解質膜が提供できる。   When the method of the present invention is used, a porous membrane having a reinforcing effect made of an ionic group-free polymer is soluble in an organic solvent in which the ionic group-containing polymer is dissolved. When the voids of the porous film are filled, the surface of the porous film and the surface of the internal voids are partially dissolved in the organic solvent. After that, when the solvent is removed by heat treatment, etc., it is mixed at the boundary between the ionic group-free polymer and the ionic group-containing polymer, and the ionic group-free polymer and the ionic group-containing polymer (porous material) are firmly bonded. It becomes. As a result, interfacial delamination, which is thought to occur during repeated power generation in a fuel cell, which is a drawback of the reinforcing membrane of the prior art, does not occur, so the permeation amount of hydrogen gas and methanol does not change with time, and durability is improved. An excellent polymer solid electrolyte membrane can be provided.

また、本発明の第二の方法を用いると、イオン性基非含有ポリマーと同一の有機溶媒に溶解するイオン性基含有ポリマーを、イオン性基非含有ポリマーを溶解しない有機溶媒に溶解した溶液を、イオン性基非含有ポリマーからなる補強効果を有する多孔膜に充填することによって、表面および内部空隙の表面を部分的に溶解することなく、複合膜を得ることができる。イオン性基含有ポリマーと非イオン性基含有ポリマーは同一の溶媒に溶解するので、両者の親和性が高く、イオン性基非含有ポリマーとイオン性基含有ポリマー(多孔材)が強固に結合した状態となる。その結果、従来技術の補強膜の欠点である燃料電池での発電繰り返し時に起こっていると考えられる界面剥離が生じなくなるため、水素ガスやメタノールの透過量が経時的に変化することなく耐久性に優れた高分子固体電解質膜が提供できる。   Further, when the second method of the present invention is used, a solution in which an ionic group-containing polymer that dissolves in the same organic solvent as the ionic group-free polymer is dissolved in an organic solvent that does not dissolve the ionic group-free polymer. By filling a porous film having a reinforcing effect made of an ionic group-free polymer, a composite film can be obtained without partially dissolving the surface and the surface of the internal voids. Since the ionic group-containing polymer and the nonionic group-containing polymer are dissolved in the same solvent, both have high affinity, and the ionic group-free polymer and the ionic group-containing polymer (porous material) are firmly bonded. It becomes. As a result, interfacial delamination, which is thought to occur during repeated power generation in a fuel cell, which is a drawback of the reinforcing membrane of the prior art, does not occur, so the permeation amount of hydrogen gas and methanol does not change with time, and durability is improved. An excellent polymer solid electrolyte membrane can be provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で用いられる分子中にイオン性基を有しているポリマーとしては、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニルスルホン、ポリスルホン、ポリイミド、ポリフェニレン、ポリアリーレン、ポリアリーレンエーテル、ポリアリーレンスルフィドなどのポリマーにスルホン酸基などのイオン性基を導入した高分子固体電解質が耐熱性や化学的な安定性の面から望ましい。   Examples of the polymer having an ionic group in the molecule include polyether ether ketone, polyether sulfone, polyphenyl sulfone, polysulfone, polyimide, polyphenylene, polyarylene, polyarylene ether, and polyarylene sulfide. From the viewpoint of heat resistance and chemical stability, a polymer solid electrolyte in which an ionic group such as a sulfonic acid group is introduced into the above polymer is desirable.

また、本発明で用いられるイオン性基を有しないポリマーは、イオン性基含有ポリマーが溶解する有機溶媒に溶解するポリマーであれば特に限定するものではないが、耐熱性や科学的な安定性、複合化後の強度等を考慮すると、イオン性基含有ポリマーと同系統のポリマーや有機溶媒に可溶なポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニルスルホン、ポリスルホン、ポリイミド、ポリフェニレン、ポリアリーレン、ポリイミド、ポリアミドイミドなどが望ましく、中でも開孔率、空孔率に優れた多孔膜が得られることからポリアミドイミドがさらに好ましい。   Further, the polymer having no ionic group used in the present invention is not particularly limited as long as it is a polymer that dissolves in an organic solvent in which the ionic group-containing polymer dissolves, but heat resistance and scientific stability, Considering the strength after compounding, etc., polymers of the same system as ionic group-containing polymers and polyether ether ketone, polyether sulfone, polyphenyl sulfone, polysulfone, polyimide, polyphenylene, polyarylene, polyimide soluble in organic solvents Polyamideimide or the like is desirable, and among them, a polyamideimide is more preferable because a porous film excellent in porosity and porosity can be obtained.

本発明で用いることのできる有機溶媒は前記ポリマーを溶解できるものであれば特に限定されないが、溶解性や取り扱い性、コストの面などからN−メチル−2−ピロリドン、N、N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、テトラメチルウレア、ジメチルイミダゾリジノン、ジメチルスルホキシド、ヘキサメチルホスホンアミドなどの有機極性溶媒が望ましい。   The organic solvent that can be used in the present invention is not particularly limited as long as it can dissolve the polymer. However, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, Organic polar solvents such as N, N-dimethylformamide, tetramethylurea, dimethylimidazolidinone, dimethyl sulfoxide, and hexamethylphosphonamide are desirable.

また、イオン性基非含有ポリマーとの複合化のために、前記イオン性基含有ポリマーを溶解する溶媒としては、前記のような有機極性溶媒の他に、γ―ブチロラクトン、2−アセチルブチロラクトン、ε―カプロラクトン、γ―バレロラクトン、δ―バレロラクトンなどラクトン系溶媒のような、イオン性基含有ポリマーは溶解するが、イオン性基非含有ポリマーは溶解しないような溶媒を用いることもできる。   In addition to the organic polar solvent as described above, γ-butyrolactone, 2-acetylbutyrolactone, ε may be used as a solvent for dissolving the ionic group-containing polymer for complexation with the ionic group-free polymer. It is also possible to use a solvent that dissolves an ionic group-containing polymer but does not dissolve an ionic group-free polymer, such as a lactone solvent such as caprolactone, γ-valerolactone, and δ-valerolactone.

本発明のイオン性基含有ポリマーのイオン性基としては、スルホン酸基、ホスホン酸基、リン酸基のいずれか1種以上の基を含有することが重要である。ポリマーへのイオン性の導入は公知の方法を用いることができ、例えばスルホン酸基、ホスホン酸基、リン酸基を有するモノマーからポリマーを重合しても良いし、ポリマーを重合した後、イオン性基を公知の方法で導入しても良い。   It is important that the ionic group of the ionic group-containing polymer of the present invention contains one or more of a sulfonic acid group, a phosphonic acid group, and a phosphoric acid group. For the introduction of ionicity into the polymer, a known method can be used. For example, the polymer may be polymerized from a monomer having a sulfonic acid group, a phosphonic acid group, or a phosphoric acid group. The group may be introduced by a known method.

本発明の複合イオン交換膜の望ましい製造方法は以下のとおりである。先ず流延法等により所定の厚みでキャストしたイオン性基非含有ポリマーの溶液を、イオン性基非含有ポリマーの貧溶媒に浸漬し相分離により多孔膜を作成する。得られた多孔膜は水洗等を十分行い溶媒を除去し、乾燥させる。次に前記多孔膜にイオン性基含有ポリマーが溶解している溶液を充填し、溶媒を十分に乾燥させることで、目的とする複合イオン交換膜が得られる。 A desirable method for producing the composite ion exchange membrane of the present invention is as follows. First, a solution of an ionic group-free polymer cast at a predetermined thickness by a casting method or the like is immersed in a poor solvent for the ionic group-free polymer to form a porous film by phase separation. The obtained porous film is sufficiently washed with water to remove the solvent and then dried. Next, the porous membrane is filled with a solution in which the ionic group-containing polymer is dissolved, and the solvent is sufficiently dried to obtain the intended composite ion exchange membrane.

その際、イオン性基非含有ポリマー溶液やイオン性基含有ポリマー溶液、貧溶媒の組成、温度などは限定されるものではなく、プロセス性や作成したい複合イオン交換膜の仕様に合わせて適宜決定すればよい。例えば、イオン性基含有ポリマー溶液に少量の貧溶媒を添加しておいて、イオン性基非含有ポリマー多孔膜の溶解の程度を制御することもできる。また、イオン性基非含有ポリマー溶液から多孔膜を形成する際、多孔化を促進するために、イオン性基非含有ポリマーの貧溶媒に溶解する成分を、イオン性基非含有ポリマー溶液に加えておいてもよい。また、イオン性基含有ポリマー溶液の多孔膜の充填には、真空含浸、加圧充填等を用いた方が、気泡の残留がなく望ましい。   At that time, the ionic group-free polymer solution, the ionic group-containing polymer solution, the composition of the poor solvent, the temperature, and the like are not limited, and may be appropriately determined according to the specifications of the processability and the composite ion exchange membrane to be prepared. That's fine. For example, by adding a small amount of a poor solvent to the ionic group-containing polymer solution, the degree of dissolution of the ionic group-free polymer porous membrane can be controlled. In addition, when forming a porous film from an ionic group-free polymer solution, in order to promote porosity, a component that dissolves in a poor solvent of the ionic group-free polymer is added to the ionic group-free polymer solution. It may be left. Also, for filling the porous film of the ionic group-containing polymer solution, it is desirable to use vacuum impregnation, pressure filling, or the like because no bubbles remain.

また、イオン性基非含有ポリマー溶液のキャスト、相分離、水洗、乾燥およびイオン性基含有ポリマー溶液の充填、乾燥は連続的に行うことも、それぞれ断続的に行うことも可能である。   Further, casting, phase separation, washing with water, drying of the ionic group-free polymer solution, and filling and drying of the ionic group-containing polymer solution can be performed continuously or intermittently.

本発明で用いる多孔膜の空隙率や厚みは特に限定されないが、プロトン伝導性と補強効果のバランスから、空隙率としては40〜90%、厚みとしては10〜100μmが好ましい範囲である。空隙率が、40%以下になるとプロトン伝導性が低下し、90%以上になると補強効果が低下するためである。また、厚みも10μm以下になると取り扱い性が困難になり、100μm以上では膜の抵抗が大きくなりすぎ好ましくない。   The porosity and thickness of the porous membrane used in the present invention are not particularly limited, but from the balance of proton conductivity and reinforcing effect, the porosity is preferably 40 to 90% and the thickness is preferably 10 to 100 μm. This is because proton conductivity decreases when the porosity is 40% or less, and the reinforcing effect decreases when the porosity is 90% or more. On the other hand, when the thickness is 10 μm or less, handling becomes difficult.

以下、本発明を、実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。なお、各種測定は次のように行った。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. Various measurements were performed as follows.

<イオン交換膜の評価方法>
以下にイオン交換膜の評価方法を示す。なお評価するに際しては、特別な記載がない限り、厚みや重量を正確に測ることを目的とし、室温が20℃で湿度が30±5RH%にコントロールされた測定室内で評価を行った。なお測定に際してサンプルは、24時間以上、測定室内で静置したものを使用した。
<Ion exchange membrane evaluation method>
The ion exchange membrane evaluation method is shown below. In the evaluation, unless otherwise specified, the evaluation was performed in a measurement chamber in which the room temperature was 20 ° C. and the humidity was controlled to 30 ± 5 RH% for the purpose of accurately measuring the thickness and weight. In the measurement, a sample that was allowed to stand in a measurement chamber for 24 hours or more was used.

<複合イオン交換膜のイオン性基含有ポリマー充填率>
複合イオン交換膜のイオン性基含有ポリマー充填率は以下の方法により測定した。複合イオン交換膜の目付けDc[g/m2]と、複合イオン交換膜の作製に用いたのと同じ条件で製造した多孔膜にイオン性基含有ポリマーを複合化させずに乾燥させて測定した乾燥多孔膜の目付けDs[g/m2]とから、以下の計算によりイオン性基含有ポリマー充填率を求めた。
イオン性基含有ポリマー充填率[重量%]=(Dc−Ds)/Dc×100
<Ionic group-containing polymer filling rate of composite ion exchange membrane>
The filling rate of the ionic group-containing polymer in the composite ion exchange membrane was measured by the following method. Measurement was performed by drying the composite ion exchange membrane with a basis weight Dc [g / m 2 ] and a porous membrane produced under the same conditions as those used for the production of the composite ion exchange membrane without combining the ionic group-containing polymer. From the basis weight Ds [g / m 2 ] of the dry porous membrane, the filling rate of the ionic group-containing polymer was determined by the following calculation.
Filling ratio of ionic group-containing polymer [% by weight] = (Dc−Ds) / Dc × 100

<イオン交換膜の厚み>
イオン交換膜の厚みは、マイクロメーター(Mitutoyo 標準マイクロメーター 0−25mm 0.01mm)を用いて測定することにより求めた。測定は10箇所行い、その平均値を厚みとした。
<Ion exchange membrane thickness>
The thickness of the ion exchange membrane was determined by measurement using a micrometer (Mitutoyo standard micrometer 0-25 mm 0.01 mm). Measurement was performed at 10 locations, and the average value was taken as the thickness.

<イオン導電性>
イオン導電性σは次のようにして測定した。自作測定用プローブ(ポリテトラフルロエチレン製)上で幅10mmの短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃、相対湿度95%の恒温恒湿槽中に試料を保持し、白金線間の交流インピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を10mmから40mmまで10mm間隔で変化させて測定し、極間距離と抵抗測定値をプロットした直線の勾配Dr[Ω/cm]から下記の式により膜と白金線間の接触抵抗をキャンセルして算出した。
σ[S/cm2]=1/(膜幅[cm]×Dr)
<Ion conductivity>
Ionic conductivity σ was measured as follows. A platinum wire (diameter: 0.2 mm) is pressed against the surface of a strip-shaped film sample having a width of 10 mm on a self-made measurement probe (made of polytetrafluoroethylene) in a constant temperature and humidity chamber at 80 ° C. and a relative humidity of 95%. A sample was held on the substrate, and the AC impedance between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. The contact distance between the membrane and the platinum wire is measured by the following formula from the slope Dr [Ω / cm] of the straight line in which the distance between the electrodes is changed from 10 mm to 40 mm at intervals of 10 mm and the distance between the electrodes and the measured resistance value are plotted. Canceled and calculated.
σ [S / cm 2 ] = 1 / (film width [cm] × Dr)

<水素ガス透過率>
イオン交換膜の水素ガス透過率は、以下の方法で測定した。イオン交換膜を自作のガス透過率測定セル(有効直径20mm=有効面積約3.14cm2)にセットし、雰囲気を70℃に調整した上で、膜の一方の面側に水素ガス(70℃、相対湿度90%、流量40cc/分)、膜の反対面側に窒素ガス(70℃、相対湿度90%、流量40cc/分)を流した。水素ガスと窒素ガスいずれの圧力も1気圧(=76cmHg)と同圧に調整した。この状態で、イオン交換膜を透過して窒素ガス中に拡散してくる水素ガス量を、ガスクロマトグラフを用いて経時的に測定し、一定となった時の値より算出した。
<Hydrogen gas permeability>
The hydrogen gas permeability of the ion exchange membrane was measured by the following method. The ion exchange membrane was set in a self-made gas permeability measurement cell (effective diameter 20 mm = effective area about 3.14 cm 2 ), the atmosphere was adjusted to 70 ° C., and hydrogen gas (70 ° C. on one side of the membrane). , Relative humidity 90%, flow rate 40 cc / min), and nitrogen gas (70 ° C., relative humidity 90%, flow rate 40 cc / min) was allowed to flow on the opposite side of the membrane. The pressures of both hydrogen gas and nitrogen gas were adjusted to the same pressure as 1 atm (= 76 cmHg). In this state, the amount of hydrogen gas permeating through the ion exchange membrane and diffusing into the nitrogen gas was measured over time using a gas chromatograph, and calculated from the value when it became constant.

<メタノール透過率>
イオン交換膜の液体燃料透過速度はメタノールの透過率として、以下の方法で測定した。25℃に調整した5モル/リットルのメタノール水溶液に24時間浸漬したイオン交換膜をH型セルに挟み込み、セルの片側に100mlの5モル/リットルのメタノール水溶液を、他方のセルに100mlの超純水(18MΩ・cm)を注入し、25℃で両側のセルを撹拌しながら、イオン交換膜を通って超純水中に拡散してくるメタノール量を、ガスクロマトグラフを用いて測定することで算出した(イオン交換膜の面積は、2.0cm2)。
<Methanol permeability>
The liquid fuel permeation rate of the ion exchange membrane was measured as the methanol permeability by the following method. An ion exchange membrane immersed in a 5 mol / liter methanol aqueous solution adjusted to 25 ° C. for 24 hours is sandwiched between H-type cells, 100 ml of 5 mol / liter methanol aqueous solution is placed on one side of the cell, and 100 ml of ultrapure is placed on the other cell. Calculated by injecting water (18 MΩ · cm) and measuring the amount of methanol diffusing into the ultrapure water through the ion-exchange membrane while stirring the cells on both sides at 25 ° C. (The area of the ion exchange membrane was 2.0 cm 2 ).

<膨潤・収縮繰り返し試験方法および耐久性評価方法>
イオン交換膜の膨潤・収縮繰り返し試験および耐久性は、以下の方法で測定した。イオン交換膜を自作の膨潤・収縮繰り返し試験セル(有効径40mmφ=有効面積約12.6cm2)にセットし、雰囲気を70℃、相対湿度30%の恒温恒湿槽の中に放置する。その後、恒温恒湿槽中の相対湿度を30%から95%の間で繰り返し変化させ(サイクル時間は45分)、イオン交換膜の経時的な水素ガス透過率、メタノール透過率の変化を50サイクルごとに300サイクルまで測定した。また、同時にイオン交換膜の表面観察を行い割れ、裂け、ピンホール等の有無を観察した。
<Swelling / Shrinkage Repeat Test Method and Durability Evaluation Method>
The swelling / contraction repeated test and durability of the ion exchange membrane were measured by the following methods. The ion exchange membrane is set in a self-made swelling / contraction repeated test cell (effective diameter 40 mmφ = effective area about 12.6 cm 2 ), and left in a constant temperature and humidity chamber at 70 ° C. and 30% relative humidity. After that, the relative humidity in the constant temperature and humidity chamber is repeatedly changed between 30% and 95% (cycle time is 45 minutes), and the change of hydrogen gas permeability and methanol permeability over time of the ion exchange membrane is 50 cycles. Up to 300 cycles were measured every time. At the same time, the surface of the ion exchange membrane was observed for the presence of cracks, tears, pinholes, and the like.

<複合化用イオン性基含有ポリマー溶液Aの調整>
4,4'−ジクロロジフェニルスルホン−3,3'−ジスルホン酸ソーダ122.8g、4,4'−クロロジフェニルスルホン71.8g、4,4'−ビフェノール93.1g、炭酸カリウム79.5g、N−メチル−2−ピロリドン1000ml、トルエン150mlを窒素導入管、攪拌翼、ディーンスタークトラップ、温度計を取り付けた2000ml枝付きフラスコに入れ、オイルバス中で攪拌しつつ窒素気流下で加熱した。トルエンとの共沸による脱水を140℃で行った後、トルエンを全て留去した。その後200℃に昇温し、15時間加熱した。その後、室温まで冷却した溶液を5lの純水に注ぎポリマーを再沈させた。濾過したポリマーは、水でよく洗浄した後、50℃で減圧乾燥した。得られたポリマー100gと400gのN−メチル−2−ピロリドンを、窒素雰囲気下、80℃で5時間攪拌して得られた溶液を室温まで冷却し、ガラスフィルター(25G1)で吸引濾過して、複合化用イオン性基含有ポリマー溶液を得た。
<Preparation of ionic group-containing polymer solution A for conjugation>
4,4′-dichlorodiphenylsulfone-3,3′-disulfonic acid sodium 122.8 g, 4,4′-chlorodiphenylsulfone 71.8 g, 4,4′-biphenol 93.1 g, potassium carbonate 79.5 g, N -1000 ml of methyl-2-pyrrolidone and 150 ml of toluene were placed in a 2000 ml branch flask equipped with a nitrogen introduction tube, a stirring blade, a Dean-Stark trap, and a thermometer, and heated in a nitrogen stream while stirring in an oil bath. After dehydration by azeotropy with toluene at 140 ° C., all toluene was distilled off. Thereafter, the temperature was raised to 200 ° C. and heated for 15 hours. Thereafter, the solution cooled to room temperature was poured into 5 l of pure water to reprecipitate the polymer. The filtered polymer was thoroughly washed with water and then dried under reduced pressure at 50 ° C. A solution obtained by stirring 100 g of the obtained polymer and 400 g of N-methyl-2-pyrrolidone at 80 ° C. for 5 hours in a nitrogen atmosphere was cooled to room temperature, and suction filtered through a glass filter (25G1). An ionic group-containing polymer solution for complexation was obtained.

<複合化用イオン性基含有ポリマー溶液Bの調整>
上記と同様にして得られたポリマー100gと400gのγ―ブチロラクトンを、窒素雰囲気下、80℃で5時間攪拌して得られた溶液を室温まで冷却し、ガラスフィルター(25G1)で吸引濾過して、複合化用イオン性基含有ポリマー溶液を得た。
<Preparation of ionic group-containing polymer solution B for complexation>
100 g of the polymer obtained in the same manner as above and 400 g of γ-butyrolactone were stirred at 80 ° C. for 5 hours in a nitrogen atmosphere, and the resulting solution was cooled to room temperature and suction filtered through a glass filter (25G1). Thus, an ionic group-containing polymer solution for complexation was obtained.

<実施例1>
ポリアミドイミド樹脂溶液(東洋紡製、商品名:バイロマックス、品番:HR11NN、有機溶媒:N−メチル−2−ピロリドン)100部にポリエチレングリコール#400を18部配合した溶液を室温の雰囲気下で188μmのポリエステルフィルム上にキャストし、水/N−メチル−2−ピロリドンが70/30の凝固浴(室温)に2分間浸漬し、水洗後、金属枠で固定して100℃で10分間乾燥して多孔質膜を作成した。さらに、この多孔質膜にイオン性基含有ポリマー溶液Aを10分間真空含浸した後、80℃で30分、100℃で30分、130℃で30分間処理した。その後、イオン性基の金属塩をプロトンに置換するため、室温で2モル硫酸に一昼夜浸漬し、水洗後80℃で12時間乾燥し、複合イオン交換膜を作成した。得られた複合イオン交換膜の厚みは50μmでイオン性基含有ポリマー充填率は70%であった。
<Example 1>
Polyamideimide resin solution (manufactured by Toyobo Co., Ltd., trade name: Bilomax, product number: HR11NN, organic solvent: N-methyl-2-pyrrolidone) 100 parts of polyethylene glycol # 400 is added to a solution of 188 μm Cast on a polyester film, immersed in a coagulation bath (room temperature) of 70/30 water / N-methyl-2-pyrrolidone for 2 minutes, washed with water, fixed with a metal frame, dried at 100 ° C. for 10 minutes and porous A membrane was created. Further, this porous membrane was impregnated with the ionic group-containing polymer solution A for 10 minutes, and then treated at 80 ° C. for 30 minutes, 100 ° C. for 30 minutes, and 130 ° C. for 30 minutes. Thereafter, in order to replace the metal salt of the ionic group with proton, it was immersed in 2 molar sulfuric acid at room temperature all day and night, washed with water and dried at 80 ° C. for 12 hours to prepare a composite ion exchange membrane. The obtained composite ion exchange membrane had a thickness of 50 μm and an ionic group-containing polymer filling rate of 70%.

<実施例2>
ポリエーテルスルホン樹脂(住友化学製、商品名:スミカエクセルPES、品番:5200P)をN−メチル−2−ピロリドンに溶解し、20重量%のポリマー溶液を作成した。得られたポリエーテルサルホン樹脂溶液100部にポリエチレングリコール#400を25部配合した溶液を室温の雰囲気下で188μmのポリエステルフィルム上にキャストし、水/N−メチル−2−ピロリドンが70/30の凝固浴(室温)に2分間浸漬し、水洗後、金属枠で固定して100℃で10分間乾燥して多孔質膜を作成した。さらに、この多孔質膜にイオン性基含有ポリマー溶液Aを10分間真空含浸した後、80℃で30分、100℃で30分、130℃で30分間処理した。その後、イオン性基の金属塩をプロトンに置換するため、室温で2モル硫酸に一昼夜浸漬し、水洗後80℃で12時間乾燥し、複合イオン交換膜を作成した。得られた複合イオン交換膜の厚みは52μmでイオン性基含有ポリマー充填率は72%であった。
<Example 2>
Polyethersulfone resin (manufactured by Sumitomo Chemical Co., Ltd., trade name: SUMIKAEXCEL PES, product number: 5200P) was dissolved in N-methyl-2-pyrrolidone to prepare a 20 wt% polymer solution. A solution in which 25 parts of polyethylene glycol # 400 was blended with 100 parts of the obtained polyethersulfone resin solution was cast on a 188 μm polyester film at room temperature, and water / N-methyl-2-pyrrolidone was 70/30. Was immersed in a coagulation bath (room temperature) for 2 minutes, washed with water, fixed with a metal frame and dried at 100 ° C. for 10 minutes to form a porous film. Further, this porous membrane was impregnated with the ionic group-containing polymer solution A for 10 minutes, and then treated at 80 ° C. for 30 minutes, 100 ° C. for 30 minutes, and 130 ° C. for 30 minutes. Thereafter, in order to replace the metal salt of the ionic group with proton, it was immersed in 2 molar sulfuric acid at room temperature all day and night, washed with water and dried at 80 ° C. for 12 hours to prepare a composite ion exchange membrane. The resulting composite ion exchange membrane had a thickness of 52 μm and an ionic group-containing polymer filling rate of 72%.

<実施例3>
イオン性基含有ポリマー溶液Aの代わりに、イオン性基含有ポリマー溶液Bを用いた他は、実施例1と同様にして、複合イオン交換膜を作成した。得られた複合イオン交換膜の厚みは53μmでイオン性基含有ポリマー充填率は71%であった。
<Example 3>
A composite ion exchange membrane was prepared in the same manner as in Example 1 except that the ionic group-containing polymer solution B was used instead of the ionic group-containing polymer solution A. The obtained composite ion exchange membrane had a thickness of 53 μm and an ionic group-containing polymer filling rate of 71%.

<比較例1>
ポリベンズオキサゾール繊維(東洋紡製、商品名:ザイロン、品番:AS)をメタンスルホン酸に溶解し1.5重量%のポリマー溶液を作成した。得られたリベンズオキサゾール樹脂溶液をこの溶液を、70℃に加熱したガラス板上にキャストした後、25℃、相対湿度80%の恒温恒湿槽中に置いて1時間凝固し、水洗を行い、多孔膜を作成した。さらに、この多孔質膜にイオン性基含有ポリマー溶液を10分間真空含浸した後、80℃で30分、100℃で30分、130℃で30分間処理した。その後、イオン性基の金属塩をプロトンに置換するため、室温で2モル硫酸に一昼夜浸漬し、水洗後80℃で12時間乾燥し、複合イオン交換膜を作成した。得られた複合イオン交換膜の厚みは50μmでイオン性基含有ポリマー充填率は68%であった。
<Comparative Example 1>
Polybenzoxazole fiber (manufactured by Toyobo, trade name: Zylon, product number: AS) was dissolved in methanesulfonic acid to prepare a 1.5 wt% polymer solution. The obtained rebenzoxazole resin solution was cast on a glass plate heated to 70 ° C., then placed in a constant temperature and humidity chamber at 25 ° C. and a relative humidity of 80%, solidified for 1 hour, and washed with water. A porous membrane was created. Further, this porous membrane was vacuum impregnated with an ionic group-containing polymer solution for 10 minutes, and then treated at 80 ° C. for 30 minutes, 100 ° C. for 30 minutes, and 130 ° C. for 30 minutes. Thereafter, in order to replace the metal salt of the ionic group with proton, it was immersed in 2 molar sulfuric acid at room temperature all day and night, washed with water and dried at 80 ° C. for 12 hours to prepare a composite ion exchange membrane. The thickness of the obtained composite ion exchange membrane was 50 μm, and the filling rate of the ionic group-containing polymer was 68%.

<比較例2>
イオン性基含有ポリマー溶液を室温の雰囲気下で188μmポリエステルフィルム上にキャストし、80℃で30分、100℃で30分、130℃で30分間処理した。その後、イオン性基の金属塩をプロトンに置換するため、室温で2モル硫酸に一昼夜浸漬し、水洗後80℃で12時間乾燥し、厚み51μmのイオン性基含有ポリマーの単独膜を作成した。
<Comparative example 2>
The ionic group-containing polymer solution was cast on a 188 μm polyester film at room temperature and treated at 80 ° C. for 30 minutes, 100 ° C. for 30 minutes, and 130 ° C. for 30 minutes. Thereafter, in order to replace the metal salt of the ionic group with proton, it was immersed in 2 molar sulfuric acid at room temperature for a whole day and night, washed with water and dried at 80 ° C. for 12 hours.

実施例および比較例で得られたイオン交換膜の評価結果を表1、表2、表3および表4に示す。   The evaluation results of the ion exchange membranes obtained in Examples and Comparative Examples are shown in Table 1, Table 2, Table 3, and Table 4.

Figure 2006193709
Figure 2006193709

Figure 2006193709
Figure 2006193709

Figure 2006193709
Figure 2006193709

Figure 2006193709
Figure 2006193709

表1から表4からわかるように、本発明の方法を用いると、従来技術の補強膜の欠点である燃料電池での発電繰り返し時に起こっていると考えられる界面剥離が生じなくなるため、水素ガスやメタノールの透過量が経時的に変化することなく耐久性に優れた高分子固体電解質膜が提供できる。   As can be seen from Tables 1 to 4, when the method of the present invention is used, the interface peeling, which is considered to occur at the time of repeated power generation in the fuel cell, which is a drawback of the reinforcing film of the prior art, does not occur. A solid polymer electrolyte membrane having excellent durability can be provided without the methanol permeation amount changing over time.

本発明の複合イオン交換膜により、水素やメタノール水溶液を燃料とする燃料電池の実用性が大幅に向上することが期待できる。   With the composite ion exchange membrane of the present invention, it can be expected that the practicality of a fuel cell using hydrogen or methanol aqueous solution as fuel will be greatly improved.

Claims (6)

分子中にイオン性基を有しているポリマーとイオン性基を有しないポリマーから構成されることを特徴とする複合イオン交換膜であって、該イオン性基含有ポリマーと該イオン性基非含有ポリマーが同一の有機溶媒に可溶であることを特徴とする複合イオン交換膜。   A composite ion exchange membrane comprising a polymer having an ionic group in a molecule and a polymer having no ionic group, wherein the ionic group-containing polymer and the ionic group-free A composite ion exchange membrane, wherein the polymer is soluble in the same organic solvent. イオン性基含有ポリマーおよびイオン性基非含有ポリマーが、同一の有機極性溶媒に可溶であることを特徴とする請求項1に記載の複合イオン交換膜。   The composite ion exchange membrane according to claim 1, wherein the ionic group-containing polymer and the ionic group-free polymer are soluble in the same organic polar solvent. イオン性基含有ポリマーが、スルホン酸基、ホスホン酸基、リン酸基のいずれか1種以上の基を含有することを特徴とする請求項1または2に記載の複合イオン交換膜。   The composite ion exchange membrane according to claim 1 or 2, wherein the ionic group-containing polymer contains one or more of a sulfonic acid group, a phosphonic acid group, and a phosphoric acid group. イオン性基非含有ポリマーが、ポリアミドイミドであることを特徴とする請求項1〜3のいずれかに記載の複合イオン交換膜。   The composite ion exchange membrane according to any one of claims 1 to 3, wherein the ionic group-free polymer is polyamideimide. イオン性基非含有ポリマー溶液を相分離により多孔膜とした後、イオン性基非含有ポリマーが可溶な有機溶媒に溶解したイオン性基含有ポリマーを多孔膜の空隙に充填し、有機溶媒を除去することを特徴とする複合イオン交換膜の製造方法。   After the ionic group-free polymer solution is made into a porous membrane by phase separation, the ionic group-containing polymer dissolved in the organic solvent in which the ionic group-free polymer is soluble is filled into the void of the porous membrane, and the organic solvent is removed. A method for producing a composite ion exchange membrane, comprising: 同一の有機溶媒に可溶であるイオン性基含有ポリマーと該イオン性基非含有ポリマーから構成される複合イオン交換膜の製造方法であって、イオン性基非含有ポリマー溶液を相分離により多孔膜とした後、イオン性基非含有ポリマーを溶解しない有機溶媒に溶解したイオン性基含有ポリマーを多孔膜の空隙に充填し、有機溶媒を除去することを特徴とする複合イオン交換膜の製造方法。   A method for producing a composite ion exchange membrane composed of an ionic group-containing polymer that is soluble in the same organic solvent and the ionic group-free polymer, wherein the ionic group-free polymer solution is separated into a porous membrane by phase separation After that, a method for producing a composite ion exchange membrane, comprising filling a void in the porous membrane with an ionic group-containing polymer dissolved in an organic solvent that does not dissolve the ionic group-free polymer, and removing the organic solvent.
JP2005223990A 2004-12-17 2005-08-02 Composite ion exchange membrane and its manufacturing method Withdrawn JP2006193709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223990A JP2006193709A (en) 2004-12-17 2005-08-02 Composite ion exchange membrane and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004366044 2004-12-17
JP2005223990A JP2006193709A (en) 2004-12-17 2005-08-02 Composite ion exchange membrane and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006193709A true JP2006193709A (en) 2006-07-27

Family

ID=36800032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223990A Withdrawn JP2006193709A (en) 2004-12-17 2005-08-02 Composite ion exchange membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006193709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506945A (en) * 2009-12-04 2012-03-22 ベイジン プルーデント センチュリー テクノロジー.コー.エルティーディー Polymer blend proton exchange membrane and method for producing the same
CN112143019A (en) * 2020-09-01 2020-12-29 中国科学院山西煤炭化学研究所 Method for preparing polybenzimidazole-based porous polymer ion exchange membrane by adopting non-solvent induced phase inversion method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506945A (en) * 2009-12-04 2012-03-22 ベイジン プルーデント センチュリー テクノロジー.コー.エルティーディー Polymer blend proton exchange membrane and method for producing the same
US8486579B2 (en) 2009-12-04 2013-07-16 Prudent Energy Inc. Polymer blend proton exchange membrane and method for manufacturing the same
CN112143019A (en) * 2020-09-01 2020-12-29 中国科学院山西煤炭化学研究所 Method for preparing polybenzimidazole-based porous polymer ion exchange membrane by adopting non-solvent induced phase inversion method and application thereof

Similar Documents

Publication Publication Date Title
JP5209165B2 (en) Composite ion exchange material
EP1477515A1 (en) Cluster ion exchange membrane, and electrolyte membrane electrode connection body
KR101279352B1 (en) Porous substrate with enhanced strength, reinforced composite electrolyte membrane using the same, membrane-electrode assembly having the same and fuel cell having them
KR20130060358A (en) Fluorine-based polymer electrolyte membrane
CN109755613B (en) Three-dimensional framework and sulfonated aromatic polymer composite proton exchange membrane and preparation method thereof
KR101315744B1 (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
Dahi et al. Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures
Bi et al. Grafted porous PTFE/partially fluorinated sulfonated poly (arylene ether ketone) composite membrane for PEMFC applications
Ito et al. Sulfonated polyimide nanofiber framework: Evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells
KR20100114520A (en) Polyelectrolyte composition, method of production of same, and fuel cell
KR20190126012A (en) Polymer electrolyte membranes, membrane electrode assemblies, and solid polymer fuel cells
JP4283125B2 (en) Polymer electrolyte, proton conducting membrane and membrane-electrode structure
Li et al. Development of a crosslinked pore-filling membrane with an extremely low swelling ratio and methanol crossover for direct methanol fuel cells
CN106816617B (en) Preparation method of polymer composite electrolyte membrane
JP6150616B2 (en) Polymer electrolyte composition and polymer electrolyte membrane
JP2019186201A (en) Composite electrolyte membrane, membrane-electrode composite arranged by use thereof and solid polymer fuel cell
JP2006190627A (en) Solid polyelectrolyte membrane having reinforcement material
JP2005044610A (en) Composite ion-exchange membrane and its manufacturing method
JP2006193709A (en) Composite ion exchange membrane and its manufacturing method
Sung et al. Stability enhancement of polymer electrolyte membrane fuel cells based on a sulfonated poly (ether ether ketone)/poly (vinylidene fluoride) composite membrane
JP2005044611A (en) Composite ion-exchange membrane and solid polymer fuel cell using the same
KR20110054607A (en) Reinfored composite electrolyte membrane and manufacturing method thereof
JP2007039525A (en) Ion-exchange membrane, ion-exchange resin, manufacturing method thereof, and refining method of ion-exchange resin
KR102125412B1 (en) Method for manufacturing hydrocarbon based reinforced polymer electrolyte membrane for fuel cell and reinforced polymer electrolyte membrane manufactured thereby
JP2008117590A (en) Complex polymer electrolyte membrane and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091113