JP2006193497A - Method for producing fatty acid alkyl ester - Google Patents

Method for producing fatty acid alkyl ester Download PDF

Info

Publication number
JP2006193497A
JP2006193497A JP2005009052A JP2005009052A JP2006193497A JP 2006193497 A JP2006193497 A JP 2006193497A JP 2005009052 A JP2005009052 A JP 2005009052A JP 2005009052 A JP2005009052 A JP 2005009052A JP 2006193497 A JP2006193497 A JP 2006193497A
Authority
JP
Japan
Prior art keywords
fatty acid
reaction product
reaction
alkyl ester
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005009052A
Other languages
Japanese (ja)
Other versions
JP5066325B2 (en
JP2006193497A5 (en
Inventor
Shigeto Hayafuji
茂人 早藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CDM Consulting Co Ltd
Original Assignee
CDM Consulting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CDM Consulting Co Ltd filed Critical CDM Consulting Co Ltd
Priority to JP2005009052A priority Critical patent/JP5066325B2/en
Publication of JP2006193497A publication Critical patent/JP2006193497A/en
Publication of JP2006193497A5 publication Critical patent/JP2006193497A5/ja
Application granted granted Critical
Publication of JP5066325B2 publication Critical patent/JP5066325B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fatty acid alkyl ester in high efficiency and purity even from a stock oil containing free fatty acids. <P>SOLUTION: The method for the production of a fatty acid alkyl ester comprises a step to form a reaction product by the esterification reaction of a stock oil containing free fatty acids with an alcohol, and a step to purify the reaction product. The purification step comprises the contact of the reaction product with a basic adsorbent to remove unreacted free fatty acids from the reaction product. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、植物性油脂類、動物性油脂類の脱酸工程で分離した遊離脂肪酸、前記油脂類の廃食油、或いはイエローグリース等から分離した遊離脂肪酸等の酸性油脂類(遊離脂肪酸が1%以上含まれる油脂)を原料油とした脂肪酸アルキルエステルの製造方法に関する。   The present invention relates to acidic fats and oils such as free fatty acids separated in the deoxidation step of vegetable oils and animal fats and oils, waste fatty acids of the fats and oils or free fatty acids separated from yellow grease, etc. The present invention relates to a method for producing a fatty acid alkyl ester using oil and fat contained therein as a raw material oil.

近年、バイオディーゼル燃料が注目されている。バイオディーゼル燃料とは、一般に植物油をメチルエステル化という化学変換をさせ、ディーゼル機関用燃料としたものである。バイオディーゼル燃料は化学構造内に酸素を含む含酸素燃料であり、硫黄分をほとんど含まないことから黒煙等の有害排気ガスの排出が少ない。また、植物由来であることから京都議定書に示された規定上、二酸化炭素の排出がゼロカウントとされる。このようなことから、バイオディーゼル燃料は環境負荷の少ない軽油代替燃料として注目されており、欧米では既に規格および法制度も整備され、大豆や菜種油から年間250万トン以上生産され使用されている。   In recent years, biodiesel fuel has attracted attention. Biodiesel fuel is generally obtained by subjecting vegetable oil to chemical conversion called methyl esterification to produce diesel engine fuel. Biodiesel fuel is an oxygen-containing fuel that contains oxygen in its chemical structure, and since it contains almost no sulfur, it emits less harmful exhaust gases such as black smoke. In addition, because it is derived from plants, carbon dioxide emissions are set to zero in accordance with the provisions set forth in the Kyoto Protocol. For this reason, biodiesel fuel has been attracting attention as a light oil alternative fuel with a low environmental impact, and standards and legal systems have already been established in Europe and the United States, and over 2.5 million tons are produced and used annually from soybeans and rapeseed oil.

一方、日本では、バイオディーゼル燃料は5000トン/年程度が廃食油から製造されており、一部の地方自治体等で使用されている。日本では未だ規格等が整備されていないが、近年中にバイオエタノール、バイオディーゼル燃料の規格化が実施される予定である。   On the other hand, in Japan, about 5000 tons / year of biodiesel fuel is produced from waste cooking oil and used in some local governments. In Japan, standards are not yet established, but in recent years, bioethanol and biodiesel fuels will be standardized.

油脂類の主成分であるモノグリセリド、ジグリセリド、トリグリセリドをアルキルアルコールとエステル交換反応させることによって、脂肪酸アルキルエステルが得られることは以前から知られている(例えば、特開2002−167356号公報(特許文献1)、特開2002−294277号公報(特許文献2)、特開2000−44984号公報(特許文献3))。また、遊離脂肪酸とアルキルアルコールとのエステル化反応によって脂肪酸アルキルエステルが得られることも知られている(例えば、「有機化学ハンドブック」技報堂出版、1988、p1407〜p1409(非特許文献1))。   It has long been known that fatty acid alkyl esters can be obtained by transesterification of monoglycerides, diglycerides, and triglycerides, which are the main components of fats and oils, with alkyl alcohols (for example, JP-A-2002-167356 (Patent Documents). 1), JP 2002-294277 A (Patent Document 2), JP 2000-44984 A (Patent Document 3)). It is also known that a fatty acid alkyl ester can be obtained by an esterification reaction between a free fatty acid and an alkyl alcohol (for example, “Organic Chemistry Handbook”, Gihodo Publishing, 1988, p1407 to p1409 (Non-patent Document 1)).

他に超臨界アルコール条件で油脂類からバイオディーゼル燃料油を製造する技術(超臨界法)についてもこれまで様々検討されてきた(例えば、特開2002−241786号公報(特許文献4)、特開2001−302584号公報(特許文献5)、特開2000−109883号公報(特許文献6)等)。
特開2002−167356号公報 特開2002−294277号公報 特開2000−044984号公報 特開2002−241786号公報 特開2001−302584号公報 特開2000−109883号公報 「有機化学ハンドブック」技報堂出版、1988、p1407〜p1409
In addition, various technologies (supercritical methods) for producing biodiesel fuel oils from fats and oils under supercritical alcohol conditions have been studied so far (for example, JP 2002-241786 A (Patent Document 4), 2001-302588 (Patent Document 5), JP-A 2000-109883 (Patent Document 6), etc.).
JP 2002-167356 A JP 2002-294277 A JP 2000-049484 A Japanese Patent Laid-Open No. 2002-241786 JP 2001-302584 A JP 2000-109883 A "Organic Chemistry Handbook", Gihodo Publishing, 1988, p1407-p1409

しかしながら、原料油中に遊離脂肪酸が存在すると、エステル化反応の後に未反応の遊離脂肪酸が存在しやすくなり、ディーゼル燃料としては品質に劣ることになる。植物油類は本質的にあるいは製造工程上遊離脂肪酸が生じやすく、イエローグリース類は回収システム上加水分解を受けやすく、また、劣化の進んだ廃食油類などは遊離脂肪酸が多く含まれている等の事情から、脂肪酸アルキルエステル製造の原料油としては必ずしも適しているとはいえなかった。   However, if free fatty acids are present in the feedstock, unreacted free fatty acids are likely to be present after the esterification reaction, and the quality of the diesel fuel is poor. Vegetable oils are easy to produce free fatty acids essentially or in the manufacturing process, yellow greases are easily hydrolyzed in the recovery system, and waste edible oils that have deteriorated contain a lot of free fatty acids. From the circumstances, it was not necessarily suitable as a raw material oil for the production of fatty acid alkyl esters.

従来の脂肪酸エステルの製造方法はエステル交換反応についての検討であり、原料油の一部に遊離脂肪酸が含まれても反応を阻害しないか、或いはアルキルエステル化も同様に進行する旨の記述がある。しかしながら、遊離脂肪酸とアルキルエステルは沸点が類似しているため、蒸留での分離は極めて困難である。実際にこれらの条件で遊離脂肪酸のエステル化を実施しても、変換率は最高で98%であった。欧州におけるバイオディーゼル燃料の規格では、遊離脂肪酸量は0.3%以下となっており、従来の方法を用いても、蒸留だけの精製では、未反応の遊離脂肪酸を除去することができず、規格を満たすアルキルエステルを製造することはできない。   The conventional method for producing a fatty acid ester is a study on transesterification, and there is a description that the reaction is not inhibited even if free fatty acid is contained in a part of the raw material oil, or that the alkyl esterification proceeds similarly. . However, since free fatty acids and alkyl esters have similar boiling points, separation by distillation is extremely difficult. Even when the free fatty acid was esterified under these conditions, the conversion rate was 98% at the maximum. According to the standard of biodiesel fuel in Europe, the amount of free fatty acids is 0.3% or less, and even using conventional methods, unreacted free fatty acids cannot be removed by purification only by distillation. Alkyl esters that meet the standards cannot be produced.

また、未反応の遊離脂肪酸の除去方法として、弱アルカリ水溶液での洗浄方法があるが、これでは無触媒で環境負荷の少ない超臨界法の優位性が全く失われてしまう。   In addition, as a method for removing unreacted free fatty acids, there is a washing method with a weak alkaline aqueous solution, but this eliminates the superiority of the supercritical method with no catalyst and low environmental load.

ところでエステル化反応は平衡反応であることから、一方の原料であるアルキルアルコールを過剰に用いるか、副反応物として生成する水を除去することによって平衡を生成系にずらして収率を上げるようにしている。さらに反応速度を速めるためには、触媒が使用されるのが一般的である。   By the way, since the esterification reaction is an equilibrium reaction, one of the raw materials, alkyl alcohol, is used in excess or the water generated as a side reaction product is removed to shift the equilibrium to the production system to increase the yield. ing. In order to further increase the reaction rate, a catalyst is generally used.

しかしながら、超臨界アルコールや亜臨界アルコールを用いる反応では、触媒の有無にかかわらず水だけを系外に放出することは極めて困難であり、特にアルコールがメタノール、エタノール、プロパノールなど水より沸点が低いものでは、共沸後、脱水剤などを使用しなければならない。従って従来の方法では、原理的にアルキルエステル化の際に脱水した水が系内に残り、さらにメタノールやエタノールなどの超臨界条件下においては、水のイオン積が室温の100倍程度に増大するため、逆反応である加水分解反応が進行しやすい状況にある。   However, in reactions using supercritical alcohols or subcritical alcohols, it is extremely difficult to release only water out of the system regardless of the presence or absence of a catalyst. Especially, alcohols with lower boiling points than water such as methanol, ethanol, and propanol Then, after azeotropy, a dehydrating agent or the like must be used. Therefore, in the conventional method, in principle, water dehydrated during alkyl esterification remains in the system, and further, under supercritical conditions such as methanol and ethanol, the ionic product of water increases to about 100 times the room temperature. Therefore, the hydrolysis reaction, which is a reverse reaction, is likely to proceed.

また、これらと共に或いは単独で、固定床触媒を用いた反応も試みられているが、反応変換率が低いのが現状である。   In addition, the reaction using a fixed bed catalyst has been attempted together with these alone, but the reaction conversion rate is low at present.

本発明は上記のような事情に着目してなされたものであって、その目的は、遊離脂肪酸を含む原料油においても効率的かつ高純度で脂肪酸アルキルエステルを製造することができる方法を提供しようとするものである。   The present invention has been made paying attention to the above-mentioned circumstances, and its object is to provide a method capable of producing a fatty acid alkyl ester efficiently and with high purity even in a feedstock containing free fatty acids. It is what.

本発明は、遊離脂肪酸を含有する原料油とアルコールとのエステル化反応により反応生成物を得る工程と、前記反応生成物を精製する工程と、を備えた脂肪酸アルキルエステルの製造方法であって、前記精製工程が、前記反応生成物を塩基性吸着剤に接触させ、当該反応生成物から未反応遊離脂肪酸を除去することを特徴とする脂肪酸アルキルエステルの製造方法を提供するものである。   The present invention is a method for producing a fatty acid alkyl ester comprising a step of obtaining a reaction product by an esterification reaction between a raw oil containing a free fatty acid and an alcohol, and a step of purifying the reaction product, The said refinement | purification process provides the manufacturing method of the fatty-acid alkylester characterized by making the said reaction product contact a basic adsorbent, and removing an unreacted free fatty acid from the said reaction product.

本発明に係る脂肪酸アルキルエステルの製造方法においては分離が困難であった未反応遊離脂肪酸を容易に除去できるため、原料油が遊離脂肪酸であるか原料油中に遊離脂肪酸を含有する原料油であっても、効率的かつ高純度で脂肪酸アルキルエステルを製造することができる。   In the method for producing a fatty acid alkyl ester according to the present invention, unreacted free fatty acids that have been difficult to separate can be easily removed. Therefore, the feed oil is a free fatty acid or a feed oil containing free fatty acids in the feed oil. However, the fatty acid alkyl ester can be produced efficiently and with high purity.

本発明の好ましい実施態様は以下のとおりである。前記塩基性吸着剤の使用量は、前記反応生成物の量に対して1〜5重量%であることが好ましい。また、前記塩基性吸着剤は、塩基性アルミナであることが好ましい。さらに、前記遊離脂肪酸を含有する原料油とアルコールとのエステル化反応により反応生成物を得る工程と、前記反応生成物を精製する工程は連続的に行われることが好ましい。   Preferred embodiments of the present invention are as follows. The amount of the basic adsorbent used is preferably 1 to 5% by weight based on the amount of the reaction product. The basic adsorbent is preferably basic alumina. Furthermore, it is preferable that the process of obtaining a reaction product by the esterification reaction of the raw material oil containing the free fatty acid and the alcohol and the process of purifying the reaction product are performed continuously.

本発明に係る脂肪酸アルキルエステルの製造方法によれば、本質的にあるいは製造工程上遊離脂肪酸類が生じやすい植物油類、回収システム上加水分解を受けやすいイエローグリース類ならびに劣化の進んだ廃食油類等、これまで利用が困難であった油類を原料とした場合でも、高効率でバイオディーゼル燃料規格に適合した脂肪酸アルキルエステルを製造することができる。   According to the method for producing a fatty acid alkyl ester according to the present invention, vegetable oils that are prone to generate free fatty acids essentially or in the production process, yellow greases that are easily hydrolyzed on the recovery system, and waste edible oils that have deteriorated. Even when oils that have been difficult to use are used as raw materials, fatty acid alkyl esters that are highly efficient and conform to biodiesel fuel standards can be produced.

以下この発明の好適な実施形態について図を参照しながら説明する。図1に本実施形態係る脂肪酸アルキルエステルの製造方法に使用される製造システムの概念図を示す。本発明に係る脂肪酸アルキルエステルの製造方法に使用される製造システムは、図1に示すように、前処理部1、反応部2、アルコール除去部3、グリセリン除去部4、第1精製処理部5、第2精製処理部6から構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The conceptual diagram of the manufacturing system used for the manufacturing method of the fatty-acid alkylester which concerns on FIG. 1 at this embodiment is shown. As shown in FIG. 1, the production system used in the method for producing a fatty acid alkyl ester according to the present invention includes a pretreatment unit 1, a reaction unit 2, an alcohol removal unit 3, a glycerin removal unit 4, and a first purification treatment unit 5. The second purification processing unit 6 is configured.

前処理部1では、原料油の濾過処理、過熱処理、遠心分離処理、脱水・脱臭処理が行われる。例えば油脂分80%および遊離脂肪酸分10%以外に、固形分1%、水分量7%、臭気物質等不純物量2%を含む原料油中の固形不純物をフィルターによって濾過し、その後4時間以上静置した後、ドレインから過飽和状態の水ならびにその他高比重不純物を除去する。   In the pretreatment unit 1, the raw material oil is filtered, superheated, centrifuged, and dehydrated and deodorized. For example, in addition to oil content of 80% and free fatty acid content of 10%, solid impurities in raw material oil containing 1% solid content, 7% moisture content, 2% impurity content such as odorous substances are filtered through a filter, and then statically kept for 4 hours or more Then, supersaturated water and other high specific gravity impurities are removed from the drain.

原料油としては、大きく植物性油と動物性油とに分類することができるが、植物性油脂としては、菜種油、大豆油、パーム油、パーム核油、ひまわり油、米油、ごま油、トウモロコシ油、ココナッツ油、サフラワー油、紅花油、ピーナッツ油、綿実油、アマニ油、マスタード油等を挙げることができ、動物性油脂としては、牛脂、豚脂、鯨油、魚油等を挙げることができる。上記のような前処理は必ずしも必須ではないが、原料油として不純物を含む脂肪酸を使用する場合、上記の処理を行うことが好ましい。   Raw material oils can be broadly classified into vegetable oils and animal oils, but vegetable oils and fats include rapeseed oil, soybean oil, palm oil, palm kernel oil, sunflower oil, rice oil, sesame oil, and corn oil. Coconut oil, safflower oil, safflower oil, peanut oil, cottonseed oil, linseed oil, mustard oil and the like, and animal fats and oils include beef tallow, pork tallow, whale oil, fish oil and the like. The pretreatment as described above is not necessarily essential, but when a fatty acid containing impurities is used as the raw material oil, the above treatment is preferably performed.

この原料油を熱交換器等により90〜100℃程度に加熱し、遠心分離機によってさらに比重分離を行う。この処理によって、例えば原料油中の固形不純物量は0.02%以下に、また、水分量も0.5%以下になる。   This raw material oil is heated to about 90 to 100 ° C. with a heat exchanger or the like, and further subjected to specific gravity separation with a centrifuge. By this treatment, for example, the amount of solid impurities in the raw material oil is 0.02% or less, and the water content is also 0.5% or less.

さらにこの原料油を真空脱水塔へ導入する。導入の際原料油は、霧状、スパイラル状など、気−液界面が大きくなる方法で導入することが好ましい。原料油が真空脱水塔を通過する間に、更なる脱水、脱臭が行われる。すなわち、100mmHg未満の減圧下において約100℃に加熱された原料油中の水、臭気物質が速やかに気化し、系外へ放出される。例えば、原料油中の水分含有量が0.05%以下、臭気物質含有量が0.01%以下となるように脱水、脱臭される。また処理後の原料油は熱交換器によって後続の反応温度にまで昇温される。   Furthermore, this raw material oil is introduced into a vacuum dehydration tower. In the introduction, the raw material oil is preferably introduced by a method that increases the gas-liquid interface, such as a mist or spiral. Further dehydration and deodorization are performed while the raw material oil passes through the vacuum dehydration tower. That is, water and odorous substances in the raw material oil heated to about 100 ° C. under a reduced pressure of less than 100 mmHg are rapidly vaporized and released out of the system. For example, dehydration and deodorization are performed so that the water content in the raw material oil is 0.05% or less and the odorous substance content is 0.01% or less. In addition, the treated raw material oil is heated to the subsequent reaction temperature by the heat exchanger.

なお、固形不純物、水分又は臭気物質を含まない原料油を使用する場合には、前処理部1における処理を省略することができる。   In addition, when using the raw material oil which does not contain a solid impurity, a water | moisture content, or an odor substance, the process in the pre-processing part 1 can be abbreviate | omitted.

反応部2では、エステル化反応が行われる。エステル化反応は、亜臨界や超臨界状態のアルコールと反応させるエステル化反応でも、固定触媒を利用した有触媒反応でもよい。ここで「亜臨界」とは、反応剤であるアルコールが沸点以上、臨界点以下にあり(メタノールの場合64〜239℃)、かつ、蒸気圧が1気圧以上の状態をいい、「超臨界」とは、反応剤であるアルコールが臨界圧以上及び臨界温度以上にある状態をいう。例えば触媒を用いない超臨界反応の場合には、反応させるべきアルコールを前もって温度240℃〜300℃、圧力4MPa〜40MPaの範囲で加熱、加圧する。そして、上述したような処理が施された原料油を、温度240℃〜300℃、圧力8MPa〜40MPaにまで昇温、昇圧する。その後、前記アルコールと前記原料油を流通式反応管内で混合し、所定の反応時間をかけて流通管内を同条件で流通させることによりエステル化反応を行うことができる。エステル化反応中、アルコールは超臨界状態となっている。   In the reaction unit 2, an esterification reaction is performed. The esterification reaction may be an esterification reaction with a subcritical or supercritical alcohol or a catalytic reaction using a fixed catalyst. Here, “subcritical” means a state in which the reactant alcohol is above the boiling point and below the critical point (in the case of methanol, 64 to 239 ° C.) and has a vapor pressure of 1 atm or higher. The term “alcohol” as a reactant means a state in which the alcohol is above the critical pressure and above the critical temperature. For example, in the case of a supercritical reaction without using a catalyst, the alcohol to be reacted is heated and pressurized in advance at a temperature of 240 ° C. to 300 ° C. and a pressure of 4 MPa to 40 MPa. Then, the temperature of the raw material oil that has been subjected to the treatment as described above is increased to a temperature of 240 ° C. to 300 ° C. and a pressure of 8 MPa to 40 MPa. Thereafter, the esterification reaction can be carried out by mixing the alcohol and the raw material oil in a flow-type reaction tube and allowing the reaction tube to flow under the same conditions over a predetermined reaction time. During the esterification reaction, the alcohol is in a supercritical state.

固定触媒を利用する場合には、例えば、カリウムを坦持した酸化鉄固定触媒を装着した反応管に、メタノールと油脂の混合液(メタノール:油脂=13:100(重量比))を12ml/hr、60℃、常圧の条件下で通油することによってエステル化することができる。   In the case of using a fixed catalyst, for example, a mixed solution of methanol and fat (methanol: fat / oil = 13: 100 (weight ratio)) is 12 ml / hr in a reaction tube equipped with an iron oxide fixed catalyst carrying potassium. The esterification can be performed by passing the oil under conditions of 60 ° C. and normal pressure.

エステル化反応に用いられるアルコールとしては、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール等、炭素数が1〜5程度の低級アルキルアルコールを使用することが好ましい。   As the alcohol used for the esterification reaction, it is preferable to use a lower alkyl alcohol having about 1 to 5 carbon atoms such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol and the like.

アルコール除去部3では、エステル化反応終了後の反応生成物から、過剰のアルコールが除去される。上記の亜臨界反応および超臨界反応では、反応温度がアルコールの常圧における沸点以上であるため、熱交換器等を通過させながら常圧に戻すだけで、充分なアルコールの除去が可能である。また、固体触媒を用いる場合は、減圧留去によりアルコールの除去が可能である。   In the alcohol removing unit 3, excess alcohol is removed from the reaction product after completion of the esterification reaction. In the subcritical reaction and supercritical reaction described above, the reaction temperature is equal to or higher than the boiling point of the alcohol at normal pressure. Therefore, sufficient alcohol can be removed simply by returning to normal pressure while passing through a heat exchanger or the like. When a solid catalyst is used, alcohol can be removed by distillation under reduced pressure.

グリセリン除去部4では、反応生成物から副生成物であるグリセリンが分離される。グリセリンの分離は、遠心分離機等で行うことができる。なお、原料油が100%遊離脂肪酸である場合、グリセリンが副生しないため、本工程は不要である。   In the glycerin removing unit 4, glycerin as a by-product is separated from the reaction product. Separation of glycerin can be performed with a centrifuge or the like. In addition, when raw material oil is 100% free fatty acid, since glycerol does not byproduce, this process is unnecessary.

第1精製処理部5では、グリセリン除去部4でグリセリンを除去した反応生成物の精製が行われる。前記反応生成物には、未反応の遊離脂肪酸が約2%残存しているため、この反応生成物を塩基性吸着剤に接触させることで反応生成物から遊離脂肪酸を吸着・除去する。例えば、塩基性吸着剤をカラムに充填して、当該カラムに反応生成物を通過させることにより効率よく遊離脂肪酸を吸着・除去することができる。   In the 1st refinement | purification process part 5, the refinement | purification of the reaction product which removed glycerol by the glycerol removal part 4 is performed. Since about 2% of unreacted free fatty acid remains in the reaction product, the free fatty acid is adsorbed and removed from the reaction product by bringing the reaction product into contact with a basic adsorbent. For example, free fatty acids can be efficiently adsorbed and removed by filling a column with a basic adsorbent and passing the reaction product through the column.

前記塩基性吸着剤の使用量は、反応生成物から遊離脂肪酸が除去できる量であれば特に制限されるものではないが、前記反応生成物に未反応の遊離脂肪酸が約2%残存していること、及びコスト等を考慮すれば、塩基性吸着剤の使用量を基準(100重量%)とした場合に0.5〜5重量%程度でよく、より好ましくは1〜2重量%程度である。   The amount of the basic adsorbent used is not particularly limited as long as free fatty acid can be removed from the reaction product, but about 2% of unreacted free fatty acid remains in the reaction product. If the amount of basic adsorbent used is a standard (100% by weight), it may be about 0.5 to 5% by weight, more preferably about 1 to 2% by weight. .

前記塩基性吸着剤の具体例としては、例えば、塩基性アルミナ、アルカリ処理活性炭、塩基性シリカゲル等が挙げられるが、吸着効率の観点から、特に塩基性アルミナが好ましい。   Specific examples of the basic adsorbent include basic alumina, alkali-treated activated carbon, basic silica gel and the like, and basic alumina is particularly preferable from the viewpoint of adsorption efficiency.

第2精製処理部6では、第1精製処理部で処理された反応生成物の状態に応じて適宜更なる精製を行うことができる。例えば、色素分を除去するための活性白土カラム処理、固形分・グリセリンなどを除去するための遠心分離処理又は微量のアルコールや水分等を除去するための減圧留去処理などを行うことができる。   In the 2nd refinement | purification process part 6, further refinement | purification can be suitably performed according to the state of the reaction product processed by the 1st refinement | purification process part. For example, an activated clay column treatment for removing pigments, a centrifugal separation treatment for removing solids, glycerin, and the like, or a vacuum distillation treatment for removing traces of alcohol, moisture, and the like can be performed.

なお、反応部2における超臨界反応や亜臨界反応で連続式反応管を用い、また、グリセリン除去部4で遠心分離器を用いることにより、前記遊離脂肪酸を含有する原料油とアルコールとのエステル化反応により反応生成物を得る工程と、前記反応生成物を精製する工程とを連続的に行うことができる。   In addition, by using a continuous reaction tube in the supercritical reaction or subcritical reaction in the reaction unit 2 and using a centrifuge in the glycerin removal unit 4, esterification of the raw material oil containing the free fatty acid and the alcohol is performed. The step of obtaining a reaction product by the reaction and the step of purifying the reaction product can be performed continuously.

このようにして得られた脂肪酸アルキルエステルは純度が高く、ディーゼル燃料油としての基準を満たすことができるため、ディーゼル車やその他のディーゼル機関の燃料として利用することができる。   The fatty acid alkyl ester thus obtained has a high purity and can meet the standard as a diesel fuel oil, and therefore can be used as a fuel for diesel vehicles and other diesel engines.

原料油として、試薬として市販されているパルミチン酸(C16−0)を使用し、エステル化のためのアルコールとしてメタノールを使用した。そして、メタノール:脂肪酸=20モル:1モルの割合で混合し、直径10mm、長さ100mmの反応管でエステル化反応を行ない、反応生成物を得た。なお、反応管の出口に圧力・流量コントロールバルブを設け、圧力、流量及び反応時間を調節した。反応条件は、反応温度290℃、反応圧力20Mpa、時間15minで行った。   As raw material oil, palmitic acid (C16-0) marketed as a reagent was used, and methanol was used as an alcohol for esterification. And it mixed in the ratio of methanol: fatty acid = 20 mol: 1 mol, and esterification reaction was performed with the reaction tube of diameter 10mm and length 100mm, and the reaction product was obtained. A pressure / flow rate control valve was provided at the outlet of the reaction tube to adjust the pressure, flow rate and reaction time. The reaction conditions were a reaction temperature of 290 ° C., a reaction pressure of 20 Mpa, and a time of 15 min.

次いで、加圧状態から常圧状態に戻すことで反応生成物から過剰のメタノールを留去した。その後、第1精製処理工程として、メタノールを留去した反応生成物を塩基性アルミナカラムに通過させて未反応のパルミチン酸(遊離脂肪酸)を塩基性アルミナに吸着させた。なお、塩基性アルミナの使用量は処理すべき反応生成物量に対して1重量%とした。   Subsequently, excess methanol was distilled off from the reaction product by returning from the pressurized state to the normal pressure state. Thereafter, as a first purification treatment step, the reaction product from which methanol was distilled off was passed through a basic alumina column to adsorb unreacted palmitic acid (free fatty acid) to the basic alumina. The amount of basic alumina used was 1% by weight with respect to the amount of reaction product to be treated.

次いで、第2精製処理工程として、活性白土カラム処理、遠心分離処理及び減圧処理をそれぞれ行うことにより、所望の脂肪酸アルキルエステルを得た。   Subsequently, as a 2nd refinement | purification process process, the desired fatty-acid alkylester was obtained by performing an activated clay column process, a centrifugation process, and a pressure reduction process, respectively.

原料油としてステアリン酸(C18−0)を用いたほかは、実施例1と同様の処理を行い、所望の脂肪酸アルキルエステルを得た。   Except having used stearic acid (C18-0) as raw material oil, the same process as Example 1 was performed and the desired fatty-acid alkylester was obtained.

原料油としてオレイン酸(C18−1)を用いたほかは、実施例1と同様の処理を行い、所望の脂肪酸アルキルエステルを得た。   Except having used oleic acid (C18-1) as raw material oil, the process similar to Example 1 was performed and the desired fatty-acid alkylester was obtained.

原料油としてリノール酸(C18−2)を用いたほかは、実施例1と同様の処理を行い、所望の脂肪酸アルキルエステルを得た。   Except having used linoleic acid (C18-2) as raw material oil, the process similar to Example 1 was performed and the desired fatty-acid alkylester was obtained.

原料油として、パーム油の精製の際に生じた副生成物である脂肪酸(遊離脂肪酸90%(パルミチン酸45%、ステアリン酸5%、オレイン酸40%、リノール酸10%)、水分量5%、その他不純物量5%、ヨウ素価50)を用いた。この原料油を、前処理部1における原料油貯蔵タンクにメッシュ120のフィルターを通して流し込み、その後4時間静置した。   Fatty acid (by-product fatty acid 90% (palmitic acid 45%, stearic acid 5%, oleic acid 40%, linoleic acid 10%), water content 5% as a by-product generated during the refinement of palm oil Other impurities amount 5%, iodine value 50) were used. This raw material oil was poured into the raw material oil storage tank in the pretreatment section 1 through a filter of mesh 120, and then allowed to stand for 4 hours.

ドレインを除去した後、上澄み液を熱交換器によって95℃まで加熱し、これを遠心分離機(遠心力1000G、流量15リットル毎分)に通した。   After removing the drain, the supernatant was heated to 95 ° C. by a heat exchanger, and this was passed through a centrifuge (centrifugal force 1000 G, flow rate 15 liters per minute).

遠心分離機を通過した後の原料油を真空脱水塔に投入した。真空脱水塔の処理条件は、絶対圧力80mmHg、滞留時間15分とした。この原料油を熱交換器によって270℃にまで加熱し、エステル化反応に用いた。エステル化反応は実施例1に示した条件と同じ条件で行った。   The raw material oil after passing through the centrifuge was put into a vacuum dehydration tower. The processing conditions of the vacuum dehydration tower were an absolute pressure of 80 mmHg and a residence time of 15 minutes. This raw material oil was heated to 270 ° C. by a heat exchanger and used for the esterification reaction. The esterification reaction was carried out under the same conditions as shown in Example 1.

エステル化反応後、加圧状態から常圧状態に戻すことで反応生成物中の過剰のメタノールを留去し、次いで遠心分離処理によって反応生成物中のグリセリンを除去した。   After the esterification reaction, the excess methanol in the reaction product was distilled off by returning from the pressurized state to the normal pressure state, and then glycerin in the reaction product was removed by centrifugation.

その後は実施例1と同様、第1精製処理工程において未反応の遊離脂肪酸を除去し、第2精製処理工程においてその他の夾雑物を除去することにより、所望の脂肪酸アルキルエステルを得た。   Thereafter, in the same manner as in Example 1, unreacted free fatty acids were removed in the first purification treatment step, and other impurities were removed in the second purification treatment step, thereby obtaining a desired fatty acid alkyl ester.

[比較例1]
実施例1と同じ要領で脂肪酸アルキルエステルを得た。但し、第1精製処理工程の塩基性アルミナカラム処理を省いた。
[Comparative Example 1]
Fatty acid alkyl ester was obtained in the same manner as in Example 1. However, the basic alumina column treatment in the first purification treatment step was omitted.

[比較例2]
実施例2と同じ要領で脂肪酸アルキルエステルを得た。但し、第1精製処理工程の塩基性アルミナカラム処理を省いた。
[Comparative Example 2]
Fatty acid alkyl ester was obtained in the same manner as in Example 2. However, the basic alumina column treatment in the first purification treatment step was omitted.

[比較例3]
実施例3と同じ要領で脂肪酸アルキルエステルを得た。但し、第1精製処理工程の塩基性アルミナカラム処理を省いた。
[Comparative Example 3]
A fatty acid alkyl ester was obtained in the same manner as in Example 3. However, the basic alumina column treatment in the first purification treatment step was omitted.

[比較例4]
実施例4と同じ要領で脂肪酸アルキルエステルを得た。但し、第1精製処理工程の塩基性アルミナカラム処理を省いた。
[Comparative Example 4]
Fatty acid alkyl ester was obtained in the same manner as in Example 4. However, the basic alumina column treatment in the first purification treatment step was omitted.

[比較例5]
実施例5と同じ要領で脂肪酸アルキルエステルを得た。但し、第1精製処理工程の塩基性アルミナカラム処理を省いた。
[Comparative Example 5]
Fatty acid alkyl ester was obtained in the same manner as in Example 5. However, the basic alumina column treatment in the first purification treatment step was omitted.

[試験例]収率、純度及び酸価の測定
先述の実施例1〜5、比較例1〜5で得られた脂肪酸アルキルエステルをサンプルとして、収率、純度及び酸価を測定した。
[Test Example] Measurement of Yield, Purity and Acid Value The yield, purity and acid value were measured using the fatty acid alkyl esters obtained in Examples 1 to 5 and Comparative Examples 1 to 5 described above as samples.

なお、収率は、原料油の重量に対するサンプルの重量の割合(%)で示した。また、純度はガスクロマトグラフィーで測定した。酸価は、1gのサンプルを中和するのに必要な水酸化カリウムのmg数で表した。   In addition, the yield was shown by the ratio (%) of the weight of the sample with respect to the weight of raw material oil. The purity was measured by gas chromatography. The acid value was expressed in mg of potassium hydroxide required to neutralize a 1 g sample.

Figure 2006193497
Figure 2006193497

本発明に係る脂肪酸アルキルエステルは、ディーゼル燃料油としての基準を満たしているため、ディーゼル車やその他のディーゼル機関の燃料としての産業上の利用可能性がある。   Since the fatty acid alkyl ester according to the present invention satisfies the standard as a diesel fuel oil, it has industrial applicability as a fuel for diesel vehicles and other diesel engines.

本実施形態に係る脂肪酸アルキルエステルの製造方法に使用される製造システムの概念図である。It is a conceptual diagram of the manufacturing system used for the manufacturing method of the fatty-acid alkylester which concerns on this embodiment.

符号の説明Explanation of symbols

1:前処理部、2:反応部、3:アルコール除去部、4:グリセリン除去部、5:第1精製処理部、6:第2精製処理部 1: Pretreatment unit, 2: Reaction unit, 3: Alcohol removal unit, 4: Glycerin removal unit, 5: First purification processing unit, 6: Second purification processing unit

Claims (6)

遊離脂肪酸を含有する原料油とアルコールとのエステル化反応により反応生成物を得る工程と、前記反応生成物を精製する工程と、を備えた脂肪酸アルキルエステルの製造方法であって、
前記精製工程が、前記反応生成物を塩基性吸着剤に接触させ、当該反応生成物から未反応遊離脂肪酸を除去することを特徴とする脂肪酸アルキルエステルの製造方法。
A method for producing a fatty acid alkyl ester comprising: a step of obtaining a reaction product by an esterification reaction between a raw oil containing free fatty acids and an alcohol; and a step of purifying the reaction product,
The said refinement | purification process makes the said reaction product contact a basic adsorption agent, and removes the unreacted free fatty acid from the said reaction product, The manufacturing method of the fatty-acid alkylester characterized by the above-mentioned.
前記塩基性吸着剤の使用量は、前記反応生成物の量に対して1〜5重量%である請求項1記載の脂肪酸アルキルエステルの製造方法。   The method for producing a fatty acid alkyl ester according to claim 1, wherein the amount of the basic adsorbent used is 1 to 5% by weight based on the amount of the reaction product. 前記塩基性吸着剤が、塩基性アルミナである請求項1又は2記載の脂肪酸アルキルエステルの製造方法。   The method for producing a fatty acid alkyl ester according to claim 1 or 2, wherein the basic adsorbent is basic alumina. 前記遊離脂肪酸を含有する原料油とアルコールとのエステル化反応により反応生成物を得る工程と、前記反応生成物を精製する工程とが連続的に行われる請求項1〜3のいずれか1項記載の脂肪酸アルキルエステルの製造方法。   The process of obtaining a reaction product by esterification reaction of the raw material oil containing the said free fatty acid and alcohol, and the process of refine | purifying the said reaction product are performed continuously. The manufacturing method of fatty acid alkylester. 請求項1〜4のいずれか1項記載の製造方法により製造された脂肪酸アルキルエステルを含む燃料。   The fuel containing the fatty-acid alkylester manufactured by the manufacturing method of any one of Claims 1-4. 請求項1〜4のいずれか1項記載の製造方法により製造された脂肪酸アルキルエステルを含むディーゼル機関用燃料。 The fuel for diesel engines containing the fatty-acid alkylester manufactured by the manufacturing method of any one of Claims 1-4.
JP2005009052A 2005-01-17 2005-01-17 Method for producing fatty acid alkyl ester Expired - Fee Related JP5066325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009052A JP5066325B2 (en) 2005-01-17 2005-01-17 Method for producing fatty acid alkyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009052A JP5066325B2 (en) 2005-01-17 2005-01-17 Method for producing fatty acid alkyl ester

Publications (3)

Publication Number Publication Date
JP2006193497A true JP2006193497A (en) 2006-07-27
JP2006193497A5 JP2006193497A5 (en) 2008-11-13
JP5066325B2 JP5066325B2 (en) 2012-11-07

Family

ID=36799848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009052A Expired - Fee Related JP5066325B2 (en) 2005-01-17 2005-01-17 Method for producing fatty acid alkyl ester

Country Status (1)

Country Link
JP (1) JP5066325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224121A (en) * 2006-02-22 2007-09-06 Asahi Kasei Corp Method of manufacturing fuel for diesel engine
DE102006047580A1 (en) * 2006-09-13 2008-03-27 Helmut KÖRBER Purifying natural fat and oil-based fatty acid alkyl esters, especially biodiesel, by contacting with sodium-, potassium- and/or ammonium formate as absorbent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109883A (en) * 1998-10-06 2000-04-18 Ronfoodo:Kk Production of fatty acid alkyl ester from oil or fat
JP2000143586A (en) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd Production of fatty acid ester and fuel comprising the same
JP2002060372A (en) * 2000-06-19 2002-02-26 Loders Croklaan Bv Conjugated linolate
JP2002308825A (en) * 2001-04-12 2002-10-23 Rebo International:Kk Method for producing fatty acid alkyl ester
WO2003106604A1 (en) * 2002-06-13 2003-12-24 株式会社京都ロンフォード Process for producing fatty acid alkyl ester composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143586A (en) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd Production of fatty acid ester and fuel comprising the same
JP2000109883A (en) * 1998-10-06 2000-04-18 Ronfoodo:Kk Production of fatty acid alkyl ester from oil or fat
JP2002060372A (en) * 2000-06-19 2002-02-26 Loders Croklaan Bv Conjugated linolate
JP2002308825A (en) * 2001-04-12 2002-10-23 Rebo International:Kk Method for producing fatty acid alkyl ester
WO2003106604A1 (en) * 2002-06-13 2003-12-24 株式会社京都ロンフォード Process for producing fatty acid alkyl ester composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224121A (en) * 2006-02-22 2007-09-06 Asahi Kasei Corp Method of manufacturing fuel for diesel engine
DE102006047580A1 (en) * 2006-09-13 2008-03-27 Helmut KÖRBER Purifying natural fat and oil-based fatty acid alkyl esters, especially biodiesel, by contacting with sodium-, potassium- and/or ammonium formate as absorbent

Also Published As

Publication number Publication date
JP5066325B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
Veljković et al. Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification
JP2008231345A (en) Method for producing biodiesel fuel
US20090131711A1 (en) Single-stage esterification of oils and fats
JP2005350632A (en) Method for producing biodiesel fuel
JP2008274030A (en) Method for producing biodiesel fuel
US8624048B2 (en) Method of producing alkyl esters from vegetable or animal oil and an aliphatic monoalcohol with fixed-bed hot purification
JP4078383B1 (en) Method for producing biodiesel fuel
WO2006016492A1 (en) Process for production of biodiesel fuel compositions and equipment therefor
JP2008031257A (en) Method for producing diesel engine fuel
Echim et al. Production of biodiesel from side-stream refining products
JP5066325B2 (en) Method for producing fatty acid alkyl ester
JP5454836B2 (en) Method for producing fatty acid monoester product using regenerated solid acid catalyst
JP3934630B2 (en) Process for producing biodiesel fuel from acidic oils and fats
JP2009040979A (en) High speed production of methanol extraction type biodiesel fuel with liquefied dimethyl ether
JP5238147B2 (en) Tall fatty acid ester, method for producing the same, and use thereof
JP2005350630A (en) Technique for producing low-exhaust type biodiesel fuel
JP2009275127A (en) Method for manufacturing biodiesel fuel by cleaning with glycerol
JP2009114289A (en) Method for producing fatty acid ester
JP2009161776A (en) Method for producing biodiesel fuel and device for producing the same
Banga et al. Optimization of parameters for purification of jatropha curcas based biodiesel using organic adsorbents
JP3842273B2 (en) Process for producing fatty acid alkyl ester composition
JP2009120847A (en) Process for producing biodiesel fuel
JP2009114272A (en) Method of manufacturing fatty acid monoesterified product by solid acid catalyst
Fonseca et al. Advanced techniques in soybean biodiesel
JP5313482B2 (en) Process for producing fatty acid alkyl ester and / or glycerin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees