JP5238147B2 - Tall fatty acid ester, method for producing the same, and use thereof - Google Patents

Tall fatty acid ester, method for producing the same, and use thereof Download PDF

Info

Publication number
JP5238147B2
JP5238147B2 JP2006208803A JP2006208803A JP5238147B2 JP 5238147 B2 JP5238147 B2 JP 5238147B2 JP 2006208803 A JP2006208803 A JP 2006208803A JP 2006208803 A JP2006208803 A JP 2006208803A JP 5238147 B2 JP5238147 B2 JP 5238147B2
Authority
JP
Japan
Prior art keywords
fatty acid
tall fatty
acid ester
tall
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006208803A
Other languages
Japanese (ja)
Other versions
JP2008031362A (en
Inventor
秀司 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP2006208803A priority Critical patent/JP5238147B2/en
Publication of JP2008031362A publication Critical patent/JP2008031362A/en
Application granted granted Critical
Publication of JP5238147B2 publication Critical patent/JP5238147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Description

本発明は、バイオディーゼル燃料等に利用しうるトール脂肪酸エステルとその製造方法に関し、さらに該トール脂肪酸エステルを用いたバイオディーゼル燃料に関する。   The present invention relates to a tall fatty acid ester that can be used for biodiesel fuel and the like and a method for producing the same, and further relates to a biodiesel fuel using the tall fatty acid ester.

近年、地球環境保全に関する意識が高まるなか、特に地球温暖化を防止する対策の実行が求められている。具体的には、1997年に開催された地球温暖化防止京都会議において我国は温室効果の高い二酸化炭素の排出量を1990年実績比で6%削減することを国際公約しており、この目標を達成するために、省エネルギーの一層の推進および新エネルギーの開発利用を促進する法律が成立している。   In recent years, as awareness of global environmental conservation has increased, it is particularly necessary to implement measures to prevent global warming. Specifically, at the Kyoto Conference on Global Warming Prevention held in 1997, Japan has made an international commitment to reduce high-carbon dioxide emissions by 6% compared to the 1990 level. To achieve this, legislation has been enacted to further promote energy conservation and promote the development and use of new energy.

植物由来のバイオマスは、カーボンニュートラルの考え方を基礎として新エネルギー法により規定されたエネルギー資源であり、植物油脂類から製造される脂肪酸メチルエステルがバイオディーゼル燃料として実用化されつつある。例えば、資源の有効利用を主目的として、脂肪酸グリセリンエステルを主成分とする油脂類とメタノールとを触媒の存在下で反応させて得られる脂肪酸メチルエステルをバイオディーゼル燃料に利用することが検討されている。バイオディーゼル燃料を燃料油とした場合、利点として、炭酸ガス排出削減効果、パティキュレート(PM)・黒煙の減少効果、硫黄酸化物の削減効果などが期待される。   Plant-derived biomass is an energy resource defined by the New Energy Law based on the concept of carbon neutral, and fatty acid methyl esters produced from vegetable oils and fats are being put into practical use as biodiesel fuel. For example, for the effective use of resources, the use of fatty acid methyl esters obtained by reacting fats and oils mainly composed of fatty acid glycerin esters with methanol in the presence of a catalyst has been studied. Yes. When biodiesel fuel is used as the fuel oil, the carbon dioxide emission reduction effect, the particulate (PM) / black smoke reduction effect, the sulfur oxide reduction effect, etc. are expected as advantages.

従来から、脂肪酸エステルは、遊離脂肪酸と低級アルコールとの直接エステル化反応により得られることが知られている(非特許文献1参照)。このようなエステル化反応は、生成する水による加水分解が起こるために可逆反応となり、化学平衡を生成系側に移行させるためには、原料として用いるアルコールの量を過剰にすることや、生成水を効率よく反応系外に取り出すことなどの工夫が必要になる。また、遊離脂肪酸と低級アルコールとのエステル化反応には、反応触媒として、一般に酸やアルカリが使用されるが、反応後の分離工程を簡略化するためには、イオン交換樹脂やヘテロポリ酸担持シリカゲルなどの固体酸触媒あるいは酵素(リパーゼ)等も使用されることがある。   Conventionally, it is known that a fatty acid ester is obtained by a direct esterification reaction between a free fatty acid and a lower alcohol (see Non-Patent Document 1). Such esterification reaction is a reversible reaction due to hydrolysis by the water produced, and in order to shift the chemical equilibrium to the production system side, the amount of alcohol used as a raw material is excessive, It is necessary to devise such as efficiently removing the product from the reaction system. In the esterification reaction between a free fatty acid and a lower alcohol, an acid or an alkali is generally used as a reaction catalyst. In order to simplify the separation step after the reaction, an ion exchange resin or a heteropolyacid-supported silica gel is used. A solid acid catalyst such as, or an enzyme (lipase) may also be used.

しかしながら、遊離脂肪酸と低級アルコールとから脂肪酸エステルを生成する場合、一般的な条件ではエステル化反応を100%完結させることは困難である。例えば、前述したような反応触媒を用い、かつ生成水を反応系外に排出させる操作を行っても、反応を100%完結させるには多大な反応時間を要することになる。さらに、生じたエステルの精製方法として、アルカリ水溶液で水洗することにより未反応の脂肪酸を除去する方法が知られているが、この場合にはアルカリ廃水が発生し、しかもその精製処理には多大な労力がかかるという問題があった。また、反応触媒は反応液中で均一状態となる場合が多く、分離するための煩雑な工程が必要になるという問題もある。これらの問題はいずれも、脂肪酸エステルのコストの高騰を招く要因となる。バイオディーゼル燃料の実用化には、品質確保は勿論のこと、汎用化を目指すには低コストを実現することが必要不可欠である。   However, when producing a fatty acid ester from a free fatty acid and a lower alcohol, it is difficult to complete the esterification reaction 100% under general conditions. For example, even if the reaction catalyst as described above is used and the generated water is discharged from the reaction system, a long reaction time is required to complete the reaction 100%. Furthermore, as a method for purifying the resulting ester, a method of removing unreacted fatty acids by washing with an aqueous alkaline solution is known, but in this case, alkaline waste water is generated, and the purification process requires a large amount. There was a problem that labor was required. In addition, the reaction catalyst is often in a uniform state in the reaction solution, and there is a problem that a complicated process for separation is required. All of these problems cause a rise in the cost of fatty acid esters. For practical use of biodiesel fuel, it is indispensable to realize low cost in order to ensure general quality as well as to ensure quality.

ところで、クラフト法パルプ化工程において発生する粗トール油には、木材の油脂がパルプ蒸解工程で加水分解されて生成した脂肪酸や、木材中に遊離酸の形で存在するロジン酸および多種類の中性物質が含まれている。これらトール油成分は連続精留操作によりそれぞれ分離され、ロジン(松脂)およびトール脂肪酸が製造されることとなる。したがって、トール脂肪酸は、天然油脂(植物油脂、動物油脂、魚油など)の加水分解により得られる一般的な脂肪酸に比べて安価であり、バイオディーゼル燃料に用いる脂肪酸エステルの原料として有用であると言える。   By the way, crude tall oil generated in the kraft pulping process includes fatty acids produced by hydrolyzing wood fats and oils in the pulp cooking process, rosin acid present in the form of free acid in wood, and various types of oils. Contains sexual substances. These tall oil components are separated by continuous rectification operation, and rosin (pine resin) and tall fatty acid are produced. Therefore, tall fatty acids are cheaper than general fatty acids obtained by hydrolysis of natural fats and oils (vegetable fats, animal fats, fish oils, etc.) and can be said to be useful as raw materials for fatty acid esters used in biodiesel fuels. .

しかしながら、クラフト法パルプ化工程では蒸解時に硫化ナトリウムを使用するため、植物成分とイオウが反応して有機性イオウ化合物を生じる。この有機性イオウ化合物は粗トール油の精留によっては完全に分離されず、結果としてトール脂肪酸には、通常、イオウ分が数百ppm程度残留する。このようなイオウ分濃度でイオウ化合物を含んだままバイオディーゼル燃料に供すると、燃焼によって硫黄酸化物(SOX)を発生することになる。したがって、これまで、バイオディーゼル燃料に用いる脂肪酸エステルの原料としてトール脂肪酸を利用することは困難であった。 However, since kraft process pulping uses sodium sulfide during cooking, plant components and sulfur react to produce organic sulfur compounds. This organic sulfur compound is not completely separated by rectification of crude tall oil, and as a result, the sulfur content usually remains in the order of several hundred ppm in tall fatty acids. When subjected to such a sulfur concentration in biodiesel fuels still contains sulfur compounds, will generate sulfur oxides (SO X) by combustion. Therefore, it has been difficult to use tall fatty acids as raw materials for fatty acid esters used in biodiesel fuels.

また、トール脂肪酸は、通常、その組成中にロジン酸を1〜5質量%程度含有している。このロジン酸のカルボン酸基は2級の構造であるので、反応性が低く、トール脂肪酸と低級アルコールとをエステル化する際に大部分が未反応のまま残存し、生成するエステルの酸価を一層高める原因となっている。酸価が高いまま(すなわち、カルボン酸基が多く残留したまま)燃料に供すると、燃焼機器類の腐食など好ましくない現象を引き起こすことになるので、この点でもやはり、トール脂肪酸をバイオディーゼル燃料に用いる脂肪酸エステルの原料とすることには無理があった。なお、トール脂肪酸は、通常、ロジン酸のほかにもステロイド、ジテルペン、トリテルペン、ワックスアルコール、プレノール、ポリフェノール、スチルベンなどの中性物質を1〜10質量%程度含有している。   Further, tall fatty acids usually contain about 1 to 5% by mass of rosin acid in the composition. Since the carboxylic acid group of this rosin acid has a secondary structure, the reactivity is low, and when esterifying a tall fatty acid and a lower alcohol, most of them remain unreacted, and the acid value of the resulting ester is reduced. This is the cause of further increase. If it is used for fuel with a high acid value (ie, with many carboxylic acid groups remaining), it will cause undesirable phenomena such as corrosion of combustion equipment. It was impossible to use as a raw material for the fatty acid ester used. In addition, tall fatty acids usually contain about 1 to 10% by mass of a neutral substance such as steroid, diterpene, triterpene, wax alcohol, prenol, polyphenol, stilbene in addition to rosin acid.

なお、一般に、油脂や脂肪酸エステルの精製方法として、油脂を白土で精製する方法(非特許文献2参照)、脂肪酸エステルを白土、アルミナ、シリカゲル、活性炭などで吸着精製する方法(特許文献1、2参照)等が知られている。しかしながら、これらの精製方法をトール酸エステルに適用した例はこれまで報告されていない。
特開平6−65591号公報 特開平7−233121号公報 「新版 脂肪酸化学」p161、幸書房(1981) 「新版 脂肪酸化学」p13、幸書房(1981)
In general, as a method for purifying fats and oils and fatty acid esters, a method for purifying fats and oils with clay (see Non-patent Document 2), a method for adsorbing and purifying fatty acid esters with clay, alumina, silica gel, activated carbon, and the like (Patent Documents 1 and 2). For example). However, no examples of applying these purification methods to toluic acid esters have been reported so far.
JP-A-6-65591 JP 7-233121 A "New Edition Fatty Acid Chemistry" p161, Koshobo (1981) “New Edition Fatty Acid Chemistry” p13, Koshobo (1981)

本発明の課題は、低酸価でイオウ分が少ないというバイオディーゼル燃料に適した特性を有するとともに安価でもあるトール脂肪酸エステルと、該トール脂肪酸エステルを特別な装置を使用せずに簡単な操作で製造する製造方法と、該トール脂肪酸エステルを用いたバイオディーゼル燃料とを提供することである。   An object of the present invention is to provide a tall fatty acid ester that has characteristics suitable for biodiesel fuel with a low acid value and low sulfur content and is inexpensive, and the tall fatty acid ester can be easily operated without using a special apparatus. The manufacturing method to manufacture and the biodiesel fuel using this tall fatty acid ester are provided.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、比較的安価なトール脂肪酸と低級アルコールとを脂肪酸エステルの原料として用いれば、バイオディーゼル燃料として汎用される可能性を有する程度の低コストを達成できるのではないかと考えた。ただし、トール脂肪酸を原料としたトール脂肪酸エステルは、バイオディーゼル燃料としては品質(具体的には、酸価およびイオウ分)が不充分であったので、コストを高騰させることなくこれを改善する方法を検討した。そして、トール脂肪酸と低級アルコールとのエステル化で得られた反応生成物から未反応のトール脂肪酸やロジン酸、低級アルコールおよび中性物質等からなる不純物(特に酸価を上げるロジン酸およびイオウ分)等をコストをかけずに効率良く取り除くには、トール脂肪酸エステルと前述した不純物等との極性の違いを利用し、これら不純物等を無機系吸着剤に吸着させて分離する方法が、種々ある精製方法の中でも最も有効であることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have a possibility of being widely used as a biodiesel fuel if relatively inexpensive tall fatty acids and lower alcohols are used as raw materials for fatty acid esters. I thought that I could achieve the low cost. However, since the tall fatty acid ester made from tall fatty acid has insufficient quality (specifically, acid value and sulfur content) as a biodiesel fuel, a method for improving this without increasing the cost. It was investigated. Impurities consisting of unreacted tall fatty acids, rosin acids, lower alcohols, neutral substances, etc. (especially rosin acids and sulfur components that increase the acid value) from the reaction products obtained by esterification of tall fatty acids and lower alcohols In order to efficiently remove the impurities, etc. without cost, there are various purification methods utilizing the difference in polarity between the tall fatty acid ester and the impurities described above, and adsorbing these impurities etc. on an inorganic adsorbent. The present invention was completed by finding the most effective method.

すなわち、本発明は以下の構成からなる。
(1)トール脂肪酸と低級アルコールとを原料として得られるトール脂肪酸エステルであって、酸価が0.5mgKOH/g未満、イオウ分が50質量ppm以下である、ことを特徴とするトール脂肪酸エステル。
(2)トール脂肪酸と低級アルコールとを原料としエステル化反応によりトール脂肪酸エステル反応液を得、この反応液を無機系吸着剤が充填された吸着カラムに通液させる、ことを特徴とするトール脂肪酸エステルの製造方法。
(3)前記トール脂肪酸エステル反応液を、無機系吸着剤100質量部に対して100質量部以下の割合で、かつ0.01〜1.00mL/cm2・分の溶出速度で通液させる前記(2)記載のトール脂肪酸エステルの製造方法。
(4)トール脂肪酸と低級アルコールとを原料としエステル化反応によりトール脂肪酸エステル反応液を得、この反応液に無機系吸着剤を加えて攪拌する、ことを特徴とするトール脂肪酸エステルの製造方法。
(5)前記トール脂肪酸エステル反応液が無機系吸着剤100質量部に対して100質量部以下となる割合で、無機系吸着剤を加える前記(4)記載のトール脂肪酸エステルの製造方法。
(6)原料とする前記トール油脂肪酸は、1〜5質量%のロジン酸を含むものである前記(2)〜(5)のいずれかに記載のトール脂肪酸エステルの製造方法。
(7)原料とする前記低級アルコールは、炭素数1〜4のアルキルアルコールである前記(2)〜(6)のいずれかに記載のトール脂肪酸エステルの製造方法。
(8)前記無機系吸着剤は、活性炭、ゼオライト、活性アルミナ、活性白土およびシリカゲルからなる群より選ばれる少なくとも1種である前記(2)〜(7)のいずれかに記載のトール脂肪酸エステルの製造方法。
(9)前記(1)記載のトール脂肪酸エステルを含む、ことを特徴とするバイオディーゼル燃料。
That is, the present invention has the following configuration.
(1) A tall fatty acid ester obtained from tall fatty acid and a lower alcohol as raw materials, having an acid value of less than 0.5 mg KOH / g and a sulfur content of 50 ppm by mass or less.
(2) A tall fatty acid ester reaction solution is obtained by esterification using tall fatty acid and lower alcohol as raw materials, and the reaction solution is passed through an adsorption column filled with an inorganic adsorbent. Ester production method.
(3) The said tall fatty acid ester reaction liquid is made to flow at a rate of 100 parts by mass or less with respect to 100 parts by mass of the inorganic adsorbent and at an elution rate of 0.01 to 1.00 mL / cm 2 · min. (2) The manufacturing method of the tall fatty acid ester as described.
(4) A method for producing a tall fatty acid ester, comprising using a tall fatty acid and a lower alcohol as raw materials to obtain a tall fatty acid ester reaction liquid by an esterification reaction, adding an inorganic adsorbent to the reaction liquid and stirring the reaction liquid.
(5) The method for producing tall fatty acid ester according to (4), wherein the inorganic adsorbent is added at a ratio such that the tall fatty acid ester reaction solution is 100 parts by mass or less with respect to 100 parts by mass of the inorganic adsorbent.
(6) The said tall oil fatty acid used as a raw material is a manufacturing method of the tall fatty acid ester in any one of said (2)-(5) which contains 1-5 mass% rosin acid.
(7) The method for producing a tall fatty acid ester according to any one of (2) to (6), wherein the lower alcohol used as a raw material is an alkyl alcohol having 1 to 4 carbon atoms.
(8) The inorganic fatty adsorbent according to any one of (2) to (7), wherein the inorganic adsorbent is at least one selected from the group consisting of activated carbon, zeolite, activated alumina, activated clay, and silica gel. Production method.
(9) A biodiesel fuel comprising the tall fatty acid ester according to (1).

本発明によれば、低酸価でイオウ分が少ないというバイオディーゼル燃料に適した特性を有するとともに安価でもあるトール脂肪酸エステルを、特別な装置を使用せずに簡単な操作で製造することができる、という効果がある。また、本発明のバイオディーゼル燃料は、汎用される可能性を有する程度の低コストを達成できるものであり、しかも低酸価でイオウ分が少ないというバイオディーゼル燃料に適した特性を有する。   According to the present invention, a tall fatty acid ester having characteristics suitable for biodiesel fuel having a low acid value and low sulfur content and being inexpensive can be produced by a simple operation without using a special apparatus. There is an effect that. In addition, the biodiesel fuel of the present invention can achieve low cost to the extent that it can be widely used, and has characteristics suitable for biodiesel fuel with low acid value and low sulfur content.

以下、本発明にかかるトール脂肪酸エステル、トール脂肪酸エステルの製造方法およびバイオディーゼル燃料の一実施形態について詳細に説明する。
本発明のトール脂肪酸エステルは、トール脂肪酸と低級アルコールとを原料として得られるものであり、具体的には、後述する本発明のトール脂肪酸エステルの製造方法によって得ることができる。ただし、本発明のトール脂肪酸エステルは、後述する本発明の製造方法で得られたものに限定されるわけではない。
Hereinafter, an embodiment of a tall fatty acid ester, a method for producing a tall fatty acid ester, and a biodiesel fuel according to the present invention will be described in detail.
The tall fatty acid ester of the present invention is obtained using a tall fatty acid and a lower alcohol as raw materials. Specifically, it can be obtained by the method for producing the tall fatty acid ester of the present invention described later. However, the tall fatty acid ester of the present invention is not limited to those obtained by the production method of the present invention described later.

本発明のトール脂肪酸エステルは、酸価が0.5mgKOH/g未満であり、イオウ分が50質量ppm以下である。イオウ分は、40質量ppm以下であるのが好ましく、10質量ppm以下であるのがより好ましい。酸価が0.5mgKOH/g以上であると、長期間の使用において燃焼機器類の腐食原因となる。他方、イオウ分が50質量ppmを超えると、軽油のJIS規格値を超えることとなる。なお、本発明における酸価およびイオウ分は、実施例で後述する方法により測定されるものである。   The tall fatty acid ester of the present invention has an acid value of less than 0.5 mg KOH / g and a sulfur content of 50 mass ppm or less. The sulfur content is preferably 40 ppm by mass or less, and more preferably 10 ppm by mass or less. If the acid value is 0.5 mgKOH / g or more, it will cause corrosion of combustion equipment over a long period of use. On the other hand, if the sulfur content exceeds 50 mass ppm, the JIS standard value of light oil will be exceeded. In addition, the acid value and sulfur content in this invention are measured by the method mentioned later in an Example.

本発明におけるトール脂肪酸は、粗トール油を精留に付した際の留分として得られるものである。トール脂肪酸は、通常、酸価(中和価)が180〜195mgKOH/gであり、組成としては、脂肪族カルボン酸(オレイン酸、リノール酸など)を主成分とし、若干のロジン酸および中性成分が含まれる。特に、本発明においては、1〜5質量%のロジン酸を含むトール脂肪酸を原料とするのが好ましい。なぜなら、この場合、通常は酸価が上がるところ、本発明においては前記範囲の低い酸価を維持できる、という効果が有意になるからである。トール脂肪酸は1種のみであってもよいし、2種以上であってもよい。なお、粗トール油に含まれる脂肪酸およびロジン酸を真空蒸留により分離し各々を工業原料に利用する分野はネーバルストアーズと呼ばれる。   The tall fatty acid in the present invention is obtained as a fraction when crude tall oil is subjected to rectification. Tall fatty acids usually have an acid value (neutralization value) of 180 to 195 mg KOH / g, and the composition is mainly composed of aliphatic carboxylic acids (oleic acid, linoleic acid, etc.), and some rosin acids and neutrals. Ingredients included. In particular, in the present invention, it is preferable to use a tall fatty acid containing 1 to 5% by mass of rosin acid as a raw material. This is because, in this case, the acid value usually increases, but in the present invention, the effect that the acid value within the above range can be maintained becomes significant. Only one type of tall fatty acid may be used, or two or more types may be used. In addition, the field | area which isolate | separates the fatty acid and rosin acid contained in crude tall oil by vacuum distillation, and utilizes each as an industrial raw material is called naval store.

本発明における低級アルコールとしては、特に制限はないが、例えば、メタノール、エタノール、プロパノール、ブタノール等の炭素数1〜4のアルキルアルコールが、得られるトール脂肪酸エステルの燃料特性の点で好ましく挙げられる。低級アルコールは1種のみであってもよいし、2種以上であってもよい。
特に、低級アルコールの炭素数が1〜3のアルコールは水と広い割合で混合するために反応生成水の分離が困難となり、しかも沸点が低いので反応温度も低くなり、反応速度が不十分となる。炭素数が大きくなると生成水の分離や反応速度の面では有利であるが、それ自体の価格も高くなる。これらの理由により、常圧での回分式反応においてエステル化反応を行う際には低級アルコールの炭素数は4(ブタノール)が好ましい。
Although there is no restriction | limiting in particular as a lower alcohol in this invention, For example, C1-C4 alkyl alcohols, such as methanol, ethanol, propanol, butanol, are mentioned preferably at the point of the fuel characteristic of the obtained tall fatty acid ester. Only one type of lower alcohol may be used, or two or more types may be used.
In particular, the alcohol having 1 to 3 carbon atoms of the lower alcohol is mixed with water in a wide proportion, so that it is difficult to separate the reaction product water, and since the boiling point is low, the reaction temperature becomes low and the reaction rate becomes insufficient. . Increasing the number of carbon atoms is advantageous in terms of separation of produced water and reaction rate, but also increases the price of itself. For these reasons, the carbon number of the lower alcohol is preferably 4 (butanol) when performing the esterification reaction in a batch reaction at normal pressure.

本発明において原料として用いるトール脂肪酸と低級アルコールとの使用割合は、特に限定されないが、低級アルコールが過剰となるようにするのが望ましく、具体的には、トール脂肪酸:低級アルコール=1:1〜5(モル比)の範囲が好ましい。低級アルコールの割合が前記範囲よりも低い場合、反応の達成率が不充分となるおそれがあり、一方、低級アルコールの割合が前記範囲よりも高い場合、反応中のアルコール留出量が大きくなり、その結果、アルコールを回収再利用するにしても経済的に不利となり、トール脂肪酸を原料とすることにより低コストを実現できるという本発明の効果が損なわれる傾向がある。   The proportion of tall fatty acid and lower alcohol used as raw materials in the present invention is not particularly limited, but it is desirable that the lower alcohol be excessive. Specifically, tall fatty acid: lower alcohol = 1: 1 to 1. A range of 5 (molar ratio) is preferred. When the proportion of the lower alcohol is lower than the above range, the achievement rate of the reaction may be insufficient. On the other hand, when the proportion of the lower alcohol is higher than the above range, the amount of alcohol distilling during the reaction increases. As a result, even if alcohol is recovered and reused, it is economically disadvantageous, and the effect of the present invention that low costs can be realized by using tall fatty acid as a raw material tends to be impaired.

本発明のトール脂肪酸エステルの製造方法においては、トール脂肪酸と低級アルコールとを原料としエステル化反応によりトール脂肪酸エステル反応液を得る。
本発明の製造方法において用いられるトール脂肪酸および低級アルコールについては、前述した通りである。また、トール脂肪酸と低級アルコールの使用割合についても前述した通りである。
In the method for producing a tall fatty acid ester of the present invention, a tall fatty acid ester reaction solution is obtained by an esterification reaction using tall fatty acids and lower alcohols as raw materials.
The tall fatty acid and lower alcohol used in the production method of the present invention are as described above. Further, the use ratio of tall fatty acid and lower alcohol is as described above.

前記エステル化反応は、まず、トール脂肪酸と低級アルコールと、必要に応じて溶剤(例えば、トルエン、キシレン等)を所定の割合で混合し、適当な反応触媒を加えて加熱することにより行なう。   The esterification reaction is carried out by first mixing tall fatty acid, lower alcohol and, if necessary, a solvent (for example, toluene, xylene, etc.) at a predetermined ratio, adding an appropriate reaction catalyst and heating.

エステル化反応で用いられる触媒については、特に制限はなく、例えば、酸およびアルカリ、さらには固体触媒や酵素(リパーゼ)など公知の触媒から適宜選択すればよい。本発明においては、特に、反応活性及び反応後の分離が容易であるなどの点から、エステル化反応を後述する回分式で行なう場合にはパラトルエンスルホン酸が好ましく、エステル化反応を後述する連続式で行なう場合には硫酸化ジルコニアが好ましい。   The catalyst used in the esterification reaction is not particularly limited, and may be appropriately selected from known catalysts such as acids and alkalis, and further solid catalysts and enzymes (lipases). In the present invention, paratoluenesulfonic acid is preferred when the esterification reaction is carried out in a batch system described later, particularly from the viewpoint of easy reaction activity and separation after the reaction. When carried out by the formula, sulfated zirconia is preferred.

前記エステル化反応の反応装置の形式としては、回分式(バッチ式)または流通式反応器を用いた連続式が採用できる。エステル化反応を回分式で行なう場合、反応温度は高いほど反応速度が速くなり好ましいが、常圧での回分操作では還流する低級アルコールまたは溶剤の沸点により反応温度が制約される。他方、連続式のエステル化反応については、バイオディーゼル燃料として公知の脂肪酸メチルエステルを製造する際に、通常、加圧下での連続式反応が選択されている。この場合には効率的に生成水を反応系外に排出するために特殊な脱水装置が必要となるので、設備費用負担面では不利となる。しかし、本発明においては、固体触媒を充填した連続式反応器を使用して2段階反応を行うことで、トール脂肪酸エステルの残存酸価を次工程での精製可能な範囲にすることができる。   As a type of the reaction apparatus for the esterification reaction, a batch type (batch type) or a continuous type using a flow type reactor can be adopted. When the esterification reaction is carried out batchwise, the higher the reaction temperature, the faster the reaction rate and the better. However, in the batch operation at normal pressure, the reaction temperature is limited by the boiling point of the refluxing lower alcohol or solvent. On the other hand, for the continuous esterification reaction, a continuous reaction under pressure is usually selected when producing a known fatty acid methyl ester as a biodiesel fuel. In this case, a special dehydrator is required to efficiently discharge the produced water out of the reaction system, which is disadvantageous in terms of equipment cost burden. However, in the present invention, by performing a two-stage reaction using a continuous reactor filled with a solid catalyst, the residual acid value of the tall fatty acid ester can be within a purifiable range in the next step.

本発明のトール脂肪酸エステルの製造方法においては、前記エステル化反応で得られたトール脂肪酸エステル反応液に対して、(I)無機系吸着剤が充填された吸着カラムに通液させる処理を施すか、もしくは、(II)無機系吸着剤を加えて攪拌する処理を施す、ものである。この(I)または(II)により、トール脂肪酸エステル反応液に含まれる極性物質(未反応の脂肪酸・樹脂酸、中性成分および反応触媒)を無機系吸着剤に吸着させて除去するのである。(I)、(II)のいずれにしても、トール脂肪酸エステルと極性物質との極性の違いを利用するものであるので、特別な装置を使用せずに、簡単な操作でトール脂肪酸エステルを製造することができる。
前記(I)または(II)を行う際には、あらかじめエステル反応に続いて、蒸留操作などにより残存する低級アルコールを除去させておくことが好ましい。低級アルコールが残存していると、エステル反応液中の極性物質が無機系吸着剤に吸着されることを妨害するからである。
In the method for producing a tall fatty acid ester of the present invention, the tall fatty acid ester reaction solution obtained by the esterification reaction is subjected to (I) a treatment for passing through an adsorption column filled with an inorganic adsorbent. Or (II) An inorganic adsorbent is added and stirred. By this (I) or (II), polar substances (unreacted fatty acid / resin acid, neutral component and reaction catalyst) contained in the tall fatty acid ester reaction liquid are adsorbed and removed by the inorganic adsorbent. Regardless of (I) or (II), since the difference in polarity between the tall fatty acid ester and the polar substance is utilized, the tall fatty acid ester is produced by a simple operation without using a special apparatus. can do.
When performing (I) or (II), it is preferable to remove the remaining lower alcohol by distillation operation or the like in advance after the ester reaction. This is because if the lower alcohol remains, the polar substance in the ester reaction solution is prevented from being adsorbed by the inorganic adsorbent.

前記無機系吸着剤は、極性物質を吸着することができる無機系吸着剤であれば、特に制限されるものではないが、活性炭、ゼオライト、活性アルミナ、活性白土およびシリカゲルからなる群より選ばれる少なくとも1種であるのが、極性物質に対する吸着性の点で好ましい。これらの中でも、極性物質に対する分離性能および収率の点で、多孔質シリカゲルが特に好ましい。好ましく用いられるシリカゲルの物性は、例えば、細孔径は5〜10nm、細孔容積は0.1〜2.0mL/g、比表面積は300〜600m2/g、粒度は45〜75μmが65〜85%以上、75μm残分が1〜10%以下程度である。このような物性を有する多孔質シリカゲルの具体例として、例えば、和光純薬工業社製の商品名「ワコーゲルC300」等が挙げられる。   The inorganic adsorbent is not particularly limited as long as it is an inorganic adsorbent capable of adsorbing a polar substance, but at least selected from the group consisting of activated carbon, zeolite, activated alumina, activated clay and silica gel. One type is preferable in terms of adsorptivity to polar substances. Among these, porous silica gel is particularly preferable in terms of separation performance and yield with respect to polar substances. The physical properties of the silica gel preferably used include, for example, a pore diameter of 5 to 10 nm, a pore volume of 0.1 to 2.0 mL / g, a specific surface area of 300 to 600 m <2> / g, and a particle size of 45 to 75 [mu] m of 65 to 85%. As described above, the 75 μm residue is about 1 to 10% or less. As a specific example of the porous silica gel having such physical properties, for example, trade name “Wakogel C300” manufactured by Wako Pure Chemical Industries, Ltd. may be mentioned.

前記(I)においては、前記トール脂肪酸エステル反応液を、無機系吸着剤100質量部に対して100質量部以下の割合で、かつ0.01〜1.00mL/cm2・分の溶出速度で通液させることが好ましい。これにより、トール脂肪酸エステル反応液に含まれる極性物質を効率よく無機系吸着剤に吸着させることができる。トール脂肪酸エステル反応液の量が無機系吸着剤100質量部に対して100質量部を超えると、極性物質の全量が無機系吸着剤に吸着されないおそれがある。また、溶出速度が0.01mL/cm2・分よりも遅いと、作業効率が低下し、一方、1.00mL/cm2・分より速いと、極性物質が無機系吸着剤に吸着されにくくなるので好ましくない。 In the above (I), the tall fatty acid ester reaction liquid is added at a rate of 100 parts by mass or less with respect to 100 parts by mass of the inorganic adsorbent and at an elution rate of 0.01 to 1.00 mL / cm 2 · min. It is preferable to let the liquid pass. Thereby, the polar substance contained in the tall fatty acid ester reaction liquid can be efficiently adsorbed to the inorganic adsorbent. When the amount of the tall fatty acid ester reaction solution exceeds 100 parts by mass with respect to 100 parts by mass of the inorganic adsorbent, the total amount of the polar substance may not be adsorbed by the inorganic adsorbent. In addition, when the elution rate is slower than 0.01 mL / cm 2 · min, the working efficiency is lowered. On the other hand, when the elution rate is faster than 1.00 mL / cm 2 · min, the polar substance is hardly absorbed by the inorganic adsorbent. Therefore, it is not preferable.

前記(I)においては、必要に応じて、トール脂肪酸エステル反応液に非極性溶剤(例えば、ヘキサン、ヘプタンなどの飽和炭化水素系溶剤)を混合し、混合溶液として通液させることもできる。これにより、極性物質の分離除去を促進するという効果が期待できる。   In the above (I), if necessary, a non-polar solvent (for example, a saturated hydrocarbon solvent such as hexane or heptane) may be mixed with the tall fatty acid ester reaction solution and passed as a mixed solution. Thereby, the effect of promoting the separation and removal of polar substances can be expected.

また、前記(I)においては、無機系吸着剤が充填された吸着カラムにトール脂肪酸エステル反応液を通液させた後、さらに所定量の非極性溶剤(例えば、前述と同様)を通液するのが好ましい。これにより、吸着カラム内に残存しているトール脂肪酸エステルを、吸着カラムから溶出させることができる。通液させる非極性溶剤の量は、残存しているトール脂肪酸エステルを溶出させることができる量であればよく、特に限定されるものではない。   In (I) above, after a tall fatty acid ester reaction solution is passed through an adsorption column filled with an inorganic adsorbent, a predetermined amount of a nonpolar solvent (for example, the same as described above) is further passed. Is preferred. Thereby, the tall fatty acid ester remaining in the adsorption column can be eluted from the adsorption column. The amount of the nonpolar solvent to be passed is not particularly limited as long as it is an amount capable of eluting the remaining tall fatty acid ester.

前記(II)を行なう場合、具体的には、反応器に、無機系吸着剤、トール脂肪酸エステル反応液、および必要に応じて非極性溶剤(例えば、前述と同様)を入れて攪拌すればよい。非極性溶剤を加えることにより、極性物質の分離除去を促進するという効果が期待できる。   When performing the above (II), specifically, an inorganic adsorbent, a tall fatty acid ester reaction liquid, and, if necessary, a nonpolar solvent (for example, the same as described above) may be added to the reactor and stirred. . By adding a nonpolar solvent, the effect of promoting the separation and removal of polar substances can be expected.

前記(II)においては、前記トール脂肪酸エステル反応液を、無機系吸着剤100質量部に対して100質量部以下となる割合で、無機系吸着剤を加えることが好ましい。これにより、トール脂肪酸エステル反応液に含まれる極性物質を効率よく無機系吸着剤に吸着させることができる。トール脂肪酸エステル反応液の量が無機系吸着剤100質量部に対して100質量部を超えると、極性物質の全量が無機系吸着剤に吸着されないおそれがある。   In said (II), it is preferable to add an inorganic adsorbent to the said tall fatty acid ester reaction liquid in the ratio used as 100 mass parts or less with respect to 100 mass parts of inorganic adsorbents. Thereby, the polar substance contained in the tall fatty acid ester reaction liquid can be efficiently adsorbed to the inorganic adsorbent. When the amount of the tall fatty acid ester reaction solution exceeds 100 parts by mass with respect to 100 parts by mass of the inorganic adsorbent, the total amount of the polar substance may not be adsorbed by the inorganic adsorbent.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、以下の実施例における酸価およびイオウ分の測定方法は、下記の通りである。
<酸価> JIS−K0070に準じ、電位差滴定法にて測定した。
<イオウ分> JIS−K2541−2に準じ、微量電量滴定式酸化法にて測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to a following example.
In addition, the acid value and the measuring method of a sulfur content in the following Examples are as follows.
<Acid value> It measured by the potentiometric titration method according to JIS-K0070.
<Sulfur content> Measured by a microcoulometric titration method according to JIS-K2541-2.

(実施例1)
攪拌装置、温度計、窒素ガス導入管、リービッヒ冷却器および水抜き管を備えたガラス製4つ口フラスコに、トール脂肪酸(ハリマ化成株式会社製「ハートールFH」;実機のトール油精留プラントより生産されたトール脂肪酸であり、酸価:190mgKOH/g、イオウ分:520質量ppm)300.0gと、ブタノール115.8gと、パラトルエンスルホン酸(試薬特級)1.5gと、キシレン50.0gとを仕込み、キシレン/ブタノール還流下100〜140℃で2時間攪拌し、生成水を水抜き管で排出しつつエステル化反応を行った後、ブタノールおよびキシレンを留去して、トール脂肪酸ブチルエステル反応液380.1gを得た。このトール脂肪酸ブチルエステル反応液の酸価は3.7mgKOH/gであった。
Example 1
In a glass four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube, Liebig condenser and drain tube, tall fatty acid ("Hartol FH" manufactured by Harima Kasei Co., Ltd .; from the actual tall oil rectification plant Tall fatty acid produced, acid value: 190 mgKOH / g, sulfur content: 520 mass ppm) 300.0 g, butanol 115.8 g, paratoluenesulfonic acid (reagent special grade) 1.5 g, and xylene 50.0 g And stirred at 100-140 ° C. for 2 hours under reflux of xylene / butanol, and after performing esterification reaction while discharging the generated water through a drain pipe, butanol and xylene were distilled off to give tall fatty acid butyl ester 380.1 g of a reaction solution was obtained. The acid value of this tall fatty acid butyl ester reaction solution was 3.7 mg KOH / g.

ついで、直径50mmのガラス製の吸着カラムにシリカゲル(和光純薬工業社製「ワコーゲルC300」;細孔径:7nm、細孔容積:0.8mL/g、比表面積:450m2/g、粒度:45〜75μmが75%以上であり、75μm残分が5%以下)300.0gをヘキサン湿式充填法により充填した。この吸着カラムに、上記で得たトール脂肪酸ブチルエステル反応液300.0gを0.25mL/cm2・分の溶出速度で通液して、吸着カラム底部より溶出する溶離液を回収した。さらに、ヘキサン900.0gを前記と同様の溶出速度で通液し、吸着カラム底部より溶出する溶離液を回収して、先に回収した溶離液と混合した。この混合した溶離液からヘキサンを蒸留操作により留去して、トール脂肪酸ブチルエステル282.3gを得た。得られたトール脂肪酸ブチルエステルの酸価は0.4mgKOH/gであり、イオウ分は37質量ppmであった。 Next, silica gel (“Wakogel C300” manufactured by Wako Pure Chemical Industries, Ltd .; pore diameter: 7 nm, pore volume: 0.8 mL / g, specific surface area: 450 m 2 / g, particle size: 45) is placed on a glass adsorption column having a diameter of 50 mm. ˜75 μm is 75% or more and 75 μm residue is 5% or less) 30.0 g was filled by a hexane wet filling method. Through this adsorption column, 300.0 g of the tall fatty acid butyl ester reaction solution obtained above was passed at an elution rate of 0.25 mL / cm 2 · min, and the eluate eluted from the bottom of the adsorption column was recovered. Further, 900.0 g of hexane was passed through at the same elution rate as described above, and the eluent eluted from the bottom of the adsorption column was recovered and mixed with the previously recovered eluent. From this mixed eluent, hexane was distilled off by distillation to obtain 282.3 g of tall fatty acid butyl ester. The acid value of the obtained tall fatty acid butyl ester was 0.4 mgKOH / g, and the sulfur content was 37 mass ppm.

(実施例2)
攪拌装置、温度計、窒素ガス導入管、リービッヒ冷却器および水抜き管を備えたガラス製4つ口フラスコに、トール脂肪酸(ハリマ化成株式会社製「ハートールFH」;実機のトール油精留プラントより生産されたトール脂肪酸であり、酸価:190mgKOH/g、イオウ分:520質量ppm)1000.0gと、メタノール541.9gと、パラトルエンスルホン酸5.0gとを仕込み、メタノール還流下65〜70℃で16時間攪拌し、エステル化反応を行った後、メタノールおよび生成水を留去して、トール脂肪酸メチルエステル反応液1050.9gを得た。このトール脂肪酸メチルエステル反応液の酸価は8.4mgKOH/gであった。
(Example 2)
In a glass four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube, Liebig condenser and drain tube, tall fatty acid ("Hartol FH" manufactured by Harima Kasei Co., Ltd .; from the actual tall oil rectification plant The produced tall fatty acid was charged with 100.0 g of acid value: 190 mg KOH / g, sulfur content: 520 mass ppm), 541.9 g of methanol, and 5.0 g of paratoluenesulfonic acid, and 65-70 under methanol reflux. After stirring for 16 hours at 0 ° C. and carrying out an esterification reaction, methanol and product water were distilled off to obtain 1050.9 g of a tall fatty acid methyl ester reaction solution. The acid value of this tall fatty acid methyl ester reaction solution was 8.4 mgKOH / g.

ついで、直径50mmのガラス製の吸着カラムにシリカゲル(和光純薬工業社製「ワコーゲルC300」;細孔径:7nm、細孔容積:0.8mL/g、比表面積:450m2/g、粒度:45〜75μmが75%以上であり、75μm残分が5%以下)300.0gをヘキサン湿式充填法により充填した。この吸着カラムに、上記で得たトール脂肪酸メチルエステル反応液100.0gを0.25mL/cm2・分の溶出速度で通液して、吸着カラム底部より溶出する溶離液を回収した。さらに、ヘキサン600.0gを前記と同様の溶出速度で通液し、吸着カラム底部より溶出する溶離液を回収して、先に回収した溶離液と混合した。この混合した溶離液からヘキサンを蒸留操作により留去して、トール脂肪酸メチルエステル90.5gを得た。得られたトール脂肪酸メチルエステルの酸価は0.2mgKOH/gであり、イオウ分は39質量ppmであった。 Next, silica gel (“Wakogel C300” manufactured by Wako Pure Chemical Industries, Ltd .; pore diameter: 7 nm, pore volume: 0.8 mL / g, specific surface area: 450 m 2 / g, particle size: 45) is placed on a glass adsorption column having a diameter of 50 mm. ˜75 μm is 75% or more and 75 μm residue is 5% or less) 30.0 g was filled by a hexane wet filling method. Through this adsorption column, 100.0 g of the tall fatty acid methyl ester reaction solution obtained above was passed at an elution rate of 0.25 mL / cm 2 · min, and the eluate eluted from the bottom of the adsorption column was recovered. Further, 600.0 g of hexane was passed at the same elution rate as described above, and the eluent eluted from the bottom of the adsorption column was recovered and mixed with the previously recovered eluent. From this mixed eluent, hexane was distilled off by distillation to obtain 90.5 g of tall fatty acid methyl ester. The acid value of the obtained tall fatty acid methyl ester was 0.2 mgKOH / g, and the sulfur content was 39 mass ppm.

(実施例3)
内径15mm、長さ250mmのステンレス製円筒管に硫酸化ジルコニア(ペレット状試薬)100.0g充填して流通式反応器とした。この反応器の両端に原料供給および反応液流出用のステンレスチューブ(外径1.58mm、内径1.0mm)を装着し、180℃に設定した恒温油槽に円筒管全体を浸した。他方、トール脂肪酸(ハリマ化成株式会社製「ハートールFA−1」;実機のトール油精留プラントより生産されたトール脂肪酸であり、酸価194mgKOH/g、イオウ分100質量ppm)552.0gとメタノール305.6gとを混合した溶液を調製し、これを定量プランジャーポンプにより1mL/分の流量にて前記流通式反応管へ送液した。送液開始2時間後から流通式反応器より流出する反応液を採取し、この反応液からメタノールおよび反応生成水を留去して、トール脂肪酸メチルエステル445.0gを得た(ここまでを第1段反応とし、ここで得られたトール脂肪酸メチルエステルを「第1段反応後トール脂肪酸メチルエステル」と称す)。この第1段反応後トール脂肪酸メチルエステルの酸価は42.4mgKOH/gであった。
(Example 3)
A stainless steel cylindrical tube having an inner diameter of 15 mm and a length of 250 mm was charged with 100.0 g of sulfated zirconia (pellet-like reagent) to obtain a flow reactor. Stainless steel tubes (outer diameter: 1.58 mm, inner diameter: 1.0 mm) for supplying raw materials and flowing out the reaction solution were attached to both ends of the reactor, and the entire cylindrical tube was immersed in a constant temperature oil tank set at 180 ° C. On the other hand, tall fatty acid ("Hartol FA-1" manufactured by Harima Chemicals Co., Ltd .; tall fatty acid produced from an actual tall oil rectification plant, acid value 194 mg KOH / g, sulfur content 100 mass ppm) 552.0 g and methanol A solution in which 305.6 g was mixed was prepared, and this was sent to the flow-through reaction tube at a flow rate of 1 mL / min by a quantitative plunger pump. The reaction liquid flowing out from the flow reactor was collected 2 hours after the start of liquid feeding, and methanol and reaction product water were distilled off from this reaction liquid to obtain 445.0 g of tall fatty acid methyl ester. A one-stage reaction is performed, and the tall fatty acid methyl ester obtained here is referred to as “the first fatty acid methyl ester after the first stage reaction”). After this first stage reaction, the acid value of the tall fatty acid methyl ester was 42.4 mgKOH / g.

次に、上記で得た第1段反応後トール脂肪酸メチルエステル440.0gとメタノール244.0gとを混合した溶液を調製し、これを前記第1段反応と同様に定量プランジャーポンプにより1mL/分の流量にて前記流通式反応管へ送液した。送液開始2時間後から流通式反応器より流出する反応液を採取し、この反応液からメタノールおよび反応生成水を留去して、トール脂肪酸メチルエステル336.5gを得た(ここで得られたトール脂肪酸メチルエステルを「第2段反応後トール脂肪酸メチルエステル」と称す)。この第2段反応後トール脂肪酸メチルエステルの酸価は24.6mgKOH/gであった。   Next, a solution in which 440.0 g of tall fatty acid methyl ester obtained after the first-stage reaction and 244.0 g of methanol were mixed was prepared, and this was added to the 1 mL / mL by a quantitative plunger pump as in the first-stage reaction. The solution was fed to the flow reaction tube at a flow rate of minutes. The reaction liquid flowing out from the flow reactor was collected 2 hours after the start of liquid feeding, and methanol and reaction product water were distilled off from this reaction liquid to obtain 336.5 g of tall fatty acid methyl ester (obtained here). The tall fatty acid methyl ester is referred to as “after the second stage reaction, the tall fatty acid methyl ester”). After this second stage reaction, the acid value of tall fatty acid methyl ester was 24.6 mgKOH / g.

ついで、直径50mmのガラス製の吸着カラムにシリカゲル(和光純薬工業社製「ワコーゲルC300」;細孔径:7nm、細孔容積:0.8mL/g、比表面積:450m2/g、粒度:45〜75μmが75%以上であり、75μm残分が5%以下)300.0gをヘキサン湿式充填法により充填した。この吸着カラムに、上記で得た第2段反応後トール脂肪酸メチルエステル60.0gを0.125mL/cm2・分の溶出速度で通液して、吸着カラム底部より溶出する溶離液を回収した。さらに、ヘキサン400.0gを前記と同様の溶出速度で通液し、吸着カラム底部より溶出する溶離液を回収して、先に回収した溶離液と混合した。この混合した溶離液からヘキサンを蒸留操作により留去して、トール脂肪酸メチルエステル51.5gを得た。得られたトール脂肪酸メチルエステルの酸価は0.1mgKOH/gであり、イオウ分は9質量ppmであった。 Next, silica gel (“Wakogel C300” manufactured by Wako Pure Chemical Industries, Ltd .; pore diameter: 7 nm, pore volume: 0.8 mL / g, specific surface area: 450 m 2 / g, particle size: 45) is placed on a glass adsorption column having a diameter of 50 mm. ˜75 μm is 75% or more and 75 μm residue is 5% or less) 30.0 g was filled by a hexane wet filling method. Through this adsorption column, 60.0 g of tall fatty acid methyl ester after the second stage reaction obtained above was passed at an elution rate of 0.125 mL / cm 2 · min, and the eluate eluted from the bottom of the adsorption column was recovered. . Furthermore, 400.0 g of hexane was passed through at the same elution rate as described above, and the eluent eluted from the bottom of the adsorption column was recovered and mixed with the previously recovered eluent. From this mixed eluent, hexane was distilled off by distillation to obtain 51.5 g of tall fatty acid methyl ester. The acid value of the resulting tall fatty acid methyl ester was 0.1 mgKOH / g, and the sulfur content was 9 mass ppm.

以上の結果から、比較的安価なトール脂肪酸を原料としてエステル化反応を行い、トール脂肪酸エステルとその他不純物との極性の違いを利用すると、特別な装置を使用せずに、吸着カラムを使用するなどの簡単な操作で、高品質のトール脂肪酸エステルが得られることがわかる。
さらに、上記実施例1〜3で得られた高品質のトール脂肪酸エステルをそれぞれバイオディーゼル燃料に用いたところ、軽油の消費に関わる環境負荷を軽減することができた。
Based on the above results, esterification reaction is performed using relatively inexpensive tall fatty acid as a raw material, and if the difference in polarity between tall fatty acid ester and other impurities is used, an adsorption column is used without using a special device. It can be seen that high-quality tall fatty acid esters can be obtained by a simple operation.
Furthermore, when the high-quality tall fatty acid esters obtained in Examples 1 to 3 were respectively used for biodiesel fuel, the environmental load related to the consumption of light oil could be reduced.

Claims (4)

1〜5質量%のロジン酸を含むトール脂肪酸と低級アルコールとを原料としエステル化反応によりトール脂肪酸エステル反応液を得、この反応液を無機系吸着剤が充填された吸着カラムに通液させて、酸価が0.5mgKOH/g未満であり、イオウ分が50質量ppm以下であるトール脂肪酸エステルを製造する方法であって、
前記トール脂肪酸エステル反応液を、前記無機系吸着剤100質量部に対して100質量部以下の割合で、かつ0.01〜1.00mL/cm 2 ・分の溶出速度で通液させる、ことを特徴とするトール脂肪酸エステルの製造方法。
A tall fatty acid ester reaction liquid is obtained by an esterification reaction using tall fatty acid containing 1 to 5% by mass of rosin acid and lower alcohol as raw materials, and this reaction liquid is passed through an adsorption column packed with an inorganic adsorbent. A method for producing a tall fatty acid ester having an acid value of less than 0.5 mg KOH / g and a sulfur content of 50 ppm by mass or less ,
Allowing the tall fatty acid ester reaction solution to flow at a rate of 100 parts by mass or less with respect to 100 parts by mass of the inorganic adsorbent and at an elution rate of 0.01 to 1.00 mL / cm 2 · min. A method for producing a tall fatty acid ester.
1〜5質量%のロジン酸を含むトール脂肪酸と低級アルコールとを原料としエステル化反応によりトール脂肪酸エステル反応液を得、この反応液に無機系吸着剤を加えて攪拌して、酸価が0.5mgKOH/g未満であり、イオウ分が50質量ppm以下であるトール脂肪酸エステルを製造する方法であって、
前記無機系吸着剤100質量部に対して、前記トール脂肪酸エステル反応液が100質量部以下となる割合で、前記無機系吸着剤を加える、ことを特徴とするトール脂肪酸エステルの製造方法。
A tall fatty acid ester reaction liquid is obtained by an esterification reaction using 1 to 5% by mass of rosin acid containing rosin acid and lower alcohol as raw materials, and an inorganic adsorbent is added to the reaction liquid and stirred to give an acid value of 0. A method for producing a tall fatty acid ester having a sulfur content of less than 5 mg KOH / g and a sulfur content of 50 mass ppm or less ,
A method for producing a tall fatty acid ester , wherein the inorganic adsorbent is added at a ratio of 100 parts by mass or less with respect to 100 parts by mass of the inorganic adsorbent .
原料とする前記低級アルコールは、炭素数1〜4のアルキルアルコールである、請求項1または2に記載のトール脂肪酸エステルの製造方法。 The method for producing a tall fatty acid ester according to claim 1 or 2 , wherein the lower alcohol used as a raw material is an alkyl alcohol having 1 to 4 carbon atoms. 前記無機系吸着剤は、活性炭、ゼオライト、活性アルミナ、活性白土およびシリカゲルからなる群より選ばれる少なくとも1種である、請求項1〜のいずれかに記載のトール脂肪酸エステルの製造方法。 The method for producing a tall fatty acid ester according to any one of claims 1 to 3 , wherein the inorganic adsorbent is at least one selected from the group consisting of activated carbon, zeolite, activated alumina, activated clay, and silica gel.
JP2006208803A 2006-07-31 2006-07-31 Tall fatty acid ester, method for producing the same, and use thereof Active JP5238147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208803A JP5238147B2 (en) 2006-07-31 2006-07-31 Tall fatty acid ester, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208803A JP5238147B2 (en) 2006-07-31 2006-07-31 Tall fatty acid ester, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2008031362A JP2008031362A (en) 2008-02-14
JP5238147B2 true JP5238147B2 (en) 2013-07-17

Family

ID=39121135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208803A Active JP5238147B2 (en) 2006-07-31 2006-07-31 Tall fatty acid ester, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP5238147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464369B2 (en) 2019-10-07 2024-04-09 トヨタ自動車株式会社 Dust collector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394104B2 (en) * 2008-04-23 2014-01-22 花王株式会社 Insulating oil composition
WO2012112574A1 (en) * 2011-02-14 2012-08-23 Arizona Chemical Company, Llc Fuel additives, fuels, methods of making and using same
US11041095B2 (en) * 2019-05-22 2021-06-22 Kraton Polymers Llc Desulfurized tall oil and derivatives thereof
US11279849B2 (en) 2020-05-21 2022-03-22 Kraton Polymers Llc Deodorized rosin ester and methods for making

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4278910B2 (en) * 2002-03-13 2009-06-17 花王株式会社 Esters manufacturing method
AU2003303929A1 (en) * 2003-02-21 2004-09-09 Cognis Brasil Ltd. Process for obtaining fatty acid alkyl esters, rosin acids and sterols from crude tall oil
JP4392529B2 (en) * 2003-04-04 2010-01-06 日立造船株式会社 Method for producing diesel fuel oil from waste oil
JP2005350632A (en) * 2004-06-14 2005-12-22 Electric Power Dev Co Ltd Method for producing biodiesel fuel
JP3934630B2 (en) * 2004-06-14 2007-06-20 株式会社シー・ディー・エムコンサルティング Process for producing biodiesel fuel from acidic oils and fats
US20050274065A1 (en) * 2004-06-15 2005-12-15 Carnegie Mellon University Methods for producing biodiesel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464369B2 (en) 2019-10-07 2024-04-09 トヨタ自動車株式会社 Dust collector

Also Published As

Publication number Publication date
JP2008031362A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
Fonseca et al. Biodiesel from waste frying oils: Methods of production and purification
Gomes et al. Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane
US7695532B2 (en) Process for making biodiesel from crude tall oil
JP5234736B2 (en) Fatty acid methyl ester production method and fatty acid methyl ester production apparatus
JP2008231345A (en) Method for producing biodiesel fuel
US20110197497A1 (en) Brown grease treatment processes
JP5238147B2 (en) Tall fatty acid ester, method for producing the same, and use thereof
Dias et al. Study of an ethylic biodiesel integrated process: Raw-materials, reaction optimization and purification methods
JP3530884B2 (en) Method for producing diesel fuel oil from waste cooking oil
JP2005350632A (en) Method for producing biodiesel fuel
US8624048B2 (en) Method of producing alkyl esters from vegetable or animal oil and an aliphatic monoalcohol with fixed-bed hot purification
JP4078383B1 (en) Method for producing biodiesel fuel
Heterogenus Transesterification of waste cooking oil in biodiesel production utilizing CaO/Al2O3 heterogeneous catalyst
WO2006016492A1 (en) Process for production of biodiesel fuel compositions and equipment therefor
JP2007099882A (en) Manufacturing apparatus for biodiesel fuel and manufacturing process for biodiesel fuel
JP2009275127A (en) Method for manufacturing biodiesel fuel by cleaning with glycerol
Nadeem et al. Cost-efficient biodiesel production from Pongamia pinatta by optimizing carbon chain length using condensation polymerization, catalytic breakdown, kink production, and double bond induction in the feedstock oil
Banga et al. Optimization of parameters for purification of jatropha curcas based biodiesel using organic adsorbents
US10723965B1 (en) Process for making biofuel from spent coffee grounds
JP2009161776A (en) Method for producing biodiesel fuel and device for producing the same
JP4473680B2 (en) Production method of fats and oils with high diglyceride content
JP2009120847A (en) Process for producing biodiesel fuel
JP5066325B2 (en) Method for producing fatty acid alkyl ester
JP2011046803A (en) Manufacturing apparatus of biodiesel fuel and manufacturing method of biodiesel fuel
Zhang et al. Reducing nitrogen content in bio-oil from hydrothermal liquefaction of microalgae by using activated carbon-pretreated aqueous phase as the solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5238147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250