JP2006193176A - Bag manufacturing and packaging machine - Google Patents

Bag manufacturing and packaging machine Download PDF

Info

Publication number
JP2006193176A
JP2006193176A JP2005005880A JP2005005880A JP2006193176A JP 2006193176 A JP2006193176 A JP 2006193176A JP 2005005880 A JP2005005880 A JP 2005005880A JP 2005005880 A JP2005005880 A JP 2005005880A JP 2006193176 A JP2006193176 A JP 2006193176A
Authority
JP
Japan
Prior art keywords
motor
sealing
packaging machine
seal
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005005880A
Other languages
Japanese (ja)
Inventor
Toshiharu Kageyama
寿晴 影山
Ryoichi Sato
良一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Co Ltd
Original Assignee
Ishida Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Co Ltd filed Critical Ishida Co Ltd
Priority to JP2005005880A priority Critical patent/JP2006193176A/en
Publication of JP2006193176A publication Critical patent/JP2006193176A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/849Packaging machines
    • B29C66/8491Packaging machines welding through a filled container, e.g. tube or bag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7373Joining soiled or oxidised materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/822Transmission mechanisms
    • B29C66/8225Crank mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93441Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • B29C66/9392Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges in explicit relation to another variable, e.g. speed diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8246Servomechanisms, e.g. servomotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83421Roller, cylinder or drum types; Band or belt types; Ball types band or belt types

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bag manufacturing and packaging machine that can obtain a desired pressure (sealing pressure) even in case where a film is bited together with contents, dust, etc. <P>SOLUTION: The bag manufacturing and packaging machine produces a commodity packaged such that a pair of seal jaws 25a and 25b pinching a tubular film are opened or closed and a belt-like seal is formed sidewise with respect to the direction in which the film Fb flows. The bag manufacturing and packaging machine is equipped with a motor that rotates normally and reversely in order to open and close the seal jaws 25a and 25b, a link mechanism that transmits the drive force of the motor to the seal jaws 25a and 25b and increases a sealing pressure when the film is sealed, and a motor driver for controlling the drive of the motor. In accordance with the gap Δ between the pair of the seal jaws 25a and 25b during sealing the film, the rotating torque of the motor during sealing is controlled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、いわゆるピロー型に包装を行う製袋包装機に関するものである。   The present invention relates to a bag making and packaging machine that performs packaging in a so-called pillow type.

製袋包装機のシールジョーにごみ等が付着すると、シール圧が変化してシール不良の原因となる。そのため、従来より、シールジョーとリンク機構との間にスプリングを設け、所定量を越える加圧力を当該スプリングによって吸収することにより、一定の加圧力を得る方法が採用されている。   If dust or the like adheres to the sealing jaws of the bag making and packaging machine, the sealing pressure changes to cause a sealing failure. Therefore, conventionally, a method has been adopted in which a spring is provided between the seal jaw and the link mechanism, and a constant pressure is obtained by absorbing a pressure exceeding a predetermined amount by the spring.

しかし、スプリングを用いて加圧力を制御する方法では、加圧力を変更するには、スプリングの予圧変更やスプリング自体の交換を行う必要があり、煩雑である。特に、多品種少量生産時の段取替が頻繁となった場合には、その都度、機械の調整を行う必要があり作業の煩雑さが問題となる。   However, in the method of controlling the applied pressure using a spring, changing the applied pressure requires changing the preload of the spring or replacing the spring itself, which is complicated. In particular, when the setup change frequently occurs during the production of a variety of products in small quantities, it is necessary to adjust the machine each time, and the work becomes a problem.

一方、設計上、幾何的に求まるリンク機構のトグルが効く状態に基づき、リンク駆動用のモータの回転トルクと加圧力との関係を一義的に求め、モータのトルク制御によって一定の加圧力を得る方法が提案されている(特許文献1、2)。
特開平5−000110号 特公平8−025542号
On the other hand, the relationship between the rotational torque of the link driving motor and the applied pressure is uniquely determined based on the geometrically determined link mechanism toggle state, and a constant applied pressure is obtained by controlling the motor torque. A method has been proposed (Patent Documents 1 and 2).
JP-A-5-000110 Japanese Patent Publication No.8-025542

モータのトルク制御を行う方法では、たとえば、シールジョー間に内容物が挟まった場合や、シールジョーの表面にゴミが付着している場合、あるいは、製袋するフィルムの厚みが異なる場合には、設計上想定していたモータのトルクと実際に必要なトルクとが異なる。そのため、これがシール不良の原因となる。   In the method of controlling the torque of the motor, for example, when the contents are sandwiched between the sealing jaws, when dust adheres to the surface of the sealing jaws, or when the thickness of the film to be produced is different, The torque of the motor assumed in design differs from the actually required torque. Therefore, this causes a seal failure.

したがって、本発明の目的は、内容物やゴミなどの噛み込みが発生しても、所望の加圧力(シール圧)が得られる製袋包装機を提供することである。   Accordingly, an object of the present invention is to provide a bag making and packaging machine that can obtain a desired pressure (seal pressure) even when biting of contents or dust occurs.

前記目的を達成するために、本発明の製袋包装機は、フィルムの流れ方向に沿った端部同士を縦シール装置でシールしてフィルムを筒状に成形し、該筒状に成形したフィルム内に内容物が充填された後に前記筒状のフィルムを挟む一対のシールジョーを開閉することで前記フィルムの流れ方向に対して横方向に帯状にシールして包装された商品を生産する製袋包装機において、前記シールジョーを開閉駆動するために正逆回転するモータと、前記モータの駆動力を前記シールジョーに伝達し、前記シールジョーによるシール時にシール圧を増大させるリンク機構と、前記モータの駆動を制御するためのモータドライバとを備え、前記シール時における前記一対のシールジョーの間の間隙の大きさに応じて、当該シール時における前記モータの回転トルクを制御することを特徴とする。   In order to achieve the above object, the bag making and packaging machine of the present invention seals ends along the film flow direction with a vertical sealing device to form a film into a cylinder, and the film formed into the cylinder After the contents are filled in the bag, the pair of sealing jaws sandwiching the cylindrical film is opened and closed to produce a packaged product that is sealed in a strip shape in a direction transverse to the film flow direction. In a packaging machine, a motor that rotates forward and backward to open and close the seal jaw, a link mechanism that transmits a driving force of the motor to the seal jaw and increases a seal pressure when the seal jaw seals, and the motor A motor driver for controlling the driving of the motor, and according to the size of the gap between the pair of sealing jaws at the time of sealing, And controlling the rotation torque.

シールジョーが開いた状態において、モータが正回転してリンク機構を介してシールジョーが閉方向にスライド移動し、やがて、シールジョーが概ね閉じると、シールジョーの移動速度が「0」または「0」に近づいて、これにより、シールジョーによるシール(溶着)が行われる。
このシール時に、一対のシールジョーの間の間隙が予め想定した程度の通常時は、リンク機構による力の増幅が図られて、所定のシール圧が得られる。一方、前記間隙が予め想定した値よりも大きいと、リンク機構による力の増幅が不十分となるので、モータの回転トルクを前記通常時よりも大きくするように制御する。
このように、シール時のモータの回転トルクを制御することによって、前記シールジョーの間の間隙に拘わらず、所定のシール圧を得ることができる。
When the seal jaw is open, the motor rotates forward and the seal jaw slides in the closing direction via the link mechanism. When the seal jaw is almost closed, the movement speed of the seal jaw is “0” or “0”. Thus, sealing (welding) is performed by the sealing jaws.
At the time of this sealing, when the gap between the pair of sealing jaws is normally assumed in advance, the force is amplified by the link mechanism, and a predetermined sealing pressure is obtained. On the other hand, if the gap is larger than the value assumed in advance, the force amplification by the link mechanism becomes insufficient, so that the rotational torque of the motor is controlled to be larger than the normal time.
In this way, by controlling the rotational torque of the motor during sealing, a predetermined sealing pressure can be obtained regardless of the gap between the sealing jaws.

本発明においては、前記シール時において前記間隙に対応する物理量を検出する検出手段を更に備え、前記検出された物理量に基づいて、前記シール時の前記モータの回転トルクを制御する。 前記物理量としては、前記間隙に対応するシールジョー間の距離を検出してもよいが、以下に説明するモータやリンクの回転角を検出してもよい。   In the present invention, a detecting means for detecting a physical quantity corresponding to the gap at the time of sealing is further provided, and the rotational torque of the motor at the time of sealing is controlled based on the detected physical quantity. As the physical quantity, a distance between seal jaws corresponding to the gap may be detected, but a rotation angle of a motor or a link described below may be detected.

すなわち、前記検出手段としては、たとえば、前記シール時において前記モータが停止したときの前記モータの実際の回転角を検出する検出手段を更に備え、前記検出手段で検出されたモータの回転角に基づいて、前記シール時の前記モータの回転トルクを制御するようにしてもよい。   That is, the detection means further includes, for example, detection means for detecting an actual rotation angle of the motor when the motor stops at the time of sealing, and is based on the rotation angle of the motor detected by the detection means. Then, the rotational torque of the motor at the time of sealing may be controlled.

この場合、モータの回転角が所定の回転角であれば、通常の回転トルクが発生するようにモータを制御し、一方、たとえば、シールジョーの表面にゴミ等が付着していてモータの回転角が所定の回転角に至らないときは、通常よりも大きな回転トルクを発生させて所定のシール圧が得られるようにモータをトルク制御する。このように、モータの回転角に基づいて回転トルクを制御することで、シール時のモータの回転角に拘わらず、所定のシール圧が得られる。   In this case, if the rotation angle of the motor is a predetermined rotation angle, the motor is controlled so that a normal rotation torque is generated. When the rotation angle does not reach the predetermined rotation angle, the motor is torque controlled so that a rotation torque larger than usual is generated and a predetermined seal pressure is obtained. Thus, by controlling the rotational torque based on the rotational angle of the motor, a predetermined sealing pressure can be obtained regardless of the rotational angle of the motor during sealing.

また、前記検出手段としては、たとえば、前記シール時における前記リンク機構のリンクの回転角を検出する検出手段を更に備え、前記検出手段で検出されたリンクの回転角に基づいて、シール時の前記モータの回転トルクを制御するようにしてもよい。   Further, as the detection means, for example, a detection means for detecting a rotation angle of the link of the link mechanism at the time of sealing is further provided, and based on the rotation angle of the link detected by the detection means, the detection at the time of sealing is performed. The rotational torque of the motor may be controlled.

リンク機構の回転中心の位置やリンクの長さは、各機物ごとに制作誤差が生じる。そのため、モータの回転角が所定の回転角であっても、前記シールジョー間の間隙が所定値とならないおそれがある。これに対し、リンクの実際の回転角に基づいてモータの回転トルクを制御することで、モータの回転角とリンクの回転角との関係に機物ごとの寸法誤差があっても、所定のシール圧が得られる。   The position of the link mechanism's center of rotation and the length of the link cause production errors for each machine. Therefore, even if the rotation angle of the motor is a predetermined rotation angle, the gap between the sealing jaws may not be a predetermined value. On the other hand, by controlling the rotational torque of the motor based on the actual rotational angle of the link, even if there is a dimensional error for each machine in the relationship between the rotational angle of the motor and the rotational angle of the link, a predetermined seal Pressure is obtained.

本発明においては、前記リンク機構の幾何学的な構造と、前記検出手段による検出結果に基づいて前記シール圧が所定値となるように演算するための演算式を記憶する記憶部を更に備え、前記演算式に基づいて前記シール圧が所定値となるように前記モータの回転トルクを制御するようにしてもよい。
このように、演算を行うことにより、テーブルに制御値を記憶させる手間が省ける。
In the present invention, further comprising a storage unit that stores an arithmetic expression for calculating the seal pressure to be a predetermined value based on a geometric structure of the link mechanism and a detection result by the detection unit, The rotational torque of the motor may be controlled so that the seal pressure becomes a predetermined value based on the arithmetic expression.
In this way, by performing the calculation, the trouble of storing the control values in the table can be saved.

一方、本発明においては、前記検出手段による検出結果に応じて前記シール時のモータの回転トルクを制御するための制御値を記憶する記憶部を設け、前記記憶部から前記制御値を読み出して前記モータの回転トルクを制御するようにしてもよい。   On the other hand, in the present invention, a storage unit for storing a control value for controlling the rotational torque of the motor at the time of sealing is provided according to a detection result by the detection unit, and the control value is read from the storage unit to read the control value. The rotational torque of the motor may be controlled.

本発明においては、前記シールジョーが全開から概ね閉じるまでの第1期は前記モータが当該モータの回転速度を基準に制御され、一方、前記概ね閉じた後のシール時である第2期は前記モータが回転トルクを基準に制御され、前記閉じたシールジョーが全開に至る第3期は前記モータが前記回転速度を基準に制御されるのが好ましい。
このように、速度制御とトルク制御を併用することで、単位時間当たりの高い処理能力と、シールの信頼性の双方を実現することができる。
In the present invention, the first period until the seal jaw is fully opened to the generally closed state is controlled on the basis of the rotational speed of the motor. On the other hand, the second period, which is the seal period after the generally closed state, is the Preferably, the motor is controlled on the basis of the rotational torque, and the motor is controlled on the basis of the rotational speed in the third period when the closed sealing jaw is fully opened.
Thus, by using both speed control and torque control, both high processing capacity per unit time and seal reliability can be realized.

この場合、前記シールジョーのシール時におけるモータの回転角の閾値を記憶する記憶部を更に備え、前記閾値まで前記モータが回転していない場合には前記シールジョーによるシール動作を停止し、一方、前記閾値以上に前記モータが回転している場合には、前記シール時にシール圧を付与するのが好ましい。
このように制御することにより、大きな異物が咬み込んだ場合にモータに過大なトルクが発生するのを回避できる。
In this case, the storage unit further stores a threshold value of the rotation angle of the motor at the time of sealing the sealing jaw, and when the motor is not rotating up to the threshold value, the sealing operation by the sealing jaw is stopped, When the motor rotates more than the threshold value, it is preferable to apply a sealing pressure during the sealing.
By controlling in this way, it is possible to avoid generation of excessive torque in the motor when a large foreign object is bitten.

以下、本発明の実施例を図面にしたがって説明する。
以下の説明において、「前」、「後」、「右」、「左」とあるのは、正面視でそれぞれ「手前側」、「奥側」、「右側」、「左側」を意味する。
Embodiments of the present invention will be described below with reference to the drawings.
In the following description, “front”, “rear”, “right”, and “left” mean “front side”, “back side”, “right side”, and “left side” in front view, respectively.

図1〜7は、実施例1を示す。
図1に示すように、本製袋包装機2は、上方から投入された内容物Mをフィルム(以下、「包材」という)Fbで包装して袋詰めの商品Bを製造するものである。
1 to 7 show Example 1. FIG.
As shown in FIG. 1, the present bag making and packaging machine 2 manufactures a packaged product B by wrapping the contents M input from above with a film (hereinafter referred to as “wrapping material”) Fb. .

全体構成:
製袋包装機2は、ロール支持部21、フォーマ22、プルダウンベルト機構23、縦シール装置24および横シール装置25などを備えている。
矢印aで示すように、ロール支持部21から繰り出された帯状の包材Faは、フォーマ22のセーラ22aおよびチューブ22bにより、左右両縁部が重ね合わされて筒状に形成された包材Fbになる。
プルダウンベルト機構23が、筒状の包材Fbを左右両側からチューブ部材22bに押し付けながら、矢印bで示すように下方へ搬送する。同時に、縦シール装置24が、前記筒状包材Fbの重ね合わせ部を長手方向(流れ方向)に縦シールを行う。
overall structure:
The bag making and packaging machine 2 includes a roll support portion 21, a former 22, a pull-down belt mechanism 23, a vertical sealing device 24, a horizontal sealing device 25, and the like.
As shown by the arrow a, the strip-shaped packaging material Fa fed from the roll support portion 21 is formed into a cylindrical packaging material Fb formed by overlapping the left and right edges by the sailor 22a and the tube 22b of the former 22. Become.
The pull-down belt mechanism 23 conveys the tubular packaging material Fb downward as indicated by an arrow b while pressing the tubular packaging material Fb against the tube member 22b from the left and right sides. At the same time, the vertical sealing device 24 performs vertical sealing in the longitudinal direction (flow direction) on the overlapping portion of the cylindrical packaging material Fb.

前記筒状包材Fb内に内容物Mが投入された後、横シール装置25が筒状包材Fbを前後両側から挟み付けて、該筒状包材Fbの所定位置を幅方向に帯状に横シールを行うと共に、図示しないカッタ装置が該シール部分を切断して商品Bを作成する。   After the contents M are put into the cylindrical packaging material Fb, the horizontal sealing device 25 sandwiches the cylindrical packaging material Fb from both the front and rear sides, and a predetermined position of the cylindrical packaging material Fb is band-shaped in the width direction. While performing horizontal sealing, a cutter device (not shown) cuts the sealing portion to produce a product B.

横シール装置25:
図2および図3は、横シール装置25の概略平面図である。
図2及び図3に示すように、横シール装置25は前後一対、かつ、左右方向へ延びるシールジョー25a,25bを有している。シールジョー25a,25bは、移動機構40により、図2のように、シール時に互いに接近した近接状態と、図3の離反(開)状態との間を繰り返し移動される。
Horizontal sealing device 25:
2 and 3 are schematic plan views of the lateral sealing device 25. FIG.
As shown in FIGS. 2 and 3, the horizontal sealing device 25 has a pair of front and rear sealing jaws 25 a and 25 b extending in the left-right direction. The sealing jaws 25a and 25b are repeatedly moved by the moving mechanism 40 between a proximity state in which they are close to each other during sealing and a separation (open) state in FIG. 3 as shown in FIG.

各シールジョー25a,25bは、それぞれ、図示しないヒータを有している。シールジョー25a,25bは、前記近接状態に移動されることで、筒状包材Fbを挟み付け、前記ヒータが筒状包材Fbを互いに溶着する。   Each of the sealing jaws 25a and 25b has a heater (not shown). The seal jaws 25a and 25b are moved to the close state so as to sandwich the tubular packaging material Fb, and the heater welds the tubular packaging material Fb to each other.

移動機構40:
図2に示すように、横シール装置25は、前記移動機構40を搭載する架台30を有している。
前記架台30は、前後方向へ延びる左右一対のサイドフレーム31と、該サイドフレーム31を中央側および後ろ側で連結する連結部材32a,32bとを有している。架台30は、サイドフレーム31,31から左右の外方へ突設された4つのブラケット33を介して製袋包装機2のフレーム2aに支持されている。
Moving mechanism 40:
As shown in FIG. 2, the horizontal sealing device 25 has a gantry 30 on which the moving mechanism 40 is mounted.
The mount 30 includes a pair of left and right side frames 31 extending in the front-rear direction, and connecting members 32 a and 32 b that connect the side frames 31 at the center side and the rear side. The gantry 30 is supported by the frame 2a of the bag making and packaging machine 2 through four brackets 33 protruding from the side frames 31, 31 to the left and right outwards.

移動機構40は、一対の摺動ロッド41およびベース部材42a,43を備えている。摺動ロッド41は、各サイドフレーム31に沿って、前後方向に延設されている。摺動ロッド41は、サイドフレーム31に設けられた複数のガイド44を介して架台30に摺動自在に支持されている。摺動ロッド41の前後端には、それぞれベース部材42a,43が固定されており、摺動ロッド41およびベース部材42a,43により四角形の枠が形成されている。前側のベース部材42aには、前側シールジョー25aが後方に向って突設されている。   The moving mechanism 40 includes a pair of sliding rods 41 and base members 42a and 43. The sliding rod 41 extends in the front-rear direction along each side frame 31. The sliding rod 41 is slidably supported on the gantry 30 via a plurality of guides 44 provided on the side frame 31. Base members 42a and 43 are fixed to the front and rear ends of the sliding rod 41, respectively, and a rectangular frame is formed by the sliding rod 41 and the base members 42a and 43. A front seal jaw 25a protrudes rearward from the front base member 42a.

一方、前記摺動ロッド41,41間には、摺動部材42bが架け渡されている。摺動部材42bは摺動ロッド41に嵌合するスライダ45を介して、摺動ロッド41に対してスライド自在に設けられている。摺動部材42bには後側シールジョー25bが前方に向って突設されている。
したがって、シールジョー25a,25bは、それぞれ、サイドフレーム31に対して前後方向に移動可能に設定されている。
なお、図を見易くするために、後側シールジョー25bおよびその駆動系の部材に網点を施している。
On the other hand, a sliding member 42b is bridged between the sliding rods 41 and 41. The sliding member 42 b is provided so as to be slidable with respect to the sliding rod 41 via a slider 45 fitted to the sliding rod 41. A rear seal jaw 25b projects from the sliding member 42b toward the front.
Accordingly, the sealing jaws 25a and 25b are set so as to be movable in the front-rear direction with respect to the side frame 31, respectively.
In order to make the drawing easier to see, the rear seal jaw 25b and its drive system members are shaded.

リンク機構(往復スライダクランク機構):
シールジョー25a,25bは、以下に述べるリンク機構により、前後方向に往復移動される。
中央側の前記連結部材32aには、サーボモータ49bのギヤボックス49aが固定されている。該モータ49bの出力軸(図示せず)には、駆動軸46が連結されており、前記モータ49bの正逆回転により、前記駆動軸46が正逆方向に回転駆動される。
Link mechanism (reciprocating slider crank mechanism):
The seal jaws 25a and 25b are reciprocated in the front-rear direction by a link mechanism described below.
A gear box 49a of a servo motor 49b is fixed to the connecting member 32a on the center side. A drive shaft 46 is connected to an output shaft (not shown) of the motor 49b, and the drive shaft 46 is rotationally driven in the forward / reverse direction by the forward / reverse rotation of the motor 49b.

前記駆動軸46には、クランク47の中央部が固定されている。クランク47の両端部には、それぞれ、連接棒48a,48bが回転可能に設けられている。前方の連接棒48bには摺動部材42bが点O1を中心に相対回転可能に接続されており、後方の連接棒48aには後側ベース部材43が相対回転可能に接続されている。   A center portion of a crank 47 is fixed to the drive shaft 46. Connecting rods 48a and 48b are rotatably provided at both ends of the crank 47, respectively. A sliding member 42b is connected to the front connecting rod 48b so as to be relatively rotatable about a point O1, and a rear base member 43 is connected to the rear connecting rod 48a to be relatively rotatable.

駆動軸46の回転により、クランク47が駆動軸46の周りに矢印c方向に回転されると、図3に示すように、連接棒48aが後側ベース部材43を前方へ引き寄せ、摺動ロッド41および前側ベース部材42aを介して前側シールジョー25aが前方に移動される。同時に、連接棒48bが摺動部材42bを後方に引き寄せ、後側シールジョー25bが後方に移動される。その結果、シールジョー25a,25bは、図2に示す近接状態から、図3に示す離反状態となる。   When the crank 47 is rotated around the drive shaft 46 in the direction of the arrow c by the rotation of the drive shaft 46, the connecting rod 48a pulls the rear base member 43 forward as shown in FIG. The front seal jaw 25a is moved forward via the front base member 42a. At the same time, the connecting rod 48b pulls the sliding member 42b rearward, and the rear seal jaw 25b is moved rearward. As a result, the seal jaws 25a and 25b change from the close state shown in FIG. 2 to the separated state shown in FIG.

一方、クランク47が駆動軸46の周りに逆方向(図2の矢印d方向)に回転されると、図2に示すように、連接棒48aが後側ベース部材43を後方に押し出し、摺動ロッド41を介して前側シールジョー25aが後方に移動される。同時に、連接棒48bが摺動部材42bを前方に押し出し、後側シールジョー25bが前方に移動される。その結果、シールジョー25a,25bは、図3に示す離反状態から、図2に示す近接状態となる。   On the other hand, when the crank 47 is rotated in the reverse direction around the drive shaft 46 (in the direction of arrow d in FIG. 2), the connecting rod 48a pushes the rear base member 43 rearward and slides as shown in FIG. The front seal jaw 25a is moved backward via the rod 41. At the same time, the connecting rod 48b pushes the sliding member 42b forward, and the rear seal jaw 25b is moved forward. As a result, the seal jaws 25a and 25b change from the separated state shown in FIG. 3 to the close state shown in FIG.

したがって、クランク47、連接棒48bおよび摺動部材(スライダ)42bと、クランク47、連接棒48aおよび後側ベース部材(スライダ)43とで構成される2組のリンク機構は、2組の往復スライダクランク機構を構成している。このリンク機構は、モータ49bの駆動力をシールジョー25a,25bに伝達し、該シールジョー25a,25bによるシール圧を増大させるトグルジョイントを構成している。   Accordingly, the two sets of link mechanisms including the crank 47, the connecting rod 48b and the sliding member (slider) 42b, and the crank 47, the connecting rod 48a and the rear base member (slider) 43 are two sets of reciprocating sliders. A crank mechanism is configured. This link mechanism constitutes a toggle joint that transmits the driving force of the motor 49b to the seal jaws 25a and 25b and increases the seal pressure by the seal jaws 25a and 25b.

図4は、近接状態の各状態におけるシールジョー25a,25bの正面断面図と、当該状態における前記リンク機構とを対応させた模式図である。なお、図4および図5の模式図では、後ろ側のリンク機構を例示している。   FIG. 4 is a schematic view in which front sectional views of the seal jaws 25a and 25b in each state of the proximity state correspond to the link mechanism in the state. Note that the schematic diagrams of FIGS. 4 and 5 illustrate the link mechanism on the rear side.

図4(a)に示すように、設計上想定された通常時には、近接状態(シール時)におけるシールジョー25a,25b間に所定の隙間Δが生じ、クランク47が所定のクランク角(リンクの回転角)θとなる。ここで、クランク角θとは、駆動軸46の回転中心(力点)O2と前記点O1とを結んだ直線(基準線)Cと、クランク47とがなす角度である。
図4(b)に示す厚いフィルムを用いた場合や、図4(c)のシールジョー25a,25b間にゴミ等が付着した場合、図4(d)の内容物Mを噛み込んだ場合には、近接状態時におけるクランク角θが、図4(a)の通常時よりも大きくなる。
As shown in FIG. 4A, at a normal time assumed in design, a predetermined gap Δ is generated between the seal jaws 25a and 25b in the close state (during sealing), and the crank 47 has a predetermined crank angle (rotation of the link). Angle) θ. The crank angle θ is an angle formed by the crank 47 and a straight line (reference line) C connecting the rotation center (power point) O2 of the drive shaft 46 and the point O1.
When the thick film shown in FIG. 4B is used, when dust or the like adheres between the sealing jaws 25a and 25b of FIG. 4C, or when the contents M of FIG. The crank angle θ in the proximity state is larger than that in the normal state of FIG.

ここで、本製袋包装機2のリンク機構は、前述のように往復スライダクランク機構からなるトグルジョイントを構成している。そのため、クランク47が回転してクランク角θの値が0に近づくに従い、スライダに加わる力(シール圧)が急激に増大する。
したがって、図4(b)〜図4(d)のように、クランク角θが所定値よりも若干でも大きい場合には、シール圧が著しく小さくなる。
Here, the link mechanism of the bag making and packaging machine 2 constitutes a toggle joint composed of the reciprocating slider crank mechanism as described above. Therefore, as the crank 47 rotates and the value of the crank angle θ approaches 0, the force (seal pressure) applied to the slider increases rapidly.
Therefore, as shown in FIGS. 4B to 4D, when the crank angle θ is slightly larger than the predetermined value, the seal pressure is remarkably reduced.

第1期〜第3期:
そこで、本製袋包装機2では、図6に示すように、モータ49bのトルクの制御をシールジョー25a,25bが全開(図3の離反状態)から概ね閉じる(図2)までの第1期、前記概ね閉じた後のシール時である第2期(近接状態)、閉じたシールジョー25a,25bが全開(図3)に至る第3期に分けて制御している。かかる第2期において、モータ49bは回転トルクを基準に制御され、第1期および第3期では、モータ49bは速度を基準に制御される。
Phase 1 to Phase 3:
Therefore, in the bag making and packaging machine 2, as shown in FIG. 6, the torque control of the motor 49b is controlled in the first period from when the sealing jaws 25a and 25b are fully opened (separated state in FIG. 3) to being generally closed (FIG. 2). In the second period (proximity state), which is the time of sealing after substantially closing, the control is divided into the third period in which the closed sealing jaws 25a and 25b are fully opened (FIG. 3). In the second period, the motor 49b is controlled based on the rotational torque, and in the first period and the third period, the motor 49b is controlled based on the speed.

図6(a)〜(c)は、それぞれ、シールジョー25a,25bの移動速度とモータの回転トルクを経時的に表した表である。
図6(a)に示す通常時(図4(a))には、前記第2期において、所定のトルクでモータ49bが回転され、所定のシール圧でシールが行われる。
一方、図6(b)に示すように、厚いフィルムを用いた場合(図4(b))やゴミなどがシールジョー25a,25b間に付着した場合(図4(c))には、シール圧を所定の値に保つために、モータ49bの回転トルクを前記所定のトルクよりも大きくしている。
FIGS. 6A to 6C are tables showing the moving speed of the sealing jaws 25a and 25b and the rotational torque of the motor over time, respectively.
In the normal time shown in FIG. 6A (FIG. 4A), in the second period, the motor 49b is rotated with a predetermined torque, and sealing is performed with a predetermined sealing pressure.
On the other hand, as shown in FIG. 6B, when a thick film is used (FIG. 4B) or when dust or the like adheres between the seal jaws 25a and 25b (FIG. 4C), the seal In order to keep the pressure at a predetermined value, the rotational torque of the motor 49b is made larger than the predetermined torque.

第2期におけるトルク制御:
前記第2期において、本製袋包装機2では以下のように、モータ49bのトルク制御を行い、シールジョー25a,25bによるシール圧が概ね一定となるように制御される。
前記トルク制御は、クランク角θを検出し、当該クランク角θに基づいてモータ49bの回転トルクを制御することにより行われる。
すなわち、まず、エンコーダ等の検出手段を用いて前記クランク角θを検出し、当該クランク角θに基づいてシール圧を算出する。つぎに、前記算出されたシール圧が所定のシール圧になるように、駆動軸46の軸トルクを算出する。当該駆動軸46の軸トルクに基づき、モータ49bの回転トルクを算出して、モータ49bのトルク制御を行う。
Torque control in the second phase:
In the second period, the bag making and packaging machine 2 controls the torque of the motor 49b as described below, and controls the seal pressure by the seal jaws 25a and 25b to be substantially constant.
The torque control is performed by detecting the crank angle θ and controlling the rotational torque of the motor 49b based on the crank angle θ.
That is, first, the crank angle θ is detected using detection means such as an encoder, and the seal pressure is calculated based on the crank angle θ. Next, the shaft torque of the drive shaft 46 is calculated so that the calculated seal pressure becomes a predetermined seal pressure. Based on the shaft torque of the drive shaft 46, the rotational torque of the motor 49b is calculated to control the torque of the motor 49b.

駆動軸46の軸トルクの算出:
図5において、連接棒48b(48a)の角αと、クランク47に対する垂線と連接棒48bとがなす角βとは、それぞれ下記の(1),(2) 式で算出することができる。
sin α=r・sin θ/L ……(1)
β=π/2−θ−α ……(2)
α:前記基準線Cと連接棒48bとがなす角度
β:クランク47に対する垂線と連接棒48bとがなす角度
L:連接棒48bの長さ
r:クランク47の長さ
Calculation of shaft torque of drive shaft 46:
In FIG. 5, the angle α of the connecting rod 48b (48a) and the angle β formed between the perpendicular to the crank 47 and the connecting rod 48b can be calculated by the following equations (1) and (2), respectively.
sin α = r · sin θ / L …… (1)
β = π / 2−θ−α (2)
α: Angle formed between the reference line C and the connecting rod 48b β: Angle formed between the perpendicular to the crank 47 and the connecting rod 48b L: Length of the connecting rod 48b r: Length of the crank 47

この時、駆動軸46の軸トルクTに対するクランク接線方向の推力F、連接棒の軸方向の推力Pおよびシール圧Pxは、それぞれ以下の(3) 〜(5) で表される。
F=T/r ……(3)
P=F/cos β ……(4)
Px=P・cos α ……(5)
At this time, the thrust F in the tangential direction of the crank, the thrust P in the axial direction of the connecting rod, and the seal pressure Px with respect to the shaft torque T of the drive shaft 46 are expressed by the following (3) to (5), respectively.
F = T / r (3)
P = F / cos β (4)
Px = P · cos α (5)

上記式(1) から(5) までの関係式を用いることにより、所定のシール圧Pxを得るための駆動軸46の軸トルクTは、下記の(6) 式を用いて算出することができる。
T=Px・r・cos α/cos β ……(6)
したがって、上記(6) 式は、駆動軸46の軸トルクTはクランク角θの関数f(θ)であることが分かる。よって、クランク角θを検出することにより、所望するシールジョー25a,25bの加圧力Pxを得るための駆動軸46の軸トルクTを算出することができる。
By using the relational expressions (1) to (5), the shaft torque T of the drive shaft 46 for obtaining a predetermined seal pressure Px can be calculated using the following expression (6). .
T = Px · r · cos α / cos β (6)
Therefore, the above equation (6) shows that the shaft torque T of the drive shaft 46 is a function f (θ) of the crank angle θ. Therefore, by detecting the crank angle θ, the shaft torque T of the drive shaft 46 for obtaining the desired pressure Px of the seal jaws 25a and 25b can be calculated.

モータ49bのトルク制御:
当該算出された駆動軸46の軸トルクTに基づき、減速比などを加味した所定の演算を行うことにより、モータ49bの回転トルクが得られる。この回転トルクは、モータ49bの駆動電流と所定の相関関係(概ね比例)があるので、当該モータ49bへの駆動電流を制御することにより、所望する回転トルクが得られる。
したがって、第2期において、クランク角θを検出し、当該クランク角θに応じてモータ49bの回転トルクを制御することにより、シール圧を概ね一定に保つことができる。
Torque control of motor 49b:
Based on the calculated shaft torque T of the drive shaft 46, a predetermined calculation taking a reduction ratio and the like into consideration is performed, whereby the rotational torque of the motor 49b is obtained. Since this rotational torque has a predetermined correlation (generally proportional) with the drive current of the motor 49b, the desired rotational torque can be obtained by controlling the drive current to the motor 49b.
Therefore, in the second period, the seal pressure can be kept substantially constant by detecting the crank angle θ and controlling the rotational torque of the motor 49b according to the crank angle θ.

ところで、図4(d)に示すように、シールジョー25a,25b間に、たとえば、内容物Mなどの大きな異物の噛み込みが生じた場合には、クランク角θが大きくなる。かかる場合に、前述のトルク制御を行うとモータ49bに過大なトルクが発生する。そこで、本製袋包装機2では、クランク角θが所定の噛み込み閾値以上の場合には、シール動作を停止するように設定されている。   Incidentally, as shown in FIG. 4D, when a large foreign matter such as the contents M is caught between the seal jaws 25a and 25b, the crank angle θ is increased. In such a case, if the torque control described above is performed, an excessive torque is generated in the motor 49b. Therefore, the bag making and packaging machine 2 is set to stop the sealing operation when the crank angle θ is equal to or greater than a predetermined biting threshold.

機器構成:
図7に示すように、製袋包装機2は、該製袋包装機2を制御するコントロールユニット(制御手段)50を備えている。コントロールユニット50は、たとえば、マイコンからなり、コントロールユニット50には、タッチスクリーン56、プルダウンベルト機構23、縦シール装置24、横シール装置25およびエンコーダ28などが図示しないインターフェイスを介して接続されている。
Equipment configuration:
As shown in FIG. 7, the bag making and packaging machine 2 includes a control unit (control means) 50 that controls the bag making and packaging machine 2. The control unit 50 is composed of, for example, a microcomputer, and a touch screen 56, a pull-down belt mechanism 23, a vertical sealing device 24, a horizontal sealing device 25, an encoder 28, and the like are connected to the control unit 50 through an interface (not shown). .

横シール装置25は、モータ49b、ロータリーエンコーダ29および該モータ49bの駆動を制御するためのモータドライバ26を備えている。モータドライバ26はロータリーエンコーダ29に接続されていると共に、コントロールユニット50に接続されている。ロータリーエンコーダ29は、モータ49bの回転軸の回転角の検出を行い、当該検出された角度を、モータドライバ26を介してコントロールユニット50に送る。一方、モータドライバ26は、モータ49bに供給する電流値を可変することで、モータ49bの回転トルクの大きさを制御することが可能である。   The horizontal sealing device 25 includes a motor 49b, a rotary encoder 29, and a motor driver 26 for controlling driving of the motor 49b. The motor driver 26 is connected to the rotary encoder 29 and to the control unit 50. The rotary encoder 29 detects the rotation angle of the rotation shaft of the motor 49 b and sends the detected angle to the control unit 50 via the motor driver 26. On the other hand, the motor driver 26 can control the magnitude of the rotational torque of the motor 49b by varying the current value supplied to the motor 49b.

エンコーダ28は、クランク角θの検出を行い、当該検出された角度をコントロールユニット50に送る。ここで、エンコーダ28は、シール時において、シールジョー25a,25b間の間隙に対する物理量を検出する検出手段の一例を構成している。   The encoder 28 detects the crank angle θ and sends the detected angle to the control unit 50. Here, the encoder 28 constitutes an example of detection means for detecting a physical quantity with respect to the gap between the seal jaws 25a and 25b at the time of sealing.

コントロールユニット50は、CPU51およびメモリ(記憶手段)52を備えている。メモリ52には、演算式記憶部53、商品情報記憶部54および閾値記憶部55などが設けられている。
演算式記憶部53には、モータ49bの回転トルクを制御するための前記数式(1)〜(6)などが予め記憶されている。これらの数式は、前述したように、リンク機構の幾何学的な構造と、エンコーダ28による検出結果に基づいて、シールジョー25a,25bのシール圧が所定値となるように演算を行うための演算式である。
商品情報記憶部54には、商品Bの生産に必要な種々の値からなる商品情報が、商品毎に予め記憶されている。閾値記憶部55には、予め設定された前記噛み込み閾値が記憶されている。
The control unit 50 includes a CPU 51 and a memory (storage means) 52. The memory 52 is provided with an arithmetic expression storage unit 53, a product information storage unit 54, a threshold storage unit 55, and the like.
In the arithmetic expression storage unit 53, the mathematical expressions (1) to (6) for controlling the rotational torque of the motor 49b are stored in advance. As described above, these mathematical expressions are operations for performing an operation so that the seal pressure of the seal jaws 25a and 25b becomes a predetermined value based on the geometric structure of the link mechanism and the detection result by the encoder 28. It is a formula.
In the product information storage unit 54, product information including various values necessary for the production of the product B is stored in advance for each product. The threshold storage unit 55 stores a preset biting threshold.

包装動作:
本システムが起動すると、CPU51が演算式記憶部53および閾値記憶部55から演算式および噛み込み閾値を読み出す。一方、作業員が所定の操作を行い生産する商品の選択等を行うと、CPU51が商品情報記憶部54から当該商品の生産に必要な商品情報を読み出し、商品Bの生産が開始される。
Packaging operation:
When this system is activated, the CPU 51 reads out the arithmetic expression and the biting threshold from the arithmetic expression storage unit 53 and the threshold storage unit 55. On the other hand, when an operator selects a product to be produced by performing a predetermined operation, the CPU 51 reads product information necessary for production of the product from the product information storage unit 54, and production of the product B is started.

図1に示す製袋包装機2の筒状包材Fb内に内容物Mが投入されと、プルダウンベルト機構23(図1)が前記袋長分、筒状包材Fbを下方に移動させる。
その後、シール工程が開始される。図2のシールジョー25a,25bが互いに閉方向に移動され、内容物Mが投入された筒状包材Fbがシールされると共に切り離され、商品1が生産される。同時に、筒状包材Fbの下端部には、新たな底部が形成される。
When the contents M are put into the cylindrical packaging material Fb of the bag making and packaging machine 2 shown in FIG. 1, the pull-down belt mechanism 23 (FIG. 1) moves the cylindrical packaging material Fb downward by the length of the bag.
Thereafter, the sealing process is started. The sealing jaws 25a and 25b in FIG. 2 are moved in the closing direction, and the cylindrical packaging material Fb into which the contents M have been put is sealed and separated, and the product 1 is produced. At the same time, a new bottom is formed at the lower end of the cylindrical packaging material Fb.

一方、前記筒状包材Fbの下方への移動により、ロール支持部21から帯状包材Faが引き出され、セーラ22aを介してチューブ22bに巻き付けられて筒状に成形される。該筒状に成形された帯状包材Fa(筒状包材Fb)の重ね合わせ部は縦シール装置24によって長手方向にシールされ、新たな筒状包材Fbが形成される。   On the other hand, due to the downward movement of the cylindrical packaging material Fb, the strip-shaped packaging material Fa is pulled out from the roll support portion 21 and wound around the tube 22b via the sailor 22a to be formed into a cylindrical shape. The overlapping portion of the strip-shaped wrapping material Fa (tubular wrapping material Fb) formed into a cylindrical shape is sealed in the longitudinal direction by the vertical sealing device 24 to form a new cylindrical wrapping material Fb.

第1期:
ここで、前記シール工程において、図3に示すシールジョー25a,25bの離反状態から、図2に示す近接状態までの第1期には、図6(a)に示すように、CPU51がモータ49bの速度制御を行う。すなわち、所定のトリガーでモータ49bに一定の電流を流して、モータ49bが所定の回転速度に至るまでモータ49bが加速される(0〜T1)。その後、モータ49bを定速運転させ、クランク47が所定の回転角まで回転(T1〜T2)すると、モータ49bに逆方向の回転トルクを発生させてモータ49bを停止(T2〜T3)させることで、概ね一定の閉じた位置で25a,25bを停止させる。
Phase 1:
Here, in the sealing process, as shown in FIG. 6A, in the first period from the separation state of the sealing jaws 25a and 25b shown in FIG. 3 to the proximity state shown in FIG. Speed control. That is, a constant current is supplied to the motor 49b with a predetermined trigger, and the motor 49b is accelerated until the motor 49b reaches a predetermined rotation speed (0 to T1). After that, when the motor 49b is operated at a constant speed and the crank 47 rotates to a predetermined rotation angle (T1 to T2), the motor 49b generates a reverse rotational torque and stops the motor 49b (T2 to T3). , 25a and 25b are stopped at a substantially constant closed position.

第2期:
第2期では、モータ49bが一定の前期トルクで所定の微小時間(T3〜T4)若干回転し、シールジョー25a,25bで筒状包材Fbを挟む。その後、エンコーダ28からの検出値に基づき、前述したトルク制御が行なわれる(T4〜T5)。
Second period:
In the second period, the motor 49b rotates slightly for a predetermined minute time (T3 to T4) with a constant initial torque, and the cylindrical packaging material Fb is sandwiched between the sealing jaws 25a and 25b. Thereafter, based on the detection value from the encoder 28, the torque control described above is performed (T4 to T5).

トルク制御;
すなわち、図7のCPU51がエンコーダ28からの検出値に基づき、図5のクランク角θを算出する。CPU51は、この算出した角度に基づき、演算式記憶部53から読み出した前述の数式(1)〜(6)を用いて、所定のシール圧を得るための駆動軸46の軸トルクTを算出する。つぎに、CPU51は、前記算出された軸トルクTに基づき、当該軸トルクTを発生させるためのモータ49bの回転トルクを減速比等から算出する。CPU51は、モータドライバ26に当該回転トルクに対応する電流値をモータ49bに供給させる。その結果、モータ49bが当該回転トルクで駆動されることにより、概ね一定のシール圧が得られる。
Torque control;
That is, the CPU 51 in FIG. 7 calculates the crank angle θ in FIG. 5 based on the detection value from the encoder 28. Based on the calculated angle, the CPU 51 calculates the shaft torque T of the drive shaft 46 for obtaining a predetermined seal pressure using the above-described mathematical expressions (1) to (6) read from the arithmetic expression storage unit 53. . Next, the CPU 51 calculates, based on the calculated shaft torque T, a rotational torque of the motor 49b for generating the shaft torque T from a reduction ratio or the like. The CPU 51 causes the motor driver 26 to supply a current value corresponding to the rotational torque to the motor 49b. As a result, the motor 49b is driven with the rotational torque, whereby a substantially constant sealing pressure is obtained.

たとえば、図4(a)に示す通常時においては、図4(e)に示す前記クランク角θが設計上想定された概ね一定の値となるため、図6(a)に示す前記トルク制御時(T4〜T5)の回転トルクは、概ね一定の後期トルクとなる。一方、図4(b)、(c)に示すように、たとえば、厚いフィルムを用いた場合や、ゴミ等が付着した場合には、図4(f)に示すクランク角θが大きくなるため、図6(b)に示すように、トルク制御時(T4〜T5)の回転トルクは前記通常時の後期トルクよりも大きな値となる。   For example, in the normal time shown in FIG. 4 (a), the crank angle θ shown in FIG. 4 (e) becomes a substantially constant value assumed in the design, so that the torque control shown in FIG. 6 (a) is performed. The rotational torque of (T4 to T5) is a substantially constant late torque. On the other hand, as shown in FIGS. 4B and 4C, for example, when a thick film is used or when dust or the like is attached, the crank angle θ shown in FIG. As shown in FIG. 6B, the rotational torque at the time of torque control (T4 to T5) is larger than the latter-stage torque at the normal time.

なお、CPU51は、閾値記憶部55から読み出した噛み込み閾値と、クランク角θとを比較し、クランク角θが当該閾値よりも大きな場合(閾値までモータ49bが回転していない場合)には、図4(d),(g)に示すように、大きな異物の噛み込みが生じたと判断して、モータ49bに過大なトルクが発生するのを防止するために、シール動作を停止させる。   The CPU 51 compares the biting threshold value read from the threshold value storage unit 55 with the crank angle θ, and when the crank angle θ is larger than the threshold value (when the motor 49b does not rotate to the threshold value), As shown in FIGS. 4D and 4G, it is determined that a large foreign matter has been caught, and the sealing operation is stopped in order to prevent an excessive torque from being generated in the motor 49b.

第3期:
その後、図2に示す近接状態から図3に示す離反状態に至るまでの第3期では、図6(a),(b)に示すように、CPU51が再びモータ49bに対して速度制御を行う。
すなわち、モータ49bを逆回転させて、該モータ49bが所定の回転速度に至るまでモータ49bが加速される(T5〜T6)。その後、モータ49bを定速運転させ、クランク47が所定の回転角まで回転(T6〜T7)すると、モータ49bに正方向の回転トルクを発生させてモータ49bを停止させる(T7〜T8)。
Third period:
Thereafter, in the third period from the proximity state shown in FIG. 2 to the separation state shown in FIG. 3, the CPU 51 again controls the speed of the motor 49b as shown in FIGS. .
That is, the motor 49b is rotated in the reverse direction, and the motor 49b is accelerated until the motor 49b reaches a predetermined rotational speed (T5 to T6). Thereafter, the motor 49b is operated at a constant speed, and when the crank 47 rotates to a predetermined rotation angle (T6 to T7), a positive rotational torque is generated in the motor 49b to stop the motor 49b (T7 to T8).

前述の実施例1では、エンコーダ28によりクランク角θを検出し、当該クランク角θに基づいてモータ49bの回転トルクを算出したが、本実施例2では、エンコーダ28を設けていない。すなわち、ロータリーエンコーダ29で検出されたモータ49bの実際の回転角θMからクランク角θを算出し、当該算出されたクランク角θから前述の演算式を用いて、モータ49bの回転トルクを算出する。   In the first embodiment described above, the crank angle θ is detected by the encoder 28, and the rotational torque of the motor 49b is calculated based on the crank angle θ. However, in the second embodiment, the encoder 28 is not provided. That is, the crank angle θ is calculated from the actual rotation angle θM of the motor 49b detected by the rotary encoder 29, and the rotation torque of the motor 49b is calculated from the calculated crank angle θ using the above-described arithmetic expression.

このように、クランク角θを検出するエンコーダ28を必ずしも設ける必要はない。しかし、移動機構40の製造上の機械的な誤差等により、モータ49bを所定の回転角で停止させてもクランク角θが小さくまたは大きくなる場合がある。これに対し、前記実施例1では、モータの回転角θMに基づいてクランク角θを算出するのではなく、クランク角θ自体を検出して、モータ49bの回転トルクを制御するので、移動機構40に製造上の機械的な誤差が生じても一定のシール圧を得ることができる。   Thus, the encoder 28 for detecting the crank angle θ is not necessarily provided. However, the crank angle θ may become small or large even if the motor 49b is stopped at a predetermined rotation angle due to a mechanical error in manufacturing the moving mechanism 40 or the like. On the other hand, in the first embodiment, the crank angle θ is not calculated based on the rotation angle θM of the motor, but the crank angle θ itself is detected and the rotation torque of the motor 49b is controlled. Even if a mechanical error in manufacturing occurs, a constant sealing pressure can be obtained.

すなわち、前記実施例1においては、前記連接棒48bやクランク47が短い場合には、前記通常時のクランク角θが小さな値となるので、前記モータ49bの後期トルクが小さな値となり、一方、前記連接棒48bやクランク47が長い場合には、前記通常時のクランク角θが大きな値となるので、前記モータ49bの後期トルクが大きな値となって、移動機構40に製造上の機械的誤差が生じても、概ね一定のシール圧が得られる。   That is, in the first embodiment, when the connecting rod 48b and the crank 47 are short, the crank angle θ at the normal time becomes a small value, so that the late torque of the motor 49b becomes a small value. When the connecting rod 48b and the crank 47 are long, the crank angle θ at the normal time becomes a large value, so that the late torque of the motor 49b becomes a large value, and the moving mechanism 40 has a manufacturing mechanical error. Even if it occurs, a substantially constant sealing pressure can be obtained.

図8は実施例3を示す。
図8(a)に示すように、本実施例では、実施例1で説明した演算式記憶部53の代わりに、制御値記憶部57が設けられている。
図8(b)に示すように、制御値記憶部57には、前記クランク角θと、モータ49bの回転トルクを制御するための制御値とが、予め互いに関連付けられてされている。前記制御値は、たとえば、モータ49bの回転トルクに対応する電流値からなる。
その他の構成は実施例1と同様であり、その説明および図示を省略する。
FIG. 8 shows a third embodiment.
As shown in FIG. 8A, in this embodiment, a control value storage unit 57 is provided instead of the arithmetic expression storage unit 53 described in the first embodiment.
As shown in FIG. 8B, in the control value storage 57, the crank angle θ and a control value for controlling the rotational torque of the motor 49b are associated with each other in advance. The control value is, for example, a current value corresponding to the rotational torque of the motor 49b.
Other configurations are the same as those of the first embodiment, and the description and illustration thereof are omitted.

前述の実施例1では、演算式を用いて、シール圧が所定値となるようにモータ49bの回転トルクを制御した。これに対し、本実施例3では、エンコーダ28がクランク角θを検出すると、CPU51が、当該クランク角θに関連付けられたモータ49bの制御値を制御値記憶部57から読み出す。CPU51は、モータドライバ26を介して、モータ49bに当該制御値に対応する電流を流すことで、トルク制御を行いシール圧を一定にする。   In the first embodiment described above, the rotational torque of the motor 49b is controlled using an arithmetic expression so that the seal pressure becomes a predetermined value. On the other hand, in the third embodiment, when the encoder 28 detects the crank angle θ, the CPU 51 reads out the control value of the motor 49b associated with the crank angle θ from the control value storage unit 57. The CPU 51 applies torque corresponding to the control value to the motor 49b via the motor driver 26, thereby performing torque control and keeping the seal pressure constant.

なお、本実施例3において、制御値記憶部57に、モータの回転角θMと制御値とを、予め関連付けて記憶させてもよい。かかる場合には、ロータリーエンコーダ29が検出したモータの回転角θMに基づいて、トルク制御が行われる。   In the third embodiment, the control value storage unit 57 may store the rotation angle θM of the motor and the control value in association with each other in advance. In such a case, torque control is performed based on the rotation angle θM of the motor detected by the rotary encoder 29.

なお、クランク角θやモータの回転角θMの検出を行う代わりに、シール時においてシールジョー25a,25b間の間隙に対応する物理量を検出する別の検出手段を設けてもよい。かかる検出手段としては、たとえば、前記シールジョー25a,25b間の距離を測定する測距センサを用いることができる。前記検出された間隙に対応する距離に基づき、モータ49bの回転トルクの制御を行う。   Instead of detecting the crank angle θ and the motor rotation angle θM, another detection means for detecting a physical quantity corresponding to the gap between the seal jaws 25a and 25b at the time of sealing may be provided. As such a detecting means, for example, a distance measuring sensor that measures the distance between the sealing jaws 25a and 25b can be used. Based on the distance corresponding to the detected gap, the rotational torque of the motor 49b is controlled.

本製袋包装機は、いわゆるピロー型に袋詰めされる商品の製造に用いることができる。   This bag making and packaging machine can be used to manufacture products that are packed in a so-called pillow type.

本発明の実施例1にかかる製袋包装機を示す概略側面図である。It is a schematic side view which shows the bag making packaging machine concerning Example 1 of this invention. 同横シール装置のシール状態を示す概略平面図である。It is a schematic plan view which shows the sealing state of the horizontal sealing apparatus. 同横シール装置の開放状態を示す概略平面図である。It is a schematic plan view which shows the open state of the horizontal sealing apparatus. 近接状態におけるシールジョーの正面断面図と、当該状態におけるリンク機構の模式図である。It is a front sectional view of the seal jaw in the proximity state, and a schematic diagram of the link mechanism in the state. リンク機構の模式図である。It is a schematic diagram of a link mechanism. シールジョーの移動速度とモータの回転トルクの関係を示す図である。It is a figure which shows the relationship between the moving speed of a seal jaw, and the rotational torque of a motor. 同製袋包装機の概略構成図である。It is a schematic block diagram of the bag making packaging machine. 本発明の実施例3にかかる製袋包装機を示す概略構成図である。It is a schematic block diagram which shows the bag making packaging machine concerning Example 3 of this invention.

符号の説明Explanation of symbols

2:製袋包装機
24:縦シール装置
25a,25b:シールジョー
26:モータドライバ
28,29:エンコーダ(検出手段)
42b:摺動部材(リンク機構の一部)
43:後側ベース部材(リンク機構の一部)
47:クランク(リンク機構の一部)
48b:連接棒(リンク機構の一部)
49b:モータ
53:演算式記憶部
55:閾値記憶部
57:制御値記憶部
B:商品
Fa:帯状の包材(フィルム)
Fb:筒状包材(フィルム)
M:内容物
θ:クランク角
Δ:間隙
2: Bag making and packaging machine 24: Vertical seal device 25a, 25b: Seal jaw 26: Motor driver 28, 29: Encoder (detection means)
42b: sliding member (part of link mechanism)
43: Rear base member (part of link mechanism)
47: Crank (part of the link mechanism)
48b: Connecting rod (part of link mechanism)
49b: Motor 53: Arithmetic expression storage unit 55: Threshold storage unit 57: Control value storage unit B: Product Fa: Band-shaped packaging material (film)
Fb: cylindrical packaging material (film)
M: Contents θ: Crank angle Δ: Gap

Claims (8)

フィルムの流れ方向に沿った端部同士を縦シール装置でシールしてフィルムを筒状に成形し、該筒状に成形したフィルム内に内容物が充填された後に前記筒状のフィルムを挟む一対のシールジョーを開閉することで前記フィルムの流れ方向に対して横方向に帯状にシールして包装された商品を生産する製袋包装機において、
前記シールジョーを開閉駆動するために正逆回転するモータと、
前記モータの駆動力を前記シールジョーに伝達し、前記シールジョーによるシール時にシール圧を増大させるリンク機構と、
前記モータの駆動を制御するためのモータドライバとを備え、
前記シール時における前記一対のシールジョーの間の間隙の大きさに応じて、当該シール時における前記モータの回転トルクを制御するようにした製袋包装機。
A pair of the end portions along the flow direction of the film is sealed with a vertical sealing device to form the film into a cylindrical shape, and the cylindrical film is filled with the contents and then sandwiched between the cylindrical films. In a bag making and packaging machine for producing a product that is sealed and packaged in a band shape in a direction transverse to the flow direction of the film by opening and closing the sealing jaw of
A motor that rotates forward and backward to open and close the sealing jaw;
A link mechanism for transmitting the driving force of the motor to the seal jaws and increasing a seal pressure when sealing with the seal jaws;
A motor driver for controlling the drive of the motor,
A bag making and packaging machine configured to control a rotational torque of the motor at the time of sealing in accordance with a size of a gap between the pair of sealing jaws at the time of sealing.
請求項1において、前記シール時において前記間隙に対応する物理量を検出する検出手段を更に備え、前記検出された物理量に基づいて、前記シール時の前記モータの回転トルクを制御するようにした製袋包装機。   2. The bag making according to claim 1, further comprising detection means for detecting a physical quantity corresponding to the gap at the time of sealing, wherein the rotational torque of the motor at the time of sealing is controlled based on the detected physical quantity. Packaging machine. 請求項1において、前記シール時において前記モータが停止したときの前記モータの実際の回転角を検出する検出手段を更に備え、前記検出手段で検出されたモータの回転角に基づいて、前記シール時の前記モータの回転トルクを制御するようにした製袋包装機。   2. The method according to claim 1, further comprising detection means for detecting an actual rotation angle of the motor when the motor is stopped during the sealing, and based on the rotation angle of the motor detected by the detection means. A bag making and packaging machine configured to control the rotational torque of the motor. 請求項1において、前記シール時における前記リンク機構のリンクの回転角を検出する検出手段を更に備え、前記検出手段で検出されたリンクの回転角に基づいて、前記シール時の前記モータの回転トルクを制御するようにした製袋包装機。   The rotation torque of the motor according to claim 1, further comprising detection means for detecting a rotation angle of the link of the link mechanism at the time of sealing, based on the rotation angle of the link detected by the detection means. A bag making and packaging machine designed to control. 請求項2、3もしくは4において、前記リンク機構の幾何学的な構造と前記検出手段による検出結果に基づいて、前記シール圧が所定値となるように演算するための演算式を記憶する記憶部を更に備え、前記演算式に基づいて前記シール圧が所定値となるように前記モータの回転トルクを制御するようにした製袋包装機。   5. The storage unit according to claim 2, 3 or 4 for storing an arithmetic expression for calculating the seal pressure to be a predetermined value based on a geometric structure of the link mechanism and a detection result by the detection means. A bag making and packaging machine that controls the rotational torque of the motor so that the seal pressure becomes a predetermined value based on the arithmetic expression. 請求項2、3もしくは4において、前記検出手段による検出結果に応じて前記シール時のモータの回転トルクを制御するための制御値を記憶する記憶部を更に備え、前記記憶部から前記制御値を読み出して前記シール時の前記モータの回転トルクを制御するようにした製袋包装機。   5. The storage device according to claim 2, further comprising a storage unit that stores a control value for controlling a rotational torque of the motor at the time of sealing according to a detection result by the detection unit, and the control value is obtained from the storage unit. A bag making and packaging machine that reads and controls the rotational torque of the motor at the time of sealing. 請求項1から6のいずれか1項において、前記シールジョーが全開から概ね閉じるまでの第1期は前記モータが当該モータの回転速度を基準に制御され、一方、前記概ね閉じた後のシール時である第2期は前記モータが前記回転トルクを基準に制御され、前記閉じたシールジョーが全開に至る第3期は前記モータが前記回転速度を基準に制御される製袋包装機。   7. The first period from when the sealing jaw is fully opened to when the sealing jaw is substantially closed according to claim 1, wherein the motor is controlled on the basis of the rotational speed of the motor, and on the other hand, when sealing is performed after the motor is substantially closed. In the second period, the motor is controlled based on the rotational torque, and in the third period when the closed sealing jaw is fully opened, the motor is controlled based on the rotational speed. 請求項7において、前記シールジョーの閉時におけるモータの回転角の閾値を記憶する記憶部を更に備え、
前記第2期において、前記閾値まで前記モータが回転していない場合には前記シールジョーによるシール動作を停止し、
一方、前記第2期において、前記閾値以上に前記モータが回転している場合には、前記シールジョーに前記シール圧を付与するようにした製袋包装機。
In Claim 7, further comprising a storage unit for storing a threshold value of the rotation angle of the motor when the sealing jaw is closed,
In the second period, when the motor does not rotate to the threshold value, the sealing operation by the sealing jaw is stopped,
On the other hand, in the second period, when the motor rotates more than the threshold, the bag making and packaging machine is configured to apply the seal pressure to the seal jaw.
JP2005005880A 2005-01-13 2005-01-13 Bag manufacturing and packaging machine Pending JP2006193176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005880A JP2006193176A (en) 2005-01-13 2005-01-13 Bag manufacturing and packaging machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005880A JP2006193176A (en) 2005-01-13 2005-01-13 Bag manufacturing and packaging machine

Publications (1)

Publication Number Publication Date
JP2006193176A true JP2006193176A (en) 2006-07-27

Family

ID=36799568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005880A Pending JP2006193176A (en) 2005-01-13 2005-01-13 Bag manufacturing and packaging machine

Country Status (1)

Country Link
JP (1) JP2006193176A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126532A (en) * 2007-11-21 2009-06-11 Kawashima Packaging Mach Ltd Automatic packaging machine
JP2009234643A (en) * 2008-03-27 2009-10-15 Fuji Seal International Inc Sealing device
JP2016003053A (en) * 2014-06-19 2016-01-12 ゼネラルパッカー株式会社 Seal device
WO2018215261A1 (en) * 2017-05-23 2018-11-29 Rovema Gmbh Method for monitoring the functions of a tubular bag machine
WO2018215256A1 (en) * 2017-05-23 2018-11-29 Rovema Gmbh Method for a functional check of a tubular bag machine
CN109094889A (en) * 2018-07-12 2018-12-28 怀宁县惠民育苗容器有限公司 A kind of seedling culture bag bundling machine of efficient quick
US10532845B2 (en) 2016-11-30 2020-01-14 General Packer Co., Ltd. Sealing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444913A (en) * 1990-06-04 1992-02-14 Fuji Mach Co Ltd Article bite detecting device for end sealing mechanism
JPH06255631A (en) * 1993-02-26 1994-09-13 Fuji Mach Co Ltd Device for controlling sealing pressure of packaging machine
JPH07187153A (en) * 1993-12-28 1995-07-25 Ishida Co Ltd Discriminating method of existence of interposed material in seal part of packing material
JP2002046713A (en) * 2000-08-01 2002-02-12 Tokyo Autom Mach Works Ltd Vertical bag making, filling and packing device and its controlling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444913A (en) * 1990-06-04 1992-02-14 Fuji Mach Co Ltd Article bite detecting device for end sealing mechanism
JPH06255631A (en) * 1993-02-26 1994-09-13 Fuji Mach Co Ltd Device for controlling sealing pressure of packaging machine
JPH07187153A (en) * 1993-12-28 1995-07-25 Ishida Co Ltd Discriminating method of existence of interposed material in seal part of packing material
JP2002046713A (en) * 2000-08-01 2002-02-12 Tokyo Autom Mach Works Ltd Vertical bag making, filling and packing device and its controlling method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126532A (en) * 2007-11-21 2009-06-11 Kawashima Packaging Mach Ltd Automatic packaging machine
JP2009234643A (en) * 2008-03-27 2009-10-15 Fuji Seal International Inc Sealing device
JP2016003053A (en) * 2014-06-19 2016-01-12 ゼネラルパッカー株式会社 Seal device
US10532845B2 (en) 2016-11-30 2020-01-14 General Packer Co., Ltd. Sealing device
WO2018215261A1 (en) * 2017-05-23 2018-11-29 Rovema Gmbh Method for monitoring the functions of a tubular bag machine
WO2018215256A1 (en) * 2017-05-23 2018-11-29 Rovema Gmbh Method for a functional check of a tubular bag machine
US11370573B2 (en) 2017-05-23 2022-06-28 Rovema Gmbh Method for testing the function of a tubular bag machine
US11504919B2 (en) 2017-05-23 2022-11-22 Rovema Gmbh Method for monitoring the function of a tubular bag machine
CN109094889A (en) * 2018-07-12 2018-12-28 怀宁县惠民育苗容器有限公司 A kind of seedling culture bag bundling machine of efficient quick

Similar Documents

Publication Publication Date Title
JP2006193176A (en) Bag manufacturing and packaging machine
JP6239957B2 (en) Bag making and packaging machine and bag making and packaging system
JP5244373B2 (en) Automatic packaging machine
US10486844B2 (en) Heat-sealing device and filling-packing machine provided therewith
AU2014378324B2 (en) Bag making and packaging machine
JP5256715B2 (en) Bag manufacturing management method, bag manufacturing management device, and control program for bag manufacturing management device
JP4804392B2 (en) Vertical bag making and filling machine
JP6174551B2 (en) Sealing device for bag making and filling machine
JP6568789B2 (en) HEAT SEALING DEVICE AND FILLING PACKING MACHINE HAVING THE SAME
JP2010275004A (en) Vertical heat seal unit in packaging machine
JP4293496B2 (en) Vertical bag making filling and packaging apparatus and control method thereof
JP3654983B2 (en) Initial setting method of horizontal seal timing of automatic packaging machine
JP6970420B2 (en) Packaging machine with toggle mechanism actuated seal unit
JP5833873B2 (en) Roll crimping device for sealing in packaging machines
JP5102586B2 (en) Automatic packaging machine
JP3084701B2 (en) Heat sealing equipment
JP2009161228A (en) Bag making and packaging machine
JP7097595B2 (en) Bag making filling and packaging machine
JP4336339B2 (en) Filling and packaging machine
JP7128397B2 (en) Bag making and filling equipment
JP5628660B2 (en) Bag making and packaging machine
JP4764847B2 (en) End seal device for horizontal bag making and filling machine
JP2003026103A (en) Filling and packaging machine and method for its operation
JP7366451B2 (en) Original film rewind roll
JP6035099B2 (en) Vertical seal roll mechanism in automatic packaging machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907