JP2006193075A - Controller for stopping behavior of vehicle - Google Patents

Controller for stopping behavior of vehicle Download PDF

Info

Publication number
JP2006193075A
JP2006193075A JP2005007984A JP2005007984A JP2006193075A JP 2006193075 A JP2006193075 A JP 2006193075A JP 2005007984 A JP2005007984 A JP 2005007984A JP 2005007984 A JP2005007984 A JP 2005007984A JP 2006193075 A JP2006193075 A JP 2006193075A
Authority
JP
Japan
Prior art keywords
vehicle
braking force
braking
deceleration
stopped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005007984A
Other languages
Japanese (ja)
Inventor
Yoshiro Irie
喜朗 入江
Tomoaki Morimoto
知昭 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005007984A priority Critical patent/JP2006193075A/en
Publication of JP2006193075A publication Critical patent/JP2006193075A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce discomfort that an occupant feels when a vehicle is braked and stopped by controlling a braking force to reduce a rapid change in forward-rearward acceleration of the vehicle at braking and stopping of a vehicle. <P>SOLUTION: A target deceleration Gt of the vehicle is calculated on the basis of brake operating amount of a driver (S20). When it is determined that the vehicle is in a braked and stopped condition (S40, 50), a gain Kg for reducing the target deceleration is calculated so as to be decreased with a decrease in a ratio V/Gbx of a vehicle speed V to the deceleration Gbx of the vehicle (S80), a ratio of a rear wheel distribution Krs of the braking force is calculated to be decreased with a decrease in the ratio V/Gbx of the vehicle speed V to the deceleration Gbx of the vehicle (S90), the target deceleration Gta of the vehicle after correction is calculated as a product of the gain Kg for reducing the deceleration and the target deceleration Gt of the vehicle (S100), and the braking force of each wheel is controlled so that the target deceleration Gta of the vehicle after correction may be attained by the ratio of the rear distribution Krs of the braking force (S110, 120). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車輌の制御装置に係り、更に詳細には車輌の制動停止時に於ける挙動の変化を低減する停止挙動制御装置に係る。   The present invention relates to a vehicle control device, and more particularly to a stop behavior control device that reduces changes in behavior when the vehicle is stopped.

自動車等の車輌の制動制御装置の一つとして、例えば下記の特許文献1に記載されている如く、車輌の制動停止時に於ける車体の揺り戻しを低減すべく、車輌が停止する直前に後輪の制動力配分を増大させるよう構成された制動制御装置が従来より知られている。   As one of braking control devices for vehicles such as automobiles, as described in, for example, Patent Document 1 below, the rear wheel is set immediately before the vehicle stops in order to reduce vehicle body swingback when the vehicle is stopped. 2. Description of the Related Art Conventionally, a braking control device configured to increase the braking force distribution is known.

上述の如き制動制御装置によれば、車輌が停止する直前に後輪の制動力配分が増大されることにより、制動時に於ける車輌の安定性を確保しつつ、車輌の制動停止時に於ける車体の揺り戻し(車体のピッチ角の変化やピッチ変位量)を低減することができる。
特開2001−18777号公報
According to the braking control apparatus as described above, the braking force distribution of the rear wheels is increased immediately before the vehicle stops, thereby ensuring the stability of the vehicle at the time of braking and the vehicle body at the time of braking stop of the vehicle. Can be reduced (changes in the pitch angle of the vehicle body and the amount of pitch displacement).
JP 2001-18777 A

しかし本願発明者が行った実験的研究の結果によれば、車輌の制動停止時に乗員が感じる不快感は車体のピッチ角の変化ではなく車輌の前後加速度の急激な変化(ジャーク)に起因するショックであり、従って車輌が停止する直前に後輪の制動力配分を増大させて車体のピッチ角の変化やピッチ変位量を低減しても、車輌の制動停止時に乗員がショックとして感じる不快感を効果的に低減することができないことが判明した。   However, according to the results of an experimental study conducted by the inventor of the present application, the discomfort felt by the occupant when the vehicle is stopped is not a change in the pitch angle of the vehicle body, but a shock caused by a sudden change (jerk) in the longitudinal acceleration of the vehicle. Therefore, even if the braking force distribution of the rear wheels is increased just before the vehicle stops to reduce the change in the pitch angle of the vehicle body and the amount of pitch displacement, the uncomfortable feeling that the passenger feels as a shock when the vehicle stops braking is effective. It was found that it cannot be reduced.

本発明は、車輌が停止する直前に後輪の制動力配分を増大させるよう構成された従来の制動制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、本願発明者が行った実験的研究の結果得られた知見に基づき、車輌の制動停止時に於ける車輌の前後加速度の急激な変化が減少するよう制動力を制御することにより、車輌の制動停止時に乗員が感じる不快感を効果的に低減することである。   The present invention has been made in view of the above-described problems in the conventional braking control device configured to increase the braking force distribution of the rear wheels immediately before the vehicle stops. Is based on the knowledge obtained as a result of the experimental research conducted by the inventor of the present application, by controlling the braking force so as to reduce the sudden change in the longitudinal acceleration of the vehicle when the vehicle is stopped. It is to effectively reduce the discomfort felt by the occupant when stopping.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち車輌の制動停止時を判定する手段と、車輌の制動停止時には車輌の前後コンプライアンスが制動停止前の値よりも増大するよう車輌の前後コンプライアンスを制御する制御手段とを有することを特徴とする車輌の停止挙動制御装置によって達成される。   According to the present invention, the main problems described above are the configuration of claim 1, that is, the means for determining when the vehicle is stopped, and the front-rear compliance of the vehicle is greater than the value before stopping when the vehicle is stopped. This is achieved by a vehicle stop behavior control device having control means for controlling the longitudinal compliance of the vehicle.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記制御手段は車輌の制動停止時に於ける制動力を実質的に前輪又は後輪にのみ配分することにより車輌の前後コンプライアンスを増大させるよう構成される(請求項2の構成)。   According to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 1, the control means substantially applies the braking force when the vehicle is stopped to the front or rear wheels. It is comprised so that the front-back compliance of a vehicle may be increased by allocating only to a wheel (structure of Claim 2).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記制御手段は車輌の制動停止時に車輌前後方向の車輪支持剛性を低下させることにより車輌の前後コンプライアンスを増大させるよう構成される(請求項3の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 1 or 2, the control means reduces the wheel support rigidity in the vehicle front-rear direction when the vehicle stops braking. To increase the longitudinal compliance of the vehicle.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至3の構成に於いて、車輌は車輪の制動力を制御する制動力制御手段を有し、前記制動力制御手段は車輌の制動停止時には車輌に要求される減速度よりも車輌の減速度が小さくなるよう車輪の制動力を制御するよう構成される(請求項4の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of the first to third aspects, the vehicle has braking force control means for controlling the braking force of the wheels, The braking force control means is configured to control the braking force of the wheel so that the deceleration of the vehicle becomes smaller than the deceleration required for the vehicle when the vehicle is stopped.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至3の構成に於いて、車輌の減速度に対する車速の比が小さいほど車輌の減速度が小さくなるよう車輪の制動力を制御するよう構成される(請求項5の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claims 1 to 3, the vehicle deceleration decreases as the ratio of the vehicle speed to the vehicle deceleration decreases. It is comprised so that the braking force of a wheel may be controlled (structure of Claim 5).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於いて、車輌は駆動輪と非駆動輪とを有し、前記制御手段は車輌の制動停止時に於ける制動力を実質的に非駆動輪にのみ配分するときには、クリープトルクを低減する制動力を駆動輪に付与するよう構成される(請求項6の構成)。   According to the present invention, in order to effectively achieve the above-mentioned main problems, in the configuration of claim 2, the vehicle has driving wheels and non-driving wheels, and the control means controls the braking of the vehicle. When the braking force at the time of stopping is substantially distributed only to the non-driving wheels, the braking force for reducing the creep torque is applied to the driving wheels.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至6の構成に於いて、前記車輌の制動停止時を判定する手段は車輪に制動力が付与されている状況にて車速が基準値以下であるときに車輌の制動停止時であると判定するよう構成される(請求項7の構成)。   According to the present invention, in order to effectively achieve the above main problems, the means for determining when the vehicle is stopped is applied with a braking force on the wheel. When the vehicle speed is equal to or lower than the reference value in the situation, the vehicle is determined to be in a braking stop state (configuration of claim 7).

尚上記請求項2に於ける「制動力を実質的に前輪又は後輪にのみ配分する」とは、制動力が配分されない側の制動力が0である場合に限らず、車輌の制動停止時に当該車輪の自由な回転を許容する程度の制動力が付与されることを含むものである。   The term “distributing braking force substantially only to the front wheels or rear wheels” in claim 2 is not limited to the case where the braking force on the side where the braking force is not distributed is 0, but when the braking of the vehicle is stopped. This includes the application of a braking force that allows free rotation of the wheel.

上記請求項1の構成によれば、車輌の制動停止時には車輌の前後コンプライアンスが制動停止前の値よりも増大するよう車輌の前後コンプライアンスが制御されるので、車輌の制動停止時に車輌の前後方向の固有振動数を低下させ、車体に作用する揺り返しの弾性力を低下させ、これにより車体の前後加速度の急激な変化及びこれに起因する車輌加速方向のショックを確実に低減することができる。   According to the first aspect of the present invention, the vehicle front / rear compliance is controlled so that the vehicle front / rear compliance increases to a value before the brake stop when the vehicle is stopped. By reducing the natural frequency and reducing the elastic force of the rolling action acting on the vehicle body, it is possible to reliably reduce a sudden change in the longitudinal acceleration of the vehicle body and a shock in the vehicle acceleration direction resulting therefrom.

また上記請求項2の構成によれば、車輌の制動停止時に於ける制動力を実質的に前輪又は後輪にのみ配分することにより車輌の前後コンプライアンスが増大されるので、車輌の前後コンプライアンスを増減するための特別の装置は不要であり、車輌の制動停止時に車輌の前後コンプライアンスを容易に且つ確実に増大させることができる。   According to the second aspect of the present invention, the front-rear compliance of the vehicle is increased by allocating the braking force when the vehicle is stopped to the front wheels or the rear wheels substantially, so the front-rear compliance of the vehicle is increased or decreased. No special device is required for this purpose, and the front-rear compliance of the vehicle can be easily and reliably increased when braking of the vehicle is stopped.

また上記請求項3の構成によれば、車輌の制動停止時に車輌前後方向の車輪支持剛性を低下させることにより車輌の前後コンプライアンスが増大されるので、制動力の前後輪配分比を所望の配分比に制御しつつ車輌の前後コンプライアンスを確実に増大させることができる。   According to the third aspect of the present invention, the front / rear compliance of the vehicle is increased by reducing the wheel support rigidity in the vehicle front-rear direction when the vehicle is stopped. It is possible to reliably increase the front-rear compliance of the vehicle while controlling the vehicle.

また上記請求項4の構成によれば、車輌の制動停止時には車輌に要求される減速度よりも車輌の減速度が小さくなるよう車輪の制動力が制御されるので、車輌の制動停止時に運転者により車輪の制動力の低下操作が行われることを要することなく車輌の制動停止時に確実に車輌の減速度を低下させ、これにより乗員に車輌前方への過大な慣性力が作用することに起因する車輌減速方向のショックを確実に低減することができる。   According to the fourth aspect of the present invention, the braking force of the wheel is controlled so that the deceleration of the vehicle is smaller than the deceleration required for the vehicle when the vehicle is stopped. This is because the deceleration of the vehicle is surely reduced when the braking of the vehicle is stopped without requiring the operation of lowering the braking force of the wheel, thereby causing an excessive inertia force to act on the front of the vehicle on the occupant. A shock in the vehicle deceleration direction can be reliably reduced.

一般に、車輌の制動停止時に於けるショックを低減するためには、車速が低くなるほど車輌の減速度が小さくなることが好ましく、車輌の制動停止時に於ける車輌の減速度が高いときには車輌の減速度が十分に低下され、車輌の減速度が小さくなるほど車輌の減速度低下度合が小さくなることが好ましい。   In general, in order to reduce the shock when the vehicle is stopped, it is preferable that the vehicle deceleration decreases as the vehicle speed decreases. When the vehicle deceleration is high when the vehicle stops, the vehicle deceleration decreases. It is preferable that the degree of deceleration reduction of the vehicle decreases as the vehicle speed decreases sufficiently and the vehicle deceleration decreases.

上記請求項5の構成によれば、車輌の減速度に対する車速の比が小さいほど車輌の減速度が小さくなるよう車輪の制動力が制御されるので、車速が低くなるほど車輌の減速度を小さくすることができると共に、車輌の制動停止時に於ける車輌の減速度が高いときには車輌の減速度を十分に低下させ、車輌の減速度が小さくなるほど車輌の減速度低下度合を小さくすることができる。   According to the fifth aspect of the present invention, since the braking force of the wheels is controlled so that the deceleration of the vehicle becomes smaller as the ratio of the vehicle speed to the deceleration of the vehicle becomes smaller, the deceleration of the vehicle becomes smaller as the vehicle speed becomes lower. In addition, it is possible to sufficiently reduce the vehicle deceleration when the vehicle deceleration is high when the vehicle is stopped, and to reduce the vehicle deceleration decrease as the vehicle deceleration decreases.

また上記請求項6の構成によれば、車輌の制動停止時に於ける制動力を実質的に非駆動輪にのみ配分するときには、クリープトルクを低減する制動力が駆動輪に付与されるので、車輌の制動停止時に制動力が実質的に非駆動輪にのみ配分されても、駆動輪のクリープトルクに起因して車輌の制動距離が増大することを確実に抑制することができる。特に前輪が従動輪であり後輪が駆動輪である場合には、上記請求項6の構成によれば、前輪に制動停止用の制動力が付与され、後輪にクリープトルク低減用の制動力が付与されることにより、前輪に制動力が付与されている状況にて後輪により駆動力が発生される状況を極力回避することができ、これにより制動停止時の車輌の走行安定性を向上させることができる。   According to the sixth aspect of the present invention, when the braking force when the vehicle is stopped is substantially distributed only to the non-driving wheels, the braking force for reducing the creep torque is applied to the driving wheels. Even when the braking force is substantially distributed only to the non-driving wheels when the braking is stopped, it is possible to reliably suppress an increase in the braking distance of the vehicle due to the creep torque of the driving wheels. Particularly when the front wheel is a driven wheel and the rear wheel is a driving wheel, the braking force for stopping braking is applied to the front wheel and the braking force for reducing creep torque is applied to the front wheel. Can be applied to avoid the situation where the driving force is generated by the rear wheels when the braking force is applied to the front wheels, thereby improving the running stability of the vehicle when braking is stopped. Can be made.

また上記請求項7の構成によれば、車輪に制動力が付与されている状況にて車速が基準値以下であるときに車輌の制動停止時であると判定されるので、車輌の制動停止時である状況、即ち車輪に制動力が付与され車速が低下して車輌が停止に至る状況を確実に判定することができる。   According to the seventh aspect of the present invention, when the braking speed is applied to the wheels, it is determined that the vehicle is stopped when the vehicle speed is equal to or lower than the reference value. In other words, it is possible to reliably determine the situation in which the braking force is applied to the wheels and the vehicle speed is reduced to stop the vehicle.

[課題解決手段の好ましい態様]
本発明の一つの好ましい態様によれば、上記請求項1乃至7の構成に於いて、制御手段は車速が低いほど車輌の前後コンプライアンスが高くなるよう、少なくとも車速に応じて車輌の前後コンプライアンスを制御するよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferred aspect of the present invention, in the configuration according to any one of claims 1 to 7, the control means controls the longitudinal compliance of the vehicle according to at least the vehicle speed so that the longitudinal compliance of the vehicle increases as the vehicle speed decreases. (Preferred embodiment 1).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至7の構成に於いて、制御手段は車輌の減速度に対する車速の比が小さいほど車輌の前後コンプライアンスが高くなるよう、車輌の減速度に対する車速の比に応じて車輌の前後コンプライアンスを制御するよう構成される(好ましい態様2)。   According to another preferred aspect of the present invention, in the configuration according to any one of the first to seventh aspects of the present invention, the control means is configured such that the front-rear compliance of the vehicle increases as the ratio of the vehicle speed to the vehicle deceleration decreases. The vehicle front-rear compliance is controlled according to the ratio of the vehicle speed to the deceleration (preferred aspect 2).

本発明の他の一つの好ましい態様によれば、上記請求項3の構成に於いて、制御手段はサスペンションのリンクの端部の剛性を低下させることにより車輌前後方向の剛性を低下させるよう構成される(好ましい態様3)。   According to another preferred aspect of the present invention, in the configuration of claim 3, the control means is configured to reduce the rigidity in the vehicle longitudinal direction by reducing the rigidity of the end portion of the link of the suspension. (Preferred embodiment 3)

本発明の他の一つの好ましい態様によれば、上記好ましい態様3の構成に於いて、制御手段はサスペンションのリンクの端部に組み込まれた弾性ブッシュのばね定数を低下させることにより車輌前後方向の剛性を低下させるよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in the configuration of the preferred aspect 3 described above, the control means reduces the spring constant of the elastic bush incorporated in the end portion of the suspension link, thereby reducing the longitudinal direction of the vehicle. It is comprised so that rigidity may be reduced (Preferable aspect 4).

本発明の他の一つの好ましい態様によれば、上記請求項4の構成に於いて、車輌に要求される減速度は乗員の制動操作量に基づいて求められるよう構成される(好ましい態様5)。   According to another preferred aspect of the present invention, in the structure of claim 4 above, the deceleration required for the vehicle is determined based on the braking operation amount of the occupant (Preferred aspect 5). .

本発明の他の一つの好ましい態様によれば、上記請求項4の構成に於いて、車輌は自動制動装置を有し、車輌に要求される減速度は乗員の制動操作量に基づいて求められる減速度及び自動制動装置の目標減速度のうち大きい方の値として求められるよう構成される(好ましい態様6)。   According to another preferred aspect of the present invention, in the configuration of claim 4, the vehicle has an automatic braking device, and the deceleration required for the vehicle is determined based on the braking operation amount of the occupant. It is comprised so that it may obtain | require as a larger value among the deceleration and the target deceleration of an automatic braking device (Preferable aspect 6).

本発明の他の一つの好ましい態様によれば、上記請求項7の構成に於いて、車輌の制動停止時を判定する手段は車輌に要求される減速度がその基準値以上であり且つ車速がその基準値以下であるときに車輌の制動停止時であると判定するよう構成される(好ましい態様7)。   According to another preferred aspect of the present invention, in the configuration of claim 7, the means for determining when the vehicle is stopped is such that the deceleration required for the vehicle is equal to or greater than a reference value and the vehicle speed is When the vehicle is below the reference value, the vehicle is determined to be in a braking stop state (preferred aspect 7).

以下に添付の図を参照しつつ、本発明を好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to the accompanying drawings.

図1は制動力の前後配分を制御可能な車輌に適用された本発明による車輌の停止挙動制御装置の実施例1を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle stop behavior control device according to the present invention applied to a vehicle capable of controlling the front-rear distribution of braking force.

図1に於いて、10FL及び10FRはそれぞれ車輌12の左右の前輪を示し、10RL及び10RRはそれぞれ車輌の駆動輪である左右の後輪を示している。従動輪であり操舵輪でもある左右の前輪10FL及び10FRは運転者によるステアリングホイール14の転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置16によりタイロッド18L及び18Rを介して操舵される。   In FIG. 1, 10FL and 10FR respectively indicate the left and right front wheels of the vehicle 12, and 10RL and 10RR respectively indicate the left and right rear wheels that are drive wheels of the vehicle. The left and right front wheels 10FL and 10FR, which are both driven wheels and steering wheels, are driven via tie rods 18L and 18R by a rack and pinion type power steering device 16 driven in response to steering of the steering wheel 14 by the driver. Steered.

各車輪の制動力は制動装置20の油圧回路22によりホイールシリンダ24FR、24FL、24RR、24RLの制動圧が制御されることによって制御されるようになっている。図には示されていないが、油圧回路22はオイルリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル26の踏み込み操作に応じて駆動されるマスタシリンダ28により制御され、また必要に応じて後に詳細に説明する如く電子制御装置30により制御される。   The braking force of each wheel is controlled by controlling the braking pressure of the wheel cylinders 24FR, 24FL, 24RR, 24RL by the hydraulic circuit 22 of the braking device 20. Although not shown in the drawing, the hydraulic circuit 22 includes an oil reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven according to the depression operation of the brake pedal 26 by the driver. It is controlled by the master cylinder 28, and if necessary, it is controlled by the electronic control unit 30 as will be described in detail later.

マスタシリンダ28にはマスタシリンダ圧力Pmを検出する圧力センサ34が設けられ、ブレーキペダル26にはブレーキペダルの踏み込みストロークStを検出するストロークセンサ36が設けられ、ホイールシリンダ24FR〜24RLには対応するホイールシリンダ内の圧力を制動圧Piとして検出する圧力センサ38FL〜38RRが設けられている。これらのセンサにより検出されたマスタシリンダ圧力Pm、踏み込みストロークSt、制動圧Pi(i=fl、fr、rl、rr)を示す信号は電子制御装置30に入力される。   The master cylinder 28 is provided with a pressure sensor 34 for detecting the master cylinder pressure Pm, the brake pedal 26 is provided with a stroke sensor 36 for detecting the depression stroke St of the brake pedal, and the wheel cylinders 24FR to 24RL are provided with corresponding wheels. Pressure sensors 38FL to 38RR for detecting the pressure in the cylinder as the braking pressure Pi are provided. Signals indicating the master cylinder pressure Pm, the depression stroke St, and the braking pressure Pi (i = fl, fr, rl, rr) detected by these sensors are input to the electronic control unit 30.

また電子制御装置30には車速センサ40により検出された車速Vを示す信号及び横加速度センサ42により検出された車輌の横加速度Gyを示す信号も入力される。尚図1には詳細に示されていないが、電子制御装置30は例えばCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータを含んでいる。   The electronic control unit 30 also receives a signal indicating the vehicle speed V detected by the vehicle speed sensor 40 and a signal indicating the vehicle lateral acceleration Gy detected by the lateral acceleration sensor 42. Although not shown in detail in FIG. 1, the electronic control device 30 has a general configuration in which, for example, a CPU, a ROM, a RAM, and an input / output port device are connected to each other via a bidirectional common bus. Includes a microcomputer.

電子制御装置30は図2に示されたフローチャートに従い、運転者の制動操作量に基づき車輌の目標減速度Gtを演算する。また電子制御装置30は車輌の制動停止時を判定し、車輌の制動停止時には車輌の減速度Gbxに対する車速Vの比V/Gbxが小さい領域に於いて比V/Gbxが小さいほど小さくなるよう車輌の目標減速度Gtを低減補正し、また比V/Gbxが小さい領域に於いては制動力の後輪配分比を0にし、これにより低減補正後の車輌の目標減速度Gtaが前輪の制動力のみにより達成されるよう各車輪の制動力を制御する。   The electronic control unit 30 calculates the target deceleration Gt of the vehicle based on the driver's braking operation amount according to the flowchart shown in FIG. In addition, the electronic control unit 30 determines when the vehicle is stopped. When the vehicle stops, the electronic control unit 30 reduces the vehicle in such a manner that the ratio V / Gbx becomes smaller in the region where the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx is small. The target deceleration Gt of the vehicle is reduced and the rear wheel distribution ratio of the braking force is set to 0 in the region where the ratio V / Gbx is small, so that the target deceleration Gta of the vehicle after the reduction correction becomes the braking force of the front wheel. The braking force of each wheel is controlled so as to be achieved by only.

尚電子制御装置30は制動停止に至る前の制動状況に於いては、車輌の目標減速度Gtを低減補正せず、制動力の後輪配分比を通常時の後輪配分比に設定し、これにより車輌の目標減速度Gtが前後輪の制動力により通常時の後輪配分比にて達成されるよう各車輪の制動力を制御する。   The electronic control unit 30 sets the rear wheel distribution ratio of the braking force to the normal rear wheel distribution ratio without reducing and correcting the target deceleration Gt of the vehicle in the braking situation before the braking is stopped. Thus, the braking force of each wheel is controlled so that the target deceleration Gt of the vehicle is achieved by the rear wheel distribution ratio at the normal time by the braking force of the front and rear wheels.

次に図2に示されたフローチャートを参照して図示の実施例1に於ける制動力の制御による車輌の停止挙動制御について説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。   Next, the vehicle stop behavior control by the braking force control in the illustrated embodiment 1 will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals.

まずステップ10に於いては圧力センサ36により検出されたマスタシリンダ圧力Pmを示す信号等の読み込みが行われ、ステップ20に於いては図3に示されたフローチャートに従って運転者の制動操作量に基づき運転者の制動要求量としての車輌の目標減速度Gtが演算される。   First, in step 10, a signal indicating the master cylinder pressure Pm detected by the pressure sensor 36 is read, and in step 20, based on the amount of braking operation of the driver according to the flowchart shown in FIG. A target deceleration Gt of the vehicle as a driver's required braking amount is calculated.

ステップ40に於いては車輌の目標減速度Gtが車輌の制動停止時を判定するための基準値Gto(0に近い正の定数)よりも大きいか否かの判別、即ち運転者の制動要求があるか否かの判別が行われ、否定判別が行われたときにはステップ60へ進み、肯定判別が行われたときにはステップ50へ進む。   In step 40, it is determined whether or not the target deceleration Gt of the vehicle is larger than a reference value Gto (a positive constant close to 0) for determining when the vehicle is stopped. If a negative determination is made, the process proceeds to step 60. If an affirmative determination is made, the process proceeds to step 50.

ステップ50に於いては車速Vが車輌の制動停止時を判定するための基準値Vo(0に近い正の定数)よりも小さいか否かの判別、即ち車輌が停止する直前であるか否かの判別が行われ、肯定判別が行われたときにはステップ80へ進み、否定判別が行われたときにはステップ60へ進む。   In step 50, it is determined whether or not the vehicle speed V is smaller than a reference value Vo (a positive constant close to 0) for determining when the vehicle is stopped, that is, whether or not it is immediately before the vehicle stops. When an affirmative determination is made, the process proceeds to step 80. When a negative determination is made, the process proceeds to step 60.

ステップ60に於いては当技術分野に於いて公知の要領にて通常制動時の制動力の後輪配分比Krnが演算され、ステップ70に於いては減速度を制動圧に変換する係数をKbとして、下記の式1及び2に従って左右前輪の目標制動圧Pbtf及び左右後輪の目標制動圧Pbtrが演算される。
Pbtf=KbGt(1−Krn) …(1)
Pbtr=KbGtKrn …(2)
In step 60, the rear wheel distribution ratio Krn during normal braking is calculated in a manner known in the art, and in step 70, a coefficient for converting deceleration to braking pressure is calculated as Kb. As described below, the target braking pressure Pbtf for the left and right front wheels and the target braking pressure Pbtr for the left and right rear wheels are calculated according to the following equations 1 and 2.
Pbtf = KbGt (1-Krn) (1)
Pbtr = KbGtKrn (2)

ステップ80に於いては車輌の減速度Gbx(=−Gx)に対する車速Vの比V/Gbxに基づき図4に示されたグラフに対応するマップより目標減速度低減のゲインKgが演算され、ステップ90に於いては車輌の減速度Gbxに対する車速Vの比V/Gbxに基づき図5に示されたグラフに対応するマップより制動力の後輪配分比Krsが演算される。   In step 80, the target deceleration reduction gain Kg is calculated from the map corresponding to the graph shown in FIG. 4 based on the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx (= -Gx). At 90, the rear wheel distribution ratio Krs of the braking force is calculated from the map corresponding to the graph shown in FIG. 5 based on the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx.

ステップ100に於いては車輌の目標減速度Gtが下記の式3に従って減速度低減のゲインKgにて補正されることにより、補正後の車輌の目標減速度Gtaが演算される。
Gta=KgGt …(3)
In step 100, the target deceleration Gt of the vehicle is corrected by the deceleration reduction gain Kg according to the following equation 3, so that the corrected target deceleration Gta of the vehicle is calculated.
Gta = KgGt (3)

ステップ110に於いては下記の式4及び5に従って左右前輪の目標制動圧Pbtf及び左右後輪の目標制動圧Pbtrが演算される。
Pbtf=KbGta(1−Krs) …(4)
Pbtr=KbGtaKrs …(5)
In step 110, the target braking pressure Pbtf for the left and right front wheels and the target braking pressure Pbtr for the left and right rear wheels are calculated according to the following equations 4 and 5.
Pbtf = KbGta (1-Krs) (4)
Pbtr = KbGtaKrs (5)

ステップ120に於いては前輪の制動圧Pfl、Pfr及び後輪の制動圧Prl、Prrがそれぞれ目標制動圧Pbtf及びPbtrになるよう、各車輪の制動圧が制御される。   In step 120, the braking pressure of each wheel is controlled so that the braking pressures Pfl and Pfr for the front wheels and the braking pressures Prl and Prr for the rear wheels become the target braking pressures Pbtf and Pbtr, respectively.

かくして図示の実施例1によれば、ステップ20に於いて運転者の制動操作量に基づき運転者の制動要求量としての車輌の目標減速度Gtが演算され、ステップ40及び50に於いて車輌の制動停止時であるか否かの判別が行われ、制動時であるが停止直前ではないときにはステップ60、70、120に於いて車輌の減速度が目標減速度Gtになるよう通常制動時の制動力の前後配分比にて前後輪の制動力が制御される。   Thus, according to the first embodiment shown in the figure, the target deceleration Gt of the vehicle as the driver's required braking amount is calculated based on the driver's braking operation amount in step 20, and in steps 40 and 50, the vehicle's target deceleration Gt is calculated. It is determined whether or not the brake is stopped. When the brake is stopped but not immediately before the stop, in steps 60, 70 and 120, the vehicle deceleration is controlled so as to become the target deceleration Gt. The braking force of the front and rear wheels is controlled by the power front / rear distribution ratio.

これに対しステップ40及び50に於いて車輌の制動停止時であると判別されると、ステップ80に於いて車輌の減速度Gbxに対する車速Vの比V/Gbxに基づき目標減速度低減のゲインKgが演算され、ステップ90に於いて車輌の減速度Gbxに対する車速Vの比V/Gbxに基づき制動力の後輪配分比Krsが演算され、ステップ100に於いて補正後の車輌の目標減速度Gtaが減速度低減のゲインKgと車輌の目標減速度Gtとの積として演算される。   On the other hand, if it is determined in steps 40 and 50 that the vehicle is in a braking stop state, the target deceleration reduction gain Kg is determined in step 80 based on the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx. In step 90, the rear wheel distribution ratio Krs of the braking force is calculated based on the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx. In step 100, the corrected vehicle target deceleration Gta is calculated. Is calculated as the product of the deceleration reduction gain Kg and the vehicle target deceleration Gt.

そしてステップ110に於いて制動力の後輪配分比Krsにて補正後の車輌の目標減速度Gtaを達成するための左右前輪の目標制動圧Pbtf及び左右後輪の目標制動圧Pbtrが演算され、ステップ120に於いて前輪の制動圧Pfl、Pfr及び後輪の制動圧Prl、Prrがそれぞれ目標制動圧Pbtf及びPbtrになるよう制御される。   In step 110, the target braking pressure Pbtf for the left and right front wheels and the target braking pressure Pbtr for the left and right rear wheels for achieving the corrected vehicle target deceleration Gta with the rear wheel distribution ratio Krs of the braking force are calculated. In step 120, the front wheel braking pressures Pfl and Pfr and the rear wheel braking pressures Prl and Prr are controlled to be the target braking pressures Pbtf and Pbtr, respectively.

この場合制動力の後輪配分比Krsは車輌の減速度Gbxに対する車速Vの比V/Gbxが小さいほど小さい値になると共に、比V/Gbxが0又は0に近い値であるときには0に演算されるので、車輌の制動停止時に左右前輪にのみ制動力が付与されることにより補正後の車輌の目標減速度Gtaが達成される。   In this case, the rear wheel distribution ratio Krs of the braking force becomes smaller as the ratio V / Gbx of the vehicle speed V to the deceleration Gbx of the vehicle becomes smaller, and is calculated as 0 when the ratio V / Gbx is 0 or a value close to 0. Therefore, the corrected target deceleration Gta of the vehicle is achieved by applying the braking force only to the left and right front wheels when the braking of the vehicle is stopped.

従って図示の実施例1によれば、車輌の制動停止時には前後輪に制動力が付与される場合に比して車輌の前後方向の固有振動数を低下させて車輌の前後コンプライアンスを増大させることができ、これにより車体の揺り返し方向の力を低減し、車輌の前後加速度の変化度合を低減して乗員が感じる車輌加速側へのショック(乗員が車体に対し相対的に車輌後方へ移動されるショック)を確実に低減することができる。   Therefore, according to the illustrated first embodiment, when the vehicle is stopped, the natural frequency in the front-rear direction of the vehicle is reduced and the front-rear compliance of the vehicle is increased compared to the case where braking force is applied to the front and rear wheels. This can reduce the force of the vehicle body in the direction of rolling back, reduce the degree of change in the longitudinal acceleration of the vehicle, and shock to the vehicle acceleration side felt by the occupant (the occupant is moved rearward relative to the vehicle body) Shock) can be reliably reduced.

特に図示の実施例1によれば、車輌の制動停止時には車輌の減速度Gbxに対する車速Vの比V/Gbxが小さいほど小さくなるよう補正後の車輌の目標減速度Gtaが演算され、補正後の車輌の目標減速度Gtaが達成されるよう各車輪の制動力が制御されるので、車輌の制動停止時に於ける車輌前方への慣性力を漸次低減することができ、これにより車輌の乗員により制動力の低減操作が行われなくても車輌減速側へのショック(乗員が車体に対し相対的に車輌前方へ移動されるショック)を確実に低減することができ、このことにより車体の揺り返し時に乗員が感じる車輌加速側へのショックを更に一層確実に低減することができる。   In particular, according to Example 1 shown in the figure, when the vehicle is stopped, the corrected target deceleration Gta of the vehicle is calculated so that the smaller the ratio V / Gbx of the vehicle speed V to the deceleration Gbx of the vehicle is, the smaller the corrected vehicle target deceleration Gbx is. Since the braking force of each wheel is controlled so that the target deceleration Gta of the vehicle is achieved, the inertial force forward of the vehicle when the vehicle is stopped can be gradually reduced, which is controlled by the vehicle occupant. Even if the power reduction operation is not performed, the shock to the vehicle deceleration side (shock that the occupant moves to the front of the vehicle relative to the vehicle body) can be reliably reduced. The shock to the vehicle acceleration side felt by the occupant can be further reliably reduced.

また図示の実施例1によれば、車輌の制動停止時には制動力の後輪配分比Krsが0に設定されることにより左右前輪にのみ制動力が付与されるので、左右後輪にのみ制動力が付与される場合に比して後輪の横力の低下に起因する車輌の走行安定性の悪化を確実に防止することができる。   Further, according to the illustrated embodiment 1, when the braking of the vehicle is stopped, the braking force is applied only to the left and right front wheels by setting the rear wheel distribution ratio Krs of the braking force to 0, so that the braking force is applied only to the left and right rear wheels. It is possible to reliably prevent the deterioration of the running stability of the vehicle due to the decrease in the lateral force of the rear wheels, as compared with the case where is provided.

尚図示の実施例1に於いては、車輌の制動停止時には左右前輪にのみ制動力が付与されるようになっているが、左右後輪にのみ制動力が付与されるよう修正されてもよい。この場合には図示の実施例1の場合に比して車輌の制動停止時に於ける車輌のピッチ角やピッチ変位量を小さくすることができる。   In the illustrated embodiment 1, the braking force is applied only to the left and right front wheels when the braking of the vehicle is stopped, but it may be modified so that the braking force is applied only to the left and right rear wheels. . In this case, it is possible to reduce the pitch angle and the pitch displacement amount of the vehicle when the vehicle is stopped when compared with the case of the illustrated embodiment 1.

図9は車輪の前後支持剛性可変装置を備えた車輌に適用された本発明による車輌の停止挙動制御装置の実施例2を示す概略構成図である。尚図9に於いて図1に示された部材と同一の部材には図1に於いて付された符号と同一の符号が付されている。   FIG. 9 is a schematic diagram showing a second embodiment of the vehicle stop behavior control device according to the present invention applied to a vehicle equipped with a front and rear wheel support rigidity varying device. 9, the same members as those shown in FIG. 1 are denoted by the same reference numerals as those shown in FIG.

この実施例2に於いては、図11に示されている如く、サスペンションリンク100の車体側端部にはゴムブッシュ装置102が設けられ、ゴムブッシュ装置102は互いに同心をなす内筒104及び外筒106とこれらの間に弾装されたゴムブッシュ108とよりなっている。ゴムブッシュ108にはサスペンションリンク100の軸線110に沿って内筒104の両側の位置にゴムブッシュ装置102の軸線112の周りに円弧状に延在する一対の空洞部114及び116が設けられている。   In the second embodiment, as shown in FIG. 11, a rubber bushing device 102 is provided at the vehicle body side end portion of the suspension link 100. The rubber bushing device 102 has an inner cylinder 104 and an outer cylinder that are concentric with each other. It consists of a cylinder 106 and a rubber bush 108 mounted between them. The rubber bush 108 is provided with a pair of cavities 114 and 116 extending in an arc around the axis 112 of the rubber bush device 102 at positions on both sides of the inner cylinder 104 along the axis 110 of the suspension link 100. .

空洞部114及び116にはそれぞれ弾性可変部材118及び120が介装されている。弾性可変部材118及び120はそれぞれ軸線110に沿う両側の位置に電極118A、118B及び120A、120Bを有し、これらの電極に電圧が印加されると電圧の増大に応じてばね定数を漸次低下する弾性材118C及び120Cが対応する電極の間に介装されている。弾性可変部材118及び120の電極に対する印加電圧は電源回路44を介して電子制御装置30により制御され、これにより各車輪の前後支持剛性が可変設定され、車輌の前後コンプライアンスが増減されるようになっている。   Elastic variable members 118 and 120 are interposed in the cavities 114 and 116, respectively. The elastic variable members 118 and 120 have electrodes 118A, 118B and 120A, 120B at positions on both sides along the axis 110, respectively, and when a voltage is applied to these electrodes, the spring constant gradually decreases as the voltage increases. Elastic members 118C and 120C are interposed between corresponding electrodes. The applied voltage to the electrodes of the elastic variable members 118 and 120 is controlled by the electronic control unit 30 via the power supply circuit 44, whereby the longitudinal support rigidity of each wheel is variably set, and the longitudinal compliance of the vehicle is increased or decreased. ing.

尚弾性材118C及び120Cは電圧の印加方向に対し垂直な方向のばね定数を低下する物質にて構成されてもよく、その場合には電極118A、118B及び120A、120Bはそれぞれ弾性材118C及び120Cに対しサスペンションリンク100の軸線110の両側に配設される。   The elastic members 118C and 120C may be made of a material that reduces the spring constant in the direction perpendicular to the voltage application direction. In this case, the electrodes 118A, 118B, 120A, and 120B are elastic members 118C and 120C, respectively. On the other hand, the suspension link 100 is disposed on both sides of the axis 110.

またこの実施例2に於いては、電子制御装置30は車輌の制動停止時には車輌の減速度Gbxに対する車速Vの比V/Gbxが小さい領域に於いて比V/Gbxが小さいほど小さくなるよう車輌の目標減速度Gtを低減補正し、低減補正後の車輌の目標減速度Gtaが前後輪の制動力により通常時の後輪配分比にて達成されるよう各車輪の制動力を制御すると共に、弾性可変部材118及び120のばね定数を低下させることにより車輌の前後コンプライアンスを増大させる。この場合弾性可変部材118及び120のばね定数、従って車輌の前後コンプライアンスは、車輌の制動停止時に於ける車輌の減速度Gbxに対する車速Vの比V/Gbxが小さいほど大きくなるよう、比V/Gbxに応じて制御される。   In the second embodiment, when the vehicle is stopped, the electronic control unit 30 can reduce the vehicle so that the smaller the ratio V / Gbx is, the smaller the ratio V / Gbx is in the region where the ratio V / Gbx of the vehicle speed V to the deceleration Gbx of the vehicle is small. The target deceleration Gt of the vehicle is reduced and corrected, and the braking force of each wheel is controlled so that the target deceleration Gta of the vehicle after the reduction correction is achieved at the normal rear wheel distribution ratio by the braking force of the front and rear wheels, By reducing the spring constant of the elastic variable members 118 and 120, the longitudinal compliance of the vehicle is increased. In this case, the ratio V / Gbx is such that the spring constant of the elastic variable members 118 and 120, and hence the longitudinal compliance of the vehicle, increases as the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx when the vehicle is stopped is reduced. It is controlled according to.

次に図10に示されたフローチャートを参照して実施例2に於ける制動力の制御及び車輪の前後支持剛性の制御による車輌の停止挙動制御ルーチンについて説明する。尚図10に於いて図2に示されたステップと同一のステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。   Next, a stop behavior control routine for the vehicle by controlling the braking force and controlling the front and rear support rigidity of the wheel in the second embodiment will be described with reference to the flowchart shown in FIG. In FIG. 10, the same steps as those shown in FIG. 2 are assigned the same step numbers as those shown in FIG.

この実施例2に於いては、ステップ10〜50は上述の実施例1の場合と同様に実行され、ステップ50に於いて肯定判別が行われたときには、即ち車輌の制動停止時であると判定されたときには、ステップ130に於いて車輌の減速度Gbxに対する車速Vの比V/Gbxに基づき図12に示されたグラフに対応するマップより各車輪のゴムブッシュ装置102の目標ばね定数Ktが演算され、ステップ40又は50に於いて否定判別が行われたときにはステップ140に於いてゴムブッシュ装置102の目標ばね定数Ktがその標準値Ktoに設定される。   In the second embodiment, steps 10 to 50 are executed in the same manner as in the first embodiment, and when an affirmative determination is made in step 50, that is, it is determined that the vehicle is at a braking stop. In step 130, the target spring constant Kt of the rubber bushing device 102 of each wheel is calculated from the map corresponding to the graph shown in FIG. 12 based on the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx. When a negative determination is made in step 40 or 50, the target spring constant Kt of the rubber bush device 102 is set to its standard value Kto in step 140.

ステップ150に於いては上述の実施例1のステップ80の場合と同様、車輌の減速度Gbxに対する車速Vの比V/Gbxに基づき図4に示されたグラフに対応するマップより目標減速度低減のゲインKgが演算され、ステップ160に於いては上述の実施例1のステップ60の場合と同様、当技術分野に於いて公知の要領にて制動時の制動力の後輪配分比Krが演算される。   In step 150, as in the case of step 80 of the above-described first embodiment, the target deceleration is reduced from the map corresponding to the graph shown in FIG. 4 based on the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx. The gain Kg of the braking force is calculated, and in step 160, the rear wheel distribution ratio Kr at the time of braking is calculated in a manner known in the art, as in step 60 of the first embodiment. Is done.

ステップ170に於いては上述の実施例1のステップ100の場合と同様、車輌の目標減速度Gtが減速度低減のゲインKgにて補正されることにより、補正後の車輌の目標減速度Gtaが演算され、ステップ180に於いては上述の実施例1のステップ70、110の場合と同様、下記の式6及び7に従って左右前輪の目標制動圧Pbtf及び左右後輪の目標制動圧Pbtrが演算される。
Pbtf=KbGta(1−Kr) …(6)
Pbtr=KbGtaKr …(7)
In step 170, the vehicle target deceleration Gt is corrected by the deceleration reduction gain Kg, as in step 100 of the first embodiment, so that the corrected vehicle target deceleration Gta is obtained. In step 180, the target braking pressure Pbtf for the left and right front wheels and the target braking pressure Pbtr for the left and right rear wheels are calculated according to the following equations 6 and 7, as in steps 70 and 110 of the first embodiment. The
Pbtf = KbGta (1-Kr) (6)
Pbtr = KbGtaKr (7)

ステップ190に於いては上述の実施例1のステップ120の場合と同様、前輪の制動圧Pfl、Pfr及び後輪の制動圧Prl、Prrがそれぞれ目標制動圧Pbtf及びPbtrになるよう、各車輪の制動圧が制御され、ステップ200に於いては各車輪のゴムブッシュ装置102のばね定数が目標ばね定数Ktになるよう制御される。   In step 190, as in step 120 of the first embodiment, the front wheel braking pressures Pfl and Pfr and the rear wheel braking pressures Prl and Prr are set to the target braking pressures Pbtf and Pbtr, respectively. The braking pressure is controlled, and in step 200, the spring constant of the rubber bushing device 102 of each wheel is controlled to become the target spring constant Kt.

かくして図示の実施例2によれば、ステップ40及び50に於いて車輌の制動停止時であると判別されると、ステップ130に於いて車輌の減速度Gbxに対する車速Vの比V/Gbxが小さいほど各車輪のゴムブッシュ装置102の目標ばね定数Ktが小さくなるよう、各車輪のゴムブッシュ装置102の目標ばね定数Ktが比V/Gbxに基づいて演算され、これにより比V/Gbxが小さいほど車輌の前後方向の固有振動数を低下させて車輌の前後コンプライアンスが高くすることができるので、上述の実施例1の場合と同様車体の揺り返し方向の力を低減し、車輌の前後加速度の変化度合を低減して乗員が感じる車輌加速側へのショックを確実に低減することができる。   Thus, according to the illustrated second embodiment, if it is determined in steps 40 and 50 that the vehicle is at a braking stop, the ratio V / Gbx of the vehicle speed V to the vehicle deceleration Gbx is small in step 130. The target spring constant Kt of the rubber bushing device 102 of each wheel is calculated based on the ratio V / Gbx so that the target spring constant Kt of the rubber bushing device 102 of each wheel becomes smaller, and as a result, the smaller the ratio V / Gbx becomes. Since the longitudinal frequency of the vehicle can be increased by lowering the natural frequency in the longitudinal direction of the vehicle, the force in the turning direction of the vehicle body is reduced and the change in the longitudinal acceleration of the vehicle is reduced as in the first embodiment. By reducing the degree, the shock to the vehicle acceleration side felt by the occupant can be surely reduced.

また図示の実施例2によれば、車輌の制動停止時に於ける制動力の前後配分が例えば上述の実施例1の場合の如く特殊な配分に制約されることがないので、各車輪の制動能力を有効に活かして車輌の走行安定性を悪化させることなく車輌の制動停止時のショックを低減することができる。   Further, according to the illustrated second embodiment, the braking force distribution before and after braking of the vehicle is not restricted to a special distribution as in the first embodiment described above. By effectively utilizing the above, it is possible to reduce the shock at the time of braking stop of the vehicle without deteriorating the running stability of the vehicle.

尚この図示の実施例2に於いても、車輌の制動停止時には車輌の減速度Gbxに対する車速Vの比V/Gbxが小さいほど小さくなるよう補正後の車輌の目標減速度Gtaが演算され、補正後の車輌の目標減速度Gtaが達成されるよう各車輪の制動力が制御されるので、車輌の制動停止時に於ける車輌前方への慣性力を漸次低減することができ、これにより車輌の乗員により制動力の低減操作が行われなくても車輌減速側へのショックを確実に低減することができ、このことにより車体の揺り返し時に乗員が感じる車輌加速側へのショックを更に一層確実に低減することができる。   In the illustrated second embodiment, when the vehicle is stopped, the corrected target deceleration Gta of the vehicle is calculated so that the smaller the ratio V / Gbx of the vehicle speed V to the deceleration Gbx of the vehicle is, the smaller the correction is. Since the braking force of each wheel is controlled so that the target deceleration Gta of the subsequent vehicle is achieved, the inertial force forward of the vehicle when the vehicle is stopped can be gradually reduced. This makes it possible to reliably reduce shocks to the vehicle deceleration side even when no braking force reduction operation is performed, which further reduces the shock to the vehicle acceleration side felt by the occupant when the vehicle body rolls back. can do.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例1に於いては、車輌の制動停止時には左右前輪にのみ制動力が付与され、左右後輪には制動力が付与されないようになっているが、車輌が後輪駆動車である場合には、クリープトルクを低減し又は相殺する制動力が駆動輪である左右後輪に付与されるよう修正されてもよい。同様に、車輌の制動停止時には左右後輪にのみ制動力が付与され、左右前輪には制動力が付与されない構成に於いて、車輌が前輪駆動車である場合には、クリープトルクを低減し又は相殺する制動力が駆動輪である左右前輪に付与されてもよい。これらの修正例によれば、車輌の制動停止時に乗員が感じるショックを効果的に低減しつつ、クリープトルクに起因して車輌の制動距離が長くなることを効果的に防止することができる。   For example, in the first embodiment described above, when braking of the vehicle is stopped, braking force is applied only to the left and right front wheels, and no braking force is applied to the left and right rear wheels. However, the vehicle is a rear wheel drive vehicle. In some cases, a modification may be made such that a braking force that reduces or cancels the creep torque is applied to the left and right rear wheels as drive wheels. Similarly, in a configuration in which braking force is applied only to the left and right rear wheels and braking force is not applied to the left and right front wheels when braking of the vehicle is stopped, if the vehicle is a front wheel drive vehicle, the creep torque is reduced or The canceling braking force may be applied to the left and right front wheels that are drive wheels. According to these modified examples, it is possible to effectively reduce the shock felt by the occupant when braking of the vehicle is stopped, and to effectively prevent the braking distance of the vehicle from being increased due to the creep torque.

また上述の各実施例に於いては、車輌の目標減速度Gtはマスタシリンダ圧力Pm及びブレーキペダル26の踏み込みストロークStに基づいて演算されるようになっているが、車輌の目標減速度Gtは当技術分野に於いて公知の任意の要領にて演算されてよく、例えばマスタシリンダ圧力Pmのみ又はブレーキペダル26の踏み込みストロークStのみに基づいて演算されてもよい。   In each of the above-described embodiments, the target deceleration Gt of the vehicle is calculated based on the master cylinder pressure Pm and the depression stroke St of the brake pedal 26. However, the target deceleration Gt of the vehicle is For example, the calculation may be performed based on only the master cylinder pressure Pm or only the depression stroke St of the brake pedal 26.

また上述の各実施例に於いては、車輌の目標減速度Gtは運転者の制動操作量に基づいて運転者の要求減速度として演算されるようになっているが、本発明の停止挙動制御装置は衝突回避又は先行車輌の間に安全な車間距離を確保する等の目的で自動制動が行われる車輌に適用されてもよく、その場合には車輌の目標減速度Gtは運転者の要求減速度及び自動制動の要求減速度のうち大きい方の値として演算されてよい。   In each of the above-described embodiments, the vehicle target deceleration Gt is calculated as the driver's required deceleration based on the driver's braking operation amount. The device may be applied to a vehicle in which automatic braking is performed for the purpose of avoiding a collision or ensuring a safe inter-vehicle distance between preceding vehicles, in which case the target deceleration Gt of the vehicle is reduced by a driver's demand reduction. It may be calculated as the larger value of the speed and the required deceleration for automatic braking.

また上述の実施例2に於いては、サスペンションリンク100の車体側端部のゴムブッシュ装置102に弾性可変部材118及び120が介装され、それらのばね定数が印加電圧の制御により変化されることにより車輌の前後コンプライアンスが増減されるようになっているが、例えば空洞部114及び116が密閉空間として形成され、それらの間に於ける気体の流通抵抗が増減されたり、空洞部114及び116の圧力が増減されることによりゴムブッシュ装置102のばね定数が変化される構成の如く、車輌の前後コンプライアンスの増減は各車輪の車輌前後方向の支持剛性を増減可能な任意の構成により達成されてよい。   In the second embodiment, the elastic variable members 118 and 120 are interposed in the rubber bushing device 102 at the vehicle body side end of the suspension link 100, and their spring constants are changed by controlling the applied voltage. The front-rear compliance of the vehicle is increased / decreased by, for example, the cavities 114 and 116 are formed as sealed spaces, the gas flow resistance between them is increased / decreased, and the cavities 114 and 116 Like the configuration in which the spring constant of the rubber bushing device 102 is changed by increasing or decreasing the pressure, the increase or decrease of the vehicle front-rear compliance may be achieved by any configuration that can increase or decrease the support rigidity of each wheel in the vehicle front-rear direction. .

制動力の前後配分を制御可能な車輌に適用された本発明による車輌の停止挙動制御装置の実施例1を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram illustrating a first embodiment of a vehicle stop behavior control device according to the present invention applied to a vehicle capable of controlling the front-rear distribution of braking force. 実施例1に於ける制動力の制御による車輌の停止挙動制御ルーチンを示すフローチャートである。4 is a flowchart illustrating a vehicle stop behavior control routine based on braking force control according to the first embodiment. 図2のステップ20に於ける車輌の目標減速度Gt演算のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the target deceleration Gt calculation of the vehicle in step 20 of FIG. 車輌の減速度Gbxに対する車速Vの比V/Gbxと目標減速度低減のゲインKgとの間の関係を示すグラフである。It is a graph which shows the relationship between ratio V / Gbx of the vehicle speed V with respect to deceleration Gbx of a vehicle, and the gain Kg of target deceleration reduction. 車輌の減速度Gbxに対する車速Vの比V/Gbxと制動力の後輪配分比Krsとの間の関係を示すグラフである。It is a graph which shows the relationship between ratio V / Gbx of vehicle speed V with respect to deceleration Gbx of a vehicle, and rear-wheel distribution ratio Krs of braking force. ブレーキペダルの踏み込みストロークStと目標減速度Gstとの間の関係を示すグラフである。It is a graph which shows the relationship between the depression stroke St of a brake pedal, and the target deceleration Gst. マスタシリンダ圧力の平均値Pmaと目標減速度Gptとの間の関係を示すグラフである。It is a graph which shows the relationship between the average value Pma of a master cylinder pressure, and target deceleration Gpt. 前回の目標減速度Gtfと目標減速度Gptに対する重みαとの間の関係を示すグラフである。It is a graph which shows the relationship between the last target deceleration Gtf and the weight (alpha) with respect to the target deceleration Gpt. 車輪の前後支持剛性可変装置を備えた車輌に適用された本発明による車輌の停止挙動制御装置の実施例2を示す概略構成図である。It is a schematic block diagram which shows Example 2 of the stop behavior control apparatus of the vehicle by this invention applied to the vehicle provided with the front-back support rigidity variable apparatus of a wheel. 実施例2に於ける制動力の制御及び車輪の前後支持剛性の制御による車輌の停止挙動制御ルーチンを示すフローチャートである。7 is a flowchart showing a vehicle stop behavior control routine based on control of braking force and control of front and rear support rigidity of a wheel in Embodiment 2. サスペンションリンクの車体側端部に設けられたゴムブッシュ装置を示す正面図である。It is a front view which shows the rubber bush apparatus provided in the vehicle body side edge part of a suspension link. 車輌の減速度Gbxに対する車速Vの比V/Gbxと目標ばね定数Ktとの間の関係を示すグラフである。It is a graph which shows the relationship between ratio V / Gbx of the vehicle speed V with respect to deceleration Gbx of a vehicle, and the target spring constant Kt.

符号の説明Explanation of symbols

20 制動装置
28 マスタシリンダ
30 電子制御装置
40 車速センサ
42 前後加速度センサ
44 電源回路
100 サスペンションリンク
102 ゴムブッシュ装置
118、120 弾性可変部材
20 braking device 28 master cylinder 30 electronic control device 40 vehicle speed sensor 42 longitudinal acceleration sensor 44 power circuit 100 suspension link 102 rubber bushing device 118, 120 elastic variable member

Claims (7)

車輌の制動停止時を判定する手段と、車輌の制動停止時には車輌の前後コンプライアンスが制動停止前の値よりも増大するよう車輌の前後コンプライアンスを制御する制御手段とを有することを特徴とする車輌の停止挙動制御装置。   The vehicle includes: a means for determining when the vehicle brake is stopped; and a control means for controlling the vehicle front-rear compliance so that the vehicle front-rear compliance is greater than a value before the brake stop when the vehicle is stopped. Stop behavior control device. 前記制御手段は車輌の制動停止時に於ける制動力を実質的に前輪又は後輪にのみ配分することにより車輌の前後コンプライアンスを増大させることを特徴とする請求項1に記載の車輌の停止挙動制御装置。   2. The vehicle stop behavior control according to claim 1, wherein the control means increases the front-rear compliance of the vehicle by substantially allocating the braking force at the time of braking stop of the vehicle only to the front wheels or the rear wheels. apparatus. 前記制御手段は車輌の制動停止時に車輌前後方向の車輪支持剛性を低下させることにより車輌の前後コンプライアンスを増大させることを特徴とする請求項1又は2に記載の車輌の停止挙動制御装置。   3. The vehicle stop behavior control device according to claim 1, wherein the control means increases the vehicle front-rear compliance by reducing the wheel support rigidity in the vehicle front-rear direction when the vehicle is stopped. 3. 車輌は車輪の制動力を制御する制動力制御手段を有し、前記制動力制御手段は車輌の制動停止時には車輌に要求される減速度よりも車輌の減速度が小さくなるよう車輪の制動力を制御することを特徴とする請求項1乃至3に記載の車輌の停止挙動制御装置。   The vehicle has braking force control means for controlling the braking force of the wheel, and the braking force control means controls the braking force of the wheel so that the deceleration of the vehicle is smaller than the deceleration required of the vehicle when the braking of the vehicle is stopped. The vehicle stop behavior control device according to claim 1, wherein the vehicle stop behavior control device is controlled. 車輌の減速度に対する車速の比が小さいほど車輌の減速度が小さくなるよう車輪の制動力を制御することを特徴とする請求項1乃至3に記載の車輌の停止挙動制御装置。   4. The vehicle stop behavior control device according to claim 1, wherein the braking force of the wheel is controlled so that the deceleration of the vehicle becomes smaller as the ratio of the vehicle speed to the deceleration of the vehicle becomes smaller. 車輌は駆動輪と非駆動輪とを有し、前記制御手段は車輌の制動停止時に於ける制動力を実質的に非駆動輪にのみ配分するときには、クリープトルクを低減する制動力を駆動輪に付与することを特徴とする請求項2に記載の車輌の停止挙動制御装置。   The vehicle has driving wheels and non-driving wheels, and when the control means distributes the braking force at the time of braking stop of the vehicle substantially only to the non-driving wheels, the braking force for reducing the creep torque is applied to the driving wheels. The vehicle stop behavior control device according to claim 2, wherein the vehicle stop behavior control device is provided. 前記車輌の制動停止時を判定する手段は車輪に制動力が付与されている状況にて車速が基準値以下であるときに車輌の制動停止時であると判定することを特徴とする請求項1乃至6に記載の車輌の停止挙動制御装置。
The means for determining when the vehicle is stopped is determined to be when the vehicle is stopped when the vehicle speed is equal to or less than a reference value in a situation where a braking force is applied to the wheels. The vehicle stop behavior control device according to any one of Items 6 to 6.
JP2005007984A 2005-01-14 2005-01-14 Controller for stopping behavior of vehicle Pending JP2006193075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007984A JP2006193075A (en) 2005-01-14 2005-01-14 Controller for stopping behavior of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007984A JP2006193075A (en) 2005-01-14 2005-01-14 Controller for stopping behavior of vehicle

Publications (1)

Publication Number Publication Date
JP2006193075A true JP2006193075A (en) 2006-07-27

Family

ID=36799481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007984A Pending JP2006193075A (en) 2005-01-14 2005-01-14 Controller for stopping behavior of vehicle

Country Status (1)

Country Link
JP (1) JP2006193075A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094112A (en) * 2006-10-05 2008-04-24 Toyota Motor Corp Vehicular braking control device
JP2009051369A (en) * 2007-08-27 2009-03-12 Toyota Motor Corp Behavior control device of vehicle
CN112969619A (en) * 2018-09-24 2021-06-15 株式会社爱德克斯 Brake control device
WO2021149796A1 (en) * 2020-01-24 2021-07-29 株式会社アドヴィックス Braking control device for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094112A (en) * 2006-10-05 2008-04-24 Toyota Motor Corp Vehicular braking control device
JP2009051369A (en) * 2007-08-27 2009-03-12 Toyota Motor Corp Behavior control device of vehicle
JP4636062B2 (en) * 2007-08-27 2011-02-23 トヨタ自動車株式会社 Vehicle behavior control device
CN112969619A (en) * 2018-09-24 2021-06-15 株式会社爱德克斯 Brake control device
CN112969619B (en) * 2018-09-24 2023-11-24 株式会社爱德克斯 brake control device
WO2021149796A1 (en) * 2020-01-24 2021-07-29 株式会社アドヴィックス Braking control device for vehicle
JP7318544B2 (en) 2020-01-24 2023-08-01 株式会社アドヴィックス vehicle braking controller

Similar Documents

Publication Publication Date Title
EP1621373B1 (en) Roll stiffness control apparatus of vehicle
JP4003627B2 (en) Steering control device for vehicle
JP3546830B2 (en) Vehicle roll behavior control device
JP4267294B2 (en) Brake control device for vehicle
JP4604985B2 (en) Vehicle travel control device
JP3747662B2 (en) Vehicle motion control device
KR102172306B1 (en) Apparatus for controlling the behavior of vehicle
JP6844500B2 (en) Vehicle behavior control device
JP2000335388A (en) Vehicle roll suppression control device
JP4172361B2 (en) Control device for electric power steering device
JP2006193075A (en) Controller for stopping behavior of vehicle
JP3551132B2 (en) Vehicle braking force control type behavior control device
JP3705077B2 (en) Vehicle motion control device
JP4718706B2 (en) Vehicle travel control device
JP4412476B2 (en) Travel control device for a four-wheel independent drive vehicle
JP2004210046A (en) Vehicular anti-skid controller
JPH10324260A (en) Steering angle controller for vehicle
JP4802629B2 (en) Roll stiffness control device for vehicle
JP2006131023A (en) Vehicle cruise controller
JP2007030832A (en) Vehicle traveling motion controller
JP4353011B2 (en) Vehicle steering control device
JPH08324409A (en) Hydroplaning detecting device of vehicle
JP2007030833A (en) Traveling motion control unit of vehicle
JP4685407B2 (en) Vehicle behavior control device
JP4572915B2 (en) Steering control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Effective date: 20090406

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A02