JP2006190544A - Field-emission light source - Google Patents

Field-emission light source Download PDF

Info

Publication number
JP2006190544A
JP2006190544A JP2005000807A JP2005000807A JP2006190544A JP 2006190544 A JP2006190544 A JP 2006190544A JP 2005000807 A JP2005000807 A JP 2005000807A JP 2005000807 A JP2005000807 A JP 2005000807A JP 2006190544 A JP2006190544 A JP 2006190544A
Authority
JP
Japan
Prior art keywords
phosphor
light source
anode
field emission
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005000807A
Other languages
Japanese (ja)
Other versions
JP4528966B2 (en
Inventor
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2005000807A priority Critical patent/JP4528966B2/en
Publication of JP2006190544A publication Critical patent/JP2006190544A/en
Application granted granted Critical
Publication of JP4528966B2 publication Critical patent/JP4528966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent early deterioration of a phosphor by quickly radiating its heat and enable to uniformalize emission luminance of a whole light-emitting face. <P>SOLUTION: The field-emission light source is so structured that the phosphor 14 and an anode 12 are overlapped on each other in an inner face of a light-emitting panel 10a, a field-emission cathode 16 is arranged at an interval with the anode 12, and linear conductive members 20 are arranged on the phosphor 14 in stripes or in matrix. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光体に電子放射して励起発光する電界放出型光源に係り、特には、発光パネルの内面に蛍光体とアノードとを重ね合わせて設け、このアノードと間隔を隔てて電界放射型のカソードを配置し、蛍光体の周囲に電気伝導部材を放熱および放電のために配置してある電界放出型光源に関するものである。   The present invention relates to a field emission light source that emits electrons to a phosphor and emits light by excitation. In particular, a phosphor and an anode are provided on the inner surface of a light-emitting panel, and the field emission type is spaced apart from the anode. And a field emission type light source in which an electrically conductive member is disposed around a phosphor for heat dissipation and discharge.

この種の電界放出型光源においては、蛍光体付きの平面状のアノードと、このアノードのアノード面全体に電子を放出するカソードとを対向配置し、これらの間にカソードから電子を引き出すグリッドを介装し、グリッドを通過した電子を蛍光体に加速衝突させて該蛍光体を励起発光させるものがある(特許文献1等参照。)。蛍光体の発光においては、電子が持つ加速エネルギーから発光エネルギーを除いたエネルギーが蛍光体に付与される結果、蛍光体は発熱する。この発熱はアノードの面積が大きくなる程、増加する。   In this type of field emission light source, a planar anode with a phosphor and a cathode that emits electrons across the entire anode surface of the anode are arranged opposite to each other, and a grid that draws electrons from the cathode is interposed therebetween. In other words, the electrons that pass through the grid are accelerated and collided with the phosphor to cause the phosphor to excite and emit light (see Patent Document 1, etc.). In the light emission of the phosphor, the phosphor generates heat as a result of the energy obtained by removing the light emission energy from the acceleration energy of the electrons being applied to the phosphor. This heat generation increases as the anode area increases.

一般に、蛍光体の発光効率は、蛍光体の温度上昇に対して低下する傾向を示すものが多く、蛍光体は発熱で劣化する傾向を示す。そこで、従来からこの発熱に対する放熱を図った技術は提案されてきている(特許文献2、3,4等参照。)。しかしながら、こうした既存の放熱技術では、蛍光体全体の発熱が放熱されるまでには相当の時間がかかっており、放熱速度が遅く発熱に起因した蛍光体の寿命は早期に到来していた。また、蛍光体の放熱にはむらがあり蛍光体の各部で発光効率が異なり輝度むらの発生要因にもなっている。
特開平05−251021号公報 特開2000−173550号公報 特開2000−208077号公報 特開2003−237126号公報
In general, the luminous efficiency of a phosphor tends to decrease with increasing temperature of the phosphor, and the phosphor tends to deteriorate due to heat generation. Thus, techniques for radiating heat for this heat generation have been proposed (see Patent Documents 2, 3, 4, etc.). However, with such existing heat dissipation technology, it takes a considerable time for the heat generation of the entire phosphor to be dissipated, and the life of the phosphor due to heat generation has come early because of a slow heat dissipation rate. In addition, there is unevenness in the heat dissipation of the phosphor, and the luminous efficiency differs in each part of the phosphor, which is a cause of uneven brightness.
Japanese Patent Laid-Open No. 05-251021 JP 2000-173550 A JP 2000-208077 A JP 2003-237126 A

本発明は、蛍光体の発熱を従来よりも早期に放熱可能として蛍光体の早期の劣化を図って寿命向上を可能とし、かつ、蛍光体全体にわたり発光効率を均一化して輝度むらを解消し、発光特性に優れた電界放出型光源を提供することである。   The present invention enables the heat generation of the phosphor to dissipate heat earlier than before, thereby improving the life of the phosphor by deteriorating the phosphor early, and uniforming the luminous efficiency over the entire phosphor to eliminate uneven brightness, It is an object to provide a field emission type light source having excellent emission characteristics.

本発明による電界放出型光源は、発光パネルの内面に蛍光体とアノードとを面状に重ね合わせて設け、このアノードと間隔を隔てて電界放射型のカソードを配置した電界放出型光源において、蛍光体のほぼ全体に線状電気伝導部材をストライプ状あるいはマトリクス状に配置したことを特徴とするものである。ストライプ状とは線状電気伝導部材を縦方向、横方向、斜め方向等の一方向に配置する形態であり、マトリクス状とは縦横方向を含む二方向に線状電気伝導部材を配置する形態である。線状とは直線状、曲線状、蛇行状等を含む。線状電気伝導部材の断面形状は限定されないが、円形、楕円形、矩形、半円形、半楕円形等のすべてを含む。アノードはメタルバック、メタルフロント形態のいずれも含む。メタルバックの場合、電子通過が可能でかつ蛍光体の発光を発光パネル側に反射することができる金属が好ましい。メタルフロントの場合、蛍光発光を通過できるITO等の金属が好ましい。蛍光体の種類は限定されない。   The field emission type light source according to the present invention is a field emission type light source in which a phosphor and an anode are provided in a planar shape on the inner surface of a light emitting panel, and a field emission type cathode is disposed at a distance from the anode. The linear electric conductive member is arranged in a stripe shape or a matrix shape on almost the entire body. The stripe shape is a form in which linear electric conductive members are arranged in one direction such as a vertical direction, a horizontal direction, an oblique direction, and the matrix form is a form in which linear electric conductive members are arranged in two directions including the vertical and horizontal directions. is there. The linear shape includes a linear shape, a curved shape, a meandering shape, and the like. The cross-sectional shape of the linear electrical conductive member is not limited, but includes all of circular, elliptical, rectangular, semicircular, semielliptical, and the like. The anode includes both metal back and metal front forms. In the case of a metal back, a metal that can pass electrons and can reflect light emitted from the phosphor toward the light emitting panel is preferable. In the case of a metal front, a metal such as ITO that can pass fluorescent light emission is preferable. The kind of phosphor is not limited.

上記電界放出型光源によれば、蛍光体に線状電気伝導部材がストライプ状あるいはマトリクス状に配置されているから、蛍光体のいずれの位置に存在する電子も最も近い位置に配置されている線状電気伝導部材に移動し蛍光体の周縁側の線状電気伝導部材へと移動することになる結果、蛍光体の発光に伴う該蛍光体の発熱は、蛍光体外部に速やかに放熱させることが可能となり、蛍光体の発熱に伴う発光効率の低下、劣化を抑制し、その寿命を向上することができる。また、蛍光体全体から発熱が早期に放熱される結果、蛍光体全体の発光効率の均一化が可能となり発光むらを抑制することができる。   According to the field emission light source, since the linear electric conductive members are arranged in a stripe shape or a matrix shape on the phosphor, a line in which electrons existing at any position of the phosphor are arranged at the closest position. As a result, the heat generated in the phosphor accompanying light emission from the phosphor can be quickly dissipated to the outside of the phosphor. It becomes possible, the fall of the luminous efficiency accompanying the heat_generation | fever of fluorescent substance, deterioration can be suppressed, and the lifetime can be improved. In addition, as a result of the heat generated from the entire phosphor being radiated at an early stage, the luminous efficiency of the entire phosphor can be made uniform, and uneven emission can be suppressed.

なお、上記電界放出型光源によれば、放熱だけではなく、蛍光体にチャージしている電荷を外部へと逃がす(放電)ことができ、これによって蛍光体に電子線を侵入させることができ、発光効率が向上する。   In addition, according to the field emission type light source, not only heat dissipation but also the charge charged in the phosphor can be released to the outside (discharge), thereby allowing the electron beam to enter the phosphor, Luminous efficiency is improved.

線状電気伝導部材は蛍光体の周縁に近い程、部材厚を厚くすることが好ましい。こうした場合、電子の通過がスムーズに行われ、蛍光体全体を通しての放熱状態を良好にすることができる。   It is preferable to increase the thickness of the linear electric conductive member closer to the periphery of the phosphor. In such a case, the passage of electrons is performed smoothly, and the heat dissipation state throughout the phosphor can be improved.

線状電気伝導部材の素材は電子移動速度の点から低抵抗である鉄、銅、アルミニウム、マグネシウム合金、窒化アルミニウム等の金属が好ましい。線状電気伝導部材は、アルミニウム含浸カーボン、グラファイトとアモルファスカーボンとの複合炭素材、膨張黒鉛、グラファイト焼結体、等の電気伝導部材を用いることができる。線状電気伝導部材は材質が繊維状のものとすることができる。繊維状の電気伝導部材では短繊維でも長繊維でも用いることができるが、均一に放熱体に熱を伝達しやすいという点から、短繊維よりも長繊維が好ましく用いられる。電気伝導部材は、シート状でもよい、不織布、織物、編物等の形態でシートとなしても良い。   The material of the linear electrically conductive member is preferably a metal such as iron, copper, aluminum, magnesium alloy, and aluminum nitride, which has a low resistance in terms of electron transfer speed. As the linear electrically conductive member, an electrically conductive member such as aluminum-impregnated carbon, a composite carbon material of graphite and amorphous carbon, expanded graphite, and a graphite sintered body can be used. The linear electrically conductive member can be made of a fibrous material. In the fibrous electrical conductive member, either short fibers or long fibers can be used, but long fibers are preferably used rather than short fibers because heat can be easily transferred to the heat radiator. The electrically conductive member may be a sheet or may be a sheet in the form of a nonwoven fabric, a woven fabric, a knitted fabric or the like.

線状電気伝導部材の線幅は不可視な線幅例えば100μm以下が好ましい。線状電気伝導部材の配置間隔は、特に限定されず、例えば、印刷することができる配置間隔が好ましいが、半導体製造技術でフォトリソグラフィ技術で印刷形成する場合において、その印刷精度が許容する限り適宜にその配置間隔を選択することができる。線状電気伝導部材はメタルバックの場合では蛍光体の前面が好ましいが、蛍光体内部でもよい。メタルフロントの場合では蛍光体の背面が好ましいが蛍光体内部でもよい。電界放出型光源は、液晶表示装置用バックライト、照明ランプ、その他の用途に適用することができる。   The line width of the linear electrically conductive member is preferably an invisible line width, for example, 100 μm or less. The arrangement interval of the linear electrically conductive members is not particularly limited, and for example, an arrangement interval that can be printed is preferable. However, when printing is performed by a photolithography technique in a semiconductor manufacturing technique, the arrangement interval is appropriately set as long as the printing accuracy permits. The arrangement interval can be selected. In the case of a metal back, the linear electrically conductive member is preferably the front surface of the phosphor, but may be inside the phosphor. In the case of a metal front, the back surface of the phosphor is preferable, but it may be inside the phosphor. The field emission light source can be applied to backlights for liquid crystal display devices, illumination lamps, and other applications.

本発明によれば、蛍光体の発熱を従来よりも早期に放熱可能として蛍光体の早期の劣化を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat_generation | fever of fluorescent substance can be thermally radiated earlier than before, and the early deterioration of fluorescent substance can be prevented.

以下、添付した図面を参照して、本発明の実施の形態に係る電界放出型光源(本光源と称する)を説明する。図1は、本光源の断面図、図2は図1のA−A線に沿う断面図、図3は前面パネル、アノード、蛍光体を分離して示す斜視図、図4は蛍光体の背面図である。これらの図において、本光源は内部が所定の真空圧とされた真空容器10を有する。この真空容器10の形状はバックライトを始めとして光源の用途に応じて様々な形態をとることができる。実施の形態では説明の都合で比較的フラットな箱形としている。真空容器10は前面パネル10a、背面パネル10b、スペーサパネル10cからなり、前面パネル10aは石英やサファイヤ等のガラス基板からなり光源光を外部に照射することができるようになっている。前面パネル10aの内面には平面形状のアノード12がITO(酸化インジウム・錫)やアルミニウム等の金属をスパッタリングやEB蒸着等により薄膜状にして形成されている。アノード12の部材厚は用いる金属材料の抵抗率等により適宜に設定される。アノードの材料は、蛍光発光を直接見るタイプ(直視タイプ)ではITO、アルミニウムのいずれでもよいが、アノードを介して蛍光発光を見る透過タイプではITOを用いることが好ましい。直視タイプでは、特に材料の限定はないが、例えば、上記酸化インジウム・錫の他に酸化インジウム、酸化錫、酸化亜鉛、カルコゲン化亜鉛、窒化ガリウム、窒化インジウム、CdTeなどの無機材料を挙げることができる。ただし、電子速度が高速の場合はアルミニウムを電子が透過できるので、透過タイプでもITO、アルミニウムのいずれでもよい。アノードの電気抵抗率は、104オームcm以下であればよく、極端に低抵抗である必要はない。 Hereinafter, a field emission light source (referred to as a “light source”) according to an embodiment of the present invention will be described with reference to the accompanying drawings. 1 is a cross-sectional view of the light source, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, FIG. 3 is a perspective view showing the front panel, the anode, and the phosphor separately, and FIG. FIG. In these drawings, the present light source has a vacuum vessel 10 having a predetermined vacuum pressure inside. The shape of the vacuum vessel 10 can take various forms depending on the use of a light source including a backlight. In the embodiment, a relatively flat box shape is used for convenience of explanation. The vacuum vessel 10 includes a front panel 10a, a back panel 10b, and a spacer panel 10c. The front panel 10a includes a glass substrate such as quartz or sapphire, and can irradiate light source light to the outside. A planar anode 12 is formed on the inner surface of the front panel 10a in a thin film by sputtering, EB vapor deposition, or the like, such as ITO (indium oxide / tin) or aluminum. The member thickness of the anode 12 is appropriately set depending on the resistivity of the metal material used. The material of the anode may be either ITO or aluminum in the type in which the fluorescence emission is directly seen (direct view type), but it is preferable to use ITO in the transmission type in which the fluorescence emission is seen through the anode. In the direct view type, there is no particular limitation on the material, but examples include inorganic materials such as indium oxide, tin oxide, zinc oxide, zinc chalcogenide, gallium nitride, indium nitride, and CdTe in addition to the above indium oxide and tin. it can. However, when the electron velocity is high, electrons can pass through aluminum, so that either a transmissive type or ITO or aluminum may be used. The electrical resistivity of the anode may be 10 4 ohm cm or less, and does not need to be extremely low resistance.

蛍光体14は、アノード12にスラリー塗布法、電気永動法、沈降法等により塗布することにより平面形状に形成されている。蛍光体14の材料は公知の材料(蛍光材料)を用いることができる。蛍光体14の厚さは、蛍光材料の粒径の1〜5倍程度に設定される。蛍光体14は電子線励起により高効率で発光することができることが好ましい。蛍光材料は、導電性材料と反応しにくい材料が好ましい。例えば、希土類酸化物蛍光材料がある。蛍光体14を構成する蛍光粒子の平均粒径は、蛍光面に凹凸が少なく発光むらが生じにくく、発光効率の向上に貢献することができる値が好ましい。   The phosphor 14 is formed in a planar shape by being applied to the anode 12 by a slurry application method, an electric perturbation method, a sedimentation method, or the like. A known material (fluorescent material) can be used as the material of the phosphor 14. The thickness of the phosphor 14 is set to about 1 to 5 times the particle size of the phosphor material. It is preferable that the phosphor 14 can emit light with high efficiency by electron beam excitation. The fluorescent material is preferably a material that does not easily react with the conductive material. For example, there is a rare earth oxide fluorescent material. The average particle diameter of the fluorescent particles constituting the phosphor 14 is preferably a value that contributes to the improvement of the light emission efficiency with less unevenness on the fluorescent screen and less uneven light emission.

カソード16は、アノード12と間隔を隔てて一方向にワイヤ状に延びて配置される。カソード16は、アノード電圧10〜15kV程度の印加によりアノード12との間で発生する電界によりアノード12の平面領域全体をカバーするよう電子を放出する電界放射型のカソードである。カソード16は、導線16aと、この導線16aの表面に形成された多数のナノチューブ状あるいはナノウォール状の微細突起を有する炭素薄膜16bとにより形成されている。この場合、炭素化合物も実施することができる。カソード16は、1つまたは複数の導線をアノード12やグリッド18の平面領域全体をカバーするよう蛇行屈曲させた構成でもよいし、複数の導線を拠り合わせてアノード12やグリッド18の平面領域全体をカバーする構成でもよい。導線16aはニッケルやその合金等がある。炭素薄膜16bは、ナノチューブ状やナノウォール状の微細突起を有する。ナノウォール状の炭素薄膜は、プラズマCVD法により、例えば、電子サイクロトロン共鳴法(ECR−PCVD法)により形成することができる。   The cathode 16 is arranged to extend in a wire shape in one direction at a distance from the anode 12. The cathode 16 is a field emission type cathode that emits electrons so as to cover the entire planar area of the anode 12 by an electric field generated between the anode 12 and the anode 12 by applying an anode voltage of about 10 to 15 kV. The cathode 16 is formed by a conductive wire 16a and a carbon thin film 16b having a number of nanotube-shaped or nanowall-shaped fine protrusions formed on the surface of the conductive wire 16a. In this case, a carbon compound can also be implemented. The cathode 16 may have a configuration in which one or a plurality of conductors are meandered and bent so as to cover the entire planar area of the anode 12 or the grid 18, or the entire planar area of the anode 12 or the grid 18 may be combined with the plurality of conductors. The structure which covers may be sufficient. The conducting wire 16a is made of nickel or an alloy thereof. The carbon thin film 16b has nanotube-like or nanowall-like fine protrusions. The nanowall-like carbon thin film can be formed by a plasma CVD method, for example, an electron cyclotron resonance method (ECR-PCVD method).

カソード16は、導線16aの表面が電界集中をより発生しやすくする表面粗さに積極的に設定されており、この表面粗さの凹凸16cは炭素薄膜16bだけの微細突部にさらに全体の凹凸16dを形成しており微細突部での電界集中を助長する電界集中補助部として作用する。この表面粗さは微視的であるが、可視的な凹凸でもよい。例えば、複数の導線を撚り合わせてなる凹凸や、導線表面をねじ切り加工する凹凸でもよい。   The cathode 16 is positively set to have a surface roughness that makes it easier for the surface of the conductive wire 16a to generate electric field concentration, and the surface roughness irregularities 16c are further formed on the fine protrusions of the carbon thin film 16b only. 16d is formed and acts as an electric field concentration assisting part that promotes electric field concentration at the fine protrusions. This surface roughness is microscopic but may be visible irregularities. For example, the unevenness | corrugation which twists several conducting wires and the unevenness | corrugation which carries out the threading process of the conducting wire surface may be sufficient.

グリッド18は、カソード16の周囲に介装された管形状をなし、カソード16に対して正の電圧が印加されてカソード16から電子を引き出すものであり、電子が通過する電子通過孔を多数備えている。グリッド18の材料は公知の金属であり、その金属から適宜に設定することができる。グリッド18は、必ずしも、必須のものではない。   The grid 18 is in the form of a tube interposed around the cathode 16, and a positive voltage is applied to the cathode 16 to extract electrons from the cathode 16. The grid 18 has a large number of electron passage holes through which electrons pass. ing. The material of the grid 18 is a known metal, and can be appropriately set from the metal. The grid 18 is not necessarily essential.

以上の構成を備えた本光源においては、蛍光体14の背面全体にマトリクス状に線状電気伝導部材20が配置されている。すべての線状電気伝導部材20は相互に接続されている。線状電気伝導部材22は例えばアルミニウムで構成されている。例えば、図5で示すように、蛍光体14の発熱箇所G1における電子は実線L1で示す経路を最短経路として周縁側に移動し、発熱箇所G2における電子は、実線L2で示す経路を最短経路として周縁側に移動する。このように蛍光体14のいずれの位置の電子も、マトリクス配置した線状電気伝導部材22で構成される放熱経路のうち、最短の放熱経路を移動することができる。線状電気伝導部材22の線径は100μm以下が不可視的となって好ましい。線状電気伝導部材22の配置間隔は印刷することができる程度であればよい。線状電気伝導部材22の配置間隔は、半導体製造工程のフォトリソグラフィ技術を用いる場合、さらに狭めることができる。   In the present light source having the above configuration, the linear electric conductive members 20 are arranged in a matrix on the entire back surface of the phosphor 14. All the linear electric conductive members 20 are connected to each other. The linear electrically conductive member 22 is made of, for example, aluminum. For example, as shown in FIG. 5, electrons in the heat generation point G1 of the phosphor 14 move to the peripheral side with the path indicated by the solid line L1 as the shortest path, and electrons in the heat generation point G2 have the path indicated by the solid line L2 as the shortest path. Move to the peripheral side. As described above, electrons at any position of the phosphor 14 can move along the shortest heat radiation path among the heat radiation paths formed by the linear electric conductive members 22 arranged in a matrix. The wire diameter of the linear electrically conductive member 22 is preferably 100 μm or less because it is invisible. The arrangement interval of the linear electric conductive members 22 is not limited as long as printing is possible. The arrangement interval of the linear electric conductive members 22 can be further reduced when using a photolithography technique in a semiconductor manufacturing process.

以上から実施の形態の電界放出型光源では、蛍光体14の発光に伴う発熱は、線状電気伝導部材20を介して最短の経路で放熱されるので、蛍光体14の発熱に伴う発光効率の低下や劣化等を防止することができるようになり、蛍光体14の寿命向上、ひいては電界放出型光源の発光むらの解消にも貢献することができる。   As described above, in the field emission type light source of the embodiment, the heat generated by the light emission of the phosphor 14 is radiated through the shortest path via the linear electric conductive member 20, so that the luminous efficiency associated with the heat generation of the phosphor 14 is improved. Thus, it is possible to prevent a decrease, deterioration, and the like, and it is possible to contribute to the improvement of the life of the phosphor 14 and the elimination of uneven emission of the field emission light source.

線状電気伝導部材22は、図6で示すように、蛍光体14の背面中央を含む周縁から最も遠い位置である最遠領域Z1内の線状電気伝導部材201を最も薄い部材厚、その次に遠い位置である第1中間領域内Z2の線状電気伝導部材202の部材厚を厚く、周縁に近づいた第2中間領域Z3内の線状電気伝導部材203の部材厚をさらに厚く、周縁に最も近い領域Z4内の線状電気伝導部材204の部材厚を最も厚くしている。蛍光体14の電子は周縁に近い程その周囲から集まって量的に増大しているが、部材厚が漸次的に厚くなっているので、電子は線状電気伝導部材20をスムーズに移動することができる。したがって、蛍光体14全体の放熱はスムーズに行われる。 Linear electrically conductive member 22, as shown in Figure 6, the thinnest member thickness linear electrical conductive members 20 1 in the farthest region Z1 which is the farthest from the peripheral edge including a rear center of the phosphor 14, the then first the member thickness of the linear electrically conductive member 20 2 of the intermediate region Z2 thick is farther, thicker members thickness of the linear electrically conductive element 20 3 of the second intermediate region Z3 approaching the periphery , and thickest member thickness linear electrical conductive members 20 4 closest region Z4 the periphery. The electrons of the phosphor 14 gather from the periphery and increase in quantity as they approach the periphery, but the thickness of the member gradually increases, so that the electrons move smoothly through the linear electrical conductive member 20. Can do. Therefore, heat dissipation of the entire phosphor 14 is performed smoothly.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

本発明の実施の形態に係る電界放出型光源の断面図である。It is sectional drawing of the field emission type light source which concerns on embodiment of this invention. 図1のA−A線の断面図である。It is sectional drawing of the AA line of FIG. 図1の前面パネル、アノード、蛍光体を分離して示す斜視図である。It is a perspective view which isolate | separates and shows the front panel, anode, and fluorescent substance of FIG. 線状電気伝導部材の配置を示す蛍光体の背面図である。It is a rear view of the fluorescent substance which shows arrangement | positioning of a linear electrically conductive member. 線状電気伝導部材に対する電子の移動経路を説明するための蛍光体の要部背面図である。It is a principal part rear view of the fluorescent substance for demonstrating the movement path | route of the electron with respect to a linear electrically conductive member. 線状電気伝導部材の他の構造例を示す蛍光体の背面図(a)と断面図(b)である。It is the rear view (a) and sectional drawing (b) of the fluorescent substance which show the other structural example of a linear electrically conductive member.

符号の説明Explanation of symbols

12 アノード
14 蛍光体
16 カソード
18 グリッド
20 線状電気伝導部材
12 Anode 14 Phosphor 16 Cathode 18 Grid 20 Linearly Conductive Member

Claims (3)

発光パネルの内面に蛍光体とアノードとを面状に重ね合わせて設け、このアノードと間隔を隔てて電界放射型のカソードを配置した電界放出型光源において、蛍光体のほぼ全体に線状電気伝導部材をストライプ状あるいはマトリクス状に配置した、ことを特徴とする電界放出型光源。   In a field emission type light source in which a phosphor and an anode are provided on the inner surface of a light emitting panel so as to overlap each other, and a field emission type cathode is disposed at a distance from the anode, linear electric conduction is performed on almost the entire phosphor. A field emission type light source characterized in that members are arranged in a stripe or matrix form. 蛍光体上の線状電気伝導部材の部材厚を、蛍光体中央側よりも蛍光体周縁側で厚くした、ことを特徴とする請求項1に記載の電界放出型光源。   2. The field emission type light source according to claim 1, wherein a member thickness of the linear electric conductive member on the phosphor is made thicker on the phosphor peripheral side than on the phosphor central side. 線状電気伝導部材の線幅を不可視な線幅とした、ことを特徴とする請求項1または2に記載の電界放出型光源。

3. The field emission light source according to claim 1, wherein the line width of the linear electric conductive member is an invisible line width.

JP2005000807A 2005-01-05 2005-01-05 Field emission light source Expired - Fee Related JP4528966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000807A JP4528966B2 (en) 2005-01-05 2005-01-05 Field emission light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000807A JP4528966B2 (en) 2005-01-05 2005-01-05 Field emission light source

Publications (2)

Publication Number Publication Date
JP2006190544A true JP2006190544A (en) 2006-07-20
JP4528966B2 JP4528966B2 (en) 2010-08-25

Family

ID=36797547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000807A Expired - Fee Related JP4528966B2 (en) 2005-01-05 2005-01-05 Field emission light source

Country Status (1)

Country Link
JP (1) JP4528966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047511A (en) * 2006-08-14 2008-02-28 Samsung Sdi Co Ltd Light-emitting device and display device
JP2008153222A (en) * 2006-12-13 2008-07-03 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission type lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047511A (en) * 2006-08-14 2008-02-28 Samsung Sdi Co Ltd Light-emitting device and display device
JP4650840B2 (en) * 2006-08-14 2011-03-16 三星エスディアイ株式会社 Light emitting device and display device
JP2008153222A (en) * 2006-12-13 2008-07-03 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission type lamp

Also Published As

Publication number Publication date
JP4528966B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US20050184647A1 (en) Electron emission device
JP2007311342A (en) Light-emitting device and display device
JP2006190545A (en) Cold-cathode fluorescent lamp
US20060022574A1 (en) Light source apparatus using field emission cathode
JP2012084475A (en) Field emission type light source
JP4528966B2 (en) Field emission light source
JP2008060082A (en) Flat field emitting illumination module
JP2006294494A (en) Fluorescent lamp
US20080278062A1 (en) Method of fabricating electron emission source, electron emission device, and electron emission display device including the electron emission device
US7348720B2 (en) Electron emission device and electron emission display including the same
JP2009211075A (en) Flat panel display
JP2007227077A (en) Field emission light source
JP2006019245A (en) Electron emission display device with spacer
US20070090741A1 (en) Spacer and electron emission display including the spacer
JP2009206070A (en) Cold-cathode fluorescent lamp
CN100576411C (en) The separator of electron emission display device and manufacture method thereof
US20090134766A1 (en) Electron emission source, electron emission device, electron emission type backlight unit and electron emission display device
EP2051284B1 (en) Light-emitting apparatus
JP2007066894A (en) Positive electrode element and field emission display using the positive electrode element
US20100060129A1 (en) Spacer and electron emission display having the same
JP2013073891A (en) Reflection type field emission lamp
JP2006190543A (en) Field-emission light source
KR101064367B1 (en) Anode substrate for electron emission display device and manufacturing method of the same
JP2011108563A (en) Lighting system
US7569985B2 (en) Electron emission display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100325

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100330

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Ref document number: 4528966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees