JP2006190545A - Cold-cathode fluorescent lamp - Google Patents

Cold-cathode fluorescent lamp Download PDF

Info

Publication number
JP2006190545A
JP2006190545A JP2005000808A JP2005000808A JP2006190545A JP 2006190545 A JP2006190545 A JP 2006190545A JP 2005000808 A JP2005000808 A JP 2005000808A JP 2005000808 A JP2005000808 A JP 2005000808A JP 2006190545 A JP2006190545 A JP 2006190545A
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent lamp
cathode fluorescent
heat
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005000808A
Other languages
Japanese (ja)
Inventor
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2005000808A priority Critical patent/JP2006190545A/en
Publication of JP2006190545A publication Critical patent/JP2006190545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to radiate heat of a phosphor without relying on an extra heat-radiating member. <P>SOLUTION: In the cold-cathode fluorescent lamp exciting the phosphor to emit light by irradiating electrons on a phosphor screen of the phosphor 14, a surface area of the phosphor screen is increased by providing ruggednesses 18 on nearly a whole surface of the phosphor screen, whereby, improvement in heat radiation is attained by increasing an emission volume of secondary electrons e2 without the need of extra heat-radiating members. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光体に電子照射して励起発光する冷陰極蛍光ランプに関するものである。   The present invention relates to a cold cathode fluorescent lamp that emits light by exciting a phosphor with electrons.

この種の冷陰極蛍光ランプにおいては、表面伝導型、電界放出型、MIM型等各種提案されている。例えば、電界放出型では、図示はしないが、真空外囲器に蛍光体と陽極部とを設け、陽極部と陰極部との間に高電界を印加して陰極部から電子(一次電子)を高速で蛍光体に加速衝突させて該蛍光体を励起発光させるようにしている。このような蛍光体の発光においては、電子が持つ加速エネルギーから発光エネルギーを除いたエネルギーが蛍光体に付与される結果、蛍光体は発熱し、発光効率の低下、蛍光体の劣化を来す上、この発熱は陽極部の面積が大きくなる程、増加する。そのため、かかる冷陰極蛍光ランプを薄型、軽量化、かつ、大画面化する傾向の液晶表示装置のバックライトとして組み込む場合、その放熱はますます重要となりつつある。従来から蛍光体の発熱に対する放熱を図った技術は多数提案されてきているものの(特許文献1、2,3等参照。)、それら既存の放熱技術は、放熱部材を余分に付設して蛍光体の放熱を図るものであり、コストが高くつき、バックライトとして、薄型、軽量化等に加えて、低価格化も要望される場合には、到底、採用し難い。
特開2000−173550号公報 特開2000−208077号公報 特開2003−237126号公報
In this type of cold cathode fluorescent lamp, various types such as a surface conduction type, a field emission type, and an MIM type have been proposed. For example, in the field emission type, although not shown, a phosphor and an anode part are provided in a vacuum envelope, and a high electric field is applied between the anode part and the cathode part, and electrons (primary electrons) are emitted from the cathode part. The phosphor is accelerated and collided with the phosphor at high speed so that the phosphor is excited to emit light. In the light emission of such a phosphor, energy obtained by subtracting the emission energy from the acceleration energy of electrons is applied to the phosphor. As a result, the phosphor generates heat, resulting in a decrease in luminous efficiency and deterioration of the phosphor. This heat generation increases as the area of the anode portion increases. Therefore, when such a cold cathode fluorescent lamp is incorporated as a backlight of a liquid crystal display device that tends to be thin, light, and have a large screen, the heat dissipation is becoming increasingly important. Although many techniques for radiating heat generated by phosphors have been proposed in the past (see Patent Documents 1, 2, 3, etc.), these existing heat radiating techniques are provided with an additional heat radiating member. If the cost of the backlight is reduced, in addition to thinning and weight reduction, it is difficult to adopt it.
JP 2000-173550 A JP 2000-208077 A JP 2003-237126 A

本発明は、蛍光体の放熱に余分な放熱部材を付設せずして、蛍光体を効率的に放熱可能として、薄型、軽量化、低価格化の冷陰極蛍光ランプの製作を実現可能にすることを解決すべき課題としている。   The present invention makes it possible to manufacture a thin, lightweight, and low-cost cold cathode fluorescent lamp by enabling the heat dissipation of the phosphor without adding an extra heat dissipation member to the heat dissipation of the phosphor. This is a problem to be solved.

本発明による冷陰極蛍光ランプは、蛍光体の蛍光面に電子を照射して蛍光体を励起発光する際に二次電子が蛍光面から放出される冷陰極蛍光ランプにおいて、上記蛍光面は、電子が照射される表面のほぼ全面に二次電子放出量増大用に凹凸が形成されていることを特徴とするものである。蛍光面の凹凸は凹部と凸部との組合わせからなり、凹部の深さ、凸部の高さ、凹凸ピッチを蛍光面全体にわたり同等とすると二次電子の放出量を蛍光面全体にわたり均等に行うことが可能となり、該二次電子の放出に伴う放熱を均等にして発光効率を一様にして発光むらを解消することができて好ましい。蛍光体は、多数の不定形の蛍光体粒子から構成されている。蛍光体粒子は不定形であるがその粒径はほぼ4〜9μm程度であり、蛍光体粒子の積層個数を蛍光面の各部において上記凹部と凸部に対応して設定することが好ましい。積層した蛍光体粒子の積層面に該蛍光体粒子よりも粒径が小さい別の微粒子を積層し、この微粒子の積層量を設定して凹凸を形成することができる。凹凸ピッチや凹部の内壁面、凸部の外壁面形状は二次電子がそれら壁面に反射して蛍光体内部に戻らないか、あるいは戻りにくいように設定することが好ましい。本発明の蛍光面の凹凸は以上のように定義される凹凸であり、蛍光面に凹凸を付ける技術として特開1800−90847号公報に開示されている技術とは異なって、反射電子、二次電子を再度、蛍光体に戻すものではなく、二次電子を放出して蛍光体に戻らないようにして放熱を図っている。なお、上記公報に記載の技術に付言するならば、二次電子を再度、蛍光体に戻すと、二次電子発生により形成される電子と正孔とが再結合して発光する確率は大きくはなく、殆どが熱となる。したがって、本発明において特筆すべきは、二次電子は外部に放出するとしても、そのことにより発光効率が低下することはない。さらには、蛍光体の上記凹凸により表面積が増大する結果、一次電子の照射領域が拡大増加しているので、発光強度が落ちず、放熱することができるという、顕著な効果を発揮することができることである。   The cold cathode fluorescent lamp according to the present invention is a cold cathode fluorescent lamp in which secondary electrons are emitted from the phosphor screen when the phosphor is irradiated with electrons and excited to emit light. Irregularities for increasing the amount of secondary electron emission are formed on almost the entire surface irradiated with. The unevenness of the phosphor screen consists of a combination of recesses and protrusions. If the depth of the recesses, the height of the projections, and the pitch of the recesses and projections are the same over the entire phosphor screen, the amount of secondary electron emission is evenly distributed throughout the phosphor screen This is preferable because the heat radiation associated with the emission of the secondary electrons can be made uniform, the luminous efficiency can be made uniform, and the uneven emission can be eliminated. The phosphor is composed of a large number of amorphous phosphor particles. The phosphor particles are irregular, but the particle size is about 4 to 9 μm, and it is preferable to set the number of laminated phosphor particles corresponding to the concave and convex portions in each part of the phosphor screen. Unevenness can be formed by laminating other fine particles having a particle diameter smaller than that of the phosphor particles on the laminated surface of the laminated phosphor particles and setting the amount of the fine particles to be laminated. It is preferable that the uneven pitch, the inner wall surface of the concave portion, and the outer wall surface shape of the convex portion are set so that secondary electrons do not return to the inside of the phosphor due to reflection on the wall surfaces. The unevenness of the phosphor screen of the present invention is an unevenness defined as described above. Unlike the technique disclosed in Japanese Patent Laid-Open No. 1800-90847 as a technique for providing an unevenness on the phosphor screen, Instead of returning the electrons back to the phosphor, heat is radiated so that secondary electrons are not emitted and returned to the phosphor. In addition, if we add to the technique described in the above publication, if the secondary electrons are returned to the phosphor again, the probability that the electrons and holes formed by the generation of secondary electrons recombine and emit light is large. There is almost no heat. Therefore, it should be noted that in the present invention, even if secondary electrons are emitted to the outside, the light emission efficiency is not reduced thereby. Furthermore, as a result of the surface area being increased due to the unevenness of the phosphor, the primary electron irradiation area is enlarged and increased, so that a remarkable effect can be exhibited that the emission intensity does not decrease and heat can be dissipated. It is.

上記凹凸の形状は半円状、半楕円状、正弦波状、波形状、鋸歯状等、何でもよい。本発明によれば、蛍光面のほぼ全面にわたり凹凸が設けられて当該蛍光面の表面積が増大されているので、二次電子が蛍光体から管内に放出することができる面積が大きく拡大され、蛍光体内に残留する二次電子の量が大幅に減り、二次電子による熱蓄積を抑制して放熱を図ることができるようになる。そして、この放熱構造としては蛍光面の表面全体にわたり単に放熱面積増大用としての凹凸を付けただけであるから、蛍光体の放熱に余分な放熱部材を付設する必要がなくなり、薄型、軽量化、低価格化の冷陰極蛍光ランプを製作することができるようになる。蛍光面に付ける凹凸の深さ、高さ、凹凸ピッチ等は、適宜に実験等により設定することができる。例えば、蛍光体粒子は粒径が例えば数μmであり、この蛍光体粒子の積層高さに変化を付けることでも蛍光面に凹凸を形成することができる。   The shape of the irregularities may be any shape such as a semicircular shape, a semielliptical shape, a sine wave shape, a wave shape, or a sawtooth shape. According to the present invention, since the surface area of the phosphor screen is increased by providing irregularities over almost the entire surface of the phosphor screen, the area in which secondary electrons can be emitted from the phosphor into the tube is greatly expanded. The amount of secondary electrons remaining in the body is greatly reduced, and heat can be radiated by suppressing heat accumulation due to secondary electrons. And since this heat dissipation structure is simply provided with unevenness for increasing the heat dissipation area over the entire surface of the phosphor screen, it is not necessary to attach an extra heat dissipation member for heat dissipation of the phosphor, and it is thin and lightweight, A low-cost cold cathode fluorescent lamp can be manufactured. The depth, height, uneven pitch and the like of the unevenness to be applied to the phosphor screen can be appropriately set by experiments or the like. For example, the phosphor particles have a particle size of, for example, several μm, and irregularities can be formed on the phosphor screen by changing the stacking height of the phosphor particles.

本発明によれば、蛍光体の放熱に余分な放熱部材を付設せずして、蛍光体の発熱を効率的に放熱することができる。   According to the present invention, it is possible to efficiently dissipate heat generated from the phosphor without providing an extra heat dissipating member for the heat radiation of the phosphor.

以下、添付した図面を参照して、本発明の実施の形態に係る冷陰極蛍光ランプを説明する。実施の形態では冷陰極蛍光ランプとして電界放出型の冷陰極蛍光ランプに適用するが、冷陰極から蛍光体を一次電子を衝突させて励起発光させる他の形態の冷陰極蛍光ランプに適用することができる。図1は、本実施の形態の電界放出型の冷陰極蛍光ランプ(以下、本ランプと称する)の断面図、図2は図1のA−A線に沿う断面図、図3は図1の要部を拡大して示す断面図である。これらの図において、本ランプは内部が所定の真空圧とされた真空容器10を有する。この真空容器10の形状はバックライトを始めとして光源の用途に応じて様々な形態をとることができる。実施の形態では説明の都合で比較的フラットな箱形としている。真空容器10は前面パネル10a、背面パネル10b、スペーサパネル10cからなり、前面パネル10aはガラス基板、石英やサファイヤ等からなり光源光を外部に照射することができるようになっている。前面パネル10aの内面には平面形状のアノード12がITO(酸化インジウム・錫)やアルミニウム等の金属をスパッタリングやEB蒸着等により薄膜状にして形成されている。アノード12の材料は、蛍光発光を直接見るタイプ(直視タイプ)ではITO、アルミニウムのいずれでもよいが、アノードを介して蛍光発光を見る透過タイプではITOを用いることが好ましい。直視タイプでは、特に材料の限定はないが、例えば、上記酸化インジウム・錫の他に酸化インジウム、酸化錫、酸化亜鉛、カルコゲン化亜鉛、窒化ガリウム、窒化インジウム、CdTeなどの無機材料を挙げることができる。ただし、電子速度が高速の場合はアルミニウムを電子が透過できるので、透過タイプでもITO、アルミニウムのいずれでもよい。   Hereinafter, a cold cathode fluorescent lamp according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the embodiment, the present invention is applied to a field emission type cold cathode fluorescent lamp as a cold cathode fluorescent lamp, but may be applied to other forms of cold cathode fluorescent lamps that emit light by colliding primary electrons from the cold cathode. it can. 1 is a sectional view of a field emission type cold cathode fluorescent lamp (hereinafter referred to as the present lamp) of the present embodiment, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. It is sectional drawing which expands and shows a principal part. In these drawings, the lamp has a vacuum vessel 10 whose inside is set to a predetermined vacuum pressure. The shape of the vacuum vessel 10 can take various forms depending on the use of a light source including a backlight. In the embodiment, a relatively flat box shape is used for convenience of explanation. The vacuum vessel 10 includes a front panel 10a, a back panel 10b, and a spacer panel 10c. The front panel 10a includes a glass substrate, quartz, sapphire, and the like, and can irradiate light source light to the outside. A planar anode 12 is formed on the inner surface of the front panel 10a in a thin film by sputtering, EB vapor deposition, or the like, such as ITO (indium oxide / tin) or aluminum. The material of the anode 12 may be either ITO or aluminum in the type in which the fluorescence emission is directly seen (direct view type), but it is preferable to use ITO in the transmission type in which the fluorescence emission is seen through the anode. In the direct view type, there is no particular limitation on the material, but examples include inorganic materials such as indium oxide, tin oxide, zinc oxide, zinc chalcogenide, gallium nitride, indium nitride, and CdTe in addition to the above indium oxide and tin. it can. However, when the electron velocity is high, electrons can pass through aluminum, so that either a transmissive type or ITO or aluminum may be used.

蛍光体14は、アノード12にスラリー塗布法、スクリーン印刷、電気永動法、沈降法等により塗布することにより平面形状に形成されている。蛍光体14の材料は公知の材料(蛍光材料)を用いることができる。蛍光体14の厚さは、蛍光材料の粒径の1〜5倍程度に設定される。蛍光体14は電子線励起により高効率で発光することができることが好ましい。蛍光材料は、導電性材料と反応しにくい材料が好ましい。例えば、希土類酸化物蛍光材料がある。蛍光体14を構成する蛍光粒子の平均粒径は、蛍光面に凹凸が少なく発光むらが生じにくく、発光効率の向上に貢献することができる値が好ましい。   The phosphor 14 is formed in a planar shape by being applied to the anode 12 by a slurry coating method, screen printing, an electric perturbation method, a sedimentation method, or the like. A known material (fluorescent material) can be used as the material of the phosphor 14. The thickness of the phosphor 14 is set to about 1 to 5 times the particle size of the phosphor material. It is preferable that the phosphor 14 can emit light with high efficiency by electron beam excitation. The fluorescent material is preferably a material that does not easily react with the conductive material. For example, there is a rare earth oxide fluorescent material. The average particle diameter of the fluorescent particles constituting the phosphor 14 is preferably a value that contributes to the improvement of the light emission efficiency with less unevenness on the fluorescent screen and less uneven light emission.

カソード16は、アノード12と間隔を隔てて一方向にワイヤ状に延びて配置される。カソード16は、アノード電圧3〜15kV程度の印加によりアノード12との間で発生する電界によりアノード12の平面領域全体をカバーするよう電子を放出する電界放射型のカソードである。カソード16は、導線16aと、この導線16aの表面に形成された多数のナノチューブ状あるいはナノウォール状の微細突起を有する炭素薄膜16bとにより形成されている。カソード16は、1つまたは複数の導線をアノード12やグリッド18の平面領域全体をカバーするよう蛇行屈曲させた構成でもよいし、複数の導線を拠り合わせてアノード12やグリッド18の平面領域全体をカバーする構成でもよい。導線16aはニッケルやその合金等がある。炭素薄膜16bは、ナノチューブ状やナノウォール状の微細突起を有する。ナノウォール状の炭素薄膜は、プラズマCVD法により、例えば、電子サイクロトロン共鳴法(ECR−PCVD法)により形成することができる。   The cathode 16 is arranged to extend in a wire shape in one direction at a distance from the anode 12. The cathode 16 is a field emission type cathode that emits electrons so as to cover the entire planar area of the anode 12 by an electric field generated between the anode 12 and the anode 12 by applying an anode voltage of about 3 to 15 kV. The cathode 16 is formed by a conductive wire 16a and a carbon thin film 16b having a number of nanotube-shaped or nanowall-shaped fine protrusions formed on the surface of the conductive wire 16a. The cathode 16 may have a configuration in which one or a plurality of conductors are meandered and bent so as to cover the entire planar area of the anode 12 or the grid 18, or the entire planar area of the anode 12 or the grid 18 may be combined with the plurality of conductors. The structure which covers may be sufficient. The conducting wire 16a is made of nickel or an alloy thereof. The carbon thin film 16b has nanotube-like or nanowall-like fine protrusions. The nanowall-like carbon thin film can be formed by a plasma CVD method, for example, an electron cyclotron resonance method (ECR-PCVD method).

カソード16は、導線16aの表面が電界集中をより発生しやすくする表面粗さに積極的に設定されており、この表面粗さの凹凸16cは炭素薄膜16bだけの微細突部にさらに全体の凹凸16dを形成しており微細突部での電界集中を助長する電界集中補助部として作用する。この表面粗さは微視的であるが、可視的な凹凸でもよい。例えば、複数の導線を撚り合わせてなる凹凸や、導線表面をねじ切り加工する凹凸でもよい。   The cathode 16 is positively set to have a surface roughness that makes it easier for the surface of the conductive wire 16a to generate electric field concentration, and the surface roughness irregularities 16c are further formed on the fine protrusions of the carbon thin film 16b only. 16d is formed and acts as an electric field concentration assisting part that promotes electric field concentration at the fine protrusions. This surface roughness is microscopic but may be visible irregularities. For example, the unevenness | corrugation which twists several conducting wires and the unevenness | corrugation which carries out the threading process of the conducting wire surface may be sufficient.

以上の構成を備えた本ランプにおいては、蛍光体14の背面全体に凹凸18が形成されている。この凹凸18は例えば蛍光体粒子14aの個数をランダムに設定することにより形成することができる。凹凸18は蛍光体14の表面に凹凸形成治具を押し込んで形成することができる。凹凸18を構成する凹部18aの深さ、凸部18bの高さ、凹部18a間のピッチや凸部18bのピッチ等は放熱レベルに応じて適宜に設定することができる。   In the present lamp having the above configuration, the unevenness 18 is formed on the entire back surface of the phosphor 14. The unevenness 18 can be formed, for example, by randomly setting the number of phosphor particles 14a. The unevenness 18 can be formed by pressing an unevenness forming jig into the surface of the phosphor 14. The depth of the concave portion 18a, the height of the convex portion 18b, the pitch between the concave portions 18a, the pitch of the convex portions 18b, and the like can be appropriately set according to the heat radiation level.

以上から実施の形態のランプでは、蛍光体14に一次電子e1が衝突して発生する二次電子e2は、蛍光体14の背面側から放出されるが、その放出量は蛍光体14の表面積が凹凸18により増大しているので、平坦な場合の表面積の場合と比較して、より多量に放出することができ、表面の発光に伴う発熱は、より効果的に放熱され、蛍光体14の発熱に伴う発光効率の低下や劣化等を防止することができる。   From the above, in the lamp of the embodiment, the secondary electrons e2 generated when the primary electrons e1 collide with the phosphor 14 are emitted from the back side of the phosphor 14, and the amount of emission is the surface area of the phosphor 14. Since it is increased by the unevenness 18, it can be released in a larger amount compared to the case of a flat surface area, and the heat generated by the light emission on the surface is more effectively dissipated and the phosphor 14 generates heat. As a result, it is possible to prevent the light emission efficiency from being lowered or deteriorated.

したがって、実施の形態では、蛍光体14の放熱を図るのに、放熱部材を用いずに、単に蛍光体14に凹凸18を付与するのみで、放熱の改善を図ることが可能となるから、本ランプを大型軽量高性能かつ低価格化志向の液晶表示装置のバックライトに適用することができる。   Therefore, in the embodiment, the heat radiation of the phosphor 14 can be improved by simply providing the irregularities 18 on the phosphor 14 without using the heat radiating member. The lamp can be applied to a backlight of a large-sized, lightweight, high-performance and low-cost liquid crystal display device.

なお、本ランプでは、図4で示すように、前面パネル10aの内面に凹凸10a1を形成して、蛍光体14の背面に凹凸18を形成することができる。   In this lamp, as shown in FIG. 4, the unevenness 10 a 1 can be formed on the inner surface of the front panel 10 a and the unevenness 18 can be formed on the back surface of the phosphor 14.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

本発明の実施の形態に係る冷陰極蛍光ランプの断面図である。It is sectional drawing of the cold cathode fluorescent lamp which concerns on embodiment of this invention. 図1のA−A線の断面図である。It is sectional drawing of the AA line of FIG. 図1の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 他の実施の形態に係る冷陰極蛍光ランプの要部の拡大断面図である。It is an expanded sectional view of the principal part of the cold cathode fluorescent lamp which concerns on other embodiment.

符号の説明Explanation of symbols

12 アノード
14 蛍光体
16 カソード
18 凹凸
12 Anode 14 Phosphor 16 Cathode 18 Concavity and convexity

Claims (1)

蛍光体の蛍光面に電子を照射して蛍光体を励起発光する冷陰極蛍光ランプにおいて、上記蛍光面は、電子が照射される表面のほぼ全面に二次電子放出量増大用に凹凸が形成されている、ことを特徴とする冷陰極蛍光ランプ。   In the cold cathode fluorescent lamp that irradiates the phosphor surface with electrons and excites the phosphor to emit light, the phosphor surface has irregularities formed on almost the entire surface irradiated with electrons to increase the amount of secondary electron emission. A cold cathode fluorescent lamp characterized by comprising:
JP2005000808A 2005-01-05 2005-01-05 Cold-cathode fluorescent lamp Pending JP2006190545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000808A JP2006190545A (en) 2005-01-05 2005-01-05 Cold-cathode fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000808A JP2006190545A (en) 2005-01-05 2005-01-05 Cold-cathode fluorescent lamp

Publications (1)

Publication Number Publication Date
JP2006190545A true JP2006190545A (en) 2006-07-20

Family

ID=36797548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000808A Pending JP2006190545A (en) 2005-01-05 2005-01-05 Cold-cathode fluorescent lamp

Country Status (1)

Country Link
JP (1) JP2006190545A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059904A (en) * 2006-08-31 2008-03-13 Dialight Japan Co Ltd Field emission lamp
JP2008226543A (en) * 2007-03-09 2008-09-25 Dialight Japan Co Ltd Field emission lamp, backlight unit, and display panel
JP2009099367A (en) * 2007-10-16 2009-05-07 Fuji Heavy Ind Ltd Light-emitting device
WO2009066723A1 (en) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display, blower, cooling device, electrifying device, image forming device, electron beam curing device, and electron emitting element manufacturing method
JP2009164141A (en) * 2007-11-20 2009-07-23 Sharp Corp Electron emission element, electron emission device, self-light emitting device, image display device, air-blowing device, cooling device, charging device, image forming device, electron beam hardening device, and manufacturing method of electron emission element
JP2010257717A (en) * 2009-04-23 2010-11-11 Sharp Corp Electron emission device, spontaneous light-emission device, image display device, charging device, image forming apparatus, electron radiation curing device, and method of driving electron emitter
US8110971B2 (en) 2009-05-19 2012-02-07 Sharp Kabushiki Kaisha Light emitting element, light emitting device, image display device, method of driving light emitting element, and method of producing light emitting element
US8164247B2 (en) 2009-05-19 2012-04-24 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, and electron-beam curing device
US8249487B2 (en) 2009-05-19 2012-08-21 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
US8378565B2 (en) 2009-06-25 2013-02-19 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer using fine particle layer
US8457362B2 (en) * 2008-03-25 2013-06-04 Canon Kabushiki Kaisha Image inspecting apparatus
US8476818B2 (en) 2009-05-19 2013-07-02 Sharp Kabushiki Kaisha Electron emitting element including a fine particle layer containing insulating particles, and devices and methods related thereto
US8487521B2 (en) 2009-12-01 2013-07-16 Sharp Kabushiki Kaisha Electron emitting element, method for producing electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
US8547007B2 (en) 2009-02-24 2013-10-01 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
WO2016088283A1 (en) * 2014-12-02 2016-06-09 董隆 釜原 Lighting device and lighting device manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059904A (en) * 2006-08-31 2008-03-13 Dialight Japan Co Ltd Field emission lamp
JP2008226543A (en) * 2007-03-09 2008-09-25 Dialight Japan Co Ltd Field emission lamp, backlight unit, and display panel
JP2009099367A (en) * 2007-10-16 2009-05-07 Fuji Heavy Ind Ltd Light-emitting device
US8401430B2 (en) 2007-11-20 2013-03-19 Sharp Kabushiki Kaisha Electron emitting element for accelerating and emitting electrons, and use of electron emitting element
WO2009066723A1 (en) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display, blower, cooling device, electrifying device, image forming device, electron beam curing device, and electron emitting element manufacturing method
JP2009164141A (en) * 2007-11-20 2009-07-23 Sharp Corp Electron emission element, electron emission device, self-light emitting device, image display device, air-blowing device, cooling device, charging device, image forming device, electron beam hardening device, and manufacturing method of electron emission element
US8457362B2 (en) * 2008-03-25 2013-06-04 Canon Kabushiki Kaisha Image inspecting apparatus
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
US8616931B2 (en) 2009-02-24 2013-12-31 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
US8547007B2 (en) 2009-02-24 2013-10-01 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP2010257717A (en) * 2009-04-23 2010-11-11 Sharp Corp Electron emission device, spontaneous light-emission device, image display device, charging device, image forming apparatus, electron radiation curing device, and method of driving electron emitter
US8249487B2 (en) 2009-05-19 2012-08-21 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
US8476818B2 (en) 2009-05-19 2013-07-02 Sharp Kabushiki Kaisha Electron emitting element including a fine particle layer containing insulating particles, and devices and methods related thereto
US8164247B2 (en) 2009-05-19 2012-04-24 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, and electron-beam curing device
US8110971B2 (en) 2009-05-19 2012-02-07 Sharp Kabushiki Kaisha Light emitting element, light emitting device, image display device, method of driving light emitting element, and method of producing light emitting element
US8378565B2 (en) 2009-06-25 2013-02-19 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer using fine particle layer
US8487521B2 (en) 2009-12-01 2013-07-16 Sharp Kabushiki Kaisha Electron emitting element, method for producing electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
WO2016088283A1 (en) * 2014-12-02 2016-06-09 董隆 釜原 Lighting device and lighting device manufacturing method
JPWO2016088283A1 (en) * 2014-12-02 2017-08-31 董隆 釜原 LIGHTING DEVICE AND LIGHTING DEVICE MANUFACTURING METHOD
US9978581B2 (en) 2014-12-02 2018-05-22 Masataka Kamahara Lighting device and lighting device manufacturing method

Similar Documents

Publication Publication Date Title
JP2006190545A (en) Cold-cathode fluorescent lamp
JP2006313667A (en) Organic el element
JP2007311342A (en) Light-emitting device and display device
JP2009093986A (en) Excimer lamp
WO2012049975A1 (en) Field-emission light source
JP2010282956A (en) Field emission type light source
JP2006294494A (en) Fluorescent lamp
JP2007035633A (en) Electron emission type backlight unit and flat panel display device having the same
JP2007165310A (en) Display device
JP2007165308A (en) Display device
US20090072707A1 (en) Electron emission device, light emission apparatus including the same, and method of manufacturing the electron emission device
JP2008091279A (en) Light emitting device
EP1783801A2 (en) Display device
JP4528966B2 (en) Field emission light source
CN110832616B (en) Field emission cathode structure for field emission device
JP3108136B2 (en) Flat fluorescent lamp
JP2009206070A (en) Cold-cathode fluorescent lamp
JP4691363B2 (en) Field emission type surface light source
JP2007280934A (en) Field emission type backlight unit, and method of manufacturing same
JP4662358B2 (en) External electrode discharge lamp
JP2006190543A (en) Field-emission light source
JP2008084660A (en) Field emission lamp
JP2005327698A (en) Fluorescent lamp and backlight device
JP2010262791A (en) Light emitting device
JP6097093B2 (en) UV lamp