JP2006189677A - Highly transmissive polarizing plate and liquid crystal projector using same, liquid crystal rear projection television - Google Patents

Highly transmissive polarizing plate and liquid crystal projector using same, liquid crystal rear projection television Download PDF

Info

Publication number
JP2006189677A
JP2006189677A JP2005002253A JP2005002253A JP2006189677A JP 2006189677 A JP2006189677 A JP 2006189677A JP 2005002253 A JP2005002253 A JP 2005002253A JP 2005002253 A JP2005002253 A JP 2005002253A JP 2006189677 A JP2006189677 A JP 2006189677A
Authority
JP
Japan
Prior art keywords
polarizing plate
liquid crystal
high transmission
film
retardation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005002253A
Other languages
Japanese (ja)
Inventor
Ryo Atsumi
僚 渥美
Yuya Tateiri
祐也 建入
Hiroshi Sakurai
弘 桜井
Tadashi Matsuo
正 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Polatechno Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Polatechno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd, Polatechno Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2005002253A priority Critical patent/JP2006189677A/en
Publication of JP2006189677A publication Critical patent/JP2006189677A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly transmissive polarizing plate with which the reduction of contrast can be prevented even when displacement of an optical axis is generated in a polarizing plate with high transmissivity which is to be arranged between a polarizing plate of the incidence side of a liquid crystal projector and a polarizing plate of the emission side of the porjector. <P>SOLUTION: In manufacturing the highly transmissive polarizing plate, the highly transmissive polarizing plate which has a phase difference value which is optimized to the wavelength of light which is used in a liquid crystal projector is manufactured while controlling the phase difference value by controlling the thickness and the stretching magnification, etc., of a polyvinyl alcohol(PVA)-based film. The highly transmissive polarizing plate said here is used by being arranged between the polarizing plate of the incidence side of the liquid crystal projector and the polarizing plate of the emission side of the projector, and is used in order to raise the lives of the polarizing plates by being incorporated between a liquid crystal panel and the polarizing plate of the emission side of the projector. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ホームシアター用液晶プロジェクター、データ投影用液晶プロジェクター及び液晶リアプロジェクションテレビ等に有用な高透過偏光板に関するものである。   The present invention relates to a high-transmission polarizing plate useful for home theater liquid crystal projectors, data projection liquid crystal projectors, liquid crystal rear projection televisions, and the like.

液晶プロジェクター及び液晶リアプロジェクションテレビ等に使用する偏光板の延命効果を高めるために用いる高透過偏光板(プリ偏光板やプレ偏光板とも称され、偏光度は優れないが予備偏光板として熱負担を分散する)としては、延伸配向したポリビニルアルコール(PVA)又はその誘導体のフィルム等の高分子フィルム基材に、偏光素子としてヨウ素や二色性染料を含有せしめ、その両面または片面を支持フィルムにて保護したものを使用している。しかし、一般に偏光板作製時には、位相差値の管理は行わずPVAフィルムを出来得る限り高度に延伸し、それに染着された染料分子などを高度に配列させることにより、高い光学特性を実現している。特許文献1の段落番号0034及び特許文献2の段落番号0038には出射側の偏光手段に透過率の高い偏光板(プレ偏光板)を用い、主偏光板の光の吸収を和らげることが記載されている。又、特許文献3の段落番号0015には出射側偏光手段と出射偏光手段の少なくとも一方に複数の偏光板(プリ偏光板)を設け、光の吸収を和らげて各偏光板の耐久性を向上させる試みがなされているが、いずれの特許文献にも偏光板そのものの位相差値の制御についての記載はない。   Highly transmissive polarizing plate used to enhance the life-span effect of polarizing plates used in liquid crystal projectors and liquid crystal rear projection televisions (also called pre-polarizing plates and pre-polarizing plates. As a dispersion), a polymer film substrate such as a film of stretched and oriented polyvinyl alcohol (PVA) or a derivative thereof is made to contain iodine or a dichroic dye as a polarizing element, and both surfaces or one surface thereof is supported by a support film. You are using a protected one. However, in general, when producing a polarizing plate, the PVA film is stretched as much as possible without managing the retardation value, and high optical properties are realized by arranging dye molecules dyed on it as high as possible. Yes. Paragraph No. 0034 of Patent Document 1 and Paragraph No. 0038 of Patent Document 2 describe that a polarizing plate having a high transmittance (pre-polarizing plate) is used as the polarizing means on the output side and light absorption of the main polarizing plate is moderated. ing. Further, in paragraph No. 0015 of Patent Document 3, a plurality of polarizing plates (pre-polarizing plates) are provided on at least one of the exit side polarization unit and the exit polarization unit, so that the absorption of light is reduced and the durability of each polarization plate is improved. Although attempts have been made, none of the patent documents describes the control of the retardation value of the polarizing plate itself.

特開2004−220000号公報Japanese Patent Application Laid-Open No. 2004-220,000 特開2004−220001号公報Japanese Patent Laid-Open No. 2004-220001 特開平10−133196号公報Japanese Patent Laid-Open No. 10-133196 特開昭59−145255号公報JP 59-145255 A 特開昭60−156759号公報JP-A-60-156759 特開平3−12606号公報Japanese Patent Laid-Open No. 3-12606 特開平11ー218610号公報JP-A-11-218610 特開2001−33627号公報JP 2001-33627 A 特開2002−296417号公報JP 2002-296417 A

近年、液晶プロジェクター及び液晶リアプロジェクションテレビ等において高輝度及び長寿命耐久性の要求の一方で高コントラスト化の要求も強い。一層の明るさの向上を達成する為に、使用する光源強度は益々強くなってきている。液晶プロジェクターは、光の三原色、すなわち赤色チャンネル(R-ch)、緑色チャンネル(G-ch)、青色チャンネル(B-ch)の各原色の光線をそれぞれ赤色光用のLCD、緑色光用のLCD、青色光用のLCDに照射させ、各原色の画像を得て、ダイクロイックプリズム等により合成され投射される。その際、高透過偏光板が出射偏光板の延命効果を高めるために各チャンネルの出射偏光板の前に組み込み使用されている。しかし、従来の位相差値を管理しない製法で作製した高透過偏光板を搭載した液晶プロジェクターではコントラストが著しく低下するものが出るという問題が起きている。   In recent years, a liquid crystal projector, a liquid crystal rear projection television, and the like have a strong demand for high contrast while demanding high brightness and long life durability. In order to achieve further improvement in brightness, the intensity of the light source used is increasing. The liquid crystal projector is a red light LCD and a green light LCD for the primary colors of light, that is, the red channel (R-ch), green channel (G-ch), and blue channel (B-ch). The blue color LCD is irradiated to obtain images of the respective primary colors, which are synthesized and projected by a dichroic prism or the like. At this time, a high transmission polarizing plate is incorporated and used in front of the output polarizing plate of each channel in order to increase the life extension effect of the output polarizing plate. However, there is a problem in that some liquid crystal projectors equipped with a highly transmissive polarizing plate manufactured by a manufacturing method that does not control the phase difference value of the related art have a significantly reduced contrast.

コントラストを著しく低下させる要因の一つとして、高透過偏光板の原反ロール時の光学軸のズレ及び基板サイズへのチップカット時、更にはカットしたチップの基板への貼合時に生ずる人為的な光学軸のズレの発生が挙げられる。入射偏光板に対して光学軸のズレが±0.5〜2.0°になるとその偏光板を実装したプロジェクターにおいて正常時よりコントラストが3割程度低下する現象が観察された。   As one of the factors that significantly reduce the contrast, the optical axis shift at the time of raw roll of the high transmission polarizing plate and the chip cut to the substrate size, and further artificially generated when the cut chip is bonded to the substrate The occurrence of optical axis misalignment can be mentioned. When the deviation of the optical axis with respect to the incident polarizing plate was ± 0.5 to 2.0 °, a phenomenon was observed in which the contrast was reduced by about 30% in the projector mounted with the polarizing plate.

上記問題点を解決するため、原反時、カット時及び貼合時に光学軸のズレが生じたとしても、コントラストが低下しない高透過偏光板を開発すべく種々の検討を行ったところ、偏光フィルム自体の位相差値に原因があることが分った。   In order to solve the above-mentioned problems, various studies were conducted to develop a highly transmissive polarizing plate that does not decrease the contrast even when the optical axis shift occurs during the original fabric, during cutting, and during pasting. It was found that there was a cause in its own phase difference value.

高透過偏光板の位相差値として、R-ch用として用いる高透過偏光板はR-chとして使用される光線の波長に近い位相差値、G-ch用ではG-ch用に使用される光線の波長に近い位相差値、B-ch用ではB-ch用に使用される光線の波長に近い位相差値とすることにより延伸時の原反高透過偏光板の光学軸ズレ、カット時及び貼合時に生ずる多少の光学軸のズレに対してもコントラストが低下しない高透過偏光板を作製することができることを見出し、本発明に至った。   As the retardation value of the high-transmission polarizing plate, the high-transmission polarizing plate used for the R-ch is a retardation value close to the wavelength of the light beam used as the R-ch. For the G-ch, it is used for the G-ch. Optical axis misalignment of original high-transmission polarizing plate at the time of drawing and cutting by setting the phase difference value close to the wavelength of the light beam, and for B-ch, the phase difference value close to the wavelength of the light beam used for B-ch The inventors have found that a highly transmissive polarizing plate can be produced in which the contrast does not decrease even when there is a slight shift of the optical axis that occurs during pasting.

即ち本発明は、
(1)液晶プロジェクターの入射側及び出射側偏光板の間に設けてなる高透過偏光板において、その位相差値R(nm)と使用する光の波長λ(nm)との関係がR=nλ±100(ここでnは整数で1または2)であることを特徴とする高透過偏光板を使用した液晶プロジェクター、
(2)赤色チャンネル(R-ch)用であり、その位相差値が、480〜800nmまたは1,060〜1,500nmである高透過偏光板、
(3)緑色チャンネル(G-ch)用であり、その位相差値が、400〜700nmまたは900〜1,300nmである高透過偏光板、
(4)青色チャンネル(B-ch)用であり、その位相差値が、300〜600nmまたは700〜1,100nmである高透過偏光板、
(5)(2)〜(4)のいずれか一項に記載の高透過偏光板を使用した液晶プロジェクター、
(6)赤色チャンネル(R-ch)用、緑色チャンネル(G-ch)用及び青色チャンネル(B-ch)用の高透過偏光板を有し、該赤色チャンネル(R-ch)用高透過偏光板が(2)に記載の高透過偏光板、該緑色チャンネル(R-ch)用高透過偏光板が(3)に記載の高透過偏光板及び該青色チャンネル(R-ch)用高透過偏光板が(4)に記載の高透過偏光板である(5)に記載の液晶プロジェクター、
(7)(1)、(5)又は(6)のいずれか一項に記載の液晶プロジェクターを使用することを特徴とする液晶リアプロジェクションテレビ、
(8)赤色チャンネル(R-ch)用であり、その位相差値が、550〜750nmまたは1,160〜1,360nmである高透過偏光板、
(9)緑色チャンネル(G-ch)用であり、その位相差値が、450〜650nmまたは1,000〜1,200nmである高透過偏光板、
(10)青色チャンネル(B-ch)用であり、その位相差値が、350〜550nmまたは800〜1,000nmである高透過偏光板、
に関する。
That is, the present invention
(1) In a high transmission polarizing plate provided between an incident side and an outgoing side polarizing plate of a liquid crystal projector, the relationship between the retardation value R (nm) and the wavelength λ (nm) of light used is R = nλ ± 100 (Where n is an integer 1 or 2), a liquid crystal projector using a high transmission polarizing plate,
(2) A high transmission polarizing plate for a red channel (R-ch) having a retardation value of 480 to 800 nm or 1,060 to 1,500 nm.
(3) A high transmission polarizing plate for a green channel (G-ch) having a retardation value of 400 to 700 nm or 900 to 1,300 nm,
(4) A high transmission polarizing plate for a blue channel (B-ch) having a retardation value of 300 to 600 nm or 700 to 1,100 nm.
(5) A liquid crystal projector using the high transmission polarizing plate according to any one of (2) to (4),
(6) High transmission polarizing plate for red channel (R-ch), green channel (G-ch) and blue channel (B-ch) The plate is the high transmission polarizing plate described in (2), the green channel (R-ch) high transmission polarizing plate is the high transmission polarizing plate described in (3) and the blue channel (R-ch) high transmission polarizing plate The liquid crystal projector according to (5), wherein the plate is the high transmission polarizing plate according to (4),
(7) A liquid crystal rear projection television using the liquid crystal projector according to any one of (1), (5) or (6),
(8) A high transmission polarizing plate for a red channel (R-ch) having a retardation value of 550 to 750 nm or 1,160 to 1,360 nm.
(9) A high transmission polarizing plate for a green channel (G-ch) having a retardation value of 450 to 650 nm or 1,000 to 1,200 nm,
(10) A high transmission polarizing plate for a blue channel (B-ch) having a retardation value of 350 to 550 nm or 800 to 1,000 nm.
About.

特定の位相差値を有する高透過偏光板を用いることにより、偏光素膜原反の光学軸のズレ分布及びカット時、貼合時に人為的に起きてしまう光学軸のズレによるコントラストの低下を防ぐことが出来る。この位相差値を制御した高透過偏光板を各チャンネル(R-ch、G-ch、B-ch)の光の波長毎に用いることによりコントラストが低下しない液晶プロジェクター及び、液晶リアプロジェクションテレビを安定的に製造することが可能となった。   By using a high-transmission polarizing plate having a specific retardation value, the optical axis shift distribution of the original polarizing film and the reduction in contrast due to optical axis shift that occurs artificially at the time of cutting and bonding are prevented. I can do it. Stable liquid crystal projectors and liquid crystal rear projection televisions in which the contrast is not reduced by using this highly transmissive polarizing plate with controlled retardation value for each wavelength of light of each channel (R-ch, G-ch, B-ch) It has become possible to manufacture automatically.

以下に本発明を詳細に説明する。
本発明で使用する高透過偏光板の偏光素膜の偏光素子は、ヨウ素系でも染料系でも良いが、より高い耐久性を持つ染料系が好ましい。高透過偏光板は、ヨウ素や二色性染料で高分子フィルムを染色し、ついでその高分子フィルムを3〜10倍に一軸延伸することにより厚さが10〜70μmの偏光素膜を作製し、必要に応じこの偏光素膜を両面及び片面に設けられた保護層である支持フィルムで狭持することにより製造することができる。また、高分子フィルムを一軸延伸した後、ヨウ素や二色性染料で染色することによっても、染色と一軸延伸を同時に行っても良い。高分子フィルムの一軸延伸法としては、例えば湿式法、乾式法などが挙げられる。
The present invention is described in detail below.
The polarizing element of the polarizing element film of the high transmission polarizing plate used in the present invention may be iodine type or dye type, but a dye type having higher durability is preferable. The high-transmitting polarizing plate dyes a polymer film with iodine or a dichroic dye, and then produces a polarizing element film having a thickness of 10 to 70 μm by uniaxially stretching the polymer film 3 to 10 times. If necessary, this polarizing element film can be produced by sandwiching it with a support film which is a protective layer provided on both sides and one side. Alternatively, dyeing and uniaxial stretching may be performed simultaneously by uniaxially stretching the polymer film and then dyeing with iodine or a dichroic dye. Examples of the uniaxial stretching method of the polymer film include a wet method and a dry method.

高分子フィルムとしては、例えばポリビニルアルコール(PVA)系膜またはビニルアルコールとエチレン、プロピレンのようなオレフィンや、クロトン酸、アクリル酸、メタクリル酸、マレイン酸等の不飽和カルボン酸などと共重合して変性したもの、エチレン/ビニルアセテート(EVA)樹脂、ケン化EVA樹脂、ナイロン樹脂、ポリエステル樹脂等の高分子フィルムが挙げられるが、PVA系膜が、染料の吸着性や配向性の点から好ましい。PVA系膜としては、例えばPVA膜、ポリビニルブチラール膜等があげられるが、PVA膜が好ましい。高透過偏光板の作製において使用するPVAの重合度は、2,000〜5,000が好ましい。   As the polymer film, for example, a polyvinyl alcohol (PVA) film or vinyl alcohol and an olefin such as ethylene or propylene, an unsaturated carboxylic acid such as crotonic acid, acrylic acid, methacrylic acid, maleic acid, or the like is copolymerized. Examples include modified films, polymer films such as ethylene / vinyl acetate (EVA) resin, saponified EVA resin, nylon resin, and polyester resin. PVA-based films are preferable from the viewpoint of dye adsorption and orientation. Examples of the PVA film include a PVA film and a polyvinyl butyral film, and a PVA film is preferable. As for the polymerization degree of PVA used in preparation of a highly transmissive polarizing plate, 2,000-5,000 are preferable.

また、本発明の高透過偏光板の偏向素子として使用する色素としては、好ましくはニ色性の有機染料が用いられる。有機染料は、必要に応じて一種以上の有機染料を併用してもよく、所定の波長領域に吸収特性を有する染料であって二色性の高いものが好ましい。その具体例としては、例えば、シー.アイ.ダイレクト.イエロー12、シー.アイ.ダイレクト.イエロー28、シー.アイ.ダイレクト.イエロー44、シー.アイ.ダイレクト.オレンジ26、シー.アイ.ダイレクト.オレンジ39、シー.アイ.ダイレクト.オレンジ107、シー.アイ.ダイレクト.レッド 2、シー.アイ.ダイレクト.レッド 31、シー.アイ.ダイレクト.レッド 79、シー.アイ.ダイレクト.レッド 81、シー.アイ.ダイレクト.レッド 247 、シー.アイ.ダイレクト.グリーン80、シー.アイ.ダイレクト.グリーン59、シー.アイ.ダイレクト.ブルー237および特許文献4、特許文献5、特許文献6、特許文献7、特許文献8及び特許文献9の各公報に記載された染料等が挙げられ、これらの染料は遊離酸、あるいはアルカリ金属塩、アンモニウム塩、アミン類の塩として用いられる。   Moreover, as a pigment | dye used as a deflection | deviation element of the high transmittance polarizing plate of this invention, Preferably a dichroic organic dye is used. The organic dye may be used in combination with one or more organic dyes as necessary, and is preferably a dye having absorption characteristics in a predetermined wavelength region and having high dichroism. Specific examples thereof include, for example, C.I. Eye. direct. Yellow 12, sea. Eye. direct. Yellow 28, Sea. Eye. direct. Yellow 44, Sea. Eye. direct. Orange 26, Sea. Eye. direct. Orange 39, sea. Eye. direct. Orange 107, sea. Eye. direct. Red 2, sea. Eye. direct. Red 31, sea. Eye. direct. Red 79, Sea. Eye. direct. Red 81, Sea. Eye. direct. Red 247, Sea. Eye. direct. Green 80, Sea. Eye. direct. Green 59, Sea. Eye. direct. Blue 237 and dyes described in Patent Literature 4, Patent Literature 5, Patent Literature 6, Patent Literature 7, Patent Literature 8, and Patent Literature 9 are listed. These dyes are free acids or alkali metal salts. , Ammonium salts, and salts of amines.

必要に応じて、他の有機染料を併用する場合、目的とする偏光膜が、中性色の偏光膜、液晶プロジェクタ用カラー偏光膜、その他のカラー偏光膜により、それぞれ配合する染料の種類は異なる。その配合割合は特に限定されるものではない。   When other organic dyes are used in combination as required, the type of dye to be blended differs depending on whether the target polarizing film is a neutral color polarizing film, a color polarizing film for liquid crystal projectors, or other color polarizing films. . The blending ratio is not particularly limited.

高分子フィルムに、有機染料またはその塩を含有せしめるにあたっては、通常、高分子フィルムを染色する方法が採用される。染色は、例えば次のように行われる。まず、有機染料を水に溶解して染浴を調製する。染浴中の染料濃度は通常の入出射偏光板が0.1〜10重量%程度の範囲で選択されるのに対し、高透過偏光板は、通常は0.001〜1重量%程度の範囲から選択される。また、必要により染色助剤を用いてもよく、例えば、芒硝を0.1〜10重量%程度の濃度で用いるのが好適である。このようにして調製した染浴に高分子フィルムを0.5〜10分間浸漬し、染色を行う。染色温度は、好ましくは20〜80℃程度である。   In order to contain an organic dye or a salt thereof in the polymer film, a method of dyeing the polymer film is usually employed. For example, the staining is performed as follows. First, an organic dye is dissolved in water to prepare a dye bath. The dye concentration in the dye bath is selected in the range of about 0.1 to 10% by weight for a normal input / output polarizing plate, whereas the range of about 0.001 to 1% by weight for a high transmission polarizing plate is usually used. Selected from. Further, a dyeing assistant may be used if necessary. For example, it is preferable to use sodium sulfate at a concentration of about 0.1 to 10% by weight. The polymer film is immersed in the dye bath thus prepared for 0.5 to 10 minutes and dyed. The dyeing temperature is preferably about 20 to 80 ° C.

有機染料の配向は、染色された高分子フィルムを延伸することによって行われる。延伸する方法としては、例えば湿式法、乾式法など、公知のいずれの方法を用いてもよい。高分子フィルムの延伸は、場合により、染色の前に行ってもよい。この場合には、染色の時点で有機染料の配向が行われる。有機染料を含有・配向せしめた高分子フィルムは、必要に応じて公知の方法によりホウ酸処理などの後処理が施される。このような後処理は、偏光素膜の光線透過率および偏光度を向上させる目的で行われる。ホウ酸処理の条件は、用いる高分子フィルムの種類や用いる染料の種類によって異なるが、一般的にはホウ酸水溶液のホウ酸濃度を0.1〜15重量%、好ましくは1〜10重量%とし、処理は30〜80℃、好ましくは40〜75℃の温度で、0.5〜10分間浸漬して行われる。更に必要に応じて、染色後にカチオン系高分子化合物を含む水溶液で、フィックス処理を行ってもよい。   Orientation of the organic dye is performed by stretching a dyed polymer film. As a stretching method, any known method such as a wet method or a dry method may be used. The stretching of the polymer film may optionally be performed before dyeing. In this case, the organic dye is oriented at the time of dyeing. The polymer film containing and orienting the organic dye is subjected to post-treatment such as boric acid treatment by a known method as necessary. Such post-processing is performed for the purpose of improving the light transmittance and the degree of polarization of the polarizing element film. The conditions for the boric acid treatment vary depending on the type of polymer film used and the type of dye used, but generally the boric acid concentration of the boric acid aqueous solution is 0.1 to 15% by weight, preferably 1 to 10% by weight. The treatment is performed by dipping at a temperature of 30 to 80 ° C., preferably 40 to 75 ° C., for 0.5 to 10 minutes. Further, if necessary, the fixing treatment may be performed with an aqueous solution containing a cationic polymer compound after dyeing.

ヨウ素染色処理は、高分子フィルムを膨潤させた後、例えばヨウ素およびヨウ化カリウムを含有する水溶液などのヨウ素溶液に、更に、ホウ酸を含有させた染色液に前記した高分子フィルムを浸漬することにより行なわれる。水溶液を用いる場合、該水溶液におけるヨウ素、ヨウ化カリウムの使用量は、通常ヨウ素が0.01〜0.3重量%、ヨウ化カリウムが0.01〜3重量%の濃度で用いるのが好適である。染色温度は20〜50℃、染色時間は10〜300秒程度が好ましい。ヨウ素染色された高分子フイルムの延伸方法は前記した有機染料の場合と同様な処理が好ましい。   In the iodine dyeing treatment, after swelling the polymer film, the polymer film described above is immersed in an iodine solution such as an aqueous solution containing iodine and potassium iodide, and further in a dyeing solution containing boric acid. It is done by. When using an aqueous solution, it is preferable to use iodine and potassium iodide in the aqueous solution at a concentration of usually 0.01 to 0.3% by weight of iodine and 0.01 to 3% by weight of potassium iodide. is there. The dyeing temperature is preferably 20 to 50 ° C., and the dyeing time is preferably about 10 to 300 seconds. The stretching method of the iodine dyed polymer film is preferably the same treatment as in the case of the organic dye described above.

偏光素膜のみでも十分な偏光機能は有するが、強烈な光線照射、高温または高温高湿の過酷な環境条件に対して十分高い耐久性を付与させる為に通常支持フィルムで挟持する。支持フィルムとしては、紫外線吸収剤を含有するトリアセチルセルロース(TAC)等の支持フィルムが好ましく、両面より積層接着して高透過偏光板とするのが好ましい。支持フィルムの具体例としては、例えばTAC等のセルロースアセテート系フィルムやアクリル系フィルム、四フッ化エチレン/六フッ化プロピレン系共重合体のようなフッ素系フィルム、ポリカーボネート樹脂、ポリエステル樹脂、ポリオレフィン樹脂もしくはポリアミド系樹脂からなるフィルムが挙げられるが、TACフィルムが好ましい。支持フィルムの膜厚は、30〜250μm、好ましくは50〜190μmがよい。   A polarizing element film alone has a sufficient polarizing function, but is usually sandwiched between support films in order to impart sufficiently high durability against severe light irradiation, high temperature or high temperature and high humidity. The support film is preferably a support film such as triacetyl cellulose (TAC) containing an ultraviolet absorber, and is preferably laminated and bonded from both sides to form a highly transmissive polarizing plate. Specific examples of the support film include, for example, cellulose acetate film such as TAC, acrylic film, fluorine film such as tetrafluoroethylene / hexafluoropropylene copolymer, polycarbonate resin, polyester resin, polyolefin resin or Although the film which consists of a polyamide-type resin is mentioned, a TAC film is preferable. The film thickness of the support film is 30 to 250 μm, preferably 50 to 190 μm.

本発明においては高透過偏光板の支持体フィルム表面に透明なコーティング層を設けても良い。コーティング層としては、例えばアクリル系やポリシロキサン系のハードコート膜やウレタン系の膜等があげられる。また、この保護膜の上に反射防止(AR)層を設けても良い。AR層として、例えば二酸化珪素、酸化チタン等の物質を蒸着またはスパッタリング処理によって形成することができ、またフッ素系物質を薄く塗布することにより形成することもできる。   In the present invention, a transparent coating layer may be provided on the surface of the support film of the high transmission polarizing plate. Examples of the coating layer include acrylic and polysiloxane hard coat films and urethane films. Further, an antireflection (AR) layer may be provided on the protective film. As the AR layer, for example, a material such as silicon dioxide or titanium oxide can be formed by vapor deposition or sputtering treatment, or it can be formed by thinly applying a fluorine-based material.

本発明において高透過偏光板の偏光素膜の位相差値をコントロールするには、高分子フィルムの組成、分子量あるいはフィルムの厚み、延伸倍率等の諸条件を変更することにより可能である。高透過偏光板の作製にあたり偏光素膜をTACにて両面又は片面に積層、接着を行うが、偏光素膜自体の位相差値に影響を与えないように支持フィルムとしては位相差値の低いフィルムを使用することが好ましい。   In the present invention, the retardation value of the polarizing element film of the high transmission polarizing plate can be controlled by changing various conditions such as the composition of the polymer film, the molecular weight or the thickness of the film, and the draw ratio. In producing a high transmission polarizing plate, a polarizing element film is laminated on both sides or one side by TAC and bonded, but the retardation film has a low retardation value so as not to affect the retardation value of the polarizing element film itself. Is preferably used.

通常位相差値は、延伸倍率を上げることにより高くなる。しかし、延伸倍率を高くすることにより偏光素膜自体の厚みが薄くなり、位相差値は低くなる。延伸倍率よりも、偏光素膜自体の厚みが位相差値に大きく寄与していることが分かった。位相差値(R)は自動複屈折計(王子計測製)で測定した。
R=Δn×d
Δn:フィルムの複屈折
d:フィルムの厚さ
Usually, the retardation value is increased by increasing the draw ratio. However, by increasing the draw ratio, the thickness of the polarizing element film itself is reduced and the retardation value is lowered. It was found that the thickness of the polarizing element film itself greatly contributed to the retardation value rather than the draw ratio. The retardation value (R) was measured with an automatic birefringence meter (manufactured by Oji Scientific).
R = Δn × d
Δn: film birefringence d: film thickness

高透過偏光板に適用する光の波長毎の位相差値について述べると、R-ch用に関しては、位相差値として480〜800nmまたは1,060〜1,500nm程度が有用であるが、好ましくは550〜750nmまたは1,160〜1,360nmにすることにより更に精度を増す。同様にG-ch用の位相差値400〜700nmまたは900〜1,300nm程度が有用であるが、好ましくは450〜650nmまたは1,000〜1,200nm、B-ch用の位相差値300〜600nmまたは700〜1,100nm程度が有用であるが、好ましくは350〜550nmまたは800nm〜1,000nmにそれぞれ設定することによりさらにコントラスト低下を防止する精度の良い高透過偏光板となる。   The phase difference value for each wavelength of light applied to the high transmission polarizing plate is described. For R-ch, a phase difference value of about 480 to 800 nm or about 1,060 to 1,500 nm is useful, The accuracy is further increased by setting it to 550 to 750 nm or 1,160 to 1,360 nm. Similarly, a phase difference value of 400 to 700 nm or 900 to 1,300 nm for G-ch is useful, preferably 450 to 650 nm or 1,000 to 1,200 nm, and a phase difference value of 300 to 1,200 nm for B-ch. Although 600 nm or about 700 to 1,100 nm is useful, it is preferable to set it to 350 to 550 nm or 800 nm to 1,000 nm, respectively.

高透過偏光板の位相差値(R)を最適化する手段は次の通りである。一般に2枚の偏光板を直交位配置にしてその間に複屈折性を有する光学部材を配した場合の透過率(Tc)の挙動は下記の式(1)で表される。式(1)において複屈折性を有する光学部材の位相差値と照射する光の波長が同等もしくは位相差値が整数倍となることにより(πR/λ)がπ,2πとなり、Sin2(πR/λ)がゼロ、即ちTcは最小となる。これにより照射する光の波長帯域での理想的な位相差値が算出できる。実際、B-ch用ではπR/λがπ、2πとなる時の位相差値が450nm及び900nmのものを用い検討を行ったが450nmの波長でのTcは最小となることが確認できた。そのため、位相差値が照射する光の波長の整数倍となる時のB-ch(波長域:400〜500nm)用の位相差値は、300〜600nmまたは700〜1,100nmのもの好ましくは350〜550nmまたは800〜1,000nm。R-ch(波長域:580〜680nm)用についても位相差値が480〜800nmまたは1,060〜1,500nmのもの好ましくは550〜750nmまたは1,160〜1,360nm、G-ch(波長域:500〜600nm)用については位相差値が400〜700nmまたは900〜1,300nm、好ましくは450〜650nmまたは1,000〜1,200nmの偏光素膜を作製することにより同様にコントラストの低下を防止することができる。 The means for optimizing the retardation value (R) of the high transmission polarizing plate is as follows. In general, the behavior of the transmittance (Tc) when two polarizing plates are arranged orthogonally and an optical member having birefringence is arranged between them is expressed by the following formula (1). In Formula (1), when the phase difference value of the optical member having birefringence is equal to the wavelength of the light to be irradiated or the phase difference value is an integral multiple, (πR / λ) becomes π, 2π, and Sin 2 (πR / Λ) is zero, that is, Tc is minimized. Thereby, an ideal phase difference value in the wavelength band of the irradiated light can be calculated. Actually, for B-ch, investigation was performed using phase difference values of 450 nm and 900 nm when πR / λ was π, 2π, but it was confirmed that Tc at a wavelength of 450 nm was minimized. Therefore, the phase difference value for B-ch (wavelength range: 400 to 500 nm) when the phase difference value is an integral multiple of the wavelength of the irradiated light is 300 to 600 nm or 700 to 1,100 nm, preferably 350. ˜550 nm or 800 to 1,000 nm. For R-ch (wavelength range: 580 to 680 nm), the phase difference value is 480 to 800 nm or 1,060 to 1,500 nm, preferably 550 to 750 nm or 1,160 to 1,360 nm, G-ch (wavelength (Area: 500 to 600 nm), the contrast is similarly reduced by preparing a polarizing element film having a retardation value of 400 to 700 nm or 900 to 1,300 nm, preferably 450 to 650 nm or 1,000 to 1,200 nm. Can be prevented.

Tc=Sin22θ・Sin2(πR/λ) (1)
θ:偏光方向と複屈折光学部材の光学軸との成す角度、R:光学部材の位相差値(nm)、λ:照射する光の波長(nm)
Tc = Sin 2 2θ · Sin 2 (πR / λ) (1)
θ: angle between the polarization direction and the optical axis of the birefringent optical member, R: retardation value of the optical member (nm), λ: wavelength of the irradiated light (nm)

高透過偏光板の透過率の分光光度計による測定方法は、直線偏光を作り出す為の高コントラストのベース偏光板をサンプル側及びリファレンス側にそれぞれ透過軸を同じ方向にセットしキャリブレーションを行い、その後高透過率偏光板を平行位または直交位にセットして偏光入射での平行位透過率(以下Tpol-pと略す。)、直交位透過率(以下Tpol-cと略す。)を分光光度計U−4100(日立製作所社製)で測定した。本発明の高透過偏光板のTpol-pは85〜93%であり、Tpol-cは、5〜80%好ましくは30〜70%である。   The spectrophotometer is used to measure the transmittance of the high-transmission polarizing plate. A high-contrast base polarizing plate for creating linearly polarized light is set in the same direction on the sample side and the reference side, and then calibrated. A spectrophotometer for setting the parallel transmittance or the orthogonal transmittance (hereinafter abbreviated as Tpol-c) and the orthogonal transmittance (hereinafter abbreviated as Tpol-c) at the incidence of polarized light by setting the high transmittance polarizing plate in the parallel or orthogonal position. It measured with U-4100 (made by Hitachi, Ltd.). The Tpol-p of the highly transmissive polarizing plate of the present invention is 85 to 93%, and Tpol-c is 5 to 80%, preferably 30 to 70%.

液晶プロジェクターの多くは、光源、偏光ビームスプリッター、偏光板、液晶セル、クロスプリズム、投射レンズ等の光学系を使用している。本発明の高透過偏光板は、液晶プロジェクターの入射側及び出射側の間に設けるのが好ましく、更には出射側の前に設けるのが特に好ましい。赤色チャンネル(R-ch)用、緑色チャンネル(G-ch)用及び青色チャンネル(B-ch)用の高透過偏光板はそれぞれのチャンネルの所望の位置に設けられる。   Many liquid crystal projectors use optical systems such as a light source, a polarizing beam splitter, a polarizing plate, a liquid crystal cell, a cross prism, and a projection lens. The high transmission polarizing plate of the present invention is preferably provided between the incident side and the emission side of the liquid crystal projector, and more preferably provided in front of the emission side. High transmission polarizing plates for the red channel (R-ch), green channel (G-ch) and blue channel (B-ch) are provided at desired positions of the respective channels.

出射側偏光板の前にTpol-cが30〜70%の本発明の高透過偏光板を配置することにより、出射側偏光板が全光量を受けるのではなく、出射側偏光板が受ける光量を制御し出射側偏光板の温度が軽減する役目を果たす。表面温度を低下させることにより出射側偏光板の耐久性が向上する。ここでTpol-cが30〜70%の高透過偏光板が多用されるのは高透過偏光板と出射側偏光板の負担をほぼ均等に分担させ、両部品の寿命を延命させることができる。   By disposing the high transmission polarizing plate of the present invention having Tpol-c of 30 to 70% in front of the outgoing side polarizing plate, the outgoing side polarizing plate does not receive the total amount of light, but the amount of light received by the outgoing side polarizing plate. Controls and serves to reduce the temperature of the output side polarizing plate. Lowering the surface temperature improves the durability of the exit-side polarizing plate. Here, the high transmission polarizing plate having a Tpol-c of 30 to 70% is often used, so that the burden of the high transmission polarizing plate and the output side polarizing plate can be shared almost evenly and the life of both parts can be extended.

次に本発明を実施例によりさらに具体的に説明するが、これらの実施例が本発明を限定するものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, these Examples do not limit this invention.

実施例1
G-ch用の位相差値を制御した高透過偏光板の作製は、重合度2,400、厚み75μmのPVA(クラレ社製)の高分子フィルムを45℃の温水に120秒間浸漬した後、水100重量部、C.I.ダイレクト・オレンジ39を0.015重量部、C.I.ダイレクト・レッド79を0.015重量部、C.I.ダイレクト・ブルー237を0.020重量部及び芒硝1.0重量部からなる45℃の水溶液に浸漬し、染着を行った。次に染色後のフィルムを、水100重量部及びホウ酸4重量部からなる55℃の水溶液中で7倍に一軸延伸し、水洗後乾燥を行い素膜の厚みが18μm、位相差値(王子計測機器社製で測定)が550nmの偏光素膜を作製した。作製した偏光素膜両面にTACフィルム(富士フィルム社製)を貼り合わせ偏光板を作製した。また、片側にはハードコート層を設けた。この偏光板の透過率を日立製作所(株)製の分光光度計U-4100で測定した。Tpol-pは92%、Tpol-cは32%であり、高い透過性を持つ高透過偏光板を得た。
Example 1
Preparation of a high transmission polarizing plate with a controlled retardation value for G-ch was performed by immersing a polymer film of PVA (manufactured by Kuraray Co., Ltd.) having a polymerization degree of 2,400 and a thickness of 75 μm in warm water at 45 ° C. for 120 seconds. 45 consisting of 100 parts by weight of water, 0.015 parts by weight of CI Direct Orange 39, 0.015 parts by weight of CI Direct Red 79, 0.020 parts by weight of CI Direct Blue 237 and 1.0 part by weight of sodium sulfate. It was immersed in an aqueous solution at 0 ° C. and dyed. Next, the dyed film was uniaxially stretched seven times in a 55 ° C. aqueous solution consisting of 100 parts by weight of water and 4 parts by weight of boric acid, washed with water, dried, and the thickness of the base film was 18 μm. A polarizing element film having a thickness of 550 nm was measured. A TAC film (manufactured by Fuji Film Co., Ltd.) was bonded to both surfaces of the produced polarizing element film to produce a polarizing plate. Further, a hard coat layer was provided on one side. The transmittance of this polarizing plate was measured with a spectrophotometer U-4100 manufactured by Hitachi, Ltd. Tpol-p was 92% and Tpol-c was 32%, and a highly transmissive polarizing plate having high transmittance was obtained.

比較例1
実施例1と基本的作製手順は同様であるが、高分子フィルム及び位相差値を変更し作製した。重合度4,000、厚み75μmのPVA(クラレ社製)の高分子フィルムを45℃の温水に120秒間浸漬した後、水100重量部、C.I.ダイレクト・オレンジ39を0.015重量部、C.I.ダイレクト・レッド79を0.015重量部、C.I.ダイレクト・ブルー237を0.020重量部及び芒硝1.0重量部からなる45℃の水溶液に浸漬し、染着を行った。次に染色後のフィルムを、水100重量部及びホウ酸3重量部からなる55℃の水溶液中で6倍に一軸延伸し、水洗後乾燥を行い素膜の厚みが30μm、位相差値(王子計測機器社製で測定)が750nmの偏光素膜を作製した。この偏光素膜の両側にTACフィルム(富士フィルム社製)を貼り合わせ、且つ一方のTACフィルムの表面にハードコート層を設けた。この偏光板のTpol-pは92%、Tpol-cは32%の高透過偏光板を作製した。
Comparative Example 1
The basic production procedure is the same as in Example 1, but the polymer film and the retardation value were changed. After immersing a polymer film of PVA (manufactured by Kuraray Co., Ltd.) having a polymerization degree of 4,000 and a thickness of 75 μm in warm water at 45 ° C. for 120 seconds, 100 parts by weight of water, 0.015 parts by weight of CI Direct Orange 39, CI Direct Dyeing was carried out by immersing in an aqueous solution at 45 ° C. consisting of 0.015 parts by weight of red 79 and 0.020 parts by weight of CI direct blue 237 and 1.0 part by weight of sodium sulfate. Next, the dyed film was uniaxially stretched 6 times in a 55 ° C. aqueous solution consisting of 100 parts by weight of water and 3 parts by weight of boric acid, washed with water and dried to have a thickness of 30 μm and a retardation value (Oji A polarizing element film having a thickness of 750 nm was measured. A TAC film (Fuji Film Co., Ltd.) was bonded to both sides of this polarizing element film, and a hard coat layer was provided on the surface of one of the TAC films. A highly transmissive polarizing plate having a Tpol-p of 92% and a Tpol-c of 32% was prepared.

位相差値を550nmとした高透過偏光板(実施例1)と位相差値が750nmの高透過偏光板(比較例1)を分光光度計U-4100を用いて平行ニコル間透過率(Tp)、直交ニコル間透過率(Tc)を測定した。Tpの測定方法としては、サンプル側、リファレンス側にそれぞれベースとなる高コントラスト偏光板を2枚平行位に配置してキャリブレーションを行い、測定サンプルをベース偏光板の間に平行にセットし0〜5°まで光学軸を振り測定を行った。また、Tcの測定方法としては、サンプル側のベース偏光板2枚を直交位に配置し、その間に測定サンプルを配置して同様に0〜5°まで光学軸を振り測定を行った。   The transmittance (Tp) between parallel Nicols of a high transmission polarizing plate (Example 1) having a retardation value of 550 nm and a high transmission polarizing plate (Comparative Example 1) having a retardation value of 750 nm using a spectrophotometer U-4100. The transmittance between crossed Nicols (Tc) was measured. Tp is measured by placing two high-contrast polarizing plates on the sample side and the reference side in parallel and calibrating them, and setting the measurement sample in parallel between the base polarizing plates at 0-5 °. The measurement was performed by swinging the optical axis. As a method for measuring Tc, two base-side polarizing plates on the sample side were arranged in an orthogonal position, a measurement sample was arranged between them, and the optical axis was similarly measured from 0 to 5 ° for measurement.

実施例1と比較例1の530〜580nm間での平均の光学特性を表1に示す。位相差値を550nmに制御した高透過偏光板については、2°光学軸を振ってもTcはほとんど変化なくコントラストの低下もそれほど大きくない。しかし、比較例1の位相差値が750nmの高透過偏光板については、1°振っただけでもTcは4倍に増大し、コントラストも1/4に低下した。表1においてコントラストはCR=Tp/Tcとして求めた。   Table 1 shows the average optical characteristics of Example 1 and Comparative Example 1 between 530 and 580 nm. For a high transmission polarizing plate whose retardation value is controlled to 550 nm, the Tc hardly changes even when the 2 ° optical axis is swung, and the decrease in contrast is not so great. However, for the high transmittance polarizing plate of Comparative Example 1 having a retardation value of 750 nm, the Tc increased 4 times and the contrast also decreased to ¼ even if it was swung by 1 °. In Table 1, the contrast was determined as CR = Tp / Tc.

Figure 2006189677
Figure 2006189677

実施例2、比較例2
B-ch用高透過偏光板の光学軸角度ズレによるコントラストへの影響を評価する目的で、位相差値以外は実施例1の方法に準じてPVAの厚み40μm、延伸倍率5.5倍とし、位相差値が440nmの高透過偏光板(実施例2)及びPVAの厚み75μm、延伸倍率6.5倍とし、位相差値が650nmの高透過偏光板(比較例2)を作製した。その際のTpol-pは91%、Tpol-cは32%であった。Tp及びTcの測定については実施例1及び比較例1と同様の操作により測定を行った。
Example 2 and Comparative Example 2
For the purpose of evaluating the influence on the contrast due to the optical axis angle deviation of the B-ch high transmission polarizing plate, the PVA thickness is 40 μm and the draw ratio is 5.5 times according to the method of Example 1 except for the retardation value. A highly transmissive polarizing plate (Example 2) having a retardation value of 440 nm and a high transmissive polarizing plate (Comparative Example 2) having a PVA thickness of 75 μm and a draw ratio of 6.5 times and a retardation value of 650 nm were prepared. At that time, Tpol-p was 91% and Tpol-c was 32%. About the measurement of Tp and Tc, it measured by the same operation as Example 1 and Comparative Example 1.

実施例2と比較例2の430〜500nm間での平均の光学特性を表2に示す。表2から、光学軸角度のズレのない場合は、両サンプル共にコントラストは良い値であった。しかし、比較例2においては、光学軸角度のズレに伴い、Tcがかなり増大しコントラストの著しい低下が確認できた。しかし、実施例2において光学軸を0°〜2°振ったものに関してはTcの変化量は小さく、光学軸が3°以上ズレることによりTcは若干上昇するが、比較例2のTc増加量と比較するとそれ程大きくなく、コントラストの低下も抑えられた。表2おいてコントラスト値はCR=Tp/Tcとして求めた。従って、実施例2の位相差値を持つ高透過偏光板は、光学軸角度が2°ズレてもコントラストの低下は抑えることができ、B-ch帯域下においてはかなり有用な高透過偏光板である。   Table 2 shows the average optical characteristics of Example 2 and Comparative Example 2 between 430 and 500 nm. From Table 2, the contrast was good for both samples when there was no deviation of the optical axis angle. However, in Comparative Example 2, it was confirmed that Tc significantly increased and the contrast significantly decreased with the deviation of the optical axis angle. However, in Example 2, when the optical axis was swung from 0 ° to 2 °, the amount of change in Tc was small, and Tc slightly increased when the optical axis was shifted by 3 ° or more. In comparison, it was not so large and the reduction in contrast was suppressed. In Table 2, the contrast value was determined as CR = Tp / Tc. Therefore, the high transmission polarizing plate having the retardation value of Example 2 can suppress the decrease in contrast even when the optical axis angle is shifted by 2 °, and is a highly useful polarizing plate under the B-ch band. is there.

Figure 2006189677
Figure 2006189677

実施例3、比較例3
R-ch用高透過偏光板の光学軸角度のズレによるコントラストへの影響を評価する目的で、位相差値以外は実施例1の方法に準じてPVAの厚み40μm、延伸倍率5.5倍とし、位相差値を450nmの高透過偏光板(比較例3)及びPVAの厚み75μm、延伸倍率6.5倍とし、位相差値が640nmの高透過偏光板(実施例3)を作製し確認を行った。その際のTpol-pは91.5%、Tpol-cは32%であった。Tp及びTcの測定については実施例1及び比較例1と同様の操作により測定を行った。
Example 3 and Comparative Example 3
For the purpose of evaluating the influence on the contrast due to the deviation of the optical axis angle of the high transmission polarizing plate for R-ch, except for the retardation value, the PVA thickness was 40 μm and the draw ratio was 5.5 times. A high transmission polarizing plate (Example 3) having a retardation value of 450 nm (Comparative Example 3) and a PVA thickness of 75 μm and a draw ratio of 6.5 times and a retardation value of 640 nm was confirmed. went. At that time, Tpol-p was 91.5% and Tpol-c was 32%. About the measurement of Tp and Tc, it measured by the same operation as Example 1 and Comparative Example 1.

実施例3と比較例3の600〜640nm間での平均の光学特性を表3に示す。比較例3においては、光学軸角度のズレが増すに従いTcも増加し、かなりコントラストが低下することが確認できた。しかし、実施例3において光学軸を0°〜2°振ったものに関してはTc変化量はまだ小さく、光学軸角度が3°以上ズレることにより若干Tcは上昇するが、比較例3のTc増加量と比較するとかなり小さく、コントラストの低下もかなり抑えられた。表3においてコントラストはCR=Tp/Tcとして求めた。従って、実施例3の位相差値を持つ高透過偏光板は、光学軸角度が2°ズレてもコントラスト低下は抑えられ、R-ch帯域下において有用な高透過偏光板である。   Table 3 shows the average optical characteristics of Example 3 and Comparative Example 3 between 600 and 640 nm. In Comparative Example 3, it was confirmed that Tc increased as the deviation of the optical axis angle increased, and the contrast was considerably lowered. However, in Example 3, the Tc change amount was still small for the optical axis swung from 0 ° to 2 °, and the Tc increased slightly by shifting the optical axis angle by 3 ° or more. Compared with, it was much smaller and the decrease in contrast was also suppressed considerably. In Table 3, the contrast was determined as CR = Tp / Tc. Therefore, the high transmission polarizing plate having the retardation value of Example 3 is a high transmission polarizing plate useful in the R-ch band because the decrease in contrast is suppressed even when the optical axis angle is shifted by 2 °.

Figure 2006189677
Figure 2006189677

実施例4
G-ch用の位相差値を制御した高透過偏光板として実施例1の素膜作製方法にて偏光素膜を作製し、両面にTACフィルム(富士フィルム社製)を貼り合わせて位相差値が550nmの高透過偏光板とした。偏光板表面の傷付き防止のため片側にハードコート層を設け、その上にAR層を設け、更に一方の面に粘着剤層を付与し、対角を1インチサイズにカットして同サイズのAR層付ガラス板に貼合してサンプルを作製した。この両面AR層付高透過偏光板の光学特性はTpol-pが97%、Tpol-cが34%であった。ここで作製した高透過偏光板を液晶プロジェクターに組み込み、光学軸角度を正確に合わせたサンプルと光学軸を1°振ったものを準備した。
Example 4
A polarizing element film was prepared by the element film preparation method of Example 1 as a highly transmissive polarizing plate for which the retardation value for G-ch was controlled, and a TAC film (manufactured by Fuji Film Co., Ltd.) was bonded to both sides to obtain a retardation value. Was a high transmission polarizing plate of 550 nm. In order to prevent scratches on the polarizing plate surface, a hard coat layer is provided on one side, an AR layer is provided thereon, an adhesive layer is further provided on one side, and the diagonal is cut to a 1-inch size. A sample was prepared by pasting to a glass plate with an AR layer. The optical characteristics of the high-transmitting polarizing plate with a double-sided AR layer were 97% for Tpol-p and 34% for Tpol-c. The high-transmission polarizing plate produced here was incorporated into a liquid crystal projector, and a sample in which the optical axis angle was precisely adjusted and an optical axis shaken by 1 ° were prepared.

比較例4
比較例1の素膜作製方法にて偏光素膜を作製し、両面にTACフィルム(富士フィルム社製)を貼り合わせ位相差値が750nmの高透過偏光板を作製し、片側にハードコート層を設け、AR層も設け、更にAR層付ガラス板に貼り付けサンプルを作製した。サンプルの準備としては、実施例4と同様の操作で光学軸の正確なものと1°振ったサンプルを準備した。
Comparative Example 4
A polarizing element film is prepared by the element film preparation method of Comparative Example 1, a TAC film (manufactured by Fuji Film Co., Ltd.) is bonded on both sides, a high-transmission polarizing plate having a retardation value of 750 nm is formed, and a hard coat layer is formed on one side. An AR layer was also provided, and a sample was attached to a glass plate with an AR layer. As a sample preparation, an accurate optical axis and a sample shaken by 1 ° were prepared in the same manner as in Example 4.

上記サンプルを準備し、液晶プロジェクターの図1の12Gの場所にそれぞれ組み込みR,B光線を遮光し、G光線だけでのコントラストの検討を行った。遮光しG光線だけでの検討とすることによりG-ch用高透過偏光板の光学軸ズレによるコントラストへの影響評価がより正確に確認できた。結果を表4に示す。プロジェクターに組み込む実装試験の際、コントラスト向上のため、液晶プロジェクターの図1の11(R、G、B)と12(R、G、B)の間にコントラスト改善フィルム(WVA−03B、富士写真フィルム社製)を基板に貼合したものをプロジェクターに組み込み、実装試験を行った。   The above samples were prepared and incorporated at the position 12G in FIG. 1 of the liquid crystal projector, and the R and B rays were shielded, and the contrast with only the G rays was examined. The effect of the optical axis misalignment on the G-ch high-transmission polarizing plate on the contrast can be confirmed more accurately by examining only with G rays. The results are shown in Table 4. In the mounting test to be incorporated in the projector, in order to improve the contrast, a contrast improving film (WVA-03B, Fuji Photo Film) between 11 (R, G, B) and 12 (R, G, B) of FIG. What was bonded to the board was incorporated into the projector and a mounting test was conducted.

Figure 2006189677
Figure 2006189677

光学軸精度が良いサンプルについては位相差値がG-ch用として制御した550nmと制御していない750nmに関しても両方のサンプル共良いコントラストを示した。しかし、1°光学軸角度を振ったサンプルについては位相差値が550nmに制御したサンプルでのコントラストの低下はほとんど見られない結果であったのに対し、位相差値が750nmのサンプルについてはかなりのコントラストの低下が確認された。   For samples with good optical axis accuracy, both samples showed good contrast for the phase difference value of 550 nm controlled for G-ch and uncontrolled 750 nm. However, the sample with a 1 ° optical axis angle showed almost no decrease in contrast in the sample in which the phase difference value was controlled to 550 nm, whereas the sample with a phase difference value of 750 nm was considerably different. A decrease in contrast was confirmed.

実施例1、比較例1において、Tcが少しでも上昇することにより分光光度計のコントラストはかなり低下する値となっていたが、プロジェクターに組み込む実装試験での実施例4は1°光学軸角度を振ったものでもコントラストの低下はほとんど見られなかった。しかし、比較例1のサンプルにおいて光学軸角度を1°振ることにより分光光度計でのコントラストは3,000低下する結果となり、このサンプルと同様の機能を有する比較例4は実装試験においても光学軸角度を1°振ることにより通常のコントラストより150低下した。この結果よりG-ch用の位相差値を持つ高透過偏光板は多少の光学軸角度がズレてもコントラストは低下しないことが確認できた。   In Example 1 and Comparative Example 1, the contrast of the spectrophotometer was considerably reduced by a slight increase in Tc, but Example 4 in the mounting test incorporated in the projector had a 1 ° optical axis angle. There was almost no reduction in contrast even when shaken. However, in the sample of Comparative Example 1, the contrast in the spectrophotometer is reduced by 3,000 by oscillating the optical axis angle by 1 °, and Comparative Example 4 having the same function as that of this sample is the optical axis in the mounting test. By shaking the angle by 1 °, the contrast was reduced by 150 from the normal contrast. From this result, it was confirmed that the contrast of the high transmission polarizing plate having the G-ch retardation value does not decrease even if the optical axis angle is slightly shifted.

実施例5
実施例1及び比較例1の方法に準じて数水準の位相差値を有する高透過偏光板を作製した。この際の作製条件は、重合度2,400の40μmのPVAを用い延伸倍率を6.0〜5.5倍にて3水準、75μmのPVAを用いて延伸倍率を7.0〜6.5倍にて3水準、重合度4,000の80μmのPVAを用いて延伸倍率を6.0〜5.7倍にて2水準とした。具体的には高透過偏光板の位相差値は350nm及び400nm、450nm、530nm、580nm、650nm、700nm、750nmであった。今回はこの条件にて作製しているが、温度条件及び延伸倍率のバランスにより位相差値も前後する。偏光板表面の傷付き防止のため、片側にハードコート層を設け、AR層も設けた。また、上記サンプルを実装試験にて確認するため光学軸を0°及び1°振ったサンプルを作製し、更にAR層付ガラス板に貼り付けサンプルを作製した。これはG-chの光波長内でどの範囲まで使用可能であるかの確認のために行った。確認するために、液晶プロジェクターの図1の12Gの場所にそれぞれ組み込みR,B光線を遮光し、実施例4と同様、図1の11と12の間にはコントラスト改善フィルム(WVA−03B、富士写真フィルム社製)を基板に貼合したものを配し、G光線だけでのコントラストの検討を行った。結果を表5に示す。遮光しG光線だけでの検討とすることによりG-ch用高透過偏光板の位相差値のコントラストへの関与がより正確に確認できた。
Example 5
According to the methods of Example 1 and Comparative Example 1, a highly transmissive polarizing plate having several levels of retardation value was produced. The production conditions at this time were 40 μm PVA having a degree of polymerization of 2,400, three levels at a draw ratio of 6.0 to 5.5 times, and a draw ratio of 7.0 to 6.5 using 75 μm PVA. Using a PVA of 80 μm having a polymerization degree of 4,000, the draw ratio was set to 2 levels at a 6.0 to 5.7 times. Specifically, the retardation values of the high transmission polarizing plate were 350 nm, 400 nm, 450 nm, 530 nm, 580 nm, 650 nm, 700 nm, and 750 nm. This time, it is produced under these conditions, but the phase difference value also varies depending on the balance between the temperature conditions and the draw ratio. In order to prevent scratches on the polarizing plate surface, a hard coat layer was provided on one side, and an AR layer was also provided. Moreover, in order to confirm the said sample in a mounting test, the sample which shakes the optical axis 0 degree and 1 degree was produced, and also it affixed on the glass plate with AR layer, and produced the sample. This was done to confirm the range that can be used within the G-ch optical wavelength. In order to confirm, the R and B rays are respectively embedded at the position 12G in FIG. 1 of the liquid crystal projector, and the contrast improving film (WVA-03B, Fuji) is placed between 11 and 12 in FIG. A sheet of photographic film) was applied to the substrate, and the contrast with only G rays was examined. The results are shown in Table 5. It was confirmed that the phase difference value of the high-transmission polarizing plate for G-ch was involved in the contrast more accurately by examining only with G rays.

Figure 2006189677
Figure 2006189677

位相差値が400〜700nmの範囲内においては若干のコントラストの低下が見られるが、それほど大きくなく許容範囲内であると考えられる。しかし、350nm及び750nmになるとかなりのコントラストの低下が確認できた。そのため、緑(G-ch)用高透過偏光板の位相差値の範囲は、400〜700nm、好ましくは450〜650nmであることが確認できた。   A slight decrease in contrast is observed when the retardation value is in the range of 400 to 700 nm, but it is not so large and is considered to be within the allowable range. However, a significant reduction in contrast could be confirmed at 350 nm and 750 nm. Therefore, it was confirmed that the range of the retardation value of the green (G-ch) high-transmission polarizing plate is 400 to 700 nm, preferably 450 to 650 nm.

この様な結果よりG-ch用の高透過偏光板としての位相差値400〜700nmが有用であり、好ましくは450〜650nmとすることにより精度良くコントラストの低下を抑制することが出来る。   From such a result, a retardation value of 400 to 700 nm as a high transmission polarizing plate for G-ch is useful, and it is preferable to set the retardation value to 450 to 650 nm.

実施例6
式R=nλ±100(n=2)においても軸ズレによるコントラスト低下を防止するかの検証をB-chにて行った。サンプルとしては、比較例1と同様のPVAを用い延伸倍率5倍にて作製した。その際の高透過偏光板の位相差値は880nmであり、Tpol-pは90.5%、Tpol-cは32%であった。Tp及びTcの測定については実施例1及び比較例1と同様の操作により測定を行い、実施例2及び比較例2の値との比較を行った。
Example 6
Also in the formula R = nλ ± 100 (n = 2), it was verified by B-ch whether or not the contrast reduction due to the axis deviation was prevented. As a sample, the same PVA as in Comparative Example 1 was used and produced at a draw ratio of 5 times. The retardation value of the highly transmissive polarizing plate at that time was 880 nm, Tpol-p was 90.5%, and Tpol-c was 32%. About the measurement of Tp and Tc, it measured by operation similar to Example 1 and Comparative Example 1, and compared with the value of Example 2 and Comparative Example 2.

Figure 2006189677
Figure 2006189677

B-ch用高透過偏光板である実施例2において光学軸角度がズレてもコントラストの低下は抑えることができることは、実施例2・比較例2の検討において分ったが、式R=nλ±100(n=2)である実施例6においても実施例2と同様に良い結果が得られた。これによりn=2においても各チャンネル毎の理想位相差値であれば、光学軸角度がズレてもコントラストの低下は抑えることができる。 In Example 2 which is a high transmission polarizing plate for B-ch, it was found in the examination of Example 2 and Comparative Example 2 that the reduction in contrast can be suppressed even if the optical axis angle is deviated, but the equation R = nλ In Example 6 where ± 100 (n = 2), good results were obtained as in Example 2. As a result, even if n = 2, the ideal phase difference value for each channel can suppress a decrease in contrast even if the optical axis angle is deviated.

一般的な液晶プロジェクターの構成を概略的に示す図である。It is a figure which shows the structure of a general liquid crystal projector roughly.

符号の説明Explanation of symbols

1…光源、2…UV・IRカットフィルター、3…集光レンズ、4…偏光変換素子、5,6…ダイクロイックミラー、7,8,9…全反射ミラー、10R,10G,10B…入射側偏光板、11R,11G,11B…液晶パネル、12R,12G,12B…高透過偏光板、13B,13B,13B…出射側偏光板、R…赤色光、G…緑色光、B…青色光、14…クロスダイクロイックプリズム、15…投射レンズ、16…スクリーン DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... UV and IR cut filter, 3 ... Condensing lens, 4 ... Polarization conversion element, 5, 6 ... Dichroic mirror, 7, 8, 9 ... Total reflection mirror, 10R, 10G, 10B ... Incident side polarization Plate, 11R, 11G, 11B ... Liquid crystal panel, 12R, 12G, 12B ... High transmission polarizing plate, 13B, 13B, 13B ... Emission side polarizing plate, R ... Red light, G ... Green light, B ... Blue light, 14 ... Cross dichroic prism, 15 ... projection lens, 16 ... screen

Claims (10)

液晶プロジェクターの入射側及び出射側偏光板の間に設けてなる高透過偏光板において、その位相差値R(nm)と使用する光の波長λ(nm)との関係がR=nλ±100(ここでnは整数で1または2)であることを特徴とする高透過偏光板を使用した液晶プロジェクター。 In the high transmission polarizing plate provided between the incident side and the outgoing side polarizing plate of the liquid crystal projector, the relationship between the retardation value R (nm) and the wavelength λ (nm) of the light used is R = nλ ± 100 (where A liquid crystal projector using a high transmission polarizing plate, wherein n is an integer 1 or 2). 赤色チャンネル(R-ch)用であり、その位相差値が、480〜800nmまたは1,060〜1,500nmである高透過偏光板。 A high transmission polarizing plate for a red channel (R-ch) having a retardation value of 480 to 800 nm or 1,060 to 1,500 nm. 緑色チャンネル(G-ch)用であり、その位相差値が、400〜700nmまたは900〜1,300nmである高透過偏光板。 A high transmission polarizing plate for a green channel (G-ch) having a retardation value of 400 to 700 nm or 900 to 1,300 nm. 青色チャンネル(B-ch)用であり、その位相差値が、300〜600nmまたは700〜1,100nmである高透過偏光板。 A high transmission polarizing plate for a blue channel (B-ch) having a retardation value of 300 to 600 nm or 700 to 1,100 nm. 請求項2〜4のいずれか一項に記載の高透過偏光板を使用した液晶プロジェクター。 A liquid crystal projector using the high transmission polarizing plate according to any one of claims 2 to 4. 赤色チャンネル(R-ch)用、緑色チャンネル(G-ch)用及び青色チャンネル(B-ch)用の高透過偏光板を有し、該赤色チャンネル(R-ch)用高透過偏光板が請求項2に記載の高透過偏光板、該緑色チャンネル(R-ch)用高透過偏光板が請求項3に記載の高透過偏光板及び該青色チャンネル(R-ch)用高透過偏光板が請求項4に記載の高透過偏光板である請求項5に記載の液晶プロジェクター。 A high transmission polarizing plate for red channel (R-ch), green channel (G-ch) and blue channel (B-ch) is provided, and the high transmission polarizing plate for red channel (R-ch) is claimed. The high transmission polarizing plate according to Item 2, the high transmission polarizing plate for green channel (R-ch) is the high transmission polarizing plate according to claim 3, and the high transmission polarizing plate for blue channel (R-ch). The liquid crystal projector according to claim 5, wherein the liquid crystal projector is a high transmission polarizing plate according to item 4. 請求項1、請求項5又は請求項6のいずれか一項に記載の液晶プロジェクターを使用することを特徴とする液晶リアプロジェクションテレビ。 A liquid crystal rear projection television using the liquid crystal projector according to any one of claims 1, 5, and 6. 赤色チャンネル(R-ch)用であり、その位相差値が、550〜750nmまたは1,160〜1,360nmである高透過偏光板。 A high transmission polarizing plate for a red channel (R-ch) having a retardation value of 550 to 750 nm or 1,160 to 1,360 nm. 緑色チャンネル(G-ch)用であり、その位相差値が、450〜650nmまたは1,000〜1,200nmである高透過偏光板。 A high transmission polarizing plate for a green channel (G-ch) having a retardation value of 450 to 650 nm or 1,000 to 1,200 nm. 青色チャンネル(B-ch)用であり、その位相差値が、350〜550nmまたは800〜1,000nmである高透過偏光板。 A high transmission polarizing plate for a blue channel (B-ch) having a retardation value of 350 to 550 nm or 800 to 1,000 nm.
JP2005002253A 2005-01-07 2005-01-07 Highly transmissive polarizing plate and liquid crystal projector using same, liquid crystal rear projection television Pending JP2006189677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002253A JP2006189677A (en) 2005-01-07 2005-01-07 Highly transmissive polarizing plate and liquid crystal projector using same, liquid crystal rear projection television

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002253A JP2006189677A (en) 2005-01-07 2005-01-07 Highly transmissive polarizing plate and liquid crystal projector using same, liquid crystal rear projection television

Publications (1)

Publication Number Publication Date
JP2006189677A true JP2006189677A (en) 2006-07-20

Family

ID=36796945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002253A Pending JP2006189677A (en) 2005-01-07 2005-01-07 Highly transmissive polarizing plate and liquid crystal projector using same, liquid crystal rear projection television

Country Status (1)

Country Link
JP (1) JP2006189677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150381A (en) * 2011-01-21 2012-08-09 Seiko Epson Corp Projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150381A (en) * 2011-01-21 2012-08-09 Seiko Epson Corp Projector
US9164366B2 (en) 2011-01-21 2015-10-20 Seiko Epson Corporation Projector

Similar Documents

Publication Publication Date Title
JP4473261B2 (en) Color correction polarizer and liquid crystal cell
TWI245937B (en) Polarization rotators, articles containing the polarization rotators, and methods of making and using the same
CN100573274C (en) Delay compensating plate, delay compensator, liquid crystal indicator and projection type video display device
CN103026274B (en) Blooming
US20070258029A1 (en) Phase Difference Compensator, Light Modurating System, Liquid Crystal Display and Liquid Crystal Projector
CN105467584A (en) Member for projection image display and projection image display system
JP6419973B2 (en) Laminates and windows
JP3881175B2 (en) Color polarizing plate with support for liquid crystal projector and color liquid crystal projector
CN106873052B (en) Polarizing element, and polarizing plate and liquid crystal display device using the same
JP6363185B2 (en) Achromatic polarizing plate with high transmission and high degree of polarization
JP7428785B2 (en) liquid crystal display device
CN105900002A (en) Display device equipped with base material having polarizing function
JP2006171327A (en) Phase difference compensation element, and liquid crystal display device and liquid crystal projector using same
CN113167951A (en) Polarization based optical filter with angle sensitive transmission
CN101799570A (en) Polaroid
JP2009031474A (en) Liquid crystal display equipped with adhesive layer, and composite polarizing plate set used for the same
JP6853010B2 (en) Achromatic polarizing element, and achromatic polarizing plate and liquid crystal display device using this
TWI776000B (en) Achromatic polarizing element, and achromatic polarizing plate and display using the same
WO2007021981A2 (en) Contrast enhancement for liquid crystal based projection systems
JP2006119444A (en) Retardation compensation element and liquid crystal device using the same
WO2001090808A1 (en) Contrast ratio improving method for liquid crystal projector
JP2006189677A (en) Highly transmissive polarizing plate and liquid crystal projector using same, liquid crystal rear projection television
WO2022054757A1 (en) Liquid crystal display device
US11256140B2 (en) Liquid crystal display apparatus and display method
JP2001066598A (en) Reflective liquid crystal display device