JP2006189395A - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
JP2006189395A
JP2006189395A JP2005002986A JP2005002986A JP2006189395A JP 2006189395 A JP2006189395 A JP 2006189395A JP 2005002986 A JP2005002986 A JP 2005002986A JP 2005002986 A JP2005002986 A JP 2005002986A JP 2006189395 A JP2006189395 A JP 2006189395A
Authority
JP
Japan
Prior art keywords
light receiving
light
output
intensity
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005002986A
Other languages
Japanese (ja)
Inventor
Hiromi Suzuki
浩巳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2005002986A priority Critical patent/JP2006189395A/en
Publication of JP2006189395A publication Critical patent/JP2006189395A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sensor capable of enhancing a degree of freedom in arrangement of a light receiving element. <P>SOLUTION: An arithmetic unit calculates a light propagation angle θ and a light intensity L from outputs of the light receiving elements 14, 16, based on each angle output function indicating an incident angle-output characteristic of light in each of the light receiving elements 14, 16, and each intensity output function indicating an incident intensity-output characteristic of the light. A virtual light receiving element 17 with an angle output function and an intensity output function equal to those of the light receiving element 14 (or the light receiving element 16) is formed virtually in an intermediate position between the light receiving element 14 and the light receiving element 16, and an output I<SB>P</SB>=f(L)×g(θ) of the virtual light receiving element 17 is calculated from the light propagation angle θ and the light intensity L. Since the virtual light receiving element 17 is formed virtually in the arithmetic unit, the virtual light receiving element 17 is arranged even in the place where an arranging position for the virtual light receiving element 17 is a mounting position for another member, or even under an unfavorable environment, so as to enhance the degree of freedom in the arrangement of the light receiving element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光伝播角度及び光強度の少なくとも一方を測定する光センサに関する。   The present invention relates to an optical sensor that measures at least one of a light propagation angle and a light intensity.

光伝播角度を測定する光センサとしては、複数のフォトダイオードが互いに向きを変えられて設けられた日射センサ部がある(例えば、特許文献1参照)。   As an optical sensor for measuring the light propagation angle, there is a solar radiation sensor unit in which a plurality of photodiodes are provided with their directions changed (see, for example, Patent Document 1).

この日射センサ部では、フォトダイオードへの日射の入射方向の垂直面へのフォトダイオードの投影面積(フォトダイオードの日射入射面の垂直方向に対する日射の入射方向の角度をαとすると日射入射面の面積にcosαを乗じたもの)に応じてフォトダイオードの出力が変化すると共に、フォトダイオードへ入射する日射の強度に応じてフォトダイオードの出力が変化することを用いて、日射方向を検出する構成である。   In this solar radiation sensor unit, the projected area of the photodiode onto the vertical plane of the incident direction of the solar radiation on the photodiode (the area of the solar incident surface when the angle of the incident direction of the solar radiation relative to the vertical direction of the incident surface of the photodiode is α) The output of the photodiode changes in accordance with cos α) and the output of the photodiode changes in accordance with the intensity of solar radiation incident on the photodiode. .

しかしながら、この日射センサ部では、受光範囲を拡大するためには、受光素子を追加しなければならないという問題がある。また、実在する受光素子で受光するように構成し、この受光した受光素子から出力を得るようにしているため、所望の出力を得るためには、必然的に定まる位置に受光素子を配置する必要があり、受光部材の配置位置が他の部材の搭載場所である場合や悪環境下の場所である場合には、その場所に受光部材を配置することができず、受光素子の配列が制限されるという問題がある。   However, this solar radiation sensor unit has a problem that a light receiving element must be added in order to expand the light receiving range. In addition, since light is received by an existing light receiving element and output is obtained from the received light receiving element, it is necessary to place the light receiving element at a fixed position in order to obtain a desired output. If the location of the light receiving member is a place where another member is mounted or a place under a bad environment, the light receiving member cannot be placed at that location, and the arrangement of the light receiving elements is limited. There is a problem that.

また、上記日射センサ部では、フォトダイオードの出力が前記フォトダイオードの投影面積に比例することが前提とされている。さらに、複数のフォトダイオード間で、入射する日射の強度と出力との関係(入射強度−出力特性)が等しい必要がある。しかも、フォトダイオードの出力がフォトダイオードの温度に影響されないことが前提とされている。   In the solar radiation sensor unit, it is assumed that the output of the photodiode is proportional to the projected area of the photodiode. Furthermore, the relationship between the intensity of incident solar radiation and the output (incident intensity-output characteristics) needs to be equal among a plurality of photodiodes. Moreover, it is assumed that the output of the photodiode is not affected by the temperature of the photodiode.

ところが、この日射センサ部に現在広く市販されかつ安価に供給されているフォトダイオードを使用しようとしても、ほとんどのフォトダイオードにおいて、フォトダイオードの出力が前記フォトダイオードの投影面積に比例しないという問題がある。これは、フォトダイオードへの日射の入射角度とフォトダイオードの出力との関係(入射角度−出力特性)から判る。   However, even if an attempt is made to use a currently widely available and inexpensively supplied photodiode for the solar radiation sensor unit, there is a problem that the output of the photodiode is not proportional to the projected area of the photodiode in most photodiodes. . This can be understood from the relationship between the incident angle of solar radiation to the photodiode and the output of the photodiode (incident angle-output characteristics).

さらに、特にフォトトランジスタやフォトダーリントン等の増幅段を含むフォトダイオードにおいては、増幅段のばらつきのため、複数のフォトダイオード間で上記入射強度−出力特性が等しくならないことが多く、フォトダイオードの選別等を行わなくてはならないという問題もある。   Furthermore, especially in photodiodes including amplifying stages such as phototransistors and photodarlingtons, due to variations in the amplifying stages, the above incident intensity-output characteristics are often not equal among a plurality of photodiodes. There is also a problem that must be done.

また、一般に、フォトダイオードの出力は、フォトダイオードの温度に影響されることが多い。   In general, the output of a photodiode is often affected by the temperature of the photodiode.

しかも、特許文献1には、これらの問題に起因する日射方向の検出における誤差を補正する方法や、悪環境下等により一部測光領域での検出精度の低下が不可避であるにも拘らず、受光素子や回路の故障、劣化等の不具合、あるいは受光素子群の受光状態の不均一性を検証する方法が開示されていない。
特開昭63−141816号公報
In addition, Patent Document 1 discloses a method for correcting an error in detection of the direction of solar radiation caused by these problems and a decrease in detection accuracy in some photometry areas due to adverse environments or the like, There is no disclosure of a method for verifying a failure such as failure or deterioration of a light receiving element or circuit, or non-uniformity of the light receiving state of the light receiving element group.
JP 63-141816 A

本発明は上記事実を考慮し、受光部材の配置の自由度を向上させることのできる光センサ、温度に応じて出力が変化する受光部材を使用しても精度よく出力を得ることができる光センサ、受光部材の数を減らすことのできる光センサ、受光部材の数を増やさなくても受光範囲を拡大することのできる光センサ、三次元空間での光伝播角度及び光強度の少なくとも一方を精度よく算出することのできる光センサ、受光部材や回路の故障、劣化等の不具合、あるいは受光部材群の受光状態の不均一性を検証することのできる光センサ、光の入射方向の垂直面への受光面の投影面積に出力が比例しない受光部材を使用しても精度よく出力することのできる光センサ、または、強度出力関数が互いに異なる複数の受光部材を使用しても精度よく出力することのできる光センサを得ることが目的である。   In consideration of the above facts, the present invention is an optical sensor capable of improving the degree of freedom of arrangement of the light receiving member, and an optical sensor capable of obtaining an output with high accuracy even when a light receiving member whose output changes according to temperature is used. An optical sensor that can reduce the number of light receiving members, an optical sensor that can expand the light receiving range without increasing the number of light receiving members, and at least one of the light propagation angle and light intensity in a three-dimensional space with high accuracy Optical sensors that can be calculated, optical sensors that can verify the failure or deterioration of the light receiving member or circuit, or the non-uniformity of the light receiving state of the light receiving member group, light reception on the vertical plane of the light incident direction Even if a light receiving member whose output is not proportional to the projected area of the surface is used, it can be output accurately, or even if a plurality of light receiving members having different intensity output functions are used To obtain a light sensor capable of is an object.

請求項1に記載の光センサは、光が入射する受光面を有し、前記受光面へ入射する光の入射角度及び強度に応じて出力が変化する複数の受光部材と、前記複数の受光部材間に仮想受光部材を仮想的に形成すると共に、前記受光部材における光の入射角度と出力との関係が表現された角度出力関数、前記受光部材における光の強度と出力との関係が表現された強度出力関数、及び前記仮想受光部材の形成位置に基づいて前記複数の受光部材の出力から前記仮想受光部材の出力を算出する算出手段と、を備えている。   The optical sensor according to claim 1 has a light receiving surface on which light is incident, and a plurality of light receiving members whose outputs change according to an incident angle and intensity of light incident on the light receiving surface, and the plurality of light receiving members. A virtual light receiving member is virtually formed between them, and an angle output function expressing the relationship between the light incident angle and output in the light receiving member, and the relationship between the light intensity and output in the light receiving member are expressed. Calculating means for calculating an output of the virtual light receiving member from outputs of the plurality of light receiving members based on an intensity output function and a formation position of the virtual light receiving member.

請求項1に記載の光センサでは、受光部材の受光面へ入射する光の入射角度及び強度に応じて、受光部材の出力が変化する。また、算出手段は、複数の受光部材間に仮想受光部材を仮想的に形成すると共に、受光部材における光の入射角度と出力との関係が表現された角度出力関数、受光部材における光の強度と出力との関係が表現された強度出力関数、及び仮想受光部材の形成位置に基づいて、受光部材の温度及び複数の受光部材の出力から、仮想受光部材の出力を算出する。   In the optical sensor according to the first aspect, the output of the light receiving member changes according to the incident angle and intensity of light incident on the light receiving surface of the light receiving member. In addition, the calculation unit virtually forms a virtual light receiving member between the plurality of light receiving members, an angle output function expressing a relationship between an incident angle of light on the light receiving member and an output, an intensity of light on the light receiving member, and Based on the intensity output function expressing the relationship with the output and the formation position of the virtual light receiving member, the output of the virtual light receiving member is calculated from the temperature of the light receiving member and the outputs of the plurality of light receiving members.

従って、受光部材の配置位置が他の部材の搭載場所である場合や悪環境下の場所である場合であっても、仮想受光部材であればそのような場所に配置することができるので、受光部材配置の自由度を向上させることができる。   Therefore, even if the position of the light receiving member is a place where another member is mounted or a place in a bad environment, the virtual light receiving member can be placed in such a place. The degree of freedom of member arrangement can be improved.

請求項2に記載の光センサは、温度、入射する光の入射角度及び強度に応じて出力が変化する複数の受光部材と、前記受光部材の温度を測定または推測する測温手段と、前記複数の受光部材に仮想受光部材を仮想的に形成すると共に、前記受光部材における温度と出力との関係が表現された温度出力関数、前記受光部材における光の入射角度と出力との関係が表現された角度出力関数、前記受光部材における光の強度と出力との関係が表現された強度出力関数、及び前記仮想受光部材の形成位置に基づいて前記測温手段により測定または推測された前記受光部材の温度及び前記複数の受光部材の出力から前記仮想受光部材の出力を算出する算出手段と、を備えている。   The optical sensor according to claim 2 includes a plurality of light receiving members whose outputs change according to temperature, an incident angle and intensity of incident light, temperature measuring means for measuring or estimating a temperature of the light receiving member, and the plurality of light receiving members. A virtual light receiving member is virtually formed on the light receiving member, a temperature output function expressing a relationship between temperature and output in the light receiving member, and a relationship between light incident angle and output in the light receiving member. An angle output function, an intensity output function expressing the relationship between light intensity and output in the light receiving member, and the temperature of the light receiving member measured or estimated by the temperature measuring unit based on the formation position of the virtual light receiving member And calculating means for calculating the output of the virtual light receiving member from the outputs of the plurality of light receiving members.

請求項2に記載の光センサでは、受光部材の温度、受光部材へ入射する光の入射角度及び強度に応じて、受光部材の出力が変化する。また、測温手段が受光部材の温度を測定または推測する。さらに、算出手段は、複数の受光部材間に仮想受光部材を仮想的に形成すると共に、受光部材における温度と出力との関係が表現された温度出力関数、受光部材における光の入射角度と出力との関係が表現された角度出力関数、受光部材における光の強度と出力との関係が表現された強度出力関数、及び仮想受光部材の形成位置に基づいて、測温手段により測定または推測された受光部材の温度及び複数の受光部材の出力から、仮想受光部材の出力を算出する。   In the optical sensor according to the second aspect, the output of the light receiving member changes according to the temperature of the light receiving member, the incident angle and intensity of the light incident on the light receiving member. The temperature measuring means measures or estimates the temperature of the light receiving member. Further, the calculating means virtually forms a virtual light receiving member between the plurality of light receiving members, a temperature output function expressing a relationship between the temperature and the output in the light receiving member, the light incident angle and the output in the light receiving member, The light output measured or estimated by the temperature measuring means based on the angle output function expressing the relationship of the light intensity, the intensity output function expressing the relationship between the light intensity and the output of the light receiving member, and the formation position of the virtual light receiving member The output of the virtual light receiving member is calculated from the temperature of the member and the outputs of the plurality of light receiving members.

このように、算出手段は、温度出力関数及び受光部材の温度をも使用して、仮想受光部材の出力を算出する。従って、温度に応じて出力が変化する受光部材を使用しても、仮想受光部材の出力を精度よく算出できる。   In this way, the calculation means calculates the output of the virtual light receiving member also using the temperature output function and the temperature of the light receiving member. Therefore, even if a light receiving member whose output varies with temperature is used, the output of the virtual light receiving member can be accurately calculated.

請求項3に記載の光センサは、請求項1又は請求項2記載の光センサにおいて、前記算出手段は、前記複数の受光部材のうち前記仮想受光部材と同一の二次元平面に位置する少なくとも一対の受光部材の出力から前記仮想受光部材の出力を算出すると共に、前記二次元平面と交差する別の二次元平面に位置する少なくとも一つの受光部材の出力と前記仮想受光部材の出力から前記別の二次元平面における光伝播角度及び光強度の少なくとも一方を算出する、ことを特徴としている。   According to a third aspect of the present invention, in the optical sensor according to the first or second aspect, the calculating means includes at least a pair of the plurality of light receiving members positioned on the same two-dimensional plane as the virtual light receiving member. The output of the virtual light receiving member is calculated from the output of the light receiving member, and the output of the at least one light receiving member located in another two-dimensional plane intersecting the two-dimensional plane and the output of the virtual light receiving member are It is characterized in that at least one of a light propagation angle and a light intensity in a two-dimensional plane is calculated.

請求項3に記載の光センサでは、算出手段は、複数の受光部材のうち仮想受光部材と同一の二次元平面に位置する少なくとも一対の受光部材の出力を用いて仮想受光部材の出力を算出すると共に、二次元平面と交差する別の二次元平面に位置する少なくとも一つの受光部材の出力と仮想受光部材の出力を用いて別の二次元平面における光伝播角度及び光強度の少なくとも一方を算出する。   In the optical sensor according to claim 3, the calculation unit calculates an output of the virtual light receiving member using outputs of at least a pair of light receiving members located on the same two-dimensional plane as the virtual light receiving member among the plurality of light receiving members. In addition, at least one of the light propagation angle and the light intensity in another two-dimensional plane is calculated using the output of at least one light receiving member located in another two-dimensional plane intersecting the two-dimensional plane and the output of the virtual light receiving member. .

このように、複数の受光部材のうち仮想受光部材と同一の二次元平面に位置する少なくとも一対の受光部材の出力を用いて仮想受光部材の出力を算出しておけば、別の二次元平面における光伝播角度及び光強度の少なくとも一方を算出するには、この仮想受光部材の出力と別の二次元平面に位置する少なくとも一つの受光部材の出力を用いれば良いので、受光部材の数を増やさなくても別の二次元平面における受光範囲を拡大することができる。   In this way, if the output of the virtual light receiving member is calculated using the outputs of at least a pair of light receiving members located on the same two-dimensional plane as the virtual light receiving member among the plurality of light receiving members, In order to calculate at least one of the light propagation angle and the light intensity, it is sufficient to use the output of the virtual light receiving member and the output of at least one light receiving member located on a different two-dimensional plane, so that the number of light receiving members is not increased. However, the light receiving range in another two-dimensional plane can be expanded.

また、仮想受光部材を用いることにより、この仮想受光部材の位置に実在の受光部材を配置する必要が無いので、受光部材の数を減らすことができる。   Further, by using the virtual light receiving member, it is not necessary to arrange an actual light receiving member at the position of the virtual light receiving member, and therefore the number of light receiving members can be reduced.

請求項4に記載の光センサは、請求項1乃至請求項3の何れか1項記載の光センサにおいて、前記複数の受光部材は、各部材中心軸が互いに平行にならないように少なくとも三つ以上配置され、前記算出手段は、前記複数の受光部材のうち少なくとも一対の受光部材が位置する二次元平面と他の受光部材及び前記仮想受光部材が位置する別の二次元平面とが交差するように、前記仮想受光部材を配置する、ことを特徴としている。   The optical sensor according to claim 4 is the optical sensor according to any one of claims 1 to 3, wherein the plurality of light receiving members are at least three or more so that the central axes of the members are not parallel to each other. The two-dimensional plane where the at least one pair of light-receiving members is located and another two-dimensional plane where the other light-receiving members and the virtual light-receiving member are located intersect each other. The virtual light receiving member is arranged.

請求項4に記載の光センサでは、複数の受光部材は、各部材中心軸が互いに平行にならないように少なくとも三つ以上配置され、算出手段は、複数の受光部材のうち少なくとも一対の受光部材が位置する二次元平面と他の受光部材及び仮想受光部材が位置する別の二次元平面とが交差するように、仮想受光部材を配置するので、各二次元平面における光伝播角度及び光強度を算出することにより、三次元空間における光伝播角度及び光強度を算出することができる。   In the optical sensor according to claim 4, at least three or more light receiving members are arranged so that the central axes of the members are not parallel to each other, and the calculating means includes at least a pair of light receiving members among the plurality of light receiving members. Since the virtual light-receiving member is arranged so that the two-dimensional plane that is positioned intersects another two-dimensional plane in which the other light-receiving member and virtual light-receiving member are positioned, the light propagation angle and light intensity in each two-dimensional plane are calculated. By doing so, the light propagation angle and light intensity in the three-dimensional space can be calculated.

請求項5に記載の光センサは、請求項1乃至請求項4の何れか1項記載の光センサにおいて、前記算出手段は、前記複数の受光部材のうち少なくとも二対の受光部材によって同一位置に前記仮想受光部材をそれぞれ仮想的に形成すると共に、一方の仮想受光部材の出力と他方の仮想受光部材の出力とを比較する、ことを特徴としている。   The optical sensor according to claim 5 is the optical sensor according to any one of claims 1 to 4, wherein the calculation means is located at the same position by at least two pairs of light receiving members among the plurality of light receiving members. Each of the virtual light receiving members is virtually formed, and the output of one virtual light receiving member is compared with the output of the other virtual light receiving member.

請求項5に記載の光センサでは、算出手段は、複数の受光部材のうち少なくとも二対の受光部材によって同一位置に仮想受光部材をそれぞれ仮想的に形成すると共に、一方の仮想受光部材の出力と他方の仮想受光部材の出力とを比較する。これにより、受光部材や回路の故障、劣化等の不具合、あるいは受光部材群の受光状態の不均一性を検証することができる。   In the optical sensor according to claim 5, the calculation unit virtually forms virtual light receiving members at the same position by at least two pairs of light receiving members among the plurality of light receiving members, and outputs from one virtual light receiving member. The output of the other virtual light receiving member is compared. This makes it possible to verify defects such as failure and deterioration of the light receiving member and circuit, or non-uniformity of the light receiving state of the light receiving member group.

請求項6に記載の光センサは、請求項1乃至請求項5の何れか1項記載の光センサにおいて、前記複数の受光部材は、光の入射角度が互いに異なるように配置された、ことを特徴としている。   The optical sensor according to claim 6 is the optical sensor according to any one of claims 1 to 5, wherein the plurality of light receiving members are arranged so that incident angles of light are different from each other. It is a feature.

請求項6に記載の光センサでは、複数の受光部材は、光の入射角度が互いに異なるように配置されているので、より広範囲に受光することができる。また、実在する受光部材の位置を、この受光部材が位置する同一の二次元平面の法線方向にずらしても構わないので、受光部材の配置の自由度をさらに向上させることができる。   In the optical sensor according to the sixth aspect, since the plurality of light receiving members are arranged so that the incident angles of light are different from each other, they can receive light in a wider range. In addition, since the position of the light receiving member that actually exists may be shifted in the normal direction of the same two-dimensional plane where the light receiving member is located, the degree of freedom of arrangement of the light receiving members can be further improved.

請求項7に記載の光センサは、請求項1乃至請求項6の何れか1項記載の光センサにおいて、前記算出手段は、前記角度出力関数として、前記受光部材における光の入射角度と出力との関係が表現されかつ光の入射方向の垂直面への前記受光面の投影面積に出力が比例しない角度出力関数を用いる、ことを特徴としている。   An optical sensor according to a seventh aspect is the optical sensor according to any one of the first to sixth aspects, wherein the calculation means includes an incident angle and an output of light at the light receiving member as the angle output function. And an angle output function whose output is not proportional to the projected area of the light receiving surface onto the vertical plane in the light incident direction is used.

請求項7に記載の光センサでは、受光部材の受光面へ入射する光の入射角度及び強度に応じて、受光部材の出力が変化する。また、算出手段は、角度出力関数として、受光部材における光の入射角度と出力との関係が表現されかつ光の入射方向の垂直面への前記受光面の投影面積に出力が比例しない角度出力関数を用いる。   In the optical sensor according to the seventh aspect, the output of the light receiving member changes according to the incident angle and intensity of light incident on the light receiving surface of the light receiving member. Further, the calculating means represents an angle output function in which the relationship between the light incident angle and the output of the light receiving member is expressed as an angle output function, and the output is not proportional to the projected area of the light receiving surface onto the vertical plane in the light incident direction. Is used.

従って、前記受光面の投影面積に出力が比例しない受光部材を使用しても、仮想受光部材の出力を精度よく算出することができる。   Therefore, even if a light receiving member whose output is not proportional to the projected area of the light receiving surface is used, the output of the virtual light receiving member can be accurately calculated.

請求項8に記載の光センサは、請求項1乃至請求項6の何れか1項記載の光センサ前記算出手段は、前記角度出力関数として、前記受光部材における光の入射角度と出力との関係が表現されかつ光の入射方向の垂直面への前記受光面の投影面積に出力が比例する角度出力関数を用いる、ことを特徴とする。   An optical sensor according to an eighth aspect of the present invention is the optical sensor according to any one of the first to sixth aspects, wherein the calculation means has a relationship between an incident angle and an output of light in the light receiving member as the angle output function. And an angle output function whose output is proportional to the projected area of the light receiving surface onto the vertical plane in the light incident direction is used.

請求項8に記載の光センサでは、受光部材の受光面へ入射する光の入射角度及び強度に応じて、受光部材の出力が変化する。また、算出手段は、角度出力関数として、受光部材における光の入射角度と出力との関係が表現されかつ光の入射方向の垂直面への前記受光面の投影面積に出力が比例する角度出力関数を用いる。   In the optical sensor according to the eighth aspect, the output of the light receiving member changes according to the incident angle and intensity of light incident on the light receiving surface of the light receiving member. Further, the calculating means is an angle output function in which the relationship between the light incident angle and the output of the light receiving member is expressed as an angle output function, and the output is proportional to the projected area of the light receiving surface onto the vertical plane in the light incident direction. Is used.

なお、このようにしても、仮想受光部材の出力を算出することができる。   Even in this case, the output of the virtual light receiving member can be calculated.

請求項9に記載の光センサは、請求項1乃至請求項8の何れか1項記載の光センサにおいて、前記算出手段は、前記強度出力関数として、前記受光部材における光の強度と出力との関係が表現されかつ前記複数の受光部材間で互いに異なる強度出力関数を用いる、ことを特徴としている。   An optical sensor according to a ninth aspect is the optical sensor according to any one of the first to eighth aspects, wherein the calculating means calculates the intensity output of the light receiving member as the intensity output function. It is characterized in that different intensity output functions are used between the plurality of light receiving members that express the relationship.

請求項9に記載の光センサでは、受光部材へ入射する光の入射角度及び強度に応じて、受光部材の出力が変化する。また、算出手段は、強度出力関数として、受光部材における光の強度と出力との関係が表現されかつ複数の受光部材間で互いに異なる強度出力関数を用いる。   In the optical sensor according to the ninth aspect, the output of the light receiving member changes according to the incident angle and intensity of the light incident on the light receiving member. Further, the calculation means uses an intensity output function in which the relationship between the light intensity and the output of the light receiving member is expressed as an intensity output function and is different among the plurality of light receiving members.

従って、強度出力関数が互いに異なる複数の受光部材を使用しても、仮想受光部材の出力を精度よく算出することができる。   Therefore, even if a plurality of light receiving members having different intensity output functions are used, the output of the virtual light receiving member can be accurately calculated.

[第1の実施の形態]
図1には、本発明の光センサが適用されて構成された第1の実施の形態に係る測光センサ10の主要部が側面図にて示されており、図2には、測光センサ10のブロック図が示されている。なお、本実施の形態では、図1の左側を「一側」とし、図1の右側を「他側」とする。
[First Embodiment]
FIG. 1 is a side view showing a main part of a photometric sensor 10 according to a first embodiment configured by applying the photosensor of the present invention. FIG. A block diagram is shown. In this embodiment, the left side of FIG. 1 is “one side” and the right side of FIG. 1 is “other side”.

本実施の形態に係る測光センサ10は、屈曲板状の支持体12を備えており、支持体12の屈曲部位より一側は、一側へ向かうに従い下方へ向かう方向へ角度αだけ傾斜されると共に、支持体12の屈曲部位より他側は、他側へ向かうに従い下方へ向かう方向へ角度αだけ傾斜されている。   The photometric sensor 10 according to the present embodiment includes a bent plate-like support body 12, and one side of the bent portion of the support body 12 is inclined by an angle α in a downward direction toward the one side. At the same time, the other side of the bent portion of the support 12 is inclined by an angle α in the downward direction toward the other side.

支持体12上には、屈曲部位の一側及び他側において、それぞれ受光部材としての直方体状の受光素子14,16が固定(保持)されている。受光素子14,16の上面は、平面状の受光面14A,16Aとされており、受光面14Aの素子中心軸P(受光面14Aに垂直な軸)は、上方向が垂直軸H上方向に対して一側へ角度αだけ傾斜されると共に、受光面16Aの素子中心軸Q(受光面16Aに垂直な軸)は、上方向が垂直軸H上方向に対して他側へ角度αだけ傾斜されている。   On the support 12, rectangular parallelepiped light receiving elements 14 and 16 as light receiving members are fixed (held) on one side and the other side of the bent portion, respectively. The upper surfaces of the light receiving elements 14 and 16 are planar light receiving surfaces 14A and 16A, and the element central axis P (axis perpendicular to the light receiving surface 14A) of the light receiving surface 14A is upward in the vertical axis H upward. The element central axis Q (axis perpendicular to the light receiving surface 16A) of the light receiving surface 16A is inclined to the other side with respect to the vertical axis H upward by an angle α. Has been.

受光素子14,16は、受光面14A,16Aへ光が入射することで、受光面14A,16Aへ入射する光の入射角度及び強度に応じた出力信号(例えば電流値)を出力する。なお、本実施の形態では、光は素子中心軸P及び素子中心軸Qに平行な面に平行に伝播するものとする。   The light receiving elements 14 and 16 output an output signal (for example, a current value) corresponding to the incident angle and intensity of the light incident on the light receiving surfaces 14A and 16A when the light enters the light receiving surfaces 14A and 16A. In this embodiment, it is assumed that light propagates in parallel to a plane parallel to the element center axis P and the element center axis Q.

受光素子14,16は、算出手段を構成する前段処理回路18に接続されており、受光素子14,16から出力された出力信号は、前段処理回路18へ入力されることで、前段処理回路18によって、後記演算装置20で扱い易い信号値(電圧値が望ましい)に変換される。   The light receiving elements 14 and 16 are connected to a pre-stage processing circuit 18 that constitutes a calculation means, and output signals output from the light receiving elements 14 and 16 are input to the pre-stage processing circuit 18, whereby the pre-stage processing circuit 18. Is converted into a signal value (a voltage value is desirable) that can be easily handled by the arithmetic unit 20 described later.

前段処理回路18は、算出手段を構成する演算装置20に接続されており、前段処理回路18から出力された信号は、演算装置20へ入力される。演算装置20は、A/Dコンバータ22を有しており、演算装置20へ入力された信号は、A/Dコンバータ22へ入力されることで、A/Dコンバータ22によって離散値に変換される。演算装置20は、演算プロセッサ24を有しており、A/Dコンバータ22から出力された信号は、演算プロセッサ24へ入力される。   The pre-stage processing circuit 18 is connected to an arithmetic device 20 that constitutes a calculation unit, and a signal output from the pre-stage processing circuit 18 is input to the arithmetic device 20. The arithmetic device 20 includes an A / D converter 22, and the signal input to the arithmetic device 20 is converted into a discrete value by the A / D converter 22 by being input to the A / D converter 22. . The arithmetic device 20 has an arithmetic processor 24, and the signal output from the A / D converter 22 is input to the arithmetic processor 24.

ここで、図3には、受光素子14,16の受光面14A,16Aへ入射する光の入射角度が一定である場合における光の強度Lと受光素子14,16の出力Iとの関係(入射強度−出力特性)の一例が示されており、図4には、受光素子14,16の受光面14A,16Aへ入射する光の強度が一定である場合における光の入射角度φ(素子中心軸P、Q下方向と光伝播方向との角度)と受光素子14,16の出力Iとの関係(入射角度−出力特性)の一例が示されている。   Here, FIG. 3 shows the relationship between the light intensity L and the output I of the light receiving elements 14 and 16 (incidence) when the incident angle of light incident on the light receiving surfaces 14A and 16A of the light receiving elements 14 and 16 is constant. FIG. 4 shows an example of the light incident angle φ (element central axis) when the intensity of light incident on the light receiving surfaces 14A and 16A of the light receiving elements 14 and 16 is constant. An example of the relationship (incident angle-output characteristics) between the angles I of P, Q downward direction and the light propagation direction) and the output I of the light receiving elements 14, 16 is shown.

例えば図4に示す如く、有効に使用できる出力信号を受光素子14,16が出力できる光の入射角度φが角度β以内の範囲であるとすると、0≦α≦βとされている。これにより、垂直軸Hに平行に光が伝播する場合でも、受光素子14,16が有効に使用できる出力信号を出力することができる。   For example, as shown in FIG. 4, if the incident angle φ of light that can be output from the light receiving elements 14 and 16 is an output signal that can be used effectively, 0 ≦ α ≦ β. Thereby, even when light propagates parallel to the vertical axis H, an output signal that can be used effectively by the light receiving elements 14 and 16 can be output.

受光素子14,16の入射角度−出力特性は、受光面14A,16Aへ上方から素子中心軸P、Qに平行に光が入射する場合(φ=0の場合)に受光素子14,16の出力が最大になり、かつ、この最大の出力が1となるように規格化されている。これにより、受光素子14の入射強度−出力特性を強度出力関数I=f(L)で近似表現(代表)し、受光素子16の入射強度−出力特性を強度出力関数I=k×f(L)で近似表現し、受光素子14,16の入射角度−出力特性を角度出力関数I=g(φ)で近似表現し、受光素子14の出力をI1とし、受光素子16の出力をI2とし、受光素子14の受光面14Aへ入射する光の入射角度をφ1とし、受光素子16の受光面16Aへ入射する光の入射角度をφ2とすると、
1=f(L)×g(φ1)・・・(1)
2=k×f(L)×g(φ2)・・・(2)
となる。また、kは、強度L及び入射角度φを変数として含まない関数または定数とされた補正係数であり、受光素子14と受光素子16との間での入射強度−出力特性の相違を考慮したものである。
The incident angle-output characteristics of the light receiving elements 14 and 16 are the outputs of the light receiving elements 14 and 16 when light enters the light receiving surfaces 14A and 16A from above in parallel to the element central axes P and Q (when φ = 0). Is standardized so that the maximum output is 1 and the maximum output is 1. Thus, the incident intensity-output characteristic of the light receiving element 14 is approximated (represented) by the intensity output function I = f (L), and the incident intensity-output characteristic of the light receiving element 16 is expressed by the intensity output function I = k × f (L ), The incident angle-output characteristics of the light receiving elements 14 and 16 are approximated by an angle output function I = g (φ), the output of the light receiving element 14 is I 1, and the output of the light receiving element 16 is I 2. and then, the incident angle of light incident on the light receiving surface 14A of the light receiving elements 14 and phi 1, when the incident angle of light incident on the light receiving surface 16A of the light receiving elements 16 and phi 2,
I 1 = f (L) × g (φ 1 ) (1)
I 2 = k × f (L) × g (φ 2 ) (2)
It becomes. Further, k is a correction coefficient that is a function or constant that does not include the intensity L and the incident angle φ as variables, and takes into account the difference in incident intensity-output characteristics between the light receiving element 14 and the light receiving element 16. It is.

演算装置20は、予め判明している異なる強度Lを有する複数の校正基準光(基準光)が、受光素子14,16へ上方からそれぞれの素子中心軸P、Qに平行に入射されることで、f(L)(例えばf(L)の種類)及びkを自動的に決定する。さらに、演算装置20は、予め判明している強度L及び予め判明している異なる入射角度φ1、φ2を有する1つまたは複数の校正基準光(基準光)が、受光素子14,16へ入射されることで、g(φ)(例えばg(φ)の種類)を自動的に決定する。 The arithmetic unit 20 is configured such that a plurality of calibration reference lights (reference lights) having different intensities L that are known in advance are incident on the light receiving elements 14 and 16 in parallel to the element center axes P and Q from above. , F (L) (for example, the type of f (L)) and k are automatically determined. Further, the arithmetic unit 20 receives one or more calibration reference lights (reference lights) having a known intensity L and different known incident angles φ 1 and φ 2 to the light receiving elements 14 and 16. By being incident, g (φ) (for example, the type of g (φ)) is automatically determined.

また、垂直軸H下方向に対して角度θ(一側を正とする)の方向へ光が伝播する際には、受光素子14の受光面14Aへ入射する光の入射角度φ1がθ+αとなり、受光素子16の受光面16Aへ入射する光の入射角度φ2がθ−αとなる。このため、例えば図5に示す如く、
1=f(L)×g(θ+α)・・・(3)
2=k×f(L)×g(θ−α)・・・(4)
となる。ここで、
f(L)=a×L・・・(5)
g(φ)=exp(−b×φ2)・・・(6)
とすると、
1=a×L×exp{−b×(θ+α)2}・・・(7)
2=k×a×L×exp{−b×(θ−α)2}・・・(8)
であるため、
k×(I1/I2)=exp[−b×{(θ+α)2−(θ−α)2}]
=exp{−4×b×α×θ}・・・(9)
となる。これにより、光伝播角度θは、
θ=−{1/(4×b×α)}×ln{k×(I1/I2)}・・・(10)
によって容易に求めることができる。さらに、光強度Lは、式(7)または式(8)と、式(10)により求められた光伝播角度θと、によって、容易に求めることができる。
In addition, when light propagates in the direction of an angle θ (one side is positive) with respect to the downward direction of the vertical axis H, the incident angle φ 1 of the light incident on the light receiving surface 14A of the light receiving element 14 becomes θ + α. The incident angle φ 2 of the light incident on the light receiving surface 16A of the light receiving element 16 is θ−α. For this reason, for example, as shown in FIG.
I 1 = f (L) × g (θ + α) (3)
I 2 = k × f (L) × g (θ−α) (4)
It becomes. here,
f (L) = a × L (5)
g (φ) = exp (−b × φ 2 ) (6)
Then,
I 1 = a × L × exp {−b × (θ + α) 2 } (7)
I 2 = k × a × L × exp {−b × (θ−α) 2 } (8)
Because
k × (I 1 / I 2 ) = exp [−b × {(θ + α) 2 − (θ−α) 2 }]
= Exp {-4 × b × α × θ} (9)
It becomes. Thereby, the light propagation angle θ is
θ = − {1 / (4 × b × α)} × ln {k × (I 1 / I 2 )} (10)
Can be easily obtained. Furthermore, the light intensity L can be easily obtained from the equation (7) or (8) and the light propagation angle θ obtained from the equation (10).

このように、光伝播角度θ及び光強度Lを表現する各関数(例えば式(10))が単純であり、かつ、この各関数の導出が容易な場合には、光伝播角度θ及び光強度Lを算出する各関数に基づいて作成された電気回路で演算装置20を構成して演算装置20からA/Dコンバータ22を省略することができ、また、演算プロセッサ24と光伝播角度θ及び光強度Lを算出する各関数に基づいて作成されて実装された演算手順とから、光伝播角度θ及び光強度Lを算出することができる。   Thus, when each function (for example, Formula (10)) expressing the light propagation angle θ and the light intensity L is simple and it is easy to derive each function, the light propagation angle θ and the light intensity are obtained. The arithmetic device 20 can be configured by an electric circuit created based on each function for calculating L, and the A / D converter 22 can be omitted from the arithmetic device 20, and the arithmetic processor 24, the light propagation angle θ, and the light can be omitted. The light propagation angle θ and the light intensity L can be calculated from the calculation procedure created and implemented based on each function for calculating the intensity L.

また、演算装置20は、受光素子14,16と同一の二次元平面上で、受光素子14,16の素子中心軸がなす角度2αの範囲内に素子中心軸を有し、任意の角度出力関数および強度出力関数を有する仮想受光素子17を仮想的に形成する。   The arithmetic unit 20 has an element center axis within the range of an angle 2α formed by the element center axes of the light receiving elements 14 and 16 on the same two-dimensional plane as the light receiving elements 14 and 16, and an arbitrary angle output function. And a virtual light receiving element 17 having an intensity output function is virtually formed.

例えば図1に示す如く、演算装置20は、受光素子14と受光素子16の中間位置に、素子中心軸が垂直軸Hと平行で、角度出力関数及び強度出力関数が受光素子14(受光素子16でも可)と等しい仮想受光素子17を仮想的に形成する。   For example, as shown in FIG. 1, the arithmetic unit 20 has an element center axis parallel to the vertical axis H at an intermediate position between the light receiving element 14 and the light receiving element 16, and an angle output function and an intensity output function as the light receiving element 14 (light receiving element 16). However, a virtual light receiving element 17 equal to (possible) is virtually formed.

従って、仮想受光素子17の受光面17Aには、素子中心軸(垂直軸H)から角度θをなして光が入射することになる。仮想受光素子17の出力をIpとすると、式(1)より、
p=f(L)×g(θ)となる。光強度L及び光伝播角度θは上述の如く算出できるから、Ipを容易に求めることができる。
Accordingly, light enters the light receiving surface 17A of the virtual light receiving element 17 at an angle θ from the element central axis (vertical axis H). Assuming that the output of the virtual light receiving element 17 is I p ,
I p = f (L) × g (θ). Since the light intensity L and the light propagation angle θ can be calculated as described above, I p can be easily obtained.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

以上の構成の測光センサ10では、受光素子14,16の受光面14A,16Aへ入射する光の入射角度φ及び強度Lに応じて、受光素子14,16の出力Iが変化する。また、演算装置20は、受光素子14,16における光の入射角度φと出力Iとの関係(入射角度−出力特性)が近似表現された角度出力関数I=g(φ)、及び、受光素子14,16における光の強度Lと出力Iとの関係(入射強度−出力特性)が近似表現された強度出力関数I=f(L)、I=k×f(L)に基づいて、受光素子14,16の出力から、光伝播角度θ及び光強度Lを算出する。   In the photometric sensor 10 having the above configuration, the output I of the light receiving elements 14 and 16 changes according to the incident angle φ and the intensity L of the light incident on the light receiving surfaces 14A and 16A of the light receiving elements 14 and 16. The arithmetic unit 20 also includes an angle output function I = g (φ) in which the relationship between the light incident angle φ and the output I (incident angle-output characteristics) in the light receiving elements 14 and 16 is approximately expressed, and the light receiving element. 14 and 16 based on intensity output functions I = f (L) and I = k × f (L) in which the relationship between light intensity L and output I (incident intensity-output characteristics) is approximated. The light propagation angle θ and the light intensity L are calculated from the outputs of 14 and 16.

ここで、演算装置20は、受光素子14と受光素子16の中間位置に、素子中心軸が垂直軸Hと平行で、角度出力関数及び強度出力関数が受光素子14(受光素子16でも可)と等しい仮想受光素子17を仮想的に形成すると共に、上述の如く算出した光伝播角度θ及び光強度Lから仮想受光素子17の出力Ip=f(L)×g(θ)を算出する。 Here, the arithmetic unit 20 has an intermediate position between the light receiving element 14 and the light receiving element 16, the element central axis is parallel to the vertical axis H, and the angle output function and the intensity output function are the light receiving element 14 (the light receiving element 16 is also acceptable). The same virtual light receiving element 17 is virtually formed, and the output I p = f (L) × g (θ) of the virtual light receiving element 17 is calculated from the light propagation angle θ and the light intensity L calculated as described above.

このように、本実施の形態では、演算装置20において仮想受光素子17を仮想的に形成するため、仮想受光素子17の配置位置が他の部材の搭載場所である場合や悪環境下の場所であっても、そのような場所に仮想受光素子を配置することができるので、受光素子配置の自由度を向上させることができる。   As described above, in the present embodiment, the virtual light receiving element 17 is virtually formed in the arithmetic unit 20, and therefore, the placement position of the virtual light receiving element 17 is a place where another member is mounted or in a place under a bad environment. Even if it exists, since a virtual light receiving element can be arrange | positioned in such a place, the freedom degree of light receiving element arrangement | positioning can be improved.

また、演算装置20は、光の入射方向の垂直面への受光面14A,16Aの投影面積(受光面14A,16Aの面積にcosφを乗じたもの)に出力Iが比例しない角度出力関数I=g(φ)=exp(−b×φ2)に基づいて、光伝播角度θ及び光強度Lを算出する。これにより、前記受光面14A,16Aの投影面積に出力Iが比例しない受光素子14,16を使用しても、光伝播角度θ及び光強度Lを精度よく測定できる。このため、現在広く市販されかつ安価に供給されて容易に入手できる受光素子14,16を使用しても、光伝播角度θ及び光強度Lを精度よく測定できる。 The arithmetic unit 20 also outputs an angle output function I = in which the output I is not proportional to the projected area of the light receiving surfaces 14A and 16A on the vertical plane in the light incident direction (the area of the light receiving surfaces 14A and 16A multiplied by cos φ). Based on g (φ) = exp (−b × φ 2 ), the light propagation angle θ and the light intensity L are calculated. Thereby, even if the light receiving elements 14 and 16 whose output I is not proportional to the projected areas of the light receiving surfaces 14A and 16A are used, the light propagation angle θ and the light intensity L can be accurately measured. For this reason, the light propagation angle θ and the light intensity L can be accurately measured even when using the light receiving elements 14 and 16 that are currently widely available and are inexpensively supplied and easily available.

さらに、演算装置20は、受光素子14,16間で互いに異なる強度出力関数I=f(L)、I=k×f(L)に基づいて、光伝播角度θ及び光強度Lを算出する。これにより、強度出力関数が互いに異なる受光素子14,16を使用しても、光伝播角度θ及び光強度Lを精度よく測定できる。このため、受光素子14,16の選別等を行う必要をなくすことができる。   Further, the arithmetic unit 20 calculates the light propagation angle θ and the light intensity L based on the intensity output functions I = f (L) and I = k × f (L) that are different between the light receiving elements 14 and 16. Thereby, even if the light receiving elements 14 and 16 having different intensity output functions are used, the light propagation angle θ and the light intensity L can be accurately measured. For this reason, it is possible to eliminate the necessity of selecting the light receiving elements 14 and 16.

また、受光面14A,16Aへの光の入射角度φが互いに異なる(α=0とされない)ように、受光素子14,16が配置されているため、本実施の形態の如く、受光素子14の角度出力関数が光の入射角度φ及び強度Lを変数として含まない関数または定数と受光素子16の角度出力関数との積で表現され(本実施の形態では受光素子14と受光素子16とにおける角度出力関数が同一(I=g(φ))とされている)、かつ、受光素子14の強度出力関数が光の入射角度φ及び強度Lを変数として含まない関数または定数と受光素子16の強度出力関数との積で表現される(本実施の形態では受光素子16の強度出力関数(I=k×f(L))が受光素子14の強度出力関数(I=f(L))のk倍にされている)場合でも、演算装置20が光伝播角度θ及び光強度Lを算出することができる。すなわち、本実施の形態では、I1=f(L)×g(θ+α)とI2=k×f(L)×g(θ−α)との2つの式から、2つの変数である光伝播角度θ及び光強度Lを算出することができる。 Further, since the light receiving elements 14 and 16 are arranged so that the incident angles φ of the light to the light receiving surfaces 14A and 16A are different from each other (α = 0), the light receiving elements 14 of the light receiving elements 14 are not provided as in the present embodiment. The angle output function is expressed by the product of a function or constant that does not include the incident angle φ and intensity L of light as variables and the angle output function of the light receiving element 16 (in this embodiment, the angle between the light receiving element 14 and the light receiving element 16). The output function is the same (I = g (φ)), and the intensity output function of the light receiving element 14 does not include the incident angle φ and intensity L of light as variables and the intensity of the light receiving element 16 The intensity output function (I = k × f (L)) of the light receiving element 16 is expressed by the product of the output function (in this embodiment, k of the intensity output function (I = f (L)) of the light receiving element 14. Even if the calculation device 20 is It can be calculated propagation angle θ and the light intensity L. That is, in the present embodiment, light that is two variables is obtained from two expressions of I 1 = f (L) × g (θ + α) and I 2 = k × f (L) × g (θ−α). The propagation angle θ and the light intensity L can be calculated.

さらに、演算装置20は、予め判明している異なる強度Lを有する複数の校正基準光が、受光素子14,16へ上方からそれぞれの素子中心軸P、Qに平行に入射されることで、強度出力関数f(L)、k×f(L)を自動的に決定する。しかも、演算装置20は、予め判明している強度L及び予め判明している異なる入射角度φ1、φ2を有する1つまたは複数の校正基準光が、受光素子14,16へ入射されることで、角度出力関数g(φ)を自動的に決定する。特に、f(L)=a×L及びg(φ)=exp(−b×φ2)にすることが決定されている場合には、演算装置20は、校正基準光が受光素子14,16へ入射されることで、a、b及びkを自動的に決定する。これにより、角度出力関数g(φ)及び強度出力関数f(L)、k×f(L)を容易に算出することができる。 Further, the arithmetic unit 20 receives a plurality of calibration reference lights having different intensities L, which are known in advance, incident on the light receiving elements 14 and 16 from above in parallel to the element center axes P and Q, respectively. The output function f (L), k × f (L) is automatically determined. Moreover, the arithmetic unit 20 allows one or a plurality of calibration reference lights having different known intensities L and different known incident angles φ 1 and φ 2 to be incident on the light receiving elements 14 and 16. Thus, the angle output function g (φ) is automatically determined. In particular, when it is determined that f (L) = a × L and g (φ) = exp (−b × φ 2 ), the arithmetic unit 20 uses the calibration reference light as the light receiving elements 14, 16. A, b, and k are automatically determined. Thereby, the angle output function g (φ), the intensity output function f (L), and k × f (L) can be easily calculated.

[第2の実施の形態]
図6には、本発明の光センサが適用されて構成された第2の実施の形態に係る測光センサ30のブロック図が示されている。
[Second Embodiment]
FIG. 6 shows a block diagram of a photometric sensor 30 according to a second embodiment configured by applying the photosensor of the present invention.

本実施の形態に係る測光センサ30は、上記第1の実施の形態に係る測光センサ10とほぼ同様の構成であるが、以下の点で異なる。   The photometric sensor 30 according to the present embodiment has substantially the same configuration as the photometric sensor 10 according to the first embodiment, but differs in the following points.

本実施の形態に係る測光センサ30は、測温手段としての測温素子32を備えており、測温素子32は、支持体12の屈曲部位に固定されて、受光素子14と受光素子16との中央に配置されている。測温素子32は、受光素子14,16の近傍に配置されて、受光素子14,16と温度が同一である前提とされており、測温素子32が、測温素子32自体の温度を測定することで、測定された温度が受光素子14,16の温度として推測される。   The photometric sensor 30 according to the present embodiment includes a temperature measuring element 32 as temperature measuring means. The temperature measuring element 32 is fixed to a bent portion of the support 12, and the light receiving element 14, the light receiving element 16, and the like. It is arranged in the center of. The temperature measuring element 32 is disposed in the vicinity of the light receiving elements 14 and 16 and is assumed to have the same temperature as the light receiving elements 14 and 16. The temperature measuring element 32 measures the temperature of the temperature measuring element 32 itself. Thus, the measured temperature is estimated as the temperature of the light receiving elements 14 and 16.

受光素子14,16は、受光面14A,16Aへ光が入射することで、受光面14A,16Aへ入射する光の入射角度及び強度のみならず受光素子14,16の温度に応じた出力信号(例えば電流値)を出力する。   The light receiving elements 14 and 16 receive light incident on the light receiving surfaces 14A and 16A, so that an output signal (not only depending on the incident angle and intensity of the light incident on the light receiving surfaces 14A and 16A but also the temperature of the light receiving elements 14 and 16 ( For example, current value) is output.

測温素子32は、前段処理回路18に接続されており、測温素子32から出力された出力信号は、受光素子14,16から出力された出力信号と同様に、前段処理回路18、更には、演算装置20のA/Dコンバータ22へ入力されて、受光素子14,16から出力された出力信号と同様に処理される。さらに、測温素子32から前段処理回路18を経て演算装置20のA/Dコンバータ22から出力された信号は、演算装置20の演算プロセッサ24へ入力される。   The temperature measuring element 32 is connected to the pre-processing circuit 18, and the output signal output from the temperature measuring element 32 is similar to the output signal output from the light receiving elements 14, 16, and further to the pre-processing circuit 18. The signal is input to the A / D converter 22 of the arithmetic unit 20 and processed in the same manner as the output signals output from the light receiving elements 14 and 16. Further, the signal output from the A / D converter 22 of the arithmetic device 20 from the temperature measuring element 32 via the pre-processing circuit 18 is input to the arithmetic processor 24 of the arithmetic device 20.

ここで、受光素子14,16の受光面14A,16Aへ入射する光の入射角度及び強度が一定である場合における受光素子14,16の温度tと受光素子14,16の出力Iとの関係(温度−出力特性)を温度出力関数(温度補正関数)I=j(t)で近似表現(代表)すると、上記第1の実施の形態における式(1)及び式(2)は、
1=j(t)×f(L)×g(φ1)・・・(11)
2=j(t)×k×f(L)×g(φ2)・・・(12)
に変更される。
Here, the relationship between the temperature t of the light receiving elements 14 and 16 and the output I of the light receiving elements 14 and 16 when the incident angle and intensity of light incident on the light receiving surfaces 14A and 16A of the light receiving elements 14 and 16 are constant ( When the temperature-output characteristic) is approximated (representative) by the temperature output function (temperature correction function) I = j (t), the expressions (1) and (2) in the first embodiment are as follows.
I 1 = j (t) × f (L) × g (φ 1 ) (11)
I 2 = j (t) × k × f (L) × g (φ 2 ) (12)
Changed to

ところで、温度出力関数I=j(t)は予め判明しており、j(t)の数値は受光素子14,16の温度t(測温素子32により測定された温度)から求めることができる。このため、例えば、I1及びI2を、j(t)により補正して、
1´=I1/j(t)=f(L)×g(φ1)・・・(1)´
2´=I2/j(t)=k×f(L)×g(φ2)・・・(2)´
とすると、上記第1の実施の形態と同様に、演算装置20の演算プロセッサ24が、光伝播角度θ及び光強度Lを求めることができる。
By the way, the temperature output function I = j (t) is known in advance, and the numerical value of j (t) can be obtained from the temperature t of the light receiving elements 14 and 16 (temperature measured by the temperature measuring element 32). Thus, for example, I 1 and I 2 are corrected by j (t),
I 1 '= I 1 / j (t) = f (L) × g (φ 1 ) (1) ′
I 2 ′ = I 2 / j (t) = k × f (L) × g (φ 2 ) (2) ′
Then, as in the first embodiment, the arithmetic processor 24 of the arithmetic unit 20 can determine the light propagation angle θ and the light intensity L.

そして、演算装置20は、受光素子14と受光素子16の中間位置に、角度出力関数及び強度出力関数が受光素子14(受光素子16でも可)と等しい仮想受光素子17を仮想的に形成する。   Then, the arithmetic unit 20 virtually forms a virtual light receiving element 17 having an angle output function and an intensity output function equal to the light receiving element 14 (or the light receiving element 16 is acceptable) at an intermediate position between the light receiving element 14 and the light receiving element 16.

仮想受光素子17の出力Ipは、式(11)より、
p=j(t)×f(L)×g(θ)となる。j(t)の数値、光強度L及び光伝播角度θは上述の如く算出できるから、Ipを容易に求めることができる。
The output I p of the virtual light receiving element 17 is obtained from the equation (11).
I p = j (t) × f (L) × g (θ). Since the numerical value of j (t), the light intensity L, and the light propagation angle θ can be calculated as described above, I p can be easily obtained.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

以上の構成の測光センサ30では、受光素子14,16における温度t、受光面14A,16Aへ入射する光の入射角度φ及び強度Lに応じて、受光素子14,16の出力Iが変化する。また、測温素子32が受光素子14,16の温度tを推測する。さらに、演算装置20は、受光素子14,16における温度tと出力Iとの関係(温度−出力特性)が近似表現された温度出力関数I=j(t)、受光素子14,16における光の入射角度φと出力Iとの関係(入射角度−出力特性)が近似表現された角度出力関数I=g(φ)、及び、受光素子14,16における光の強度Lと出力Iとの関係(入射強度−出力特性)が近似表現された強度出力関数I=f(L)、I=k×f(L)に基づいて、測温素子32により推測された受光素子14,16の温度t及び受光素子14,16の出力から、光伝播角度θ及び光強度Lを算出する。   In the photometric sensor 30 having the above configuration, the output I of the light receiving elements 14 and 16 changes according to the temperature t at the light receiving elements 14 and 16, the incident angle φ and the intensity L of the light incident on the light receiving surfaces 14A and 16A. Further, the temperature measuring element 32 estimates the temperature t of the light receiving elements 14 and 16. Further, the arithmetic unit 20 calculates the temperature output function I = j (t) in which the relationship (temperature-output characteristics) between the temperature t and the output I in the light receiving elements 14 and 16 is approximately expressed, and the light output in the light receiving elements 14 and 16. An angle output function I = g (φ) in which the relationship between the incident angle φ and the output I (incident angle-output characteristics) is approximately expressed, and the relationship between the light intensity L and the output I in the light receiving elements 14 and 16 ( The temperature t of the light receiving elements 14 and 16 estimated by the temperature measuring element 32 based on the intensity output function I = f (L), I = k × f (L) in which the incident intensity-output characteristic) is approximated. The light propagation angle θ and the light intensity L are calculated from the outputs of the light receiving elements 14 and 16.

ここで、演算装置20は、受光素子14と受光素子16の中間位置に、素子中心軸が垂直軸Hと平行で、角度出力関数及び強度出力関数が受光素子14(受光素子16でも可)と等しい仮想受光素子17を仮想的に形成すると共に、測温素子32により推測された受光素子14,16の温度t及び上述の如く算出した光伝播角度θ及び光強度Lから、仮想受光素子17の出力Ip=j(t)×f(L)×g(θ)を算出する。 Here, the arithmetic unit 20 has an intermediate position between the light receiving element 14 and the light receiving element 16, the element central axis is parallel to the vertical axis H, and the angle output function and the intensity output function are the light receiving element 14 (the light receiving element 16 is also acceptable). The virtual light receiving element 17 is virtually formed from the temperature t of the light receiving elements 14 and 16 estimated by the temperature measuring element 32 and the light propagation angle θ and the light intensity L calculated as described above. The output I p = j (t) × f (L) × g (θ) is calculated.

ここで、本実施の形態でも、上記第1の実施の形態と同様の効果を得ることができる。   Here, also in this embodiment, the same effect as that of the first embodiment can be obtained.

さらに、演算装置20は、温度出力関数I=j(t)及び受光素子14,16の温度tをも使用して、仮想受光素子17の出力を算出する。従って、温度に応じて出力が変化する受光素子を使用しても、仮想受光素子17の出力を精度よく算出できる。   Further, the arithmetic unit 20 calculates the output of the virtual light receiving element 17 using the temperature output function I = j (t) and the temperature t of the light receiving elements 14 and 16 as well. Therefore, the output of the virtual light receiving element 17 can be accurately calculated even if a light receiving element whose output varies with temperature is used.

なお、本実施の形態では、前段処理回路18が、演算装置20(A/Dコンバータ22または演算プロセッサ24)へ、I1及びI2に対応する信号値を出力する構成としたが、前段処理回路18が、I1´=I1/j(t)及びI2´=I2/j(t)を求めることで、演算装置20(A/Dコンバータ22または演算プロセッサ24)へ、I1´及びI2´に対応する信号値を出力する構成としてもよい。 In the present embodiment, the pre-processing circuit 18 is configured to output signal values corresponding to I 1 and I 2 to the arithmetic device 20 (A / D converter 22 or arithmetic processor 24). The circuit 18 obtains I 1 ′ = I 1 / j (t) and I 2 ′ = I 2 / j (t), so that the arithmetic unit 20 (the A / D converter 22 or the arithmetic processor 24) receives I 1 signal value corresponding to 'and I 2' may be configured to output.

さらに、本実施の形態では、測温素子32が受光素子14,16の温度tを推測する構成としたが、例えば測温素子(測温手段)が受光素子(受光部材)に設けられることで、測温素子が受光素子の温度を測定する構成としてもよい。   Further, in the present embodiment, the temperature measuring element 32 estimates the temperature t of the light receiving elements 14 and 16, but for example, a temperature measuring element (temperature measuring means) is provided in the light receiving element (light receiving member). The temperature measuring element may be configured to measure the temperature of the light receiving element.

また、本実施の形態では、2つの受光素子14,16の温度出力関数I=j(t)が同一である構成としたが、複数の受光素子(受光部材)の温度出力関数が互いに異なる構成としてもよい。   In the present embodiment, the temperature output functions I = j (t) of the two light receiving elements 14 and 16 are the same. However, the temperature output functions of the plurality of light receiving elements (light receiving members) are different from each other. It is good.

さらに、本実施の形態では、2つの受光素子14,16の温度tが同一であることが前提とされた構成としたが、複数の受光素子(受光部材)の温度が互いに異なる場合があることが前提とされた構成としてもよい。   Further, in the present embodiment, it is assumed that the temperature t of the two light receiving elements 14 and 16 is the same. However, the temperatures of the plurality of light receiving elements (light receiving members) may be different from each other. It is good also as a structure on the assumption.

さらにまた、上記第1の実施の形態及び第2の実施の形態では、式(5)及び式(6)の如く、f(L)=a×L及びg(φ)=exp(−b×φ2)とした構成としたが、f(L)及びg(φ)は、必要な精度の範囲で入射強度−出力特性及び入射角度−出力特性を近似表現できるものであればどのようなものでもよい。例えば、より高い精度で入射強度−出力特性及び入射角度−出力特性を近似表現する必要がある場合には、p及びqを、強度L及び入射角度φを変数として含まない関数または実数定数として、
f(L)=a×Lp・・・(13)
g(φ)=exp(−b×φq)・・・(14)
とした構成としてもよい。
Furthermore, in the first and second embodiments, f (L) = a × L and g (φ) = exp (−b × φ 2 ), but f (L) and g (φ) can be anything as long as they can approximate the incident intensity-output characteristic and incident angle-output characteristic within the required accuracy. But you can. For example, when it is necessary to approximate the incident intensity-output characteristic and the incident angle-output characteristic with higher accuracy, p and q are functions or real constants that do not include the intensity L and the incident angle φ as variables.
f (L) = a × L p (13)
g (φ) = exp (−b × φ q ) (14)
The configuration may be as follows.

この場合には、式(3)及び式(4)により、
第1の実施の形態では、
1=a×Lp×exp{−b×(θ+α)q}・・・(15)
2=k×a×Lp×exp{−b×(θ−α)q}・・・(16)
であり、
第2の実施の形態では、
1´=I1/j(t)=a×Lp×exp{−b×(θ+α)q
・・・(15)´
2´=I2/j(t)=k×a×Lp×exp{−b×(θ−α)q
・・・(16)´
であるため、
k×(I1/I2)=exp[−b×{(θ+α)q−(θ−α)q}]
・・・(17)
となる。
In this case, according to equations (3) and (4)
In the first embodiment,
I 1 = a × L p × exp {−b × (θ + α) q } (15)
I 2 = k × a × L p × exp {−b × (θ−α) q } (16)
And
In the second embodiment,
I 1 '= I 1 / j (t) = a × L p × exp {−b × (θ + α) q }
... (15) '
I 2 ′ = I 2 / j (t) = k × a × L p × exp {−b × (θ−α) q }
... (16) '
Because
k × (I 1 / I 2 ) = exp [−b × {(θ + α) q − (θ−α) q }]
... (17)
It becomes.

このように、f(L)やg(φ)により複雑な近似関数を採用した場合には、演算装置20の電子回路を構成することや、光伝播角度θや光強度Lを表現する関数を導出することが、非常に困難あるいは不可能となる場合が多い。このため、このような場合には、式(17)から、k×(I1/I2)の数値(受光素子14,16の出力I1、I2の他に必要に応じて光伝播角度θ及び光強度Lを変数として含まない関数または定数のみを用いて得られる数値)と光伝播角度θの数値との対応関係を示す出力角度関係としての第1数値テーブルが作成(導出)されると共に、式(15)及び式(16)または式(15)´及び式(16)´から、所定の数値(受光素子14,16の出力I1、I2の他に必要に応じて光伝播角度θ及び光強度Lを変数として含まない関数または定数のみを用いて得られる数値)と光強度Lの数値との対応関係を示す出力強度関係としての第2数値テーブルが作成されると、演算装置20の記憶領域に保存される。これにより、演算装置20の演算プロセッサ24と実装された検索手順及び演算手順とによって、第1数値テーブル及び第2数値テーブルを用いて、k×(I1/I2)の数値及び所定の数値から、光伝播角度θの数値及び光強度Lの数値を導出する(光伝播角度θ及び光強度Lを算出する)ことができる。 As described above, when a complicated approximation function is adopted by f (L) and g (φ), the electronic circuit of the arithmetic unit 20 is configured, and the function expressing the light propagation angle θ and the light intensity L is expressed. Deriving is often very difficult or impossible. Therefore, in such a case, from the equation (17), the numerical value of k × (I 1 / I 2 ) (the light propagation angle as necessary in addition to the outputs I 1 and I 2 of the light receiving elements 14 and 16) A first numerical value table is created (derived) as an output angle relationship indicating a correspondence relationship between a numerical value of the light propagation angle θ and a numerical value of only the function or constant not including θ and light intensity L as variables. At the same time, from the formula (15) and the formula (16) or the formula (15) ′ and the formula (16) ′, light propagation as required in addition to the predetermined numerical values (outputs I 1 and I 2 of the light receiving elements 14 and 16) When a second numerical value table is generated as an output intensity relationship indicating a correspondence relationship between a numerical value of the light intensity L) and a numerical value obtained by using only a function or constant that does not include the angle θ and the light intensity L as variables. It is stored in the storage area of the device 20. Accordingly, the numerical value of k × (I 1 / I 2 ) and the predetermined numerical value are obtained by using the first numerical value table and the second numerical value table by the arithmetic processor 24 of the arithmetic device 20 and the implemented search procedure and arithmetic procedure. From this, the numerical value of the light propagation angle θ and the numerical value of the light intensity L can be derived (the light propagation angle θ and the light intensity L are calculated).

さらに、上述の如く、第1数値テーブルは、強度出力関数である式(15)または式(15)´及び角度出力関数である式(16)または式(16)´から導出される式(17)に基づいて作成することができるため、第1数値テーブルを容易に作成することができると共に、第2数値テーブルを式(15)及び式(16)または式(15)´及び式(16)´に基づいて作成できれば、第2数値テーブルを容易に作成することができる。   Further, as described above, the first numerical value table is obtained by the expression (17) derived from the expression (15) or (15) ′ that is the intensity output function and the expression (16) or (16) ′ that is the angle output function. ), The first numerical value table can be easily created, and the second numerical value table can be expressed by the equations (15) and (16) or the equations (15) ′ and (16). If it can be created based on ', the second numerical value table can be easily created.

また、上記第1の実施の形態及び第2の実施の形態では、受光素子14の角度出力関数と受光素子16の角度出力関数とを同一(I=g(φ))とした構成としたが、受光素子14の角度出力関数を光の入射角度φ及び強度Lを変数として含まない関数または定数と受光素子16の角度出力関数との積で表現しない構成としてもよい。この場合、例えば受光素子14の角度出力関数をI=g(φ)とし、受光素子16の角度出力関数をI=h(φ)とすると、
g(φ)=exp(−b×φ)・・・(18)
h(φ)={1+cosφ}/2・・・(19)
とする。これにより、受光面14A,16Aへの光の入射角度φが互いに異なるように受光素子14,16が配置されず(α=0とされ)かつ受光素子14の強度出力関数が光の入射角度φ及び強度Lを変数として含まない関数または定数と受光素子16の強度出力関数との積で表現される場合でも、演算装置20が光伝播角度θ及び光強度Lを算出することができる。すなわち、例えばα=0としても、第1の実施の形態ではI1=f(L)×g(θ)及びI2=k×f(L)×h(θ)の2つの式から、第2の実施の形態ではI1´=I1/j(t)=f(L)×g(θ)及びI2´=I2/j(t)=k×f(L)×h(θ)の2つの式から、2つの変数である光伝播角度θ及び光強度Lを算出することができる。
In the first embodiment and the second embodiment, the angle output function of the light receiving element 14 and the angle output function of the light receiving element 16 are the same (I = g (φ)). The angle output function of the light receiving element 14 may not be expressed by the product of a function or constant that does not include the light incident angle φ and intensity L as variables and the angle output function of the light receiving element 16. In this case, for example, if the angle output function of the light receiving element 14 is I = g (φ) and the angle output function of the light receiving element 16 is I = h (φ),
g (φ) = exp (−b × φ) (18)
h (φ) = {1 + cosφ} / 2 (19)
And As a result, the light receiving elements 14 and 16 are not arranged so that the light incident angles φ are different from each other on the light receiving surfaces 14A and 16A (α = 0), and the intensity output function of the light receiving element 14 is the light incident angle φ. Even when expressed by the product of a function or constant not including the intensity L as a variable and the intensity output function of the light receiving element 16, the arithmetic unit 20 can calculate the light propagation angle θ and the light intensity L. That is, for example, even if α = 0, in the first embodiment, the two expressions I 1 = f (L) × g (θ) and I 2 = k × f (L) × h (θ) In the second embodiment, I 1 ′ = I 1 / j (t) = f (L) × g (θ) and I 2 ′ = I 2 / j (t) = k × f (L) × h (θ ), The two parameters, the light propagation angle θ and the light intensity L, can be calculated.

さらに、上記第1の実施の形態及び第2の実施の形態では、受光素子16の強度出力関数(I=k×f(L))を受光素子14の強度出力関数(I=f(L))のk倍にした構成としたが、受光素子14の強度出力関数が光の入射角度φ及び強度Lを変数として含まない関数または定数と受光素子16の強度出力関数との積で表現されない構成としてもよい。これにより、光の入射角度φが互いに異なるように受光素子14,16が配置されず(α=0とされ)かつ受光素子14の角度出力関数が光の入射角度φ及び強度Lを変数として含まない関数または定数と受光素子16の角度出力関数との積で表現される場合でも、演算装置20が光伝播角度θ及び光強度Lを算出することができる。   Further, in the first embodiment and the second embodiment, the intensity output function (I = k × f (L)) of the light receiving element 16 is changed to the intensity output function (I = f (L)) of the light receiving element 14. ), But the intensity output function of the light receiving element 14 is not represented by the product of a function or constant that does not include the light incident angle φ and intensity L as variables and the intensity output function of the light receiving element 16. It is good. Accordingly, the light receiving elements 14 and 16 are not arranged so that the light incident angles φ are different from each other (α = 0), and the angle output function of the light receiving element 14 includes the light incident angle φ and the intensity L as variables. Even when expressed by the product of a function or constant that is not present and the angle output function of the light receiving element 16, the arithmetic unit 20 can calculate the light propagation angle θ and the light intensity L.

さらにまた、上記第1の実施の形態及び第2の実施の形態では、演算装置20は、角度関数として、光の入射方向の垂直面への受光面14A,16Aの投影面積(受光面14A,16Aの面積にcosφを乗じたもの)に出力Iが比例しない角度出力関数I=g(φ)=exp(−b×φ2)を用いるように説明したが、角度出力関数として、光の入射方向の垂直面への受光面14A,16Aの投影面積(受光面14A,16Aの面積にcosφを乗じたもの)に出力Iが比例する角度出力関数I=g(φ)=exp(−b×φ2)を用いても良い。このようにしても、仮想受光素子17の出力を算出することができる。 Furthermore, in the first embodiment and the second embodiment, the arithmetic unit 20 uses the projected areas of the light receiving surfaces 14A and 16A (the light receiving surfaces 14A, The angle output function I = g (φ) = exp (−b × φ 2 ) in which the output I is not proportional to the area obtained by multiplying the area of 16A by cos φ is described as the angle output function. Angle output function I = g (φ) = exp (−b ×) in which the output I is proportional to the projected area of the light receiving surfaces 14A and 16A on the vertical plane of the direction (the area of the light receiving surfaces 14A and 16A multiplied by cos φ) φ 2 ) may be used. Even in this way, the output of the virtual light receiving element 17 can be calculated.

[第3の実施の形態]
図7には、本発明の光センサが適用されて構成された第3の実施の形態に係る測光センサ40の主要部および測光センサ40における受光素子の入射角度−出力特性が示された説明図が示されている。
[Third Embodiment]
FIG. 7 is an explanatory diagram showing the main part of the photometric sensor 40 according to the third embodiment configured by applying the photosensor of the present invention and the incident angle-output characteristics of the light receiving element in the photometric sensor 40. It is shown.

本実施の形態に係る測光センサ40は、上記第1の実施の形態に係る測光センサ10とほぼ同様の構成であるが、以下の点で異なる。   The photometric sensor 40 according to the present embodiment has substantially the same configuration as the photometric sensor 10 according to the first embodiment, but differs in the following points.

本実施の形態に係る測光センサ40は、断面台形状の支持体42を備えており、この支持体42の横方向(X方向)の長さは縦方向(Y方向)の長さの2倍となっている。支持体42の傾斜面には、受光素子13,14,15,16がそれぞれ固定されている。   The photometric sensor 40 according to the present embodiment includes a support 42 having a trapezoidal cross section, and the length of the support 42 in the horizontal direction (X direction) is twice the length in the vertical direction (Y direction). It has become. The light receiving elements 13, 14, 15, and 16 are fixed to the inclined surface of the support 42.

演算装置20は、支持体42の上面に仮想受光素子17を仮想的に形成すると共に、この仮想受光素子17と同一の二次元平面44に位置する一対の受光素子13,15の出力を用いて仮想受光素子17の出力を算出し、二次元平面44と交差する別の二次元平面46に位置する受光素子14もしくは受光素子16の出力と仮想受光素子17の出力を用いて別の二次元平面46における光伝播角度θ及び光強度Lを算出する。   The arithmetic unit 20 virtually forms the virtual light receiving element 17 on the upper surface of the support 42 and uses the outputs of the pair of light receiving elements 13 and 15 located on the same two-dimensional plane 44 as the virtual light receiving element 17. The output of the virtual light receiving element 17 is calculated, and another two-dimensional plane is obtained by using the output of the light receiving element 14 or 16 and the output of the virtual light receiving element 17 located on another two-dimensional plane 46 intersecting the two-dimensional plane 44. The light propagation angle θ and the light intensity L at 46 are calculated.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

以上の構成の測光センサ40では、受光素子13、15の受光面へ入射する光の入射角度φ及び強度Lに応じて、受光素子13、15の出力Iが変化する。また、演算装置20は、受光素子13、15における光の入射角度φと出力Iとの関係(入射角度−出力特性)が近似表現された角度出力関数I=g(φ)、及び、受光素子13、15における光の強度Lと出力Iとの関係(入射強度−出力特性)が近似表現された強度出力関数I=f(L)、I=k×f(L)に基づいて、受光素子13、15の出力から、受光素子13、15が位置する二次元平面44における光伝播角度θ及び光強度Lを算出する。   In the photometric sensor 40 having the above configuration, the output I of the light receiving elements 13 and 15 changes according to the incident angle φ and the intensity L of the light incident on the light receiving surfaces of the light receiving elements 13 and 15. The arithmetic unit 20 also includes an angle output function I = g (φ) in which the relationship between the light incident angle φ and the output I (incident angle-output characteristics) in the light receiving elements 13 and 15 is approximately expressed, and the light receiving element. Based on the intensity output functions I = f (L) and I = k × f (L) in which the relationship between the light intensity L and the output I (incident intensity-output characteristics) in 13 and 15 is approximated. From the outputs 13 and 15, the light propagation angle θ and the light intensity L in the two-dimensional plane 44 where the light receiving elements 13 and 15 are located are calculated.

ここで、演算装置20は、受光素子13と受光素子15の中間位置で二次元平面44上に位置する支持体42の上面に、角度出力関数及び強度出力関数が受光素子13(受光素子15でも可)と等しい仮想受光素子17を仮想的に形成すると共に、上述の如く算出した光伝播角度θ及び光強度Lから仮想受光素子17の出力Ip=f(L)×g(θ)を算出する。 Here, the arithmetic unit 20 has an angle output function and an intensity output function on the upper surface of the support 42 positioned on the two-dimensional plane 44 at an intermediate position between the light receiving element 13 and the light receiving element 15. Virtual light receiving element 17 equal to (possible) is virtually formed, and output I p = f (L) × g (θ) of virtual light receiving element 17 is calculated from light propagation angle θ and light intensity L calculated as described above. To do.

さらに、演算装置20は、受光素子14及び仮想受光素子17の角度出力関数I=g(φ)、及び強度出力関数I=f(L)に基づいて、受光素子14及び仮想受光素子17の出力から、受光素子14,16が位置する二次元平面44における光伝播角度θ及び光強度Lを算出する。なお、仮想受光素子17及び受光素子16の角度出力関数I=g(φ)、及び強度出力関数I=f(L)、I=k×f(L)に基づいて、仮想受光素子17及び受光素子16の出力から、受光素子14,16が位置する二次元平面46における光伝播角度θ及び光強度Lを算出してもよい。   Furthermore, the arithmetic unit 20 outputs the outputs of the light receiving element 14 and the virtual light receiving element 17 based on the angle output function I = g (φ) and the intensity output function I = f (L) of the light receiving element 14 and the virtual light receiving element 17. From the above, the light propagation angle θ and the light intensity L in the two-dimensional plane 44 where the light receiving elements 14 and 16 are located are calculated. The virtual light receiving element 17 and the light receiving element 17 and the light receiving element 16 based on the angle output function I = g (φ), the intensity output function I = f (L), and I = k × f (L). From the output of the element 16, the light propagation angle θ and the light intensity L in the two-dimensional plane 46 where the light receiving elements 14 and 16 are located may be calculated.

このように、仮想受光素子17と同一の二次元平面44に位置する一対の受光素子13、15の出力を用いて仮想受光素子17の出力を算出しておけば、別の二次元平面46における光伝播角度θ及び光強度Lを算出するには、この仮想受光素子17の出力と別の二次元平面46に位置する受光素子14,16のいずれかの出力を用いれば良い。   As described above, if the output of the virtual light receiving element 17 is calculated using the outputs of the pair of light receiving elements 13 and 15 located on the same two-dimensional plane 44 as the virtual light receiving element 17, In order to calculate the light propagation angle θ and the light intensity L, the output of the virtual light receiving element 17 and the output of one of the light receiving elements 14 and 16 located on another two-dimensional plane 46 may be used.

従って、受光素子14および受光素子16の素子中心軸線のなす角度を2αとすることができ、二次元平面44の受光範囲αに対して二次元平面46の受光範囲を2倍とすることができる。このように、受光素子の数を増やさなくても別の二次元平面46における受光範囲を拡大することができる。   Therefore, the angle formed by the element central axes of the light receiving element 14 and the light receiving element 16 can be 2α, and the light receiving range of the two-dimensional plane 46 can be doubled with respect to the light receiving range α of the two-dimensional plane 44. . In this way, the light receiving range in another two-dimensional plane 46 can be expanded without increasing the number of light receiving elements.

また、仮想受光素子17を用いることにより、この仮想受光素子17の位置に実在の受光素子を配置する必要が無いので、受光素子の数を減らすことができる。また、この構成から受光素子14または受光素子16を省略しても、二次元平面44と同等の受光範囲(測定範囲)を確保することができる。これにより、受光素子の数をさらに減らすことができる。   In addition, by using the virtual light receiving element 17, it is not necessary to arrange an actual light receiving element at the position of the virtual light receiving element 17, so that the number of light receiving elements can be reduced. Further, even if the light receiving element 14 or the light receiving element 16 is omitted from this configuration, a light receiving range (measurement range) equivalent to the two-dimensional plane 44 can be secured. Thereby, the number of light receiving elements can be further reduced.

[第4の実施の形態]
図8には、本発明の光センサが適用されて構成された第4の実施の形態に係る測光センサ50の主要部および測光センサ50における受光素子の入射角度−出力特性が示された説明図が示されている。
[Fourth Embodiment]
FIG. 8 is an explanatory diagram showing the main part of the photometric sensor 50 according to the fourth embodiment configured by applying the photosensor of the present invention and the incident angle-output characteristics of the light receiving element in the photometric sensor 50. It is shown.

本実施の形態に係る測光センサ50は、上記第1の実施の形態に係る測光センサ10とほぼ同様の構成であるが、以下の点で異なる。   The photometric sensor 50 according to the present embodiment has substantially the same configuration as the photometric sensor 10 according to the first embodiment, but differs in the following points.

本実施の形態に係る測光センサ50は、断面台形状の支持体52を備えており、この支持体52の傾斜面には、各素子中心軸が互いに平行にならないように、受光素子13,14,15,16がそれぞれ固定されている。   The photometric sensor 50 according to the present embodiment includes a support body 52 having a trapezoidal cross section. The light receiving elements 13 and 14 are arranged on the inclined surface of the support body 52 so that the center axes of the elements are not parallel to each other. , 15 and 16 are respectively fixed.

演算装置20は、一対の受光素子13,15が位置する二次元平面54と他の受光素子14もしくは受光素子16及び仮想受光素子17が位置する別の二次元平面56とが交差するように、仮想受光素子17を配置する。   The arithmetic unit 20 is configured so that the two-dimensional plane 54 where the pair of light receiving elements 13 and 15 are located and another two-dimensional plane 56 where the other light receiving elements 14 or the light receiving elements 16 and the virtual light receiving elements 17 are located intersect each other. A virtual light receiving element 17 is disposed.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

以上の構成の測光センサ50では、受光素子13、15の受光面へ入射する光の入射角度φ及び強度Lに応じて、受光素子13、15の出力Iが変化する。また、演算装置20は、受光素子13、15における光の入射角度φと出力Iとの関係(入射角度−出力特性)が近似表現された角度出力関数I=g(φ)、及び、受光素子13、15における光の強度Lと出力Iとの関係(入射強度−出力特性)が近似表現された強度出力関数I=f(L)、I=k×f(L)に基づいて、受光素子13、15の出力から、受光素子13、15が位置する二次元平面44における光伝播角度θ及び光強度Lを算出する。   In the photometric sensor 50 having the above configuration, the output I of the light receiving elements 13 and 15 changes according to the incident angle φ and the intensity L of the light incident on the light receiving surfaces of the light receiving elements 13 and 15. The arithmetic unit 20 also includes an angle output function I = g (φ) in which the relationship between the light incident angle φ and the output I (incident angle-output characteristics) in the light receiving elements 13 and 15 is approximately expressed, and the light receiving element. Based on the intensity output functions I = f (L) and I = k × f (L) in which the relationship between the light intensity L and the output I (incident intensity-output characteristics) in 13 and 15 is approximated. From the outputs 13 and 15, the light propagation angle θ and the light intensity L in the two-dimensional plane 44 where the light receiving elements 13 and 15 are located are calculated.

ここで、演算装置20は、一対の受光素子13,15が位置する二次元平面54と他の受光素子14もしくは受光素子16及び仮想受光素子17が位置する別の二次元平面56とが交差するように、仮想受光素子17を配置する。また、演算装置20は、仮想受光素子17の角度出力関数及び強度出力関数が受光素子13(受光素子15でも可)と等しいものとし、上述の如く算出した光伝播角度θ及び光強度Lから仮想受光素子17の出力Ip=f(L)×g(θ)を算出する。 Here, in the arithmetic unit 20, the two-dimensional plane 54 where the pair of light receiving elements 13 and 15 are located and another two-dimensional plane 56 where the other light receiving elements 14 or the light receiving elements 16 and the virtual light receiving elements 17 are located intersect. Thus, the virtual light receiving element 17 is arranged. The arithmetic unit 20 assumes that the angle output function and the intensity output function of the virtual light receiving element 17 are the same as those of the light receiving element 13 (or the light receiving element 15), and the virtual light receiving element 17 calculates the virtual light from the light propagation angle θ and the light intensity L calculated as described above. The output I p = f (L) × g (θ) of the light receiving element 17 is calculated.

さらに、演算装置20は、受光素子14及び仮想受光素子17の角度出力関数I=g(φ)、及び強度出力関数I=f(L)に基づいて、受光素子14及び仮想受光素子17の出力から、受光素子14,16が位置する二次元平面44における光伝播角度θ及び光強度Lを算出する。なお、仮想受光素子17及び受光素子16の角度出力関数I=g(φ)、及び強度出力関数I=f(L)、I=k×f(L)に基づいて、仮想受光素子17及び受光素子16の出力から、受光素子14,16が位置する二次元平面46における光伝播角度θ及び光強度Lを算出してもよい。   Furthermore, the arithmetic unit 20 outputs the outputs of the light receiving element 14 and the virtual light receiving element 17 based on the angle output function I = g (φ) and the intensity output function I = f (L) of the light receiving element 14 and the virtual light receiving element 17. From the above, the light propagation angle θ and the light intensity L in the two-dimensional plane 44 where the light receiving elements 14 and 16 are located are calculated. The virtual light receiving element 17 and the light receiving element 17 and the light receiving element 16 based on the angle output function I = g (φ), the intensity output function I = f (L), and I = k × f (L). From the output of the element 16, the light propagation angle θ and the light intensity L in the two-dimensional plane 46 where the light receiving elements 14 and 16 are located may be calculated.

このように、各二次元平面54,56における光伝播角度θ及び光強度Lを算出することにより、二次元平面54,56を含む三次元空間における光伝播角度θ及び光強度Lを算出することができる。   Thus, by calculating the light propagation angle θ and the light intensity L in the two-dimensional planes 54 and 56, the light propagation angle θ and the light intensity L in the three-dimensional space including the two-dimensional planes 54 and 56 are calculated. Can do.

そして、測光センサ10(演算装置20の演算プロセッサ24)から光伝播角度θ及び光強度Lを出力するようにすれば、この光伝播角度θ及び光強度Lは、数値として出力されるため、測光センサ10が制御対象(例えば車両のサンバイザ)の向きの制御のために使用されて、制御対象の細かな向きの制御を必要とされる場合(例えば運転席用のサンバイザと助手席用のサンバイザとで向きを異ならせる場合等)でも、測光センサ10が制御対象の向きを良好に制御することができる。   If the light propagation angle θ and the light intensity L are output from the photometric sensor 10 (the arithmetic processor 24 of the arithmetic unit 20), the light propagation angle θ and the light intensity L are output as numerical values. When the sensor 10 is used for controlling the direction of a controlled object (for example, a vehicle sun visor) and needs fine control of the controlled object (for example, a sun visor for a driver seat and a sun visor for a passenger seat) The photometric sensor 10 can control the direction of the controlled object satisfactorily even in the case where the orientations are different.

[第5の実施の形態]
図9には、本発明の光センサが適用されて構成された第9の実施の形態に係る測光センサ60の説明図が示されており、図10には、受光状態の不均一性を検証する流れを示すフローチャートが示されている。
[Fifth Embodiment]
FIG. 9 shows an explanatory diagram of a photometric sensor 60 according to a ninth embodiment configured by applying the optical sensor of the present invention, and FIG. 10 verifies the non-uniformity of the light receiving state. A flow chart showing the flow is shown.

本実施の形態に係る測光センサ60は、上記第1の実施の形態に係る測光センサ10とほぼ同様の構成であるが、以下の点で異なる。   The photometric sensor 60 according to the present embodiment has substantially the same configuration as the photometric sensor 10 according to the first embodiment, but differs in the following points.

本実施の形態に係る測光センサ60は、図9に示す如く、断面台形状の支持体62を備えており、この支持体62の傾斜面には、各素子中心軸が互いに平行にならないように、受光素子13,14,15,16がそれぞれ固定されている。   As shown in FIG. 9, the photometric sensor 60 according to the present embodiment includes a support body 62 having a trapezoidal cross section, and the element center axes are not parallel to each other on the inclined surface of the support body 62. The light receiving elements 13, 14, 15, and 16 are fixed, respectively.

演算装置20は、一対の受光素子13,15の出力を用いて第一の仮想受光素子17を仮想的に形成すると共に、一対の受光素子14,16の出力を用いて、一対の受光素子13,15によって第一の仮想受光素子17を仮想的に形成した位置と同一位置に第二の仮想受光素子17を形成する。さらに、演算装置20は、各仮想受光素子17の出力を算出し、一方の仮想受光素子17の出力と他方の仮想受光素子17の出力とを比較する。   The arithmetic unit 20 virtually forms the first virtual light receiving element 17 using the outputs of the pair of light receiving elements 13 and 15, and uses the outputs of the pair of light receiving elements 14 and 16. , 15, the second virtual light receiving element 17 is formed at the same position as the position where the first virtual light receiving element 17 is virtually formed. Further, the arithmetic unit 20 calculates the output of each virtual light receiving element 17 and compares the output of one virtual light receiving element 17 with the output of the other virtual light receiving element 17.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

以上の構成の測光センサ60では、受光素子13、15の受光面へ入射する光の入射角度φ及び強度Lに応じて、受光素子13、15の出力Iが変化する。演算装置20は、外部装置から送信された仮想受光素子の出力チェック信号を受信すると、受光状態の不均一性を検証するためのプログラムを実行する。   In the photometric sensor 60 having the above configuration, the output I of the light receiving elements 13 and 15 changes according to the incident angle φ and the intensity L of the light incident on the light receiving surfaces of the light receiving elements 13 and 15. When receiving the output check signal of the virtual light receiving element transmitted from the external device, the arithmetic unit 20 executes a program for verifying the non-uniformity of the light receiving state.

演算装置20は、先ず、各仮想受光素子17の出力Aと出力Bとが一致するか確認する(ステップS1)。つまり、演算装置20は、受光素子13、15における光の入射角度φと出力Iとの関係(入射角度−出力特性)が近似表現された角度出力関数I=g(φ)、及び、受光素子13、15における光の強度Lと出力Iとの関係(入射強度−出力特性)が近似表現された強度出力関数I=f(L)、I=k×f(L)に基づいて、受光素子13、15の出力から、受光素子13、15が位置する二次元平面64における光伝播角度θ及び光強度Lを算出する。   First, the arithmetic unit 20 confirms whether the output A and the output B of each virtual light receiving element 17 match (step S1). That is, the arithmetic unit 20 includes an angle output function I = g (φ) in which the relationship between the light incident angle φ and the output I (incident angle-output characteristics) in the light receiving elements 13 and 15 is approximately expressed, and the light receiving element. Based on the intensity output functions I = f (L) and I = k × f (L) in which the relationship between the light intensity L and the output I (incident intensity-output characteristics) in 13 and 15 is approximated. From the outputs 13 and 15, the light propagation angle θ and the light intensity L in the two-dimensional plane 64 where the light receiving elements 13 and 15 are located are calculated.

さらに、演算装置20は、受光素子13と受光素子15の中間位置で二次元平面64上に位置する支持体62の上面に、角度出力関数及び強度出力関数が受光素子13(受光素子15でも可)と等しい仮想受光素子17を仮想的に形成すると共に、上述の如く算出した光伝播角度θ及び光強度Lから第一の仮想受光素子17の出力Ip=f(L)×g(θ)を算出する。 Further, the arithmetic unit 20 has an angle output function and an intensity output function on the upper surface of the support 62 positioned on the two-dimensional plane 64 at an intermediate position between the light receiving element 13 and the light receiving element 15. ) Is virtually formed, and the output I p = f (L) × g (θ) of the first virtual light receiving element 17 is calculated from the light propagation angle θ and the light intensity L calculated as described above. Is calculated.

一方、受光素子14,16についても、受光素子14,16の受光面へ入射する光の入射角度φ及び強度Lに応じて、受光素子14,16の出力Iが変化する。また、演算装置20は、受光素子14,16における光の入射角度φと出力Iとの関係(入射角度−出力特性)が近似表現された角度出力関数I=g(φ)、及び、受光素子14,16における光の強度Lと出力Iとの関係(入射強度−出力特性)が近似表現された強度出力関数I=f(L)、I=k×f(L)に基づいて、受光素子14,16の出力から、受光素子14,16が位置する二次元平面66における光伝播角度θ及び光強度Lを算出する。   On the other hand, for the light receiving elements 14 and 16, the output I of the light receiving elements 14 and 16 changes according to the incident angle φ and intensity L of the light incident on the light receiving surfaces of the light receiving elements 14 and 16. The arithmetic unit 20 also includes an angle output function I = g (φ) in which the relationship between the light incident angle φ and the output I (incident angle-output characteristics) in the light receiving elements 14 and 16 is approximately expressed, and the light receiving element. 14 and 16 based on intensity output functions I = f (L) and I = k × f (L) in which the relationship between light intensity L and output I (incident intensity-output characteristics) is approximated. 14 and 16, the light propagation angle θ and the light intensity L in the two-dimensional plane 66 where the light receiving elements 14 and 16 are located are calculated.

さらに、演算装置20は、一対の受光素子14,16の出力を用いて、一対の受光素子13,15によって第一の仮想受光素子17を仮想的に形成した位置と同一位置に、角度出力関数及び強度出力関数が受光素子14(受光素子16でも可)と等しい第二の仮想受光素子17を仮想的に形成すると共に、上述の如く算出した光伝播角度θ及び光強度Lから第二の仮想受光素子17の出力Ip=f(L)×g(θ)を算出する。 Further, the arithmetic unit 20 uses the outputs of the pair of light receiving elements 14 and 16 to provide an angle output function at the same position as the position where the first virtual light receiving element 17 is virtually formed by the pair of light receiving elements 13 and 15. And a second virtual light receiving element 17 having an intensity output function equal to that of the light receiving element 14 (or the light receiving element 16 is acceptable), and the second virtual light receiving element 17 is calculated from the light propagation angle θ and the light intensity L calculated as described above. The output I p = f (L) × g (θ) of the light receiving element 17 is calculated.

そして、演算装置20は、一方の仮想受光素子17の出力Aと他方の仮想受光素子17の出力Bとを比較する。一方の仮想受光素子17の出力Aと他方の仮想受光素子17の出力Bとが一致する場合(ステップS1:YES)には、回路状態、受光状態が正常であると判断される(ステップS2)。この場合に、演算装置20は正常である旨の信号を外部装置へ出力する。   Then, the arithmetic unit 20 compares the output A of one virtual light receiving element 17 with the output B of the other virtual light receiving element 17. When the output A of one virtual light receiving element 17 and the output B of the other virtual light receiving element 17 match (step S1: YES), it is determined that the circuit state and the light receiving state are normal (step S2). . In this case, the arithmetic unit 20 outputs a signal indicating that it is normal to the external device.

一方、一方の仮想受光素子17の出力Aと他方の仮想受光素子17の出力Bとが一致しない場合(ステップS1:NO)には、回路状態、受光状態が異常であると判断される(ステップS3)。この場合に、演算装置20は異常である旨の信号を外部装置へ出力する。これにより、受光素子13,14,15,16や回路の故障、劣化等の不具合、あるいは受光素子群の受光状態の不均一性を検証することができる。   On the other hand, if the output A of one virtual light receiving element 17 and the output B of the other virtual light receiving element 17 do not match (step S1: NO), it is determined that the circuit state and the light receiving state are abnormal (step). S3). In this case, the arithmetic unit 20 outputs a signal indicating an abnormality to the external device. As a result, it is possible to verify defects such as failure and deterioration of the light receiving elements 13, 14, 15, 16 and circuits, or non-uniformity of the light receiving state of the light receiving element group.

なお、上述の第3、第4、第5の実施の形態において、上記第2の実施の形態の如く、受光素子13,14,15,16の温度を測定または推測する測温素子32を設け、温度出力関数及び受光素子13,14,15,16の温度をも使用して、仮想受光素子の出力を算出すると共に、光伝播角度θ及び光強度Lを算出しても良い。   In the third, fourth, and fifth embodiments described above, a temperature measuring element 32 that measures or estimates the temperature of the light receiving elements 13, 14, 15, and 16 is provided as in the second embodiment. The output of the virtual light receiving element may be calculated using the temperature output function and the temperature of the light receiving elements 13, 14, 15, 16 as well as the light propagation angle θ and the light intensity L.

[第6の実施の形態]
図11には、本発明の光センサが適用されて構成された第6の実施の形態に係る測光センサ70の主要部の上面図が示されている。なお、図11(a)には参考までに第1の実施の形態に係る測光センサ10の主要部の上面図が示されており、図11(b)、(c)には本発明の光センサが適用されて構成された第6の実施の形態に係る測光センサ70の主要部の上面図が示されている。
[Sixth Embodiment]
FIG. 11 shows a top view of the main part of a photometric sensor 70 according to a sixth embodiment configured by applying the photosensor of the present invention. FIG. 11A shows a top view of the main part of the photometric sensor 10 according to the first embodiment for reference, and FIGS. 11B and 11C show the light of the present invention. The top view of the principal part of the photometric sensor 70 which concerns on 6th Embodiment comprised by applying a sensor is shown.

本実施の形態に係る測光センサ70は、上記第1の実施の形態に係る測光センサ10とほぼ同様の構成であるが、以下の点で異なる。   The photometric sensor 70 according to the present embodiment has substantially the same configuration as the photometric sensor 10 according to the first embodiment, but differs in the following points.

本実施の形態の測光センサ70では、図11(b)、(c)に示す如く、受光素子14,16は、光の入射角度が互いに異なるように支持体72上に配置されていると共に、この実在する受光素子14,16の位置を、この受光素子14,16が位置する同一の二次元平面74の法線方向にずらして配置されている。   In the photometric sensor 70 of the present embodiment, as shown in FIGS. 11B and 11C, the light receiving elements 14 and 16 are disposed on the support 72 so that the incident angles of light are different from each other. The positions of the actual light receiving elements 14 and 16 are shifted in the normal direction of the same two-dimensional plane 74 where the light receiving elements 14 and 16 are located.

このように、受光素子14,16が位置する同一の二次元平面74の法線方向にずらして配置されても構わないので、受光素子14,16の配置の自由度をさらに向上させることができる。   As described above, the light receiving elements 14 and 16 may be arranged so as to be shifted in the normal direction of the same two-dimensional plane 74 where the light receiving elements 14 and 16 are located. Therefore, the degree of freedom of arrangement of the light receiving elements 14 and 16 can be further improved. .

また、受光素子14,16は、光の入射角度が互いに異なるように配置されているので、より広範囲に受光することができる。   Further, since the light receiving elements 14 and 16 are arranged so that the incident angles of light are different from each other, they can receive light in a wider range.

本発明の第1の実施の形態に係る測光センサの主要部を示す側面図である。It is a side view which shows the principal part of the photometric sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る測光センサのブロック図である。It is a block diagram of the photometric sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る測光センサにおける受光素子の入射強度−出力特性を示すグラフである。It is a graph which shows the incident intensity-output characteristic of the light receiving element in the photometric sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る測光センサにおける受光素子の入射角度−出力特性を示すグラフである。It is a graph which shows the incident angle-output characteristic of the light receiving element in the photometric sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る測光センサにおける光伝播角度と2つの実在する受光素子の出力及び仮想受光素子の出力の関係を示すグラフである。It is a graph which shows the relationship between the light propagation angle in the photometric sensor which concerns on the 1st Embodiment of this invention, the output of two real light receiving elements, and the output of a virtual light receiving element. 本発明の第2の実施の形態に係る測光センサのブロック図である。It is a block diagram of the photometric sensor which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る測光センサの説明図である。It is explanatory drawing of the photometric sensor which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る測光センサの説明図である。It is explanatory drawing of the photometric sensor which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る測光センサの説明図である。It is explanatory drawing of the photometric sensor which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る測光センサの受光状態の不均一性を検証する流れを示すフローチャートである。It is a flowchart which shows the flow which verifies the nonuniformity of the light reception state of the photometric sensor which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る測光センサの説明図である。It is explanatory drawing of the photometric sensor which concerns on the 6th Embodiment of this invention.

符号の説明Explanation of symbols

10,30,40,50,60,70…測光センサ(光センサ)、12,42,52,62,72…支持体、13,14,15,16…受光素子(受光部材)、14A,16A…受光面、17…仮想受光素子、18…前段処理回路(算出手段)、20 演算装置(算出手段)、22…A/Dコンバータ、24…演算プロセッサ、32…測温素子(測温手段)   10, 30, 40, 50, 60, 70 ... photometric sensor (optical sensor), 12, 42, 52, 62, 72 ... support, 13, 14, 15, 16 ... light receiving element (light receiving member), 14A, 16A DESCRIPTION OF SYMBOLS ... Light-receiving surface, 17 ... Virtual light receiving element, 18 ... Pre-processing circuit (calculation means), 20 Arithmetic apparatus (calculation means), 22 ... A / D converter, 24 ... Arithmetic processor, 32 ... Temperature measuring element (temperature measuring means)

Claims (9)

光が入射する受光面を有し、前記受光面へ入射する光の入射角度及び強度に応じて出力が変化する複数の受光部材と、
前記複数の受光部材間に仮想受光部材を仮想的に形成すると共に、前記受光部材における光の入射角度と出力との関係が表現された角度出力関数、前記受光部材における光の強度と出力との関係が表現された強度出力関数、及び前記仮想受光部材の形成位置に基づいて前記複数の受光部材の出力から前記仮想受光部材の出力を算出する算出手段と、
を備えた光センサ。
A plurality of light-receiving members having a light-receiving surface on which light is incident and whose output changes according to the incident angle and intensity of the light incident on the light-receiving surface;
A virtual light receiving member is virtually formed between the plurality of light receiving members, and an angle output function expressing a relationship between an incident angle and an output of light in the light receiving member, and an intensity and an output of light in the light receiving member A calculation means for calculating an output of the virtual light receiving member from outputs of the plurality of light receiving members based on an intensity output function expressing a relationship and a formation position of the virtual light receiving member;
With optical sensor.
温度、入射する光の入射角度及び強度に応じて出力が変化する複数の受光部材と、
前記受光部材の温度を測定または推測する測温手段と、
前記複数の受光部材間に仮想受光部材を仮想的に形成すると共に、前記受光部材における温度と出力との関係が表現された温度出力関数、前記受光部材における光の入射角度と出力との関係が表現された角度出力関数、前記受光部材における光の強度と出力との関係が表現された強度出力関数、及び前記仮想受光部材の形成位置に基づいて前記測温手段により測定または推測された前記受光部材の温度及び前記複数の受光部材の出力から前記仮想受光部材の出力を算出する算出手段と、
を備えた光センサ。
A plurality of light receiving members whose outputs change according to temperature, incident angle and intensity of incident light;
Temperature measuring means for measuring or estimating the temperature of the light receiving member;
A virtual light receiving member is virtually formed between the plurality of light receiving members, a temperature output function expressing a relationship between temperature and output in the light receiving member, and a relationship between light incident angle and output in the light receiving member. The received light measured or estimated by the temperature measuring unit based on the expressed angle output function, the intensity output function expressing the relationship between the light intensity and the output of the light receiving member, and the formation position of the virtual light receiving member Calculating means for calculating the output of the virtual light receiving member from the temperature of the member and the outputs of the plurality of light receiving members;
With optical sensor.
前記算出手段は、前記複数の受光部材のうち前記仮想受光部材と同一の二次元平面に位置する少なくとも一対の受光部材の出力を用いて前記仮想受光部材の出力を算出すると共に、前記二次元平面と交差する別の二次元平面に位置する少なくとも一つの受光部材の出力と前記仮想受光部材の出力を用いて前記別の二次元平面における光伝播角度及び光強度の少なくとも一方を算出する、ことを特徴とする請求項1又は請求項2記載の光センサ。   The calculation means calculates an output of the virtual light receiving member using outputs of at least a pair of light receiving members located in the same two-dimensional plane as the virtual light receiving member among the plurality of light receiving members, and the two-dimensional plane. Calculating at least one of the light propagation angle and the light intensity in the other two-dimensional plane using the output of the at least one light-receiving member located in another two-dimensional plane intersecting with the output of the virtual light-receiving member. The optical sensor according to claim 1 or 2, characterized in that 前記複数の受光部材は、各部材中心軸が互いに平行にならないように少なくとも三つ以上配置され、
前記算出手段は、前記複数の受光部材のうち少なくとも一対の受光部材が位置する二次元平面と他の受光部材及び前記仮想受光部材が位置する別の二次元平面とが交差するように、前記仮想受光部材を配置する、ことを特徴とする請求項1乃至請求項3の何れか1項記載の光センサ。
The plurality of light receiving members are arranged in at least three or more so that the central axes of the members are not parallel to each other,
The calculation means is configured so that the two-dimensional plane in which at least one pair of light receiving members is located and another two-dimensional plane in which the other light receiving members and the virtual light receiving member are intersected with each other. 4. The optical sensor according to claim 1, wherein a light receiving member is disposed.
前記算出手段は、前記複数の受光部材のうち少なくとも二対の受光部材によって同一位置に前記仮想受光部材をそれぞれ仮想的に形成すると共に、一方の仮想受光部材の出力と他方の仮想受光部材の出力とを比較する、ことを特徴とする請求項1乃至請求項4の何れか1項記載の光センサ。   The calculating means virtually forms the virtual light receiving member at the same position by at least two pairs of light receiving members among the plurality of light receiving members, and outputs the one virtual light receiving member and the other virtual light receiving member. The optical sensor according to claim 1, wherein the optical sensor is compared with any one of claims 1 to 4. 前記複数の受光部材は、光の入射角度が互いに異なるように配置された、ことを特徴とする請求項1乃至請求項5の何れか1項記載の光センサ。   The optical sensor according to any one of claims 1 to 5, wherein the plurality of light receiving members are arranged so that incident angles of light are different from each other. 前記算出手段は、前記角度出力関数として、前記受光部材における光の入射角度と出力との関係が表現されかつ光の入射方向の垂直面への前記受光面の投影面積に出力が比例しない角度出力関数を用いる、ことを特徴とする請求項1乃至請求項6の何れか1項記載の光センサ。   The calculation means is an angle output in which the relationship between the light incident angle and the output of the light receiving member is expressed as the angle output function, and the output is not proportional to the projected area of the light receiving surface onto the vertical plane of the light incident direction. The optical sensor according to any one of claims 1 to 6, wherein a function is used. 前記算出手段は、前記角度出力関数として、前記受光部材における光の入射角度と出力との関係が表現されかつ光の入射方向の垂直面への前記受光面の投影面積に出力が比例する角度出力関数を用いる、ことを特徴とする請求項1乃至請求項6の何れか1項記載の光センサ。   The calculating means outputs, as the angle output function, an angle output in which a relationship between an incident angle of light on the light receiving member and an output is expressed and an output is proportional to a projected area of the light receiving surface onto a vertical plane in the light incident direction. The optical sensor according to any one of claims 1 to 6, wherein a function is used. 前記算出手段は、前記強度出力関数として、前記受光部材における光の強度と出力との関係が表現されかつ前記複数の受光部材間で互いに異なる強度出力関数を用いる、ことを特徴とする請求項1乃至請求項8の何れか1項記載の光センサ。   2. The calculation unit according to claim 1, wherein the intensity output function uses an intensity output function that expresses a relationship between light intensity and output in the light receiving member and is different among the plurality of light receiving members. The optical sensor according to claim 8.
JP2005002986A 2005-01-07 2005-01-07 Optical sensor Pending JP2006189395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002986A JP2006189395A (en) 2005-01-07 2005-01-07 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002986A JP2006189395A (en) 2005-01-07 2005-01-07 Optical sensor

Publications (1)

Publication Number Publication Date
JP2006189395A true JP2006189395A (en) 2006-07-20

Family

ID=36796742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002986A Pending JP2006189395A (en) 2005-01-07 2005-01-07 Optical sensor

Country Status (1)

Country Link
JP (1) JP2006189395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233920A (en) * 2012-08-24 2012-11-29 Casio Comput Co Ltd Measurement surface inclination measuring device, projector, and measurement surface inclination measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233920A (en) * 2012-08-24 2012-11-29 Casio Comput Co Ltd Measurement surface inclination measuring device, projector, and measurement surface inclination measuring method

Similar Documents

Publication Publication Date Title
US20190208182A1 (en) Calibration method and measurement tool
US7490019B2 (en) Method and apparatus for three-dimensional measurement
KR101000267B1 (en) Apparatus for sensor for tracking sunlight
US8648794B2 (en) Screen light computation device or method
TWI525506B (en) Optical-touch calibration method and optical-touch panel
JP2023126981A (en) optical displacement meter
CN109565532B (en) Controlling lens misalignment in an imaging system
JP2006038721A (en) Gas concentration detector
JP2006300748A (en) Device for measuring temperature distribution
JP2006189395A (en) Optical sensor
JP5117039B2 (en) Film thickness measuring method and film thickness measuring apparatus
EP0483658B1 (en) Method and apparatus for inputting coordinates
TW201321784A (en) Optical displacement sensor
JP4128486B2 (en) Optical sensor
JP2004226304A (en) Weighing device
CN103426894A (en) Photoelectric sensor
JP2009277749A (en) Height measuring device and method
JPS61104202A (en) Optical displacement meter
US11934053B2 (en) Imaging apparatus
JPS62127604A (en) Optical position detecting device
JP2000258146A (en) Radiation thickness measurement device
JP2009156789A (en) Optical characteristic measuring device and method
JP3461399B2 (en) Camera ranging device
JP2014106142A (en) Position detection device
JP5749199B2 (en) Directivity angle estimation system and directivity angle estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223