JP2006189180A - Heat supply system having a plurality of heat source machines and a group of pumps - Google Patents

Heat supply system having a plurality of heat source machines and a group of pumps Download PDF

Info

Publication number
JP2006189180A
JP2006189180A JP2005000106A JP2005000106A JP2006189180A JP 2006189180 A JP2006189180 A JP 2006189180A JP 2005000106 A JP2005000106 A JP 2005000106A JP 2005000106 A JP2005000106 A JP 2005000106A JP 2006189180 A JP2006189180 A JP 2006189180A
Authority
JP
Japan
Prior art keywords
heat
flow rate
heat source
heat medium
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005000106A
Other languages
Japanese (ja)
Other versions
JP4568119B2 (en
Inventor
Takashi Honda
孝 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2005000106A priority Critical patent/JP4568119B2/en
Publication of JP2006189180A publication Critical patent/JP2006189180A/en
Application granted granted Critical
Publication of JP4568119B2 publication Critical patent/JP4568119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat supply system capable of increasing operation efficiency of a heat source machine, expanding degree of freedom in operation of a group of heat source machines at partial load time, and reducing conveyance power of a heat medium pump to save energy and reduce running cost. <P>SOLUTION: This heat supply system is constituted by connecting the group of pumps connecting a plurality of heat medium pumps in parallel with the group of heat source machines connected in parallel by pipes in series. The heat source machine usable in a scope of flow rate above rated flow rate and below the rated flow rate when operated below the rated output is used, and a flow rate adjusting valve for distributing load is arranged in a heat medium pipe of each heat source machine to set total flow rate of heat medium of the group of pumps to above total rated flow rate. The heat source machine and the heat medium pump operated in accordance with required quantity of heat and required flow rate on a heat load side are selected, a bypass pipe is provided from an outlet side pipe passage to a heat load side return pipe passage of the group of pumps, and each flow rate adjusting valve is adjusted to make load rate of each heat source machine equal and distribute heat medium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大規模な事務所ビルの空気調和システムや地域冷暖房システム等、多くの部屋や建物を同時に空気調和しなければならないような設備の熱供給システム、特に複数の熱源機(冷凍機・加熱機などの熱源機器)からなる熱源機器群と、熱媒(水・冷媒など)を搬送するための複数の熱媒ポンプからなるポンプ群とを備えた熱供給システムの改良に関する。   The present invention relates to a heat supply system for facilities such as an air conditioning system or a district heating / cooling system for a large-scale office building, in which a large number of rooms and buildings must be air-conditioned at the same time. The present invention relates to an improvement in a heat supply system including a heat source device group including a heat source device such as a heater and a pump group including a plurality of heat medium pumps for transporting a heat medium (water, refrigerant, etc.).

大規模な熱供給システムとして、複数の熱源機を備えると共に、各熱源機への送水動力源として複数の熱媒ポンプを備えた熱供給システムは広く実用化されている。この種の熱供給システムでは、一般に各熱源機の定格出力に合わせた熱媒流量のポンプを各熱源機器に対応させてそれぞれ用意しているが、日常的に発生する熱負荷側の変動に対し、熱負荷側の要求熱量を供給可能な熱源機の台数と、熱負荷側の要求熱媒量を供給可能な熱媒ポンプの台数の、いずれか大きいほうに合わせて熱源機と熱媒ポンプを運転している。
熱負荷側へ供給された熱媒の往き還り温度差(利用温度差)は常に一定ではなく、熱負荷の変動に伴って変化する。
As a large-scale heat supply system, a heat supply system including a plurality of heat source devices and a plurality of heat medium pumps as water supply power sources to each heat source device has been widely put into practical use. In this type of heat supply system, a pump with a flow rate of heat medium that matches the rated output of each heat source unit is generally prepared for each heat source device. The number of heat source machines that can supply the required amount of heat on the heat load side and the number of heat medium pumps that can supply the required amount of heat medium on the heat load side, whichever is larger, have a heat source machine and a heat medium pump. I'm driving.
The back and forth temperature difference (utilization temperature difference) of the heating medium supplied to the heat load side is not always constant, and changes with the fluctuation of the heat load.

各熱源機の流量が定格流量付近に限定されているため、熱負荷側の利用温度差が定格時の温度差よりも大きい場合には、熱負荷側からの還り熱媒は、熱媒ポンプの出口側管路から熱負荷側戻り管路に設けられたバイパス管からの多量の熱媒と合流して定格温度差以下の温度差となり、運転中の熱源機の負荷率に比例した温度差に相当する熱媒温度で各熱源機に供給される。
熱負荷側の利用温度差が定格時の温度差よりも小さい場合には、熱負荷側からの還り熱媒は前記バイパス管からの熱媒と合流して、温度差がさらに小さい状態となり、運転中の熱源機の負荷率に比例した利用温度差に相当する熱媒温度で各熱源機に供給される。
いずれの場合も、バイパス流量だけ余分な熱媒量が循環することになる。
流量に合わせて熱源機と熱媒ポンプの運転台数を決めているため、熱媒ポンプ動力や熱源機の付帯機器(冷凍機の冷却塔および冷却水ポンプ等)の動力を余分に消費し、エネルギーの過大な消費やランニングコストの増大などの問題が生じていた。
Since the flow rate of each heat source unit is limited to around the rated flow rate, if the temperature difference on the heat load side is larger than the temperature difference at the time of rating, the return heat medium from the heat load side will be It merges with a large amount of heat medium from the bypass pipe provided on the return side pipe from the outlet side pipe to the temperature difference below the rated temperature difference, and the temperature difference is proportional to the load factor of the operating heat source machine. It is supplied to each heat source machine at a corresponding heat medium temperature.
When the use temperature difference on the heat load side is smaller than the temperature difference at the time of rating, the return heat medium from the heat load side merges with the heat medium from the bypass pipe, and the temperature difference becomes even smaller, and the operation It is supplied to each heat source device at a heat medium temperature corresponding to a use temperature difference proportional to the load factor of the heat source device inside.
In either case, an excess amount of heat medium is circulated by the bypass flow rate.
Because the number of heat source units and heat medium pumps to be operated is determined according to the flow rate, the heat medium pump power and the power of the heat source unit incidental equipment (refrigerator cooling tower, cooling water pump, etc.) are consumed and energy is consumed. There have been problems such as excessive consumption and increased running costs.

本発明と関連する熱供給システムの従来例として次のようなものがある。
実開昭58−104826「空気調和装置」では、冷温水を作る複数台のチリングユニット(冷凍機)にそれぞれ複数台の循環用ポンプを直列的に連通し、熱負荷側熱交換器の往き還り温度差を検出して開閉弁を操作することにより、チリングユニットと循環ポンプとを同数ずつ制御している。しかしながら、検知温度差が小さくなったことだけで一組のチリングユニットと循環ポンプを停止させると、熱負荷側熱交換器への供給水量が不足して所要の冷暖房能力が発揮できないという不都合が発生する欠点がある。 特開平6−94267「クリーンルームの温湿度制御装置」には、熱負荷の要求に応じた数の並列運転が可能な複数の冷凍機と、当該冷凍機の送水動力源として各冷凍機に対応して設けられかつ同調して運転が行われる複数のポンプとを備えた温湿度制御装置が記載されている。さらに、熱負荷に供給される冷凍機の出力水の流量を調整する流量調節弁と熱負荷に対するバイパス系とが設けられて、このバイパス系が冷凍機の台数切り替え付近の熱量供給時に開かれるようになっている。この従来例を図7に示す。
The following is a conventional example of a heat supply system related to the present invention.
In Japanese Utility Model Laid-Open No. 58-104826 “Air Conditioner”, a plurality of circulating pumps are connected in series to a plurality of chilling units (refrigerators) for producing cold / hot water, and the heat load side heat exchanger is returned to and returned from. By detecting the temperature difference and operating the on-off valve, the same number of chilling units and circulation pumps are controlled. However, if the pair of chilling units and the circulation pump are stopped just because the detected temperature difference is small, there is an inconvenience that the amount of water supplied to the heat load side heat exchanger is insufficient and the required air conditioning capability cannot be achieved. There are drawbacks. Japanese Patent Laid-Open No. 6-94267 “Clean Room Temperature and Humidity Control Device” supports a plurality of refrigerators that can be operated in parallel according to the demand of the heat load, and each refrigerator as a water supply power source for the refrigerator. And a temperature and humidity control device provided with a plurality of pumps that are operated in synchronism with each other. Furthermore, a flow control valve for adjusting the flow rate of the output water of the refrigerator supplied to the heat load and a bypass system for the heat load are provided, and this bypass system is opened when supplying heat near the number of refrigerators being switched. It has become. This conventional example is shown in FIG.

図7において、7台の冷水ポンプ15a〜15gから送り出された水が7台の冷凍機14a〜14gで冷却され、流量調節弁17を介して、熱負荷(各室ごとの空調装置)19へと送られている。さらに熱負荷19をバイパスするバイパス回路21が設けられている。
しかしながら、前記冷水ポンプは冷凍機の送水動力源として前記冷凍機の各々に対応させて設けられるとともに稼働対象の冷凍機に同調して運転が行われるようになっているため、各冷水ポンプの定格流量は対応する冷凍機の定格流量に合わせる必要があり、負荷側の要求水量に対して最適な冷水ポンプ運転台数を選ぶことができない。その結果、冷水ポンプは効率の悪い運転を行い、冷水ポンプの消費電力が大きくなるという不都合が発生するという欠点がある。
In FIG. 7, the water sent from the seven chilled water pumps 15 a to 15 g is cooled by the seven chillers 14 a to 14 g and is supplied to the heat load (air conditioner for each room) 19 via the flow rate control valve 17. It has been sent. Further, a bypass circuit 21 that bypasses the thermal load 19 is provided.
However, since the cold water pump is provided corresponding to each of the refrigerators as a water supply power source of the refrigerator and is operated in synchronization with the operation target refrigerator, the rating of each cold water pump is The flow rate must match the rated flow rate of the corresponding refrigerator, and the optimum number of chilled water pumps cannot be selected for the required amount of water on the load side. As a result, the chilled water pump operates in an inefficient manner, and there is a disadvantage that the inconvenience occurs that the power consumption of the chilled water pump increases.

本発明の主たる目的は、熱源機の運転効率を高めるとともに、部分負荷時における熱源機群の運転の自由度を拡張することによって熱媒(熱媒体)ポンプの搬送動力を削減し、熱供給システムの省エネルギーとランニングコストの低減を図ることにある。
本発明の他の目的は、熱源機及び熱媒ポンプの運転台数を最適化し、熱源機の負荷率を向上させることにより、熱源機の付帯機器の消費動力を削減し、熱供給システムの省エネルギーとランニングコストの低減を図ることにある。
本発明の更なる目的は、ホンプ群の一部の熱媒ポンプを変流量ポンプとしてポンプ群の供給熱媒量を連続可変とし、熱媒ポンプの搬送動力を大幅に削減して熱供給システムの省エネルギーとランニングコストの低減を図ることにある。
The main object of the present invention is to increase the operating efficiency of the heat source unit and reduce the conveyance power of the heat medium (heat medium) pump by expanding the degree of freedom of operation of the heat source unit group at the time of partial load. Is to save energy and reduce running costs.
Another object of the present invention is to optimize the number of operating heat source units and heat medium pumps and improve the load factor of the heat source unit, thereby reducing the power consumption of the auxiliary equipment of the heat source unit and reducing the energy consumption of the heat supply system. The purpose is to reduce running costs.
A further object of the present invention is to make the heat supply system of the heat supply system by greatly reducing the transport power of the heat medium pump by making the supply heat medium amount of the pump group continuously variable by using some heat medium pumps of the pump group as variable flow rate pumps. The goal is to save energy and reduce running costs.

前述した課題を解決するため、本発明は複数の並列に接続された熱源機群に対し、前記熱源機によって冷却または加熱された熱媒を熱負荷側へ循環するために複数の熱媒ポンプを並列に接続したポンプ群が配管で直列に接続された、ランニングコストの大幅な削減が可能な熱供給システムを提供する。この熱供給システムは、その基本態様として、定格出力以下で運転されるときに定格流量以上および定格流量以下の流量範囲で使用可能な熱源機を使用し、各熱源機の熱媒配管に負荷分配用の流量調整弁を配置し、ポンプ群の総熱媒流量を熱源機の総定格流量以上とし、熱負荷側の必要熱量に合わせて運転する熱源機を選択し、熱負荷側の必要流量に合わせて運転する熱媒ポンプを選択し、前記ポンプ群の出口側管路から熱負荷側戻り管路にバイパス管を設けて、余分な流量をバイパスできるようにし、各流量調整弁を各熱源機の負荷率が等しくなるように調整して熱媒を分配することを特徴とする。
さらに、前記ポンプ群の一部の熱媒ポンプを変流量ポンプとし、熱負荷側の必要流量に合わせて変流量ポンプの回転数を制御することを特徴とする。
In order to solve the above-described problems, the present invention provides a plurality of heat medium pumps for circulating a heat medium cooled or heated by the heat source apparatus to a heat load side with respect to a plurality of heat source apparatus groups connected in parallel. Provided is a heat supply system in which a group of pumps connected in parallel are connected in series by piping, and the running cost can be greatly reduced. This heat supply system, as its basic mode, uses a heat source unit that can be used in a flow rate range above and below the rated flow rate when operating below the rated output, and distributes the load to the heat medium piping of each heat source unit. For the heat load side, select the heat source unit that operates according to the required heat amount on the heat load side, and set the total heat medium flow rate of the pump group to be equal to or higher than the total rated flow rate of the heat source unit. Select a heat medium pump to be operated in combination, and provide a bypass pipe from the outlet side pipe line to the heat load side return pipe of the pump group so that the excess flow rate can be bypassed, and each flow rate adjustment valve is connected to each heat source unit The heating medium is distributed so as to be adjusted so that the load factor is equal.
Further, a part of the heat medium pump of the pump group is a variable flow pump, and the number of revolutions of the variable flow pump is controlled in accordance with a required flow rate on the heat load side.

かかる構成に基づき、熱源機の定格出力以下で運転されるときに定格流量以上および定格流量以下の流量範囲で使用可能な熱源機を使用するとともに、熱負荷側の必要流量にあわせて熱媒ポンプを選択して運転することにより、熱負荷側の必要流量を確保した状態で、熱負荷側の流量に関係なく、熱負荷に合わせた最適な熱源機を運転することが可能になる。
この結果、従来のように検知温度差が小さくなったことだけで一組のチリングユニットと循環ポンプを停止させることにより生じる、熱負荷側熱交換器への供給水量が不足して所要の冷暖房能力が発揮できないという事態を回避することができるようになる。
Based on this configuration, use a heat source unit that can be used in the flow rate range above and below the rated flow rate when operating below the rated output of the heat source unit, and heat medium pumps according to the required flow rate on the heat load side By selecting and operating, it is possible to operate the optimum heat source unit according to the heat load regardless of the flow rate on the heat load side while ensuring the necessary flow rate on the heat load side.
As a result, the amount of water supplied to the heat load side heat exchanger is insufficient due to stopping the pair of chilling units and the circulation pump just by reducing the detected temperature difference as in the past. Can be avoided.

次に、各熱源機器の熱媒配管に負荷分配用の流量調整弁を配置したことにより、熱媒流量が変動しても各熱源機の負荷率が等しくなるように各熱源機器の熱媒流量を調整することが可能になり、熱源機の効率よい運転が可能になる。   Next, the flow rate adjusting valve for load distribution is arranged in the heat medium piping of each heat source device, so that the load factor of each heat source device becomes equal even if the heat medium flow rate fluctuates. Can be adjusted, and the heat source machine can be operated efficiently.

ポンプ群の総熱媒流量は熱源機の総定格流量以上とするが、各熱媒ポンプの熱媒流量は各熱源機の定格流量と同容量にする必要はない。ポンプ群を構成する熱媒ポンプの中に、熱源機1台分の定格流量よりも大きい熱媒ポンプを1台以上設けてもよいし、熱源機1台分の定格流量よりも小さい熱媒ポンプを1台以上設けてもよい。また、熱媒ポンプの台数は熱源機の台数と同じでもよいし、同じでなくてもよい。さらに、1台以上の熱媒ポンプを変流量ポンプにしてもよい。   The total heat medium flow rate of the pump group is equal to or higher than the total rated flow rate of the heat source unit, but the heat medium flow rate of each heat medium pump need not be the same capacity as the rated flow rate of each heat source unit. One or more heat medium pumps larger than the rated flow rate for one heat source unit may be provided in the heat medium pumps constituting the pump group, or the heat medium pump smaller than the rated flow rate for one heat source unit. One or more may be provided. Further, the number of heat medium pumps may or may not be the same as the number of heat source units. Further, one or more heat medium pumps may be variable flow rate pumps.

運転方法として、熱負荷側必要熱量にあわせて運転する熱源機を選択し、熱負荷側の必要流量に合わせて運転する熱媒ポンプを選択し、さらには熱媒ポンプの回転数を制御し、各流量調整弁を各熱源機の負荷率が等しくなるように調整して熱媒を分配することにより、バイパス流量を小さく、あるいは0にでき、熱媒ポンプの搬送動力が削減され、熱供給システムの省エネルギーとランニングコストの低減を図ることができる。   As the operation method, select the heat source machine that operates according to the required heat amount on the heat load side, select the heat medium pump that operates according to the required flow rate on the heat load side, and further control the rotation speed of the heat medium pump, By distributing the heat medium by adjusting each flow rate adjustment valve so that the load factor of each heat source unit becomes equal, the bypass flow rate can be reduced or reduced to 0, the conveyance power of the heat medium pump is reduced, and the heat supply system Energy saving and running cost can be reduced.

また、ポンプ群の出口側管路から熱負荷側戻り管路にバイパス管を設けて、余分な流量をバイパスさせるようにしているので、熱負荷側の必要な流量とポンプ群の供給熱媒流量とが完全に一致しなくてもよく、熱媒ポンプの運転が不安定になることを防止できる。
また、熱源機及び熱媒ポンプの運転機の選択を最適化し、熱源機の負荷率を向上させることにより、熱源機の運転台数や熱媒ポンプの運転台数を削減することも可能になり、熱源機の運転台数が削減された場合、それに属する冷却塔や冷却水ポンプの運転台数も削減でき、熱供給システムの省エネルギーとランニングコストの低減を図ることもできるという利点がある。
In addition, a bypass pipe is provided from the outlet side pipe of the pump group to the return line of the heat load so that the excess flow is bypassed, so the required flow on the heat load side and the supply heat medium flow of the pump group And do not have to be completely matched, and the operation of the heat medium pump can be prevented from becoming unstable.
It is also possible to reduce the number of operating heat source units and the number of operating heat pumps by optimizing the selection of the operating units of the heat source units and the heat medium pumps and improving the load factor of the heat source units. When the number of operating machines is reduced, the number of operating cooling towers and cooling water pumps belonging thereto can be reduced, and there is an advantage that energy saving and running cost of the heat supply system can be reduced.

以下、添付図面の実施態様を参照しながら、本発明による熱供給システムの態様についてさらに説明する。   Hereinafter, aspects of the heat supply system according to the present invention will be further described with reference to embodiments of the accompanying drawings.

図1〜図6に示した例における熱源機は、1号機は蓄熱槽11と熱交換器12を利用した蓄熱槽型熱源機14a、2号機〜4号機は冷凍機を利用した熱源機14b,14c,14dであり、以下の説明ではこれらを冷熱源機として説明するが、他の型式の各種熱源機についても同様に本発明が適用可能であることを理解されたい。また、図1〜図6に示した例における熱源機は1号機〜4号機が同一定格容量としてあるが、各熱源機の定格容量が異なる熱源機についても同様に本発明が適用可能であることを理解されたい。
さらに、図1〜図6に示した例においては、熱源機群の下流側にポンプ群が接続されているが、ポンプ群を熱源機群の上流側に接続してもよい。
1 to 6 is a heat storage tank type heat source machine 14a using a heat storage tank 11 and a heat exchanger 12, and the second machine to the fourth machine are heat source machines 14b using a refrigerator. 14c and 14d, which will be described as a cold heat source machine in the following description, but it should be understood that the present invention can be similarly applied to other types of heat source machines. Moreover, although the heat source machine in the example shown in FIGS. 1-6 has the same rated capacity as the 1st machine-the 4th machine, that the present invention is applicable similarly to the heat source machine from which the rated capacity of each heat source machine differs. I want you to understand.
Furthermore, in the example shown in FIGS. 1 to 6, the pump group is connected to the downstream side of the heat source unit group, but the pump group may be connected to the upstream side of the heat source unit group.

図1は、本発明による熱供給システムの主要部を表す回路図であり、1号機から4号機までの4台の冷熱源機14a〜14dからの冷水が、4台の冷水ポンプ15a〜15dに吸い出されて熱負荷(各室ごとの空調装置)19へと送られている。なお2号機から4号機までの3台の冷凍機14b,14c,14dには冷却水ポンプ17b,17c,17dから冷却用の水が供給されるようになっている。また、冷水ポンプ15a〜15dの出口側管路22から熱負荷側の戻り管路23との間にバイパス回路24が設けられ、流量制御弁16でバイパス流量が制御されている。   FIG. 1 is a circuit diagram showing a main part of a heat supply system according to the present invention. Cold water from four cold heat source devices 14a to 14d from No. 1 to No. 4 is supplied to four cold water pumps 15a to 15d. It is sucked out and sent to a heat load (air conditioner for each room) 19. Cooling water is supplied from the cooling water pumps 17b, 17c, 17d to the three refrigerators 14b, 14c, 14d from the second machine to the fourth machine. Further, a bypass circuit 24 is provided between the outlet side pipeline 22 of the cold water pumps 15 a to 15 d and the return pipeline 23 on the heat load side, and the bypass flow rate is controlled by the flow rate control valve 16.

本発明の特徴に従い、冷熱源機14a〜14dは、定格出力(定格熱量100)以下で運転されるときに定格流量(100)以上および定格流量以下の流量範囲で使用可能な(変流量対応の)冷熱源機で構成されている。従来、一般に用いられている冷熱源機は、定格出力以下で運転されるときであっても、定格流量付近での運転しかすることができず、実際上は定格流量以上および定格流量以下の流量範囲での使用が困難であった。   According to the characteristics of the present invention, the cold heat source devices 14a to 14d can be used in a flow rate range of the rated flow rate (100) or more and the rated flow rate or less when operated at a rated output (rated heat amount 100) or less (corresponding to variable flow rate). ) Consists of a cold heat source machine. Conventionally, generally used cold heat source machines can only operate near the rated flow even when operated at a rated output or lower, and in practice, flow rates that are higher than the rated flow and lower than the rated flow. Use in the range was difficult.

さらに本発明の他の特徴に従い、冷熱源機14a〜14dの出口付近の回路にそれぞれ流量計26と流量調整弁28とが設けられている。図1の状態では冷熱源機の2号機14bと3号機14cとが運転中であり、ここでの熱量はそれぞれ80、80、流量はそれぞれ100、100であり、同様に運転中の3号機の冷水ポンプ15cと4号機の冷水ポンプ15dもそれぞれ流量は100、100となっている。このとき熱負荷19側に必要とされる熱量は160、流量は160であるため、バイパス管路24を通じて流量40が冷熱源機側に戻されることになる。
このように、流量調整弁28を設けたことにより、各冷熱源機から送水される流量をほぼ均等に分配させることが可能になり、冷熱源機の負荷率もほぼ均等にすることができて、一部の冷熱源機に負荷が成り行きで集中すること及び運転していない熱源機に熱媒が流れてしまうことを防止することができ、省エネルギーを図ることができる。
Further, according to another feature of the present invention, a flow meter 26 and a flow rate adjusting valve 28 are provided in the circuits near the outlets of the heat source units 14a to 14d, respectively. In the state of FIG. 1, the cold heat source machine No. 2 14b and No. 3 machine 14c are in operation, the heat amounts here are 80 and 80, the flow rates are 100 and 100, respectively, The flow rates of the chilled water pump 15c and the chilled water pump 15d of Unit 4 are 100 and 100, respectively. At this time, since the amount of heat required for the heat load 19 side is 160 and the flow rate is 160, the flow rate 40 is returned to the cold heat source machine side through the bypass pipe line 24.
Thus, by providing the flow rate adjusting valve 28, it becomes possible to distribute the flow rate of water supplied from each cold heat source machine substantially evenly, and the load factor of the cold heat source machine can also be made substantially equal. In addition, it is possible to prevent a load from being concentrated on some of the cold heat source devices and to prevent the heat medium from flowing to a heat source device that is not in operation, thereby saving energy.

また、従来の装置のように冷熱源機と冷水ポンプとが1対1で対応して動作する必要がないため、冷水ポンプの相互運転が可能となり、冷水ポンプが故障した場合にも他の冷水ポンプによるバックアップが可能になる。また、冷熱源機と冷水ポンプの組み合わせが自由になり、冷水ポンプの運転時間を均等にして、寿命の均等化とメンテナンスの容易化など、ランニングコストの低減を図ることができる。   Further, since it is not necessary to operate the cold heat source unit and the cold water pump in a one-to-one correspondence as in the conventional apparatus, the cold water pump can be operated mutually, and even if the cold water pump breaks down, Backup with a pump becomes possible. In addition, the combination of the cold heat source machine and the cold water pump becomes free, the running time of the cold water pump can be made uniform, and the running cost can be reduced, such as equalizing the life and facilitating maintenance.

図2は、図1に示した変流量対応の冷熱源機を利用し、さらに冷水ポンプの一部(1号機15a’と2号機15b’)を変流量ポンプにすることによって、熱負荷側の必要流量が冷熱源機の定格流量未満の場合に必要流量に合わせて運転することを可能にし、消費電力を削減するようにした例である。図2の例では、運転されている2号機の冷熱源機14bと変流量ポンプ15a’の定格流量が100でありながら、熱負荷側の必要熱量が70、必要流量が70であるため、変流量対応の冷熱源機14bを熱量70、流量70で部分負荷運転すれば、バイパス管路24の流量は0となる。かくしてランニングコストの低減が図られている。また、複数の冷熱源機が並列に接続された冷熱源機群と複数の冷水ポンプが並列に接続されたポンプ群とが直列に配置されているため、変流量ポンプ運転時に運転可能な冷熱源機は14bだけではなく、14a,14c,14dも運転可能となり、冷熱源機が故障した場合にも他の冷熱源機によるバックアップが可能になる。また、冷熱源機の運転時間を均等にして寿命の均等化を図ることができる。   FIG. 2 shows the heat load side by using the variable flow rate compatible cold heat source unit shown in FIG. 1 and further changing some of the chilled water pumps (No. 1 unit 15a ′ and No. 2 unit 15b ′) to variable flow rate pumps. In this example, when the required flow rate is less than the rated flow rate of the cold heat source machine, it is possible to operate according to the required flow rate and reduce the power consumption. In the example of FIG. 2, since the rated flow rate of the cold heat source unit 14b and the variable flow rate pump 15a ′ of the second unit being operated is 100, the required heat amount on the heat load side is 70, and the required flow rate is 70. If the cold heat source unit 14b corresponding to the flow rate is partially loaded with the heat amount 70 and the flow rate 70, the flow rate of the bypass line 24 becomes zero. Thus, the running cost is reduced. In addition, since a cold heat source machine group in which a plurality of cold heat source machines are connected in parallel and a pump group in which a plurality of cold water pumps are connected in parallel are arranged in series, a cold heat source that can be operated during variable flow pump operation The machine can operate not only 14b but also 14a, 14c, and 14d, and even when the cold heat source machine breaks down, backup by another cold heat source machine becomes possible. In addition, the operating time of the cold heat source machine can be made equal to achieve uniform life.

図3は、図1に示した変流量対応の冷熱源機と、図2に示した変流量ポンプとを利用し、さらに冷熱源機1台の定格流量(100)よりも大きい流量(120)の冷水ポンプ(4号機15d’)を設けて、定格容量よりもわずかに大きい出力を必要とするような場合に冷熱源機と冷水ポンプの運転方法を多様化させて対応させるようにした例である。すなわち、図3に示すように、定格流量100の冷熱源機を4台、流量100の冷水ポンプを3台、流量120の冷水ポンプを1台設置したとして、熱負荷側の熱量・流量共に110必要な場合、流量120の冷水ポンプ15d’を運転することにより、冷水ポンプの運転台数が2台でなく1台で足りることになる。このとき、運転されている冷熱源機14b,14cの熱量はそれぞれ55、流量は60、バイパス管路24の流量は10となる。かくして、運転方法の多様化と、搬送動力の低減による省エネルギーとランニングコストの低減を図ることができる。   FIG. 3 is a flow rate (120) larger than the rated flow rate (100) of one cold heat source unit using the variable flow rate pump shown in FIG. 2 and the cold flow source device corresponding to the variable flow rate shown in FIG. This is an example in which the cold water pump (No. 4 machine 15d ') is provided and the operation method of the cold heat source machine and the cold water pump is diversified when an output slightly larger than the rated capacity is required. is there. That is, as shown in FIG. 3, assuming that four cold heat source units with a rated flow rate of 100, three cold water pumps with a flow rate of 100, and one cold water pump with a flow rate of 120 are installed, both the heat quantity and the flow rate on the heat load side are 110. If necessary, by operating the cold water pump 15d ′ having a flow rate of 120, the number of operating cold water pumps is sufficient instead of two. At this time, the calorific power sources 14b and 14c being operated are 55 in heat quantity, 60 in flow rate, and 10 in the bypass line 24, respectively. Thus, it is possible to diversify the operation methods and to save energy and reduce running costs by reducing the conveyance power.

図4は、本発明の別の応用例を表しており、冷水の往き還り温度差が定格値より小さく、流量が熱量に対して多く必要な場合でも、変流量対応の冷熱源機と変流量ポンプとを組み合わせることにより、冷熱源機の運転可能流量の範囲内で冷水ポンプは流量に合わせて、冷熱源機は熱量に合わせて運転することができ、冷熱源機と冷却水ポンプの運転台数の削減及び消費電力の削減を図ることができることを表している。すなわち、図4に示すように、熱負荷19側に熱量80、流量130が必要な場合には、冷熱源機14bだけを運転すれば熱量80が得られ、冷水ポンプ15a’,15b’をそれぞれ流量65で運転することにより流量130が得られる。このときバイパス管路24の流量は0となる。かくして、運転方法の多様化と、搬送動力の低減による省エネルギーとランニングコストの低減を図ることができる。   FIG. 4 shows another application example of the present invention. Even when the temperature difference between the return and return of cold water is smaller than the rated value and the flow rate is larger than the heat amount, the cold heat source device and the variable flow rate corresponding to the variable flow rate are required. By combining with the pump, the chilled water pump can be operated according to the flow rate within the range of the operable flow rate of the cold heat source unit, and the cold heat source unit can be operated according to the amount of heat. This means that reduction of power consumption and power consumption can be achieved. That is, as shown in FIG. 4, when the amount of heat 80 and the flow rate 130 are required on the heat load 19 side, the amount of heat 80 can be obtained by operating only the cold heat source unit 14b, and the cold water pumps 15a 'and 15b' By operating at a flow rate of 65, a flow rate of 130 is obtained. At this time, the flow rate of the bypass line 24 becomes zero. Thus, it is possible to diversify the operation methods and to save energy and reduce running costs by reducing the conveyance power.

図5は、本発明のさらなる応用例を表しており、冷水の往き還り温度差が定格値より大きく、熱量が流量に対して多く必要な場合でも、変流量対応の冷熱源機とバイパス管とを組み合わせることにより、冷熱源機の運転可能流量の範囲内で冷水ポンプの流量に合わせて、冷熱源機を熱量に合わせて運転することができ、冷水ポンプの運転台数の削減及び消費動力の削減を図ることができることを表している。すなわち、図5に示すように、熱負荷19側に熱量110、流量90が必要な場合には、冷熱源機14c,14dをそれぞれ熱量55で運転すれば熱量110が得られ、冷水ポンプ15cだけを運転することにより流量90が得られる。このときバイパス管路24の流量は10となる。かくして、運転方法の多様化と、搬送動力の低減による省エネルギーとランニングコストの低減を図ることができる。   FIG. 5 shows a further application example of the present invention. Even when the temperature difference between the return and return of chilled water is larger than the rated value and the amount of heat is larger than the flow rate, Can be combined with the flow rate of the chilled water pump within the range of the chilled heat source unit's operable flow rate, and the chilled heat source unit can be operated according to the amount of heat, reducing the number of operating chilled water pumps and reducing power consumption. This means that it can be achieved. That is, as shown in FIG. 5, when a heat quantity 110 and a flow rate 90 are required on the heat load 19 side, a heat quantity 110 can be obtained by operating the cold heat source devices 14c and 14d with a heat quantity 55, respectively, and only the cold water pump 15c. Is operated, a flow rate of 90 is obtained. At this time, the flow rate of the bypass conduit 24 is 10. Thus, it is possible to diversify the operation methods and to save energy and reduce running costs by reducing the conveyance power.

図6は、本発明の熱供給システムにおいて、冷熱源機の設置台数と冷水ポンプの設置台数とが異なる場合の例を表している。すなわち、4台の冷熱源機が5台の冷水ポンプを共有しており、従来の装置のように冷熱源機と冷水ポンプとが1対1で対応して動作する必要がない。これにより、各冷水ポンプの定格流量を選定する自由度が増えて稼働中の冷熱源機に対して運転する冷水ポンプの組み合わせが自由になり、熱負荷側の必要流量に対して最適な流量の冷水ポンプを選択して運転でき、冷水ポンプの消費電力を大幅に低減できるのみでなく、冷水ポンプの運転時間を均等にして、寿命の均等化とメンテナンスの容易化など、省エネルギーとランニングコストの低減を図ることができる。   FIG. 6 shows an example where the number of installed cold heat source units and the number of installed cold water pumps are different in the heat supply system of the present invention. That is, four cold heat source machines share five cold water pumps, and it is not necessary to operate the cold heat source machine and the cold water pump in a one-to-one correspondence as in the conventional apparatus. This increases the degree of freedom in selecting the rated flow rate of each chilled water pump, and the combination of chilled water pumps that operate on the operating cold heat source unit becomes free. Not only can the chilled water pump be selected and operated, the power consumption of the chilled water pump can be greatly reduced, but also the operating time of the chilled water pump can be equalized to reduce the energy consumption and running costs by equalizing the life and facilitating maintenance. Can be achieved.

以上、詳細に説明したように、本発明によれば、部分負荷時における熱源機群およびポンプ群の運転の自由度が拡張される結果、熱負荷側の必要熱量に合わせて運転する熱源機を選択し、熱負荷側の必要流量に合わせて運転する熱媒ポンプを選択し、および/あるいは熱媒ポンプの回転数を制御し、各流量調整弁を各熱源機の負荷率が等しくなるように調整して熱媒を分配することができ、熱源機の負荷率が向上して熱源機の運転効率が高まるとともに、熱媒ポンプの搬送動力が削減され、熱供給システムの省エネルギーとランニングコストの低減を図ることができる。また、熱源機の運転台数を最適化させることにより、熱源機の運転効率を高めるとともに、熱源機の付帯機器の消費動力も削減でき、熱供給システムの省エネルギーとランニングコストをさらに低減できるなど、その技術的効果にはきわめて顕著なものがある。   As described above in detail, according to the present invention, the degree of freedom of operation of the heat source device group and the pump group at the time of partial load is expanded, and as a result, the heat source device that operates according to the required heat amount on the heat load side is provided. Select and select the heat medium pump that operates according to the required flow rate on the heat load side, and / or control the rotation speed of the heat medium pump so that the load factor of each heat source machine becomes equal Heat medium can be distributed with adjustment, the load factor of the heat source machine is improved, the operation efficiency of the heat source machine is increased, the conveyance power of the heat medium pump is reduced, energy saving of the heat supply system and reduction of running cost Can be achieved. In addition, by optimizing the number of operating heat source units, the operating efficiency of the heat source units can be increased, the power consumption of the auxiliary equipment of the heat source unit can be reduced, and the energy saving and running cost of the heat supply system can be further reduced. The technical effect is quite remarkable.

本発明による熱供給システムを表す回路図Circuit diagram representing a heat supply system according to the invention 本発明における変流量熱源機と変流量ポンプを表す回路図The circuit diagram showing the variable flow rate heat source machine and variable flow rate pump in this invention 大流量ポンプを追加したシステムを表す回路図Circuit diagram showing a system with a large flow pump added 負荷流量が熱量より大きい場合のシステムを表す回路図A circuit diagram representing the system when the load flow is greater than the amount of heat. 負荷熱量が流量より大きい場合のシステムを表す回路図Circuit diagram showing the system when the amount of heat is greater than the flow rate 本発明によるポンプ共有状態でのシステムを表す回路図A circuit diagram representing a system in a shared pump state according to the present invention. 従来の空調システムにおける制御装置を表す系統図System diagram showing control device in conventional air conditioning system

符号の説明Explanation of symbols

11 蓄熱槽
12 熱交換器
14a〜14d 冷熱源機
15a〜15e,15a’,15b’,15d’ 冷水ポンプ
16 流量制御弁
17b〜17d 冷却水ポンプ
19 熱負荷
24 バイパス管路
26 流量計
28 流量調整弁
DESCRIPTION OF SYMBOLS 11 Heat storage tank 12 Heat exchanger 14a-14d Cold heat source machine 15a-15e, 15a ', 15b', 15d 'Chilled water pump 16 Flow control valve 17b-17d Cooling water pump 19 Thermal load 24 Bypass pipe 26 Flow meter 28 Flow rate adjustment valve

Claims (2)

複数の並列に接続された熱源機群に対し、前記熱源機によって冷却または加熱された熱媒を熱負荷側へ循環するために、複数の熱媒ポンプを並列に接続したポンプ群が配管で直列に接続された熱供給システムであって、
定格出力以下で運転されるときに定格流量以上および定格流量以下の流量範囲で使用可能な熱源機を使用し、
各熱源機の熱媒配管に負荷分配用の流量調整弁を配置し、
ポンプ群の総熱媒流量を熱源機の総定格流量以上とし、
熱負荷側の必要熱量にあわせて運転する熱源機を選択し、
熱負荷側の必要流量に合わせて運転する熱媒ポンプを選択し、
前記ポンプ群の出口側管路から熱負荷側戻り管路にバイパス管を設けて、余分な流量をバイパスできるようにし、
各流量調整弁を各熱源機の負荷率が等しくなるように調整して熱媒を分配することを特徴とする複数の熱源機とポンプ群を有する熱供給システム。
In order to circulate the heat medium cooled or heated by the heat source device to the heat load side with respect to a plurality of heat source device groups connected in parallel, a pump group in which a plurality of heat medium pumps are connected in parallel is connected by piping. A heat supply system connected to the
Use a heat source unit that can be used in the flow rate range above and below the rated flow rate when operating below the rated output.
A flow control valve for load distribution is arranged in the heat medium piping of each heat source unit,
Make the total heat medium flow rate of the pump group more than the total rated flow rate of the heat source machine,
Select the heat source machine to be operated according to the required heat quantity on the heat load side,
Select the heat medium pump that operates according to the required flow rate on the heat load side,
By providing a bypass pipe from the outlet side pipe line of the pump group to the heat load side return pipe line so that an excessive flow rate can be bypassed,
A heat supply system having a plurality of heat source units and a pump group, wherein the heat medium is distributed by adjusting each flow rate adjusting valve so that the load factor of each heat source unit becomes equal.
前記ポンプ群の一部の熱媒ポンプを変流量ポンプとし、熱負荷側の必要流量に合わせて変流量ポンプの回転数を制御することを特徴とする請求項1記載の熱供給システム。
2. The heat supply system according to claim 1, wherein a part of the heat medium pump of the pump group is a variable flow pump, and the number of rotations of the variable flow pump is controlled in accordance with a required flow rate on the heat load side.
JP2005000106A 2005-01-04 2005-01-04 Heat supply system having a plurality of heat source units and pump groups Active JP4568119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000106A JP4568119B2 (en) 2005-01-04 2005-01-04 Heat supply system having a plurality of heat source units and pump groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000106A JP4568119B2 (en) 2005-01-04 2005-01-04 Heat supply system having a plurality of heat source units and pump groups

Publications (2)

Publication Number Publication Date
JP2006189180A true JP2006189180A (en) 2006-07-20
JP4568119B2 JP4568119B2 (en) 2010-10-27

Family

ID=36796558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000106A Active JP4568119B2 (en) 2005-01-04 2005-01-04 Heat supply system having a plurality of heat source units and pump groups

Country Status (1)

Country Link
JP (1) JP4568119B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036422A (en) * 2007-08-01 2009-02-19 Techno Ryowa Ltd Heat source system
JP2010117039A (en) * 2008-11-11 2010-05-27 E & E Planning:Kk Operating method of air-conditioning heat source system for building
JP2012533724A (en) * 2009-07-23 2012-12-27 グレアム アンドリュー ドーズ ウォリック Redundant cooling method and system
CN110007595A (en) * 2019-03-29 2019-07-12 常州英集动力科技有限公司 Heating system load Real time optimal dispatch method, unit model, unit and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036422A (en) * 2007-08-01 2009-02-19 Techno Ryowa Ltd Heat source system
JP2010117039A (en) * 2008-11-11 2010-05-27 E & E Planning:Kk Operating method of air-conditioning heat source system for building
JP2012533724A (en) * 2009-07-23 2012-12-27 グレアム アンドリュー ドーズ ウォリック Redundant cooling method and system
CN110007595A (en) * 2019-03-29 2019-07-12 常州英集动力科技有限公司 Heating system load Real time optimal dispatch method, unit model, unit and system
CN110007595B (en) * 2019-03-29 2022-04-22 常州英集动力科技有限公司 Real-time load optimization scheduling method, unit model, unit and system for heat supply system

Also Published As

Publication number Publication date
JP4568119B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5501179B2 (en) Medium temperature source system with free cooling
JP5274222B2 (en) Heat source control system for air conditioning equipment
EP3726146B1 (en) Combined heating and cooling system
JP6644559B2 (en) Heat source control system, control method and control device
JP2010270970A (en) Heat source system and method and program for controlling the same
CN102313331A (en) Ice storage refrigeration system and refrigeration method thereof
CN101498499B (en) Cold/heat source integrated unit
JP6434848B2 (en) Heat source control system
JP2003121024A (en) Integrated heat source system
CN102384551B (en) External-ice-melting-type ice cold storage refrigerating system and refrigerating method thereof
JP4435651B2 (en) Cold / hot water source output distribution control method for cold / hot water system
JP4568119B2 (en) Heat supply system having a plurality of heat source units and pump groups
JP2002162087A (en) Variable flow control system for exhaust heat recovery and heat source
JP6921876B2 (en) Heating system
JP5096803B2 (en) Air conditioning system
JP3733371B2 (en) Temperature control system
JP2012247113A (en) Air-conditioning piping system
JP4917468B2 (en) Refrigerator system
JP2015169367A (en) Air conditioning system and air conditioning system control method
CN211575340U (en) Constant temperature and humidity air conditioning system for cooling variable frequency multi-connected floor heating air duct machine
JPH10232000A (en) Liquid piping facility for heat utilizing
JP7322219B1 (en) heat source system
JP5584052B2 (en) High efficiency heat transfer device in air conditioning system
CN202281328U (en) Ice storage refrigeration system
JP2006090620A (en) Heat medium piping system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4568119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250