JP2006188380A - Method for converting characteristic of assembly of single walled carbon nanotubes - Google Patents

Method for converting characteristic of assembly of single walled carbon nanotubes Download PDF

Info

Publication number
JP2006188380A
JP2006188380A JP2005000355A JP2005000355A JP2006188380A JP 2006188380 A JP2006188380 A JP 2006188380A JP 2005000355 A JP2005000355 A JP 2005000355A JP 2005000355 A JP2005000355 A JP 2005000355A JP 2006188380 A JP2006188380 A JP 2006188380A
Authority
JP
Japan
Prior art keywords
walled carbon
swnt
carbon nanotube
carbon nanotubes
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005000355A
Other languages
Japanese (ja)
Other versions
JP4706056B2 (en
Inventor
Hiromichi Kataura
弘道 片浦
Yasumitsu Miyata
耕充 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005000355A priority Critical patent/JP4706056B2/en
Publication of JP2006188380A publication Critical patent/JP2006188380A/en
Application granted granted Critical
Publication of JP4706056B2 publication Critical patent/JP4706056B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method by which carbon nanotubes exhibiting semiconductive nature are efficiently and selectively removed with a sufficient rate from an assembly of single walled carbon nanotubes, thereby the carbon nanotubes exhibiting metallic nature are allowed to remain with a sufficient ratio. <P>SOLUTION: The method includes a step of applying oxidation treatment to the assembly of the single walled carbon nanotubes, and the carbon nanotubes exhibiting semiconductive nature in the assembly of the single walled carbon nanotubes are selectively oxidized and removed of the nature. Thereby, the ratio of the carbon nanotubes exhibiting metallic nature in the assembly of the single walled carbon nanotubes is increased. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単層カーボンナノチューブ集合体が有する半導体的性質を低減させ、金属的性質を増大させる特性変換方法に関するものである。   The present invention relates to a characteristic conversion method for reducing semiconducting properties of a single-walled carbon nanotube aggregate and increasing metallic properties.

単層カーボンナノチューブ(SWNT)は炭素でできた物質であり、炭素の六角員環からなるシート(グラフェンシート)を筒状に巻いた形状をしている。SWNT集合体は、グラフェンシートの巻き方により導電性や光吸収スペクトルが異なるという特異な性質を持ち、将来の機能材料としての応用が期待されている。一方、実際のSWNT集合体の中には、電子構造が金属的で、金属的性質を呈するSWNT(金属SWNT)と、電子構造が半導体的で、半導体的性質を呈するSWNT(半導体SWNT)とが混在する。   A single-walled carbon nanotube (SWNT) is a substance made of carbon, and has a shape in which a sheet (graphene sheet) made of a hexagonal ring of carbon is wound into a cylindrical shape. The SWNT aggregate has a unique property that conductivity and light absorption spectrum differ depending on how the graphene sheet is wound, and is expected to be applied as a functional material in the future. On the other hand, in an actual SWNT aggregate, there are SWNTs (metal SWNTs) whose electronic structure is metallic and exhibits metallic properties, and SWNTs (semiconductor SWNTs) whose electronic structure is semiconducting and exhibits semiconducting properties. Mixed.

現在、SWNTは、主にレーザー蒸発法、アーク放電法、及び気相化学蒸着法(CVD法)を用いて形成することができ、CVD法で生成されたSWNTが現在は多く市販されている。しかしながら、このような生成技術を用いた場合、上述したSWNT集合体中には必然的に金属SWNTと半導体SWNTとが混在するようになってしまう。このようなSWNT集合体の特性は、SWNT集合体に対して種々の応用(例えばFET、光学素子、導線、電極、FEDなど)を考えたとき致命的な欠点となる。   At present, SWNTs can be formed mainly using a laser evaporation method, an arc discharge method, and a vapor phase chemical vapor deposition method (CVD method), and many SWNTs produced by the CVD method are currently commercially available. However, when such a generation technique is used, the SWNT aggregate described above inevitably contains a mixture of metal SWNTs and semiconductor SWNTs. Such a characteristic of the SWNT aggregate becomes a fatal defect when various applications (for example, FET, optical element, conductive wire, electrode, FED, etc.) are considered for the SWNT aggregate.

特に、半導体デバイスに用いるナノ電線の用途では、そのサイズから銅線では十分な電気伝導が確保できず、このため金属単層カーボンナノチューブを用いることが検討されており、かかる観点からもSWNT集合体の上述した特性は致命的となっている。   In particular, in the use of nano wires used in semiconductor devices, sufficient electrical conduction cannot be ensured with copper wires because of their size, and therefore, the use of metal single-walled carbon nanotubes has been studied. The above properties are fatal.

上述したような問題に鑑み、現在、SWNT集合体において、金属SWNTと半導体SWNTとを分離することが大きな課題となっている。例えば、特開2004−210608号公報、及びM. Yudasaka et al. Chem. Phys. Lett., 374(2003)pp. 132-136では、光照射によリSWNT集合体を構造選択的に除去することが開示されている。これらの技術では、光の波長を選ぶことで半導体SWNT、若しくは金属SWNTを選択的に除去するものである。   In view of the problems as described above, at present, it is a big problem to separate the metal SWNT and the semiconductor SWNT in the SWNT aggregate. For example, in JP-A-2004-210608 and M. Yudasaka et al. Chem. Phys. Lett., 374 (2003) pp. 132-136, the SWNT aggregate is selectively removed by light irradiation. It is disclosed. In these techniques, the semiconductor SWNT or the metal SWNT is selectively removed by selecting the wavelength of light.

また、Z. Chen et al. Nano Lett., 3(2003)pp. 1245-1249には、臭素と半導体SWNT、金属SWNTとの相互作用の違いを利用して、最終的に遠心分離で金属SWNTをより選択的に沈殿させて得、前記半導体SWNTを選択的に除去する方法が開示されている。さらに、R. Krupke et al. Science, 301(2003)pp. 344-347では、SWNTを界面活性剤で孤立させ、電気泳動法を用いて金属SWNTを選択的に電極間に配向させることにより、半導体SWNTを選択的に除去することが開示されている。   In addition, Z. Chen et al. Nano Lett., 3 (2003) pp. 1245-1249 uses the difference in interaction between bromine and semiconductor SWNTs and metal SWNTs, and finally the metal SWNTs by centrifugation. Has been disclosed to selectively remove the semiconductor SWNT. Furthermore, in R. Krupke et al. Science, 301 (2003) pp. 344-347, by isolating SWNTs with a surfactant and selectively orienting metal SWNTs between electrodes using electrophoresis, It is disclosed that the semiconductor SWNT is selectively removed.

しかしながら、上記いずれの方法においても、SWNT集合体より半導体SWNTを効率的に十分な割合で選択的に除去し、金属SWNTを十分に高い割合で残存させるには至っていない。   However, in any of the above-described methods, the semiconductor SWNTs are efficiently and selectively removed from the SWNT aggregate at a sufficient rate, and the metal SWNTs are not left at a sufficiently high rate.

特開2004−210608号公報JP 2004-210608 A M. Yudasaka et al.Chem. Phys. Lett., 374(2003)pp. 132-136M. Yudasaka et al. Chem. Phys. Lett., 374 (2003) pp. 132-136 Z. Chen et al. NanoLett., 3(2003)pp. 1245-1249Z. Chen et al. NanoLett., 3 (2003) pp. 1245-1249 R. Krupke et al.Science, 301(2003)pp. 344-347R. Krupke et al. Science, 301 (2003) pp. 344-347

本発明は、SWNT集合体から半導体SWNTを効率的に十分な割合で選択的に除去し、金属SWNTを十分に高い割合で、簡易に残存させることができる新規な方法を提供することを目的とする。   An object of the present invention is to provide a novel method capable of efficiently removing semiconductor SWNTs from SWNT aggregates efficiently and at a sufficient rate and easily leaving metal SWNTs at a sufficiently high rate. To do.

上記目的を達成すべく、本発明は、
単層カーボンナノチューブ集合体に対して酸化処理を施す工程を具え、前記単層カーボンナノチューブ集合体の半導体的性質を呈するカーボンナノチューブを選択的に酸化してその機能を消滅せしめ、前記単層カーボンチューブ集合体における金属的性質を呈するカーボンナノチューブの割合を増大させることを特徴とする、単層カーボンナノチューブ集合体の特性変換方法に関する。
In order to achieve the above object, the present invention provides:
A step of oxidizing the single-walled carbon nanotube aggregate to selectively oxidize the carbon nanotubes exhibiting the semiconducting properties of the single-walled carbon nanotube aggregate to eliminate their functions, and the single-walled carbon tube The present invention relates to a method for converting characteristics of a single-walled carbon nanotube aggregate, wherein the proportion of carbon nanotubes exhibiting metallic properties in the aggregate is increased.

本発明者らは、上記目的を達成すべく鋭意検討を実施した。その結果、単層カーボンナノチューブ(SWNT)集合体に酸化処理を施し、その諸条件、例えば酸化時間、温度及び使用する酸化剤の種類などを適宜に制御し、選択することにより、半導体的性質を有するSWNT(半導体SWNT)が選択的に酸化され、その機能が消滅するようになり、前記半導体SWNTが実質的に選択除去されるようになり、前記SWNT集合体中での金属的性質を有するSWNT(金属SWNT)の割合が相対的に増大することを見出した。   The inventors of the present invention have intensively studied to achieve the above object. As a result, by subjecting single-walled carbon nanotube (SWNT) aggregates to oxidation treatment, various conditions such as oxidation time, temperature and type of oxidant to be used are appropriately controlled and selected, so that semiconductor properties can be selected. SWNTs (semiconductor SWNTs) are selectively oxidized and their functions disappear, the semiconductor SWNTs are substantially selectively removed, and SWNTs having metallic properties in the SWNT aggregate It has been found that the ratio of (metal SWNT) is relatively increased.

したがって、前記SWNT集合体は、全体として金属的な性質を呈するようになり、FET、光学素子、導線、電極、FEDなどの種々の用途に適用することができるようになり、さらには、従来困難であったナノ電線の実現も可能となる。   Therefore, the SWNT aggregate exhibits metallic properties as a whole, and can be applied to various uses such as FETs, optical elements, conductive wires, electrodes, FEDs, and is difficult in the past. It is also possible to realize nanowires that were

なお、前記酸化処理は、所定の酸化剤を用い、これを含む雰囲気下にSWNT集合体を配置することによって実施することができる。この際、必要に応じて、前記雰囲気を加熱することもできる。   In addition, the said oxidation process can be implemented by arrange | positioning a SWNT aggregate | assembly in the atmosphere containing this using a predetermined | prescribed oxidizing agent. Under the present circumstances, the said atmosphere can also be heated as needed.

また、本発明の好ましい態様においては、SWNT集合体中に含まれる金属触媒などの触媒成分を除去する工程を含む。さらには、SWNT集合体中に含まれるSWNT構成以外の炭素不純物を除去する工程を含む。SWNT集合体内にこのような残留触媒成分や炭素不純物が含まれていると、半導体SWNTを酸化させてその機能を生ぜしめ、実質的に選択除去するようにしても、残留触媒成分や炭素不純物などの影響によって、前記SWNT集合体内での金属的性質の発現が低下してしまう場合がある。したがって、本発明の好ましい態様に従って、残留触媒成分や炭素不純物を除去することが好ましい。   Moreover, in the preferable aspect of this invention, the process of removing catalyst components, such as a metal catalyst contained in a SWNT aggregate | assembly, is included. Furthermore, it includes a step of removing carbon impurities other than the SWNT structure contained in the SWNT aggregate. If such a residual catalyst component or carbon impurity is contained in the SWNT assembly, the semiconductor SWNT is oxidized to generate its function, and even if it is substantially selectively removed, the residual catalyst component, carbon impurity, etc. As a result, the expression of metallic properties in the SWNT aggregate may be reduced. Therefore, it is preferable to remove residual catalyst components and carbon impurities in accordance with a preferred embodiment of the present invention.

以上説明したように、本発明によれば、SWNT集合体から半導体SWNTを効率的に十分な割合で選択的に除去し、金属SWNTを十分に高い割合で、簡易に残存させることができる新規な方法を提供することができる。したがって、前記SWNT集合体は、FET、光学素子、導線、電極、FEDなどの種々の用途に適用することができるようになり、さらには、従来困難であったナノ電線の実現も可能となる。   As described above, according to the present invention, the semiconductor SWNT can be selectively removed from the SWNT aggregate efficiently and at a sufficient rate, and the metal SWNT can be easily left at a sufficiently high rate. A method can be provided. Therefore, the SWNT aggregate can be applied to various uses such as FETs, optical elements, conducting wires, electrodes, FEDs, and further, nanowires that have been difficult in the past can be realized.

以下、本発明の詳細、その他の特徴及び利点について、発明を実施するための最良の形態に基づいて説明する。   Hereinafter, details of the present invention, other features and advantages will be described based on the best mode for carrying out the invention.

本発明の特性変換方法においては、最初に単層カーボンナノチューブ(SWNT)集合体を準備し、このSWNT集合体に対して酸化処理を施す。酸化処理は、好ましくは酸化剤を用い、この酸化剤を含む雰囲気中に前記SWNT集合体を配置することによって実施する。   In the property conversion method of the present invention, a single-walled carbon nanotube (SWNT) aggregate is first prepared, and the SWNT aggregate is subjected to oxidation treatment. The oxidation treatment is preferably performed by using an oxidizing agent and placing the SWNT aggregate in an atmosphere containing the oxidizing agent.

前記酸化剤としては、本発明の目的を実現できる限りにおいて、あらゆる種類のものを用いることができるが、好ましくは過酸化水素を用いる。これによって、前記SWNT集合体の内、半導体SWNTのみを効率的に酸化させることができ、金属SWNTの残存割合を効率的に増大させて、本発明の目的をより効果的に実現することができるようになる。   As the oxidizing agent, any kind can be used as long as the object of the present invention can be realized, but hydrogen peroxide is preferably used. As a result, only the semiconductor SWNT in the SWNT aggregate can be efficiently oxidized, and the remaining ratio of the metal SWNT can be efficiently increased, thereby realizing the object of the present invention more effectively. It becomes like this.

前記酸化剤が室温で固体状であれば、前記SWNT集合体に前記酸化剤を直接接触させる、あるいは前記酸化剤を所定の溶媒中に溶解させることによって溶液とし、この溶液に対して所定時間浸漬させることによって酸化処理を行うことができる。さらに、前記酸化剤が室温で液体状であれば、SWNT集合体を前記酸化剤中に直接浸漬させる、あるいは希釈させた酸化剤中に浸漬させることによって酸化処理を行うことができる。また、前記酸化剤が室温で気体状であれば、SWNT集合体を前記酸化剤を含む気体雰囲気中に配置することによって行う。   If the oxidant is solid at room temperature, the SWNT aggregate is brought into direct contact with the oxidant, or the oxidant is dissolved in a predetermined solvent to form a solution and immersed in the solution for a predetermined time. By performing this, oxidation treatment can be performed. Furthermore, if the oxidizing agent is liquid at room temperature, the oxidation treatment can be performed by immersing the SWNT aggregate directly in the oxidizing agent or by immersing it in a diluted oxidizing agent. Further, if the oxidizing agent is gaseous at room temperature, the SWNT aggregate is placed in a gas atmosphere containing the oxidizing agent.

過酸化水素は、室温において液体であるため、上記液体状の酸化剤を用いた場合の酸化処理操作に従って酸化処理を行う。   Since hydrogen peroxide is a liquid at room temperature, the oxidation treatment is performed according to the oxidation treatment operation in the case of using the liquid oxidant.

また、本発明においては、上述した酸化処理に加えて、SWNT集合体に含まれる金属触媒などの触媒成分を除去し、SWNTを構成する以外の炭素不純物を除去することが好ましい。このような残留触媒や炭素不純物がSWNT集合体内に含まれていると、半導体SWNTを酸化させてその機能を生ぜしめ、実質的に選択除去するようにしても、残留触媒成分や炭素不純物などの影響によって、前記SWNT集合体内での金属的性質の発現が低下してしまう場合がある。   In the present invention, in addition to the oxidation treatment described above, it is preferable to remove catalyst components such as a metal catalyst contained in the SWNT aggregate to remove carbon impurities other than those constituting the SWNT. If such a residual catalyst or carbon impurity is contained in the SWNT aggregate, the semiconductor SWNT is oxidized to produce its function, and even if it is substantially selectively removed, the residual catalyst component, carbon impurity, etc. Due to the influence, the expression of metallic properties in the SWNT aggregate may be reduced.

残留した金属触媒を除去するに際しては、塩酸や硫酸などの酸を用いて溶解除去する。また、炭素不純物を除去するに際しては、酸素含有雰囲気中で燃焼させて除去することができる。   When removing the remaining metal catalyst, it is dissolved and removed using an acid such as hydrochloric acid or sulfuric acid. Moreover, when removing carbon impurities, it can be removed by burning in an oxygen-containing atmosphere.

上述した操作に供するSWNT集合体は公知の方法によって製造することができ、例えばレーザ蒸着法、アーク放電法、及びCVD法などを用いて製造することができる。   The SWNT aggregate subjected to the above-described operation can be manufactured by a known method, for example, using a laser vapor deposition method, an arc discharge method, a CVD method, or the like.

最初に、CNI社より購入したSWNT集合体を準備した。このSWNT集合体は、鉄触媒に高温で一酸化炭素ガスを接触させ、熱分解させてSWNT集合体を作製する、熱CVD法を利用したHiPco法(High pressure carbon monoxide method)によって得られるものである。   First, a SWNT assembly purchased from CNI was prepared. This SWNT aggregate is obtained by the HiPco method (High pressure carbon monoxide method) using a thermal CVD method in which a carbon monoxide gas is brought into contact with an iron catalyst at a high temperature and thermally decomposed to produce a SWNT aggregate. is there.

次いで、前記SWNT集合体(SWNT1)を、300℃に保持された空気中に約30分間配置し、混入している鉄微粒子(鉄触媒)の周りの炭素物質を燃焼させた。次いで、前記SWNTを塩酸の中に分散させ、混入している鉄微粒子を塩酸溶液中に溶解させた。この後、鉄微粒子が溶解した塩酸溶液をメンブレンフィルタでろ過することで、前記メンブレンフィルタ上に鉄微粒子を除去したSWNTだけを残存させ、回収した(SWNT2)。   Next, the SWNT aggregate (SWNT1) was placed in air kept at 300 ° C. for about 30 minutes, and the carbon material around the iron fine particles (iron catalyst) mixed therein was burned. Next, the SWNTs were dispersed in hydrochloric acid, and the mixed iron fine particles were dissolved in a hydrochloric acid solution. Thereafter, the hydrochloric acid solution in which the iron fine particles were dissolved was filtered through a membrane filter, so that only the SWNTs from which the iron fine particles had been removed remained on the membrane filter and recovered (SWNT2).

次いで、回収したSWNT2の4mgを、濃度30%の過酸化水素水溶液30mLの中で1時間ほど超音波分散させた。次いで、得られたSWNT分散液を90℃に加熱し、過酸化水素によるSWNT2の酸化を促進させた。約52分間、過酸化水素による酸化処理を実施した後、前記分散液を室温まで冷却し、塩酸溶液中に分散させて、残っている鉄微粒子を再度除去した。その後、得られたSWNT分散液をろ過することにより、最終的なSWNT集合体(SWNT3)を得た。   Next, 4 mg of the recovered SWNT2 was ultrasonically dispersed in 30 mL of a 30% aqueous hydrogen peroxide solution for about 1 hour. Next, the obtained SWNT dispersion was heated to 90 ° C. to promote the oxidation of SWNT2 with hydrogen peroxide. After an oxidation treatment with hydrogen peroxide for about 52 minutes, the dispersion was cooled to room temperature and dispersed in a hydrochloric acid solution, and the remaining iron fine particles were removed again. Then, the final SWNT aggregate (SWNT3) was obtained by filtering the obtained SWNT dispersion.

図1は、上述した酸化処理過程にある3つのSWNT(SWNT1〜3)の光吸収スペクトルである。この図において、SWNT1及び2の、0.5eVから1.25eVの間に現れている吸収ピークは、半導体SWNTのヴァンホーベ特異点(vHS)間の光学遷移に対応しており、1.96eVから2.6eVの間に現れる吸収ピークが、金属SWNTのvHS間の光学遷移に対応している。SWNT3の、0.5eVから1eVの間に現れている吸収ピークは、半導体SWNTのvHS間の光学遷移に対応しており、1.7eVから2.6eVの間に現れる吸収ピークが、金属SWNTのvHS間の光学遷移に対応している。   FIG. 1 is a light absorption spectrum of three SWNTs (SWNTs 1 to 3) in the above-described oxidation treatment process. In this figure, the absorption peaks appearing between 0.5 eV and 1.25 eV of SWNTs 1 and 2 correspond to the optical transition between the Van Hove singularities (vHS) of the semiconductor SWNT, and 1.96 eV to 2 The absorption peak appearing between .6 eV corresponds to the optical transition between the vHS of the metal SWNTs. The absorption peak appearing between 0.5 eV and 1 eV of SWNT3 corresponds to the optical transition between vHS of the semiconductor SWNT, and the absorption peak appearing between 1.7 eV and 2.6 eV is Supports optical transition between vHS.

図1から明らかなように、SWNT1及び2に比べ、SWNT3の金属SWNTにおけるvHS間の光学遷移が半導体SWNTのvHS間の光学遷移に比べて増加していることがわかる。つまりSWNT3における金属SWNTの存在する割合が増えていることを示している。これはSWNT2を過酸化水素で処理することでSWNT2の中の半導体SWNTを選択的に除去できたことを示している。   As is apparent from FIG. 1, it can be seen that the optical transition between vHS in SWNT3 metal SWNT is larger than that in SWNT1 and 2, compared with the optical transition between vHS in semiconductor SWNT. That is, it shows that the proportion of the metal SWNT in SWNT3 is increasing. This indicates that the semiconductor SWNT in the SWNT2 can be selectively removed by treating the SWNT2 with hydrogen peroxide.

以上、本発明を具体例を挙げながら詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   The present invention has been described in detail with specific examples. However, the present invention is not limited to the above contents, and various modifications and changes can be made without departing from the scope of the present invention.

酸化処理過程にある単層カーボンナノチューブ(SWNT)の光吸収スペクトルである。It is a light absorption spectrum of the single-walled carbon nanotube (SWNT) in the oxidation process.

Claims (9)

単層カーボンナノチューブ集合体に対して酸化処理を施す工程を具え、前記単層カーボンナノチューブ集合体の半導体的性質を呈するカーボンナノチューブを選択的に酸化してその機能を消滅せしめ、前記単層カーボンチューブ集合体における金属的性質を呈するカーボンナノチューブの割合を増大させることを特徴とする、単層カーボンナノチューブ集合体の特性変換方法。   A step of oxidizing the single-walled carbon nanotube aggregate to selectively oxidize the carbon nanotubes exhibiting the semiconducting properties of the single-walled carbon nanotube aggregate and extinguishing their functions; A method for converting characteristics of a single-walled carbon nanotube aggregate, wherein the proportion of carbon nanotubes exhibiting metallic properties in the aggregate is increased. 前記酸化処理は、酸化剤を含む雰囲気中で実施することを特徴とする、請求項1に記載の単層カーボンナノチューブ集合体の特性変換方法。   The method for converting characteristics of a single-walled carbon nanotube aggregate according to claim 1, wherein the oxidation treatment is performed in an atmosphere containing an oxidizing agent. 前記酸化剤は過酸化水素であることを特徴とする、請求項2に記載の単層カーボンナノチューブ集合体の特性変換方法。   The method for converting characteristics of a single-walled carbon nanotube aggregate according to claim 2, wherein the oxidizing agent is hydrogen peroxide. 前記酸化処理は、0−150℃の温度範囲で実施することを特徴とする、請求項2又は3に記載の単層カーボンナノチューブ集合体の特性変換方法。   The method for converting characteristics of a single-walled carbon nanotube aggregate according to claim 2 or 3, wherein the oxidation treatment is performed in a temperature range of 0 to 150 ° C. 前記単層カーボンナノチューブ集合体内の触媒成分を除去する工程を具えることを特徴とする、請求項1〜4のいずれか一に記載の単層カーボンナノチューブ集合体の特性変換方法。   The method for converting characteristics of a single-walled carbon nanotube aggregate according to any one of claims 1 to 4, further comprising a step of removing a catalyst component in the single-walled carbon nanotube aggregate. 前記触媒成分は金属触媒であって、前記金属触媒の除去は酸による溶解除去によって実施することを特徴とする、請求項5に記載の単層カーボンナノチューブ集合体の特性変換方法。   6. The method of converting characteristics of a single-walled carbon nanotube aggregate according to claim 5, wherein the catalyst component is a metal catalyst, and the removal of the metal catalyst is performed by dissolving and removing with an acid. 前記単層カーボンナノチューブ集合体内の、カーボンナノチューブを構成する以外の炭素不純物を除去する工程を具えることを特徴とする、請求項1〜6のいずれか一に記載の単層カーボンナノチューブ集合体の特性変換方法。   The single-walled carbon nanotube aggregate according to any one of claims 1 to 6, further comprising a step of removing carbon impurities other than constituting the carbon nanotube in the single-walled carbon nanotube aggregate. Characteristic conversion method. 前記炭素不純物は、酸素含有雰囲気中で燃焼させて除去することを特徴とする、請求項7に記載の単層カーボンナノチューブ集合体の特性変換方法。   The method of claim 7, wherein the carbon impurities are removed by burning in an oxygen-containing atmosphere. 請求項1〜8のいずれか一に記載の方法によって、金属的性質を呈するカーボンナノチューブの割合が増大したカーボンナノチューブ集合体を含むことを特徴とする、ナノ電線。

A nanowire comprising an aggregate of carbon nanotubes with an increased proportion of carbon nanotubes exhibiting metallic properties by the method according to claim 1.

JP2005000355A 2005-01-05 2005-01-05 Method for converting properties of single-walled carbon nanotube aggregates Expired - Fee Related JP4706056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000355A JP4706056B2 (en) 2005-01-05 2005-01-05 Method for converting properties of single-walled carbon nanotube aggregates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000355A JP4706056B2 (en) 2005-01-05 2005-01-05 Method for converting properties of single-walled carbon nanotube aggregates

Publications (2)

Publication Number Publication Date
JP2006188380A true JP2006188380A (en) 2006-07-20
JP4706056B2 JP4706056B2 (en) 2011-06-22

Family

ID=36795928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000355A Expired - Fee Related JP4706056B2 (en) 2005-01-05 2005-01-05 Method for converting properties of single-walled carbon nanotube aggregates

Country Status (1)

Country Link
JP (1) JP4706056B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282468A (en) * 2005-04-01 2006-10-19 Tohoku Univ Tubular nano carbon and method for producing tubular nano carbon
JP2009018947A (en) * 2007-07-10 2009-01-29 National Institute Of Advanced Industrial & Technology Carbon nanotube thin film
JP2009132605A (en) * 2007-11-29 2009-06-18 Sony Corp Method for processing carbon nanotube, carbon nanotube and carbon nanotube device
US7662298B2 (en) 2005-03-04 2010-02-16 Northwestern University Separation of carbon nanotubes in density gradients
US8197789B2 (en) 2007-11-30 2012-06-12 Samsung Electronics Co., Ltd. Method of selectively eliminating metallic carbon nanotubes, semiconducting carbon nanotubes and preparation method thereof using the same
US8323784B2 (en) 2007-08-29 2012-12-04 Northwestern Universtiy Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP2016135725A (en) * 2015-01-23 2016-07-28 国立研究開発法人産業技術総合研究所 Method for eluting and recovering carbon nanotube
US9926195B2 (en) 2006-08-30 2018-03-27 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121892A (en) * 2001-10-18 2003-04-23 National Institute Of Advanced Industrial & Technology Optical element and method for manufacturing the same
JP2004210608A (en) * 2003-01-06 2004-07-29 Japan Science & Technology Agency Method of selecting carbon nanotube structure by light irradiation
JP2004290793A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Hydrogen occluding material and its manufacturing method, hydrogen occluding body, hydrogen storage apparatus and fuel cell vehicle
JP2004352512A (en) * 2003-05-27 2004-12-16 Univ Nagoya Method for producing carbon nanotube, and carbon nanotube-containing composition
WO2005041227A2 (en) * 2003-10-17 2005-05-06 Intel Corporation Method of sorting carbon nanotubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121892A (en) * 2001-10-18 2003-04-23 National Institute Of Advanced Industrial & Technology Optical element and method for manufacturing the same
JP2004210608A (en) * 2003-01-06 2004-07-29 Japan Science & Technology Agency Method of selecting carbon nanotube structure by light irradiation
JP2004290793A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Hydrogen occluding material and its manufacturing method, hydrogen occluding body, hydrogen storage apparatus and fuel cell vehicle
JP2004352512A (en) * 2003-05-27 2004-12-16 Univ Nagoya Method for producing carbon nanotube, and carbon nanotube-containing composition
WO2005041227A2 (en) * 2003-10-17 2005-05-06 Intel Corporation Method of sorting carbon nanotubes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662298B2 (en) 2005-03-04 2010-02-16 Northwestern University Separation of carbon nanotubes in density gradients
US8110125B2 (en) 2005-03-04 2012-02-07 Northwestern University Separation of carbon nanotubes in density gradients
JP2006282468A (en) * 2005-04-01 2006-10-19 Tohoku Univ Tubular nano carbon and method for producing tubular nano carbon
US9926195B2 (en) 2006-08-30 2018-03-27 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
US10689252B2 (en) 2006-08-30 2020-06-23 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
US11608269B2 (en) 2006-08-30 2023-03-21 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
JP2009018947A (en) * 2007-07-10 2009-01-29 National Institute Of Advanced Industrial & Technology Carbon nanotube thin film
US8323784B2 (en) 2007-08-29 2012-12-04 Northwestern Universtiy Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP2009132605A (en) * 2007-11-29 2009-06-18 Sony Corp Method for processing carbon nanotube, carbon nanotube and carbon nanotube device
US8197789B2 (en) 2007-11-30 2012-06-12 Samsung Electronics Co., Ltd. Method of selectively eliminating metallic carbon nanotubes, semiconducting carbon nanotubes and preparation method thereof using the same
JP2016135725A (en) * 2015-01-23 2016-07-28 国立研究開発法人産業技術総合研究所 Method for eluting and recovering carbon nanotube

Also Published As

Publication number Publication date
JP4706056B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP2009132604A (en) Method for processing carbon nanotube, carbon nanotube and carbon nanotube device
US7122165B2 (en) Sidewall-functionalized carbon nanotubes, and methods for making the same
Kung et al. Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes
EP1550635B1 (en) Method of isolating semiconducting carbon nanotubes
US20110244661A1 (en) Large Scale High Quality Graphene Nanoribbons From Unzipped Carbon Nanotubes
JP2007169159A (en) Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage
EP2305601B1 (en) Nanotube-nanohorn composite and process for production thereof
JP3851276B2 (en) Structure selection method of carbon nanotubes by light irradiation
JP4706056B2 (en) Method for converting properties of single-walled carbon nanotube aggregates
JP4853509B2 (en) Carbon nanotube processing method
KR101108578B1 (en) Graphene sheet and process for preparing the same using electron beam irradiation
KR101087829B1 (en) Method for forming carbon pattern using electrochemical reaction
KR101494670B1 (en) Method of selectively eliminating metallic CNT, semiconducting CNT and preparation method thereof using the same
JP4706055B2 (en) Method for improving saturable absorption function of single-walled carbon nanotube
JP5449987B2 (en) Method for concentrating semiconducting single-walled carbon nanotubes
EP1583716A1 (en) Purification of nanotubes
JP3874269B2 (en) Carbon nanotube purification method
Smalley et al. Fullerene pipes
Saravanan et al. A Comprehensive Review on Ion Beam-Reduced Graphene Oxide: Tailoring the Reduction with Optical, Electrical and Electronic Structural Properties
JP2005343746A (en) Method for producing single-layer carbon nanotube and single layer carbon nanotube produced by the same
JP5007513B2 (en) Carbon nanotube purification method and purification apparatus
Alhazmi et al. van der Waals Doping and Room Temperature Resonant Tunneling Observed in Black Phosphorus/Germanium Sulfide Transistors
Haniff et al. Functional Carbon‐Based Nanomaterials and Sensor Applications
JP2004230274A (en) Method for producing hydrogen occluding material, and hydrogen occluding material
Miao et al. High-efficient and environmentally friendly enrichment of semiconducting single-walled carbon nanotubes by combining short-time electrochemical pre-oxidation and combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees