JP2006187786A - Method for connecting titanium thin sheet and connected member connected by using the same - Google Patents
Method for connecting titanium thin sheet and connected member connected by using the same Download PDFInfo
- Publication number
- JP2006187786A JP2006187786A JP2005001174A JP2005001174A JP2006187786A JP 2006187786 A JP2006187786 A JP 2006187786A JP 2005001174 A JP2005001174 A JP 2005001174A JP 2005001174 A JP2005001174 A JP 2005001174A JP 2006187786 A JP2006187786 A JP 2006187786A
- Authority
- JP
- Japan
- Prior art keywords
- titanium thin
- thin plate
- thin plates
- titanium
- spot welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Resistance Welding (AREA)
Abstract
Description
本発明は、接続後に曲げやねじれなどの変形が加えられるチタン薄板の接続方法に関するものである。 The present invention relates to a method for connecting titanium thin plates in which deformation such as bending or twisting is applied after connection.
近年、環境上の問題から、燃料電池の需要が高まっている。この燃料電池のセルは、燃料が収容されることから耐食性が要求され、その構成材としてチタン材、ステンレス鋼材が使用されている。例えば、燃料電池セルの構成材として、Ti/ステンレス鋼/Tiの積層構造を有する3層クラッド材が使用されている。この3層クラッド材を構成するチタン薄板をバッチ式ではなく連続生産するために、先行して搬送されるチタン薄板(以後、先行チタン薄板という)の後端部に、その後に搬送されるチタン薄板(以後、後行チタン薄板という)の先端部を接続し、両チタン薄板の一体化がなされる。この連続的に繋がったチタン薄板と同じく連続的に繋がったステンレス鋼薄板をクラッドして3層クラッド材が作製され、得られた3層クラッド材はロールに巻き取られる。 In recent years, demand for fuel cells has increased due to environmental problems. The cells of this fuel cell are required to have corrosion resistance because the fuel is accommodated, and titanium or stainless steel is used as a constituent material thereof. For example, a three-layer clad material having a laminated structure of Ti / stainless steel / Ti is used as a constituent material of the fuel cell. In order to continuously produce the titanium thin plate constituting the three-layer clad material instead of batch type, the titanium thin plate conveyed afterwards to the rear end portion of the titanium thin plate conveyed in advance (hereinafter referred to as the preceding titanium thin plate). The front ends of the titanium thin plates (hereinafter referred to as the subsequent titanium thin plate) are connected, and the two titanium thin plates are integrated. The three-layer clad material is produced by clad the continuously connected stainless steel thin plates in the same manner as the continuously connected titanium thin plates, and the obtained three-layer clad material is wound up on a roll.
先行チタン薄板(又は先行金属薄板)と後行チタン薄板(又は後行金属薄板)の接続方法として、以下のものが挙げられる。 Examples of a method for connecting the preceding titanium thin plate (or the preceding metal thin plate) and the succeeding titanium thin plate (or the following metal thin plate) include the following.
(1) 先行金属薄板と後行金属薄板の各端部を単に重ね合わせ、その重ね合わせ部をスポット溶接やろう付けなどの手法を用いて接続する(例えば、特許文献1,2参照)。
(1) The end portions of the preceding metal thin plate and the succeeding metal thin plate are simply overlapped, and the overlapped portion is connected using a technique such as spot welding or brazing (see, for example,
(2) 先行金属薄板と後行金属薄板の各端部を単に重ね合わせ、その重ね合わせ部をピン部材などで機械的に接続する(例えば、特許文献3参照)。例えば、図5(a)に示すように、一方(図5中では右側)の金属薄板51の端部に穴52を、他方(図5中では左側)の金属薄板53の端部に先細の爪部54を予め形成しておく。その後、図5(b)に示すように、各爪部54を各穴52に差し込んだ後に、各爪部54の先端を折り返して接続する。
(2) The end portions of the preceding metal thin plate and the succeeding metal thin plate are simply overlapped, and the overlapped portion is mechanically connected by a pin member or the like (see, for example, Patent Document 3). For example, as shown in FIG. 5 (a), a
(3) 先行金属薄板と後行金属薄板の各端部を突き合わせ、その突き合わせ部をTIG溶接して接続する。 (3) The end portions of the preceding metal thin plate and the succeeding metal thin plate are butted, and the butted portions are connected by TIG welding.
しかしながら、前述した(1)、(3)の方法を用いて先行チタン薄板と後行チタン薄板の各端部の接続を行った場合、溶接箇所やろう付け箇所が一時的に高温状態となる。これによって、溶接部やろう付け部において、母材であるチタン薄板の硬度が著しく高くなって脆くなってしまう。その結果、溶接部やろう付け部に曲げやねじれなどの変形が加わると、破断が生じるおそれがあった。 However, when the end portions of the preceding titanium thin plate and the subsequent titanium thin plate are connected using the methods (1) and (3) described above, the welded portion and the brazed portion are temporarily in a high temperature state. As a result, the hardness of the titanium thin plate as the base material becomes extremely high and becomes brittle in the welded part and the brazed part. As a result, when deformation such as bending or twisting is applied to the welded part or the brazed part, there is a risk of breakage.
また、前述した(2)の方法を用いて先行チタン薄板と後行チタン薄板の各端部の接続を行った場合、接続部に曲げやねじれなどの変形が加わると、接続が外れてしまうおそれがあり、接続部の信頼性が低いという問題があった。 In addition, when the ends of the preceding titanium thin plate and the subsequent titanium thin plate are connected using the method (2) described above, the connection may be disconnected if deformation such as bending or twisting is applied to the connecting portion. There was a problem that the reliability of the connecting portion was low.
以上の事情を考慮して創案された本発明の目的は、接続部に曲げやねじれなどの変形に伴う応力が付与されても、破断が生じるおそれのないチタン薄板の接続方法及びそれを用いて接続した接続部材を提供することにある。 The purpose of the present invention created in view of the above circumstances is to use a titanium thin plate connecting method that does not cause breakage even if stress associated with deformation such as bending or twisting is applied to the connecting portion, and using the same. It is to provide a connected connecting member.
上記目的を達成すべく本発明に係るチタン薄板の接続方法は、チタン薄板の端部同士を突き合わせ接続する方法において、上記チタン薄板の端部同士の突き合わせ部を覆うように、それらのチタン薄板の両面に非チタン薄板を重ねて積層部を形成し、その積層部に所定の間隔を設けてスポット溶接を行うものである。 In order to achieve the above-mentioned object, the titanium thin plate connecting method according to the present invention is a method of butt-connecting the ends of the titanium thin plates, so as to cover the butted portions of the ends of the titanium thin plates. A non-titanium thin plate is laminated on both surfaces to form a laminated portion, and spot welding is performed with a predetermined interval provided between the laminated portions.
チタン薄板の板厚は0.01〜0.5mmであることが好ましい。 The thickness of the titanium thin plate is preferably 0.01 to 0.5 mm.
非チタン薄板は、上記チタン薄板と同程度の厚さで、ビッカース硬度が80〜120Hv、かつ、伸びが30〜50%であることが好ましい。 The non-titanium thin plate preferably has the same thickness as the titanium thin plate, Vickers hardness of 80 to 120 Hv, and elongation of 30 to 50%.
非チタン薄板は、Ni薄板で構成され、かつ、その板厚が0.1〜0.5mm未満(0.1mmは除く)であることが好ましい。 The non-titanium thin plate is preferably made of a Ni thin plate and has a thickness of 0.1 to less than 0.5 mm (excluding 0.1 mm).
スポット溶接時の溶接電流は20〜25A、サイクル数は20〜60サイクル/sであることが好ましい。 The welding current during spot welding is preferably 20 to 25 A, and the number of cycles is preferably 20 to 60 cycles / s.
一方、本発明に係るチタン薄板の接続部材は、チタン薄板の端部同士を突き合わせ接続した接続部材において、上記チタン薄板の端部同士の突き合わせ部を覆うように、それらのチタン薄板の両面に非チタン薄板を重ねて積層部を形成し、その積層部に所定の間隔を設けてスポット溶接を行い、各スポット溶接部でチタン薄板と非チタン薄板を溶融一体化させたものである。 On the other hand, the connection member of the titanium thin plate according to the present invention is a connection member in which the ends of the titanium thin plates are butt-connected to each other so as to cover the abutting portions of the ends of the titanium thin plates on both surfaces of the titanium thin plates. A laminated portion is formed by stacking titanium thin plates, spot welding is performed at a predetermined interval in the laminated portion, and a titanium thin plate and a non-titanium thin plate are melted and integrated at each spot welded portion.
本発明に係るチタン薄板の接続方法によれば、接続後の接続部に、曲げやねじれなどの変形に伴う応力が付与されても、破断が生じるおそれがないという優れた効果を発揮する。 According to the titanium thin plate connection method of the present invention, even if a stress associated with deformation such as bending or torsion is applied to the connection portion after connection, an excellent effect is obtained that there is no possibility of breakage.
以下、本発明の好適一実施の形態を添付図面に基づいて説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
本発明の好適一実施の形態に係るチタン薄板の端部同士の接続方法を、図1及び図2(a)、図2(b)を用いて説明する。 A method for connecting ends of titanium thin plates according to a preferred embodiment of the present invention will be described with reference to FIGS. 1, 2 (a), and 2 (b).
本実施の形態に係るチタン薄板の接続方法は、先ず、図1に示すように、チタン薄板11a,11bの端部同士を突き合わせ、その突き合わせ部12を覆うように、それらのチタン薄板11a,11bの両面に非チタン薄板13a,13bを重ねて積層部15を形成する。
As shown in FIG. 1, first, the titanium
次に、図2(a)に示すように、この積層部15に所定の間隔を設けてスポット溶接を行う。図2(a)中の16が、スポット溶接を行う箇所である。この時、図3に示すように、チタン薄板11a,11bの幅方向(図3中では上下方向)のスポット溶接間隔はP1、チタン薄板11a,11bの長手方向(図3中では左右方向)のスポット溶接間隔はP2、チタン薄板11a,11bの長手方向に隣接するスポット溶接部16の中心位置ズレはP3、好ましくはP3=(P1/2)とされる。例えば、チタン薄板11a,11b及び非チタン薄板13a,13bの厚さが0.1〜0.5mm未満(0.1mmは除く)の時、P1,P2は15〜30mm、P3は7〜20mmとされ、板厚に対して十分に大きなピッチ間隔がとられている。
Next, as shown in FIG. 2A, spot welding is performed at a predetermined interval in the laminated
このスポット溶接により、図2(b)に示すように、溶接電極21a,21bで挟まれた部分(図2(b)中の網掛け部分22)は、それぞれ高温となる。これによって、各網掛け部分22が部分溶融し、非チタン薄板13a,13bとチタン薄板11b(又は11a)が一体化される。一方、網掛け部分22以外の部分(非スポット溶接部)は部分溶融せず、非チタン薄板13a,13bとチタン薄板11b(又は11a)は積層されたままの状態で保持される。つまり、積層部15の中間層(チタン薄板11a,11bの層)において、その水平方向(積層方向と直交する方向)にアイランド状のチタン薄板23が所定間隔で分散配置されたチタン薄板の接続部材が得られる。
By this spot welding, as shown in FIG. 2 (b), the portions sandwiched between the
本実施の形態に係るチタン薄板の接続方法を用いてチタン薄板同士の接続を順次繰り返し行うことで長尺の接続部材が得られ、この長尺の接続部材は、適宜、巻取ロールなどの巻取手段に巻き取られる。この接続部材を製品として実際に使用する際、各積層部15は製品として使用されず、各積層部15を切断除去した後、残りの部分が製品として使用される。
By using the titanium thin plate connection method according to the present embodiment, a long connecting member is obtained by sequentially repeating the connection between the titanium thin plates, and the long connecting member is appropriately wound around a winding roll or the like. It is wound up on the take-up means. When this connection member is actually used as a product, each stacked
チタン薄板11a,11bは、非常に薄いものであり、その板厚は0.01〜0.5mm、好ましくは0.1〜0.3mmとされる。非チタン薄板13a,13bは、チタン薄板11a,11bと同程度の厚さで、ビッカース硬度が80 〜120Hv、かつ、伸びが30〜50%とされる。例えば、非チタン薄板13a,13bとして、板厚が0.1〜0.5mm未満(0.1mmは除く)、好ましくは0.15〜0.4mmのNi薄板や、Fe薄板、ステンレス鋼薄板などが挙げられる。
The titanium
また、図4(a)に示す非チタン薄板13a(又は13b)の角部41は、図4(b)に示すように、角がR状となるように面取りを行った角部42や、図4(c)に示すように、角が尖端状となるように面取りを行った角部43であってもよい。非チタン薄板13a(又は13b)の角部41を面取りすることで、バリによるチタン薄板11a,11bの損傷を防止することができる。
Further, the
P1〜P3は、積層部15の厚さ(すなわち、非チタン薄板13a,13bの厚さ)に応じて適宜選択され、積層部15の厚さが、厚い時には大きく、薄い時には小さくされる。また、P1〜P3は、非チタン薄板13a,13bの硬度や伸びに応じて適宜選択され、非チタン薄板13a,13bの硬度が、高い時には大きく、低い時には小さくされ、非チタン薄板13a,13bの伸びが、高い時には小さく、低い時には大きくされる。
P1 to P3 are appropriately selected according to the thickness of the laminated portion 15 (that is, the thickness of the non-titanium
スポット溶接時の溶接電流は20〜25A、好ましくは22A前後、サイクル数は20〜60サイクル/s、好ましくは25〜55サイクル/s、より好ましくは35〜55サイクル/sとされる。溶接電流は、積層部15の厚さ(すなわち、非チタン薄板13a,13bの厚さ)に応じて適宜選択され、積層部15の厚さが、厚い時には大きく、薄い時には小さくされる。また、サイクル数は、積層部15の厚さに応じて適宜選択され、積層部15の厚さが、厚い時には高く、薄い時には低くされる。
The welding current during spot welding is 20 to 25 A, preferably around 22 A, and the number of cycles is 20 to 60 cycles / s, preferably 25 to 55 cycles / s, more preferably 35 to 55 cycles / s. The welding current is appropriately selected according to the thickness of the laminated portion 15 (that is, the thickness of the non-titanium
次に、本実施の形態に係るチタン薄板の接続方法を用いて作製した接続部材の作用を説明する。 Next, the effect | action of the connection member produced using the connection method of the titanium thin plate which concerns on this Embodiment is demonstrated.
積層部15において、各スポット溶接部16は溶接時に高温となるため、それらの部分は硬化し、脆くなっている。よって、スポット溶接部16のピッチ間隔が狭すぎる場合、すなわちスポット溶接部16の平均密度(スポット溶接部の数/積層部の面積)が高い場合、溶接部(溶接後の積層部15)全体に曲げ変形やねじれ変形に伴う応力(引張応力や圧縮応力(以下、曲げ応力という))が付与された際に、破断が生じるおそれがある。よって、本実施の形態に係るチタン薄板の接続方法においては、チタン薄板11a,11b及び非チタン薄板13a,13bの厚さに対して、十分に大きなピッチ間隔でスポット溶接を行い、積層部15におけるスポット溶接部16の平均密度を低くしている。
In the
また、接続部材の溶接部に曲げ応力が作用した際、溶接部における各スポット溶接部16は硬く、脆いことから、そのままでは破断してしまう。よって、溶接部における非スポット溶接部には、この曲げ応力を吸収、緩和することが要求される。このため、本実施の形態に係るチタン薄板の接続方法においては、非チタン薄板13a,13bとして、軟質で、伸びが良好な材料を用いている。具体的には、チタン薄板11a,11bと同程度の厚さで、ビッカース硬度が80〜120Hv、かつ、伸びが30〜50%の非チタン薄板13a,13bを用いている。
Further, when a bending stress acts on the welded portion of the connecting member, each spot welded
これらにより、接続部材の溶接部に曲げ応力が付与されても、非スポット溶接部において曲げ応力が吸収、緩和されるため、スポット溶接部16に曲げ応力が付与されるおそれは殆どない。一方、接続部材の溶接部に衝撃などの外力が加わった際、外力が小さい場合は、非チタン薄板13a,13bが外力を完全に吸収、緩和する。また、接続部材の溶接部に大きな外力によって変形が生じた場合は、非スポット溶接部が先ず変形するため、各スポット溶接部16に変形が生じるおそれは殆どない。よって、接続部材の溶接部に曲げ応力や外力などが付与されても、接続部材の溶接部において破断が生じるおそれはない。
As a result, even if bending stress is applied to the welded portion of the connection member, bending stress is absorbed and relaxed in the non-spot welded portion, so that there is almost no possibility that the bending stress is applied to the spot welded
本実施の形態に係るチタン薄板の接続方法を用いて作製した接続部材は、その用途を特に限定するものではないが、例えば、燃料電池セルを構成する3層クラッド材のTi材として好適である。 The connection member produced using the titanium thin plate connection method according to the present embodiment is not particularly limited in its use, but is suitable as, for example, a Ti material of a three-layer clad material constituting a fuel cell. .
以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。 As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.
次に、本発明について、実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。 Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
(試験1)
厚さ0.3 mmのチタン薄板の端部同士を突き合わせ、その突き合わせ部を覆うように、チタン薄板の両面に厚さ0.1 mmのニッケル薄板(非チタン薄板)を重ねて積層部を形成した。その積層部に所定の間隔を設けてスポット溶接を行い、接続部材を作製した(試料1)。スポット溶接に用いたスポット溶接機(YR-150SRF,松下電器(株)製)は、定格最低容量が15kVA、定格1次電圧が200V、最大加圧力が150kgf、定格周波数が50Hz、最大短絡電流が11kVA、許容使用率が9%のものであった。スポット溶接条件(溶接電流(A)×サイクル(s))は、22×30、22×40、22×50、27.5×30、27.5×40、27.5×50とした。ここで言う溶接電流は、最大短絡電流を最大目盛りで除算した値に、実際の計測目盛りを乗算した計算値である。
(Test 1)
The end portions of the 0.3 mm thick titanium thin plate were butted together, and a 0.1 mm thick nickel thin plate (non-titanium thin plate) was laminated on both sides of the titanium thin plate so as to cover the butted portion to form a laminated portion. Spot welding was performed at a predetermined interval in the laminated portion to produce a connection member (Sample 1). The spot welder (YR-150SRF, manufactured by Matsushita Electric Industrial Co., Ltd.) used for spot welding has a rated minimum capacity of 15kVA, a rated primary voltage of 200V, a maximum applied pressure of 150kgf, a rated frequency of 50Hz, and a maximum short-circuit current. It was 11kVA and the allowable usage rate was 9%. Spot welding conditions (welding current (A) × cycle (s)) were 22 × 30, 22 × 40, 22 × 50, 27.5 × 30, 27.5 × 40, and 27.5 × 50. The welding current here is a calculated value obtained by multiplying the value obtained by dividing the maximum short-circuit current by the maximum scale by the actual measurement scale.
(試験2)
ニッケル薄板の厚さが0.15mmである以外は、試験1と同様にして接続部材を作製した(試料2)。スポット溶接条件(溶接電流(A)×サイクル(s))は、22×30、22×40、22×50とした。
(Test 2)
A connecting member was prepared in the same manner as in
(試験3)
ニッケル薄板の厚さが0.2mmである以外は、試験1と同様にして接続部材を作製した(試料3)。スポット溶接条件(溶接電流(A)×サイクル(s))は、22×30、22×40、22×50とした。
(Test 3)
A connecting member was prepared in the same manner as in
(試験4)
ニッケル薄板の厚さが0.3mmである以外は、試験1と同様にして接続部材を作製した(試料4)。スポット溶接条件(溶接電流(A)×サイクル(s))は、22×40、22×50とした。
(Test 4)
A connecting member was prepared in the same manner as in
(試験5)
ニッケル薄板の厚さが0.4mmである以外は、試験1と同様にして接続部材を作製した(試料5)。スポット溶接条件(溶接電流(A)×サイクル(s))は、22×50、27.5×50とした。
(Test 5)
A connecting member was prepared in the same manner as in
(試験6)
ニッケル薄板の厚さが0.5mmである以外は、試験1と同様にして接続部材を作製した(試料6)。スポット溶接条件(溶接電流(A)×サイクル(s))は、27.5×50、27.5×55とした。
(Test 6)
A connecting member was prepared in the same manner as in
(試験7)
ニッケル薄板の厚さが0.8mmである以外は、試験1と同様にして接続部材を作製した(試料7)。スポット溶接条件(溶接電流(A)×サイクル(s))は、33×55とした。
(Test 7)
A connecting member was prepared in the same manner as in
試料1〜7について、溶接性、接合性、及び総合の評価を行った。それらの評価結果を表1に示す。 About samples 1-7, weldability, bondability, and comprehensive evaluation were performed. The evaluation results are shown in Table 1.
ここで、接合性の評価は、曲げやねじれなどの引張応力を付与した時に、溶接部(溶接後の積層部)で剥がれが生じず、溶接部以外の部分で破断が生じたものを◎、溶接部で剥がれなかった箇所と剥がれた箇所が併存していたものを○、溶接部を簡単に手で剥がすことができたものを×とした。一方、総合評価は、優良なものを◎、良好なものを○、不良なものを×とした。 Here, the evaluation of the bondability is such that when tensile stress such as bending or twisting is applied, peeling does not occur in the welded portion (laminated portion after welding), and fracture occurs in a portion other than the welded portion. The case where the part which did not peel off at the welded part and the part where the peeled off coexisted was marked with ○, and the part where the welded part could be easily peeled by hand was marked with ×. On the other hand, in the comprehensive evaluation, “Excellent” indicates “Good”, “Good” indicates “Good”, and “Poor” indicates “Poor”.
表1に示すように、試料1は、ニッケル薄板の厚さが薄すぎたため、ほぼ全てのスポット溶接部において穴が空いており、スポット溶接を良好に行うことができなかった。当然、溶接部は接合されていないため手で簡単に剥がれ、接合性は×であった。以上より、総合評価は×であった。
As shown in Table 1, in
試料2は、スポット溶接部に穴空き箇所があったが、溶接性はほぼ良好であった。また、溶接部において部分的に接合されていない箇所があったが、接合性は○であった。以上より、総合評価は○であった。
試料3は、スポット溶接部に穴空き箇所はなく、溶接性は良好であった。また、溶接部の一部に剥がれる部分はあったが、接合性は○であった。以上より、総合評価は○であった。中でも、スポット溶接条件が22×40、22×50のものは、溶接部に剥がれる部分は全くなく(接合性が◎)、総合評価も◎であった。 Sample 3 had no hole in the spot welded portion and had good weldability. Moreover, although there was a part peeled off at a part of the welded portion, the bondability was good. From the above, the overall evaluation was ○. Among them, those with spot welding conditions of 22 × 40 and 22 × 50 had no part peeled off at the welded portion (joinability was ◎), and the overall evaluation was ◎.
試料4,5は、スポット溶接部に穴空き箇所はなく、溶接性は良好であった。また、溶接部は、曲げ、ねじれに対しては強度がやや不足気味であったものの、引張に対する強度は十分であり、接合性は○であった。以上より、総合評価は○であった。 Samples 4 and 5 had no hole in the spot welded portion and had good weldability. Moreover, although the strength of the welded part was slightly insufficient with respect to bending and twisting, the strength against tension was sufficient and the bondability was good. From the above, the overall evaluation was ○.
試料6,7は、ニッケル薄板の厚さが厚すぎたため、スポット溶接自体を行うことができなかった。当然、溶接部は接合されていないため手で簡単に剥がれ、接合性は×であった。以上より、総合評価は×であった。 In Samples 6 and 7, spot welding itself could not be performed because the nickel thin plate was too thick. Naturally, since the welded part was not joined, it was easily peeled off by hand, and the joining property was x. From the above, the overall evaluation was x.
試料2〜5については、実際のライン(連続焼鈍ライン、クラッドミルライン)を走行させるというテストを行ってみたが、接続部材の溶接部において破断が生じることはなく、全く実用上の問題はなかった。 For Samples 2-5, a test of running an actual line (continuous annealing line, clad mill line) was performed, but no breakage occurred in the welded portion of the connecting member, and there was no practical problem at all. It was.
11a,11b チタン薄板
12 突き合わせ部
13a,13b 非チタン薄板
15 積層部
11a, 11b Titanium
Claims (6)
In the connecting member in which the ends of the titanium thin plates are butt-connected, the non-titanium thin plates are laminated on both surfaces of the titanium thin plates so as to cover the butted portions of the ends of the titanium thin plates, and the lamination A titanium thin plate connecting member characterized in that spot welding is performed with a predetermined interval in each portion, and a titanium thin plate and a non-titanium thin plate are fused and integrated at each spot weld portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005001174A JP2006187786A (en) | 2005-01-06 | 2005-01-06 | Method for connecting titanium thin sheet and connected member connected by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005001174A JP2006187786A (en) | 2005-01-06 | 2005-01-06 | Method for connecting titanium thin sheet and connected member connected by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006187786A true JP2006187786A (en) | 2006-07-20 |
Family
ID=36795435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005001174A Pending JP2006187786A (en) | 2005-01-06 | 2005-01-06 | Method for connecting titanium thin sheet and connected member connected by using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006187786A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101274377B1 (en) * | 2011-10-19 | 2013-06-17 | 한국산업기술대학교산학협력단 | Fabrication method of clad metal for high heat realease |
CN103464873A (en) * | 2013-09-27 | 2013-12-25 | 山东大学 | Electric-arc welding process for Ti alloy and nickel-base high-temperature alloy |
WO2016031964A1 (en) * | 2014-08-29 | 2016-03-03 | 新日鐵住金株式会社 | Joining structure |
JP2018537287A (en) * | 2015-10-05 | 2018-12-20 | オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj | Manufacturing method of welded member and use of member |
JP2021091928A (en) * | 2019-12-09 | 2021-06-17 | 日本製鉄株式会社 | Steel, blank, and method for producing hot stamp member |
-
2005
- 2005-01-06 JP JP2005001174A patent/JP2006187786A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101274377B1 (en) * | 2011-10-19 | 2013-06-17 | 한국산업기술대학교산학협력단 | Fabrication method of clad metal for high heat realease |
CN103464873A (en) * | 2013-09-27 | 2013-12-25 | 山东大学 | Electric-arc welding process for Ti alloy and nickel-base high-temperature alloy |
CN103464873B (en) * | 2013-09-27 | 2015-06-17 | 山东大学 | Electric-arc welding process for Ti alloy and nickel-base high-temperature alloy |
WO2016031964A1 (en) * | 2014-08-29 | 2016-03-03 | 新日鐵住金株式会社 | Joining structure |
CN106573653A (en) * | 2014-08-29 | 2017-04-19 | 新日铁住金株式会社 | Joining structure |
JPWO2016031964A1 (en) * | 2014-08-29 | 2017-06-15 | 新日鐵住金株式会社 | Junction structure |
EP3196105A4 (en) * | 2014-08-29 | 2018-05-02 | Nippon Steel & Sumitomo Metal Corporation | Joining structure |
US10435081B2 (en) | 2014-08-29 | 2019-10-08 | Nippon Steel Corporation | Joining structure |
JP2018537287A (en) * | 2015-10-05 | 2018-12-20 | オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj | Manufacturing method of welded member and use of member |
JP2021091928A (en) * | 2019-12-09 | 2021-06-17 | 日本製鉄株式会社 | Steel, blank, and method for producing hot stamp member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3351340A1 (en) | Steel sheet lap welding method and lap welded joint | |
JPWO2013157557A1 (en) | Fillet arc welded joint and method for forming the same | |
JP2006187786A (en) | Method for connecting titanium thin sheet and connected member connected by using the same | |
EP2985108B1 (en) | Indirect spot welding method | |
EP2716399A1 (en) | Automobile frame | |
JP2009241112A (en) | Resistance spot welding method | |
WO2019203364A1 (en) | Resistance spot welding joint for aluminum members, and resistance spot welding method for aluminum members | |
JP6360056B2 (en) | Resistance spot welding method | |
KR102127991B1 (en) | Resistance spot welding method and welded structure | |
JP2007144473A (en) | Joined body of dissimilar material | |
JP2012091203A (en) | Indirect spot welding method | |
JP7115223B2 (en) | Method for manufacturing resistance spot welded joints | |
JP2008290129A (en) | Method of welding metallic member | |
JP2009095881A (en) | Method of manufacturing welded structural member | |
JP7335196B2 (en) | Manufacturing method of resistance welded member | |
JP6105993B2 (en) | Molded product made of stainless steel foil joined by resistance heat | |
JP2003236673A (en) | Method for joining different kinds of materials | |
WO2021210541A1 (en) | Method for producing resistance-welded member | |
JP4859732B2 (en) | Dissimilar material MIG joint and dissimilar material MIG joining method | |
JP6123904B2 (en) | Resistance spot welding method and manufacturing method of welded structure | |
WO2022071022A1 (en) | Method for resistance spot welding of aluminum materials, and bonded body of aluminum materials | |
JP6418224B2 (en) | Method of manufacturing spot welded material and spot welding electrode | |
JP2022148636A (en) | Manufacturing method of spot welding member and spot welding member | |
JP4718343B2 (en) | Electromagnetic welding method and joined body of iron-based material and aluminum-based plate | |
JP5388342B2 (en) | Lap welding method of steel strip |