JP2006185762A - Method of manufacturing membrane and catalyst layer junction for polymer electrolyte fuel cell, method of manufacturing polymer electrolyte fuel cell, and device of manufacturing membrane and catalyst layer junction for polymer electrolyte fuel cell - Google Patents

Method of manufacturing membrane and catalyst layer junction for polymer electrolyte fuel cell, method of manufacturing polymer electrolyte fuel cell, and device of manufacturing membrane and catalyst layer junction for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2006185762A
JP2006185762A JP2004378481A JP2004378481A JP2006185762A JP 2006185762 A JP2006185762 A JP 2006185762A JP 2004378481 A JP2004378481 A JP 2004378481A JP 2004378481 A JP2004378481 A JP 2004378481A JP 2006185762 A JP2006185762 A JP 2006185762A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
transfer film
catalyst layer
membrane
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004378481A
Other languages
Japanese (ja)
Other versions
JP5017776B2 (en
Inventor
Hironobu Nishimura
浩宣 西村
Rei Hiromitsu
礼 弘光
Hidenori Asai
秀紀 浅井
Takanori Oboshi
隆則 大星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004378481A priority Critical patent/JP5017776B2/en
Publication of JP2006185762A publication Critical patent/JP2006185762A/en
Application granted granted Critical
Publication of JP5017776B2 publication Critical patent/JP5017776B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane and catalyst layer junction which is suitable for mass production of a fuel cell and does not deteriorate power generation efficiency per usage amount of a catalyst, a method of manufacturing a polymer electrolyte fuel cell using it, and a device of manufacturing the membrane and catalyst junction. <P>SOLUTION: This is the method of manufacturing the membrane and catalyst layer junction for the polymer electrolyte fuel cell in which catalyst layers 3 are respectively formed on both sides of an electrolyte membrane 1, and comprises a first process in which a long electrolyte membrane 1 is prepared, a second process in which a transfer film 2 formed with the catalyst layer 3 is prepared on a base material film 5, a third process in which the transfer film 2 is arranged on at least one face of the electrolyte membrane 1 so that the catalyst layer 3 of the transfer film 2 may face the electrolyte membrane 1, and a fourth process in which the catalyst layer 3 of the transfer film 2 is intermittently transferred at desired spacing on at least one face of the electrode membrane 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子形燃料電池用膜・触媒層接合体の製造方法、固体高分子形燃料電池の製造方法、及び固体高分子形燃料電池用膜・触媒層接合体の製造装置に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell, a method for producing a polymer electrolyte fuel cell, and a device for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell. It is.

燃料電池は、電解質の両面に電極が配置され、水素と酸素の電気化学反応により発電する電池であり、発電時に発生するのは水のみである。このように従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために次世代のクリーンエネルギーシステムとして普及が見込まれている。特に固体高分子形燃料電池は、作動温度が低く、電解質の抵抗が少ないことに加え、活性の高い触媒を用いるので小型でも高出力を得ることができ、家庭用コージェネレーションシステム等として早期の実用化が見込まれている。   A fuel cell is a cell in which electrodes are arranged on both sides of an electrolyte and generates electricity by an electrochemical reaction between hydrogen and oxygen, and only water is generated during power generation. Thus, unlike the conventional internal combustion engine, it is expected to spread as a next-generation clean energy system because it does not generate environmental load gas such as carbon dioxide. In particular, the polymer electrolyte fuel cell has a low operating temperature and low electrolyte resistance. In addition, it uses a highly active catalyst, so it can obtain high output even in a small size. Is expected.

固体高分子形燃料電池は、電解質膜として水素イオン(プロトン)伝導性高分子膜を用い、その両面に触媒層を配置し、次いでその両面に電極基材を配置し、更にこれをセパレータで挟んだ構造をしている。電解質膜の両面に触媒層を配置したもの(即ち、触媒層/電解質膜/触媒層の層構成のもの)は、膜・触媒層接合体と称され、さらに、その両面に電極基材を配置したもの(即ち、電極基材/触媒層/電解質膜/触媒層/電極基材の層構成のもの)は、膜・電極接合体(MEA:Membrane Electrode Assembly)と称されている。   A polymer electrolyte fuel cell uses a hydrogen ion (proton) conductive polymer membrane as an electrolyte membrane, a catalyst layer is arranged on both sides thereof, an electrode substrate is then arranged on both sides, and this is further sandwiched between separators. It has a structure. A catalyst layer disposed on both sides of an electrolyte membrane (that is, a catalyst layer / electrolyte membrane / catalyst layer structure) is called a membrane / catalyst layer assembly, and an electrode substrate is further disposed on both sides of the membrane. The obtained structure (namely, electrode base material / catalyst layer / electrolyte membrane / catalyst layer / electrode base material layer structure) is called a membrane electrode assembly (MEA: MEMBRANE ELECTRODE ASSEMBLY).

従来、膜・電極接合体の製造方法としては、例えば片面に印刷法又はスプレー法を適用して触媒層を形成した2個の電極基材を用い、該電極基材の触媒層面が電解質膜の両面に接するように配置し、熱プレスする方法(特許文献1,2等)や、電解質膜の両面に印刷法又はスプレー法を適用して触媒層を形成し、各々の触媒層面に電極基材が接するように配置し、熱プレスする方法(特許文献3等)等が知られている。   Conventionally, as a method for producing a membrane / electrode assembly, for example, two electrode base materials having a catalyst layer formed by applying a printing method or a spray method on one side are used, and the catalyst layer surface of the electrode base material is an electrolyte membrane. A catalyst layer is formed by applying a printing method or a spray method on both surfaces of the electrolyte membrane (Patent Documents 1 and 2, etc.) by placing the electrodes in contact with both surfaces and applying heat pressing, and an electrode substrate on each catalyst layer surface. There is known a method of arranging and touching with heat (such as Patent Document 3).

しかしながら、これらの方法には、種々の欠点がある。例えば前者の方法は、印刷法又はスプレー法を適用して触媒層を電極基材上に形成する際に、触媒層が多孔質の電極基材の中に入り込むので、触媒層の膜厚調整が困難になったり、触媒層を電極基材上に均一に形成させることが困難になる。更に、この方法は、電極基材表面又は内部の孔を塞ぎ、ガスの流通性能を阻害するおそれがある。その結果、得られる膜・電極接合体を使用した燃料電池は、その性能が低下するおそれがある。   However, these methods have various drawbacks. For example, in the former method, when the catalyst layer is formed on the electrode base material by applying a printing method or a spray method, the catalyst layer enters the porous electrode base material. It becomes difficult and it becomes difficult to form a catalyst layer uniformly on an electrode base material. Furthermore, this method may block holes on the surface of the electrode base material or inside, and may impede gas flow performance. As a result, the performance of the fuel cell using the obtained membrane-electrode assembly may be deteriorated.

また、後者の方法は、触媒層構成成分を有機溶剤に溶解又は分散した液を電解質膜の両面に印刷又はスプレーして触媒層を形成させるが、電解質膜が有機溶剤により膨潤し、変形して電解質膜の形状を維持することが困難になるおそれがある。そのために、触媒層の膜厚調整が困難になったり、触媒層を電解質膜上に均一に形成させることが困難になるおそれがある。その結果、得られる膜・電極接合体では均一な性能を備えた燃料電池を製造できなくなるおそれがある。   In the latter method, a catalyst layer is formed by printing or spraying a solution obtained by dissolving or dispersing the constituent components of the catalyst layer in an organic solvent on both surfaces of the electrolyte membrane, but the electrolyte membrane is swollen and deformed by the organic solvent. It may be difficult to maintain the shape of the electrolyte membrane. For this reason, it may be difficult to adjust the thickness of the catalyst layer, or it may be difficult to uniformly form the catalyst layer on the electrolyte membrane. As a result, the obtained membrane / electrode assembly may not be able to produce a fuel cell with uniform performance.

また、これら両者の製造方法では、少量生産には適しているが、固体高分子形燃料電池の今後予想され得る需要拡大に伴う大量生産には適していない。   In addition, both of these manufacturing methods are suitable for small-scale production, but are not suitable for mass production accompanying the expected increase in demand for polymer electrolyte fuel cells.

上記欠点のない方法として、基材上に触媒層を形成した転写シートから触媒層を電解質膜に転写する方法が知られている(特許文献4)。膜・電極接合体はこの転写法で得られる膜・触媒層接合体の触媒層に電極基材を接合することにより製造される。
特公昭62−61118号公報 特公昭62−61119号公報 特公平2−48632号公報 特開平10−64574号公報
As a method without the above drawbacks, a method is known in which a catalyst layer is transferred to an electrolyte membrane from a transfer sheet having a catalyst layer formed on a substrate (Patent Document 4). The membrane / electrode assembly is produced by joining an electrode substrate to the catalyst layer of the membrane / catalyst layer assembly obtained by this transfer method.
Japanese Examined Patent Publication No. 62-61118 Japanese Patent Publication No.62-61119 Japanese Examined Patent Publication No. 2-48632 Japanese Patent Laid-Open No. 10-64574

しかしながら、上記転写法では触媒層が電解質膜全面に連続して転写されているために、セル組みの際にガスケットに勘合する部位等のように、電池反応に寄与しない部位に触媒層が存在し、その結果高価な白金等の触媒使用量当たりの発電効率が小さくなる欠点がある。   However, since the catalyst layer is continuously transferred to the entire electrolyte membrane in the above transfer method, there is a catalyst layer in a portion that does not contribute to the battery reaction, such as a portion that fits into the gasket when assembling the cell. As a result, there is a disadvantage that the power generation efficiency per the amount of catalyst such as expensive platinum is reduced.

そこで、本発明は、燃料電池の大量生産に適し、かつ、触媒使用量当たりの発電効率を下げることのない膜・触媒層接合体及びこれを用いた固体高分子形燃料電池の製造方法と、前記膜・触媒層接合体の製造装置を提供することを課題とする。   Therefore, the present invention is suitable for mass production of fuel cells and does not reduce the power generation efficiency per catalyst usage, and a membrane / catalyst layer assembly, and a method for producing a solid polymer fuel cell using the same, It is an object of the present invention to provide an apparatus for producing the membrane / catalyst layer assembly.

前記課題を解決するための手段として、本発明に係る膜・触媒層接合体の製造方法は、電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造方法において、長尺の前記電解質膜を準備する第1の工程と、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを準備する第2の工程と、前記転写フィルムの触媒層が前記電解質膜に面するように、前記電解質膜の少なくとも一方面に前記転写フィルムを配置する第3の工程と、前記転写フィルムの触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写する第4の工程とを有することを特徴とする。   As a means for solving the above-mentioned problems, a method for producing a membrane / catalyst layer assembly according to the present invention comprises a membrane / catalyst layer assembly for a polymer electrolyte fuel cell in which catalyst layers are respectively formed on both surfaces of an electrolyte membrane. In the manufacturing method, a first step of preparing the long electrolyte membrane, a second step of preparing a transfer film in which the catalyst layer is formed on a long base film, and a catalyst of the transfer film A third step of disposing the transfer film on at least one surface of the electrolyte membrane so that the layer faces the electrolyte membrane; and a catalyst layer of the transfer film with a desired interval on at least one surface of the electrolyte membrane. And a fourth step of intermittently transferring.

また、前記第4の工程において、長尺の前記電解質膜を連続的に長さ方向に送り、長尺の前記転写フィルムを間欠的に前記電解質膜と同方向に送り、熱ロールが前記転写フィルムの送りに連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写するようにすることができる。   In the fourth step, the long electrolyte membrane is continuously fed in the length direction, the long transfer film is intermittently fed in the same direction as the electrolyte membrane, and a heat roll is transferred to the transfer film. By sandwiching the electrolyte membrane and the transfer film in conjunction with the feeding, the catalyst layer can be intermittently transferred to at least one surface of the electrolyte membrane at a desired interval.

または、長尺の前記電解質膜を連続的に長さ方向に送り、長尺の前記転写フィルムを間欠的に前記電解質膜と同方向に送り、シールバーが前記転写フィルムの送りに連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写するようにすることができる。   Alternatively, the long electrolyte membrane is continuously fed in the length direction, the long transfer film is intermittently fed in the same direction as the electrolyte membrane, and the seal bar is interlocked with the feed of the transfer film. By sandwiching the electrolyte membrane and the transfer film, the catalyst layer can be transferred intermittently at a desired interval to at least one surface of the electrolyte membrane.

または、長尺の前記電解質膜及び転写フィルムを間欠的に長さ方向に送り、熱スタンパーが前記電解質膜及び転写フィルムの間欠停止に連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写するようにしてもよい。   Alternatively, the long electrolyte membrane and transfer film are intermittently sent in the length direction, and a thermal stamper sandwiches the electrolyte membrane and transfer film in conjunction with intermittent stop of the electrolyte membrane and transfer film, The catalyst layer may be transferred intermittently at a desired interval to at least one surface of the electrolyte membrane.

さらには、サーマルヘッドが前記電解質膜及び転写フィルムを一定の圧力で挟み付けた状態で、長尺の前記電解質膜を連続的に長さ方向に送るとともに、長尺の前記転写フィルムを間欠的に前記電解質膜と同方向に送り、前記サーマルヘッドの温度を前記転写フィルムの送りに連動して上昇させることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写するようにすることもできる。   Furthermore, while the thermal head sandwiches the electrolyte membrane and the transfer film at a constant pressure, the long electrolyte membrane is continuously sent in the length direction, and the long transfer film is intermittently fed. The catalyst layer is intermittently transferred at a desired interval to at least one surface of the electrolyte membrane by feeding in the same direction as the electrolyte membrane and raising the temperature of the thermal head in conjunction with the feed of the transfer film. You can also do it.

また、前記課題を解決するための手段として、本発明に係る固体高分子形燃料電池の製造方法は、電解質膜の両面にそれぞれ触媒層及び電極基材からなる膜・電極接合体と、該膜・電極接合体を挟持する一対のセパレータとを備えた固体高分子形燃料電池の製造方法において、長尺の前記電解質膜を準備する第1の工程と、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを準備する第2の工程と、前記転写フィルムの触媒層が前記電解質膜に面するように、前記電解質膜の少なくとも一方面に前記転写フィルムを配置する第3の工程と、前記転写フィルムの触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写する第4の工程と、前記触媒層上に前記電極基材を積層形成する第5の工程と、前記セパレータにより前記膜・電極接合体を挟持させる第6の工程とを有することを特徴とする。   Further, as a means for solving the above-mentioned problems, the method for producing a polymer electrolyte fuel cell according to the present invention comprises a membrane / electrode assembly comprising a catalyst layer and an electrode substrate on both sides of an electrolyte membrane, and the membrane. In a method for producing a polymer electrolyte fuel cell comprising a pair of separators that sandwich an electrode assembly, a first step of preparing the long electrolyte membrane, and the catalyst on a long base film A second step of preparing a transfer film having a layer formed thereon; and a third step of disposing the transfer film on at least one surface of the electrolyte membrane so that a catalyst layer of the transfer film faces the electrolyte membrane. A fourth step of intermittently transferring the catalyst layer of the transfer film to at least one surface of the electrolyte membrane at a desired interval, and a fifth step of laminating and forming the electrode base material on the catalyst layer And the separate And having a sixth step of sandwiching the membrane electrode assembly by.

また、前記課題を解決するための手段として、本発明に係る第1の膜・触媒層接合体の製造装置は、電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、前記電解質膜及び転写フィルムを挟み付け可能に設置された一対の熱ロールとを備え、前記電解質膜送り部が連続送り駆動であって、前記転写フィルム送り部が間欠送り駆動であり、前記一対の熱ロールが前記転写フィルム送り部の送りに連動して前記電解質膜及び転写フィルムを挟み付ける構成とされていることを特徴とする。   Further, as means for solving the above-mentioned problems, the first apparatus for producing a membrane / catalyst layer assembly according to the present invention comprises a membrane for a polymer electrolyte fuel cell in which catalyst layers are formed on both surfaces of an electrolyte membrane, respectively. In the catalyst layer assembly manufacturing apparatus, the catalyst layer is formed on the long base film on at least one surface side of the electrolyte membrane, and the electrolyte membrane feeding section that sends the long electrolyte membrane in the length direction A transfer film feeding unit that feeds the transferred transfer film in the same direction as the electrolyte membrane, and a pair of heat rolls installed so as to sandwich the electrolyte membrane and the transfer film. The transfer film feed unit is intermittent feed drive, and the pair of heat rolls are configured to sandwich the electrolyte membrane and the transfer film in conjunction with the feed of the transfer film feed unit. And butterflies.

また、前記課題を解決するための手段として、本発明に係る第2の膜・触媒層接合体の製造装置は、電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、前記電解質膜及び転写フィルムを挟み付け可能に設置された一対のシールバーとを備え、前記電解質膜送り部が連続送り駆動であって、前記転写フィルム送り部が間欠送り駆動であり、前記一対のシールバーが前記転写フィルム送り部の送りに連動して前記電解質膜及び転写フィルムを挟み付ける構成とされていることを特徴とする。   Further, as means for solving the above-mentioned problems, the second apparatus for producing a membrane / catalyst layer assembly according to the present invention comprises a membrane for a polymer electrolyte fuel cell in which catalyst layers are formed on both surfaces of an electrolyte membrane, respectively. In the catalyst layer assembly manufacturing apparatus, the catalyst layer is formed on the long base film on at least one surface side of the electrolyte membrane, and the electrolyte membrane feeding section that sends the long electrolyte membrane in the length direction A transfer film feeding section that feeds the transferred transfer film in the same direction as the electrolyte membrane, and a pair of seal bars that can be sandwiched between the electrolyte membrane and the transfer film, and the electrolyte membrane feeding section is continuously fed The transfer film feeding section is intermittently driven, and the pair of seal bars are configured to sandwich the electrolyte membrane and the transfer film in conjunction with the feeding of the transfer film feeding section. The features.

また、前記課題を解決するための手段として、本発明に係る第3の膜・触媒層接合体の製造装置は、電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、前記電解質膜及び転写フィルムを挟み付け可能に設置された一対の熱スタンパーとを備え、前記電解質膜送り部及び転写フィルム送り部が間欠送り駆動であり、前記一対の熱スタンパーが前記電解質膜及び転写フィルムの間欠停止に連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写するように構成されていることを特徴とする。   Moreover, as a means for solving the above-mentioned problem, the third apparatus for producing a membrane / catalyst layer assembly according to the present invention comprises a membrane for a polymer electrolyte fuel cell in which catalyst layers are formed on both surfaces of an electrolyte membrane, respectively. In the catalyst layer assembly manufacturing apparatus, the catalyst layer is formed on the long base film on at least one surface side of the electrolyte membrane, and the electrolyte membrane feeding section that sends the long electrolyte membrane in the length direction A transfer film feeding section for feeding the transferred transfer film in the same direction as the electrolyte membrane, and a pair of thermal stampers installed so as to sandwich the electrolyte membrane and the transfer film, the electrolyte membrane feeding section and the transfer film feeding And the pair of thermal stampers sandwich the electrolyte membrane and the transfer film in conjunction with the intermittent stop of the electrolyte membrane and the transfer film, so that the catalyst layer is electrolyzed. Characterized in that it is configured to intermittently transfer at a desired interval on at least one surface of the film.

また、前記課題を解決するための手段として、本発明に係る第4の膜・触媒層接合体の製造装置は、電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、前記電解質膜及び転写フィルムを一定の圧力で挟み付けている一対のサーマルヘッドとを備え、前記電解質膜送り部が連続送り駆動であって、前記転写フィルム送り部が間欠送り駆動であり、前記一対のサーマルヘッドの温度が転写フィルム送り部の送りに連動して上昇する構成としていることを特徴とする。このとき、前記一対のサーマルヘッドは、電解質膜又は転写フィルムに接触している先端部に複数の発熱体を有しており、該複数の発熱体から選択された発熱体の温度を上昇させることを特徴としてもよい。   Further, as a means for solving the above-mentioned problems, a fourth apparatus for producing a membrane / catalyst layer assembly according to the present invention comprises a membrane for a polymer electrolyte fuel cell in which catalyst layers are respectively formed on both surfaces of an electrolyte membrane. In the catalyst layer assembly manufacturing apparatus, the catalyst layer is formed on the long base film on at least one surface side of the electrolyte membrane, and the electrolyte membrane feeding section that sends the long electrolyte membrane in the length direction A transfer film feeding section for feeding the transferred transfer film in the same direction as the electrolyte membrane, and a pair of thermal heads sandwiching the electrolyte membrane and the transfer film with a constant pressure. Drive, wherein the transfer film feed section is intermittent feed drive, and the temperature of the pair of thermal heads rises in conjunction with the feed of the transfer film feed section. At this time, the pair of thermal heads has a plurality of heating elements at the tip portions in contact with the electrolyte membrane or the transfer film, and raises the temperature of the heating elements selected from the plurality of heating elements. May be a feature.

本発明によれば、電解質膜の少なくとも一方面に所望間隔をおいて断続的に触媒層を転写して形成するので、各触媒層間の触媒層が転写されていない部分を、ガスケット等に嵌合する部位等の電池反応に寄与しない部位とすることができ、比較的高価な材料が使用される触媒層の使用量を減らすことができる。   According to the present invention, the catalyst layer is formed by transferring the catalyst layer intermittently at a desired interval on at least one surface of the electrolyte membrane. Therefore, a portion where the catalyst layer between the catalyst layers is not transferred is fitted to a gasket or the like. Thus, the amount of the catalyst layer in which a relatively expensive material is used can be reduced.

また、熱スタンパーにより、触媒層を電解質膜の少なくとも一方面に転写することで、熱スタンパーの転写面の形状を所望の形状とすることで、電解質膜に転写される触媒層の形状を所望の形状とすることができる。   In addition, by transferring the catalyst layer to at least one surface of the electrolyte membrane with a thermal stamper, the shape of the transfer surface of the thermal stamper is changed to a desired shape, so that the shape of the catalyst layer transferred to the electrolyte membrane can be changed to a desired shape. It can be a shape.

さらに、触媒層を電解質膜の少なくとも一方面に転写するのに、温度の昇降が可能な発熱体を先端に有するサーマルヘッドを用いることにより、電解質膜及び転写フィルムへのサーマルヘッドの加圧を常に一定にしたまま、触媒層を電解質膜の少なくとも一方面に所望間隔をおいて断続的に形成することができる。また、発熱体を複数有し、該複数の発熱体の内、所望の発熱体のみの温度を昇降させることで、温度を上昇させた発熱体に対応する触媒層のみを、電解質膜に転写させることができる等、熱プレス機や転写フィルムの交換を行うことなく、同一の製造工程において形状の異なる触媒層を電解質膜に転写することができる。   Furthermore, by using a thermal head having a heating element capable of raising and lowering the temperature at the tip to transfer the catalyst layer to at least one surface of the electrolyte membrane, the pressure of the thermal head on the electrolyte membrane and the transfer film is always applied. The catalyst layer can be intermittently formed at a desired interval on at least one surface of the electrolyte membrane while being kept constant. In addition, by having a plurality of heating elements and raising or lowering the temperature of only the desired heating element among the plurality of heating elements, only the catalyst layer corresponding to the heating element whose temperature has been raised is transferred to the electrolyte membrane. The catalyst layers having different shapes can be transferred to the electrolyte membrane in the same manufacturing process without exchanging the hot press machine or the transfer film.

以下、本発明に係る固体高分子形燃料電池用膜・触媒層接合体の製造方法、固体高分子形燃料電池の製造方法、及び膜・触媒層接合体の製造装置の実施形態を添付図面に従って説明する。図1は、本実施形態に係る膜・触媒層接合体の製造装置を模式的に示す斜視図であり、図2は、この製造装置の転写状態(a)及び非転写状態(b)における正面図である。図1及び図2に示すように、この製造装置は、熱ロール7(熱プレス機)と、電解質膜供給ロール31及び膜・触媒層接合体巻き取りロール32を有する電解質膜送り部35と、転写フィルム供給ロール33及び基材フィルム巻き取りロール34を有する一対の転写フィルム送り部36とを備える。まず、電解質膜供給ロール31には長尺の電解質膜1が、転写フィルム供給ロール33には基材フィルム5に触媒層3が塗工形成された長尺の転写フィルム2が、それぞれロール状でセットされており、電解質膜1及び転写フィルム2が膜・触媒層接合体巻き取りロール32及び基材フィルム巻き取りロール34にそれぞれ巻き取られるようになっている。このとき、転写フィルム2は、触媒層3が電解質膜1に面するように、電解質膜1の両面にそれぞれ配置されている。そして、このように配置された電解質膜1及び転写フィルム2を各転写フィルム2の背面(基材フィルム5側)から挟み付け可能に、つまり、一対の熱ロール7が電解質膜1及び転写フィルム2を中心に接近・離間が可能となるように配置されている。   Embodiments of a method for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell, a method for producing a polymer electrolyte fuel cell, and a device for producing a membrane / catalyst layer assembly according to the present invention will now be described with reference to the accompanying drawings. explain. FIG. 1 is a perspective view schematically showing a production apparatus for a membrane / catalyst layer assembly according to the present embodiment. FIG. 2 is a front view of the production apparatus in a transfer state (a) and a non-transfer state (b). FIG. As shown in FIGS. 1 and 2, the manufacturing apparatus includes a hot roll 7 (hot press machine), an electrolyte membrane feed unit 35 having an electrolyte membrane supply roll 31 and a membrane / catalyst layer assembly winding roll 32, And a pair of transfer film feeding sections 36 having a transfer film supply roll 33 and a base film take-up roll 34. First, the electrolyte membrane supply roll 31 has a long electrolyte membrane 1, and the transfer film supply roll 33 has a long transfer film 2 in which a catalyst layer 3 is coated on a base film 5. The electrolyte membrane 1 and the transfer film 2 are wound around a membrane / catalyst layer assembly winding roll 32 and a base film winding roll 34, respectively. At this time, the transfer film 2 is disposed on both surfaces of the electrolyte membrane 1 so that the catalyst layer 3 faces the electrolyte membrane 1. Then, the electrolyte membrane 1 and the transfer film 2 arranged in this way can be sandwiched from the back surface (base film 5 side) of each transfer film 2, that is, the pair of heat rolls 7 is provided with the electrolyte membrane 1 and the transfer film 2. It is arranged so that it can approach and separate from the center.

次に、電解質膜1及び転写フィルム2の材質について説明する。電解質膜1は、例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成される。水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、電解質膜1の膜厚は通常20〜250μm程度、好ましくは20〜80μm程度である。   Next, materials for the electrolyte membrane 1 and the transfer film 2 will be described. The electrolyte membrane 1 is formed, for example, by applying a solution containing a hydrogen ion conductive polymer electrolyte on a substrate and drying it. Examples of the hydrogen ion conductive polymer electrolyte include a perfluorosulfonic acid-based fluorine ion exchange resin, more specifically, a perfluorocarbonsulfonic acid-based resin in which the C—H bond of a hydrocarbon ion-exchange membrane is substituted with fluorine. Examples include polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark),“ Gore Select ”(registered trademark) manufactured by Gore, and the like. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition, the film thickness of the electrolyte membrane 1 is about 20-250 micrometers normally, Preferably it is about 20-80 micrometers.

また、転写フィルム2の作製方法は、触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を適当な溶剤に混合、分散して触媒ペーストを作製し、形成される触媒層が所望の膜厚になるように触媒ペーストを公知の方法に従い、必要に応じて離型層を介して基材フィルム5上に塗工するのが良い。触媒ペーストの塗工方法としては、特に限定されるものではなく、例えばスクリーン印刷や、グラビア印刷、ナイフコータ、バーコータ、スプレー、ディップコータ、スピンコータ、ロールコータ、ダイコータ、カーテンコータ等の一般的な方法を適用できる。上記の触媒粒子としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、カソード触媒層に含まれる触媒粒子は白金であり、アノード触媒層に含まれる触媒粒子は前記金属と白金との合金である。また、水素イオン伝導性高分子電解質としては、上述した電解質膜1に使用されるものと同じ材料を使用することができる。また、上記の溶剤としては、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水またはこれらの混合物等が挙げられ、これらの中でもアルコール類が好ましい。アルコール類としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、等の炭素数1〜4の一価アルコール、各種の多価アルコール等が挙げられる。   The transfer film 2 is prepared by mixing and dispersing carbon particles carrying catalyst particles and a hydrogen ion conductive polymer electrolyte in an appropriate solvent to prepare a catalyst paste, and a catalyst layer to be formed is desired. The catalyst paste is preferably coated on the base film 5 through a release layer as necessary according to a known method so as to have a film thickness. The method of applying the catalyst paste is not particularly limited, and for example, general methods such as screen printing, gravure printing, knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, etc. Applicable. Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. In general, the catalyst particles contained in the cathode catalyst layer are platinum, and the catalyst particles contained in the anode catalyst layer are an alloy of the metal and platinum. Moreover, as a hydrogen ion conductive polymer electrolyte, the same material as what is used for the electrolyte membrane 1 mentioned above can be used. Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof. Of these, alcohols are preferable. Examples of alcohols include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and tert-butanol, and various polyhydric alcohols.

また、基材フィルム5としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子フィルムを挙げることができる。   Examples of the base film 5 include polyimide, polyethylene terephthalate, polyparvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate. Examples thereof include polymer films such as phthalate.

また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。   Further, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Fluorine resin can also be used.

さらに基材フィルム5は、高分子フィルム以外にアート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙などの非塗工紙であっても良い。   Furthermore, the base film 5 may be a coated paper such as art paper, coated paper, lightweight coated paper, non-coated paper such as notebook paper, copy paper, etc. in addition to the polymer film.

基材フィルム5の厚さは、取り扱い性及び経済性の観点から通常6〜100μm程度、好ましくは6〜50μm程度、より好ましくは10〜30μm程度とするのがよい。   The thickness of the base film 5 is usually about 6 to 100 μm, preferably about 6 to 50 μm, more preferably about 10 to 30 μm from the viewpoints of handleability and economy.

従って、基材フィルム5としては、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   Therefore, the base film 5 is preferably a polymer film that is inexpensive and easily available, and more preferably polyethylene terephthalate.

そして、基材フィルム5に触媒ペーストを塗工した後、所定の温度及び時間で乾燥することにより転写フィルム2が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは10分〜1時間程度である。   And after apply | coating a catalyst paste to the base film 5, the transfer film 2 is formed by drying at predetermined temperature and time. A drying temperature is about 40-100 degreeC normally, Preferably it is about 60-80 degreeC. Although depending on the drying temperature, the drying time is usually about 5 minutes to 2 hours, preferably about 10 minutes to 1 hour.

次に、上記製造装置による、膜・触媒層接合体の製造方法及び固体高分子形燃料電池の製造方法を図1〜3に従って説明する。まず、図1及び2に示すように、電解質膜供給ロール31及び転写フィルム供給ロール33にセットされた長尺の電解質膜1及び転写フィルム2が同一の長さ方向に送られ、膜・触媒層接合体巻き取りロール32及び基材フィルム巻き取りロール34に巻き取られる。そして、一対の熱ロール7が両転写フィルム2の背面(基材フィルム5側)から所定の圧力で断続的に加圧することにより電解質膜1の両面に転写フィルム2の触媒層3が断続的に転写される。このとき、電解質膜送り部35は、連続送り駆動であって、電解質膜1を常に一定の速度で連続的に送り、その一方で、転写フィルム送り部36は、間欠送り駆動であって、転写フィルム2を断続的に送り、一対の熱ロール7は、転写フィルム送り部36の転写フィルム2の送りに連動して電解質膜1及び転写フィルム2を挟み付け、所定の圧力で加圧する。この熱ロール7の加圧状態、電解質膜送り部35、及び転写フィルム送り部36の送り状態の対応関係を図3(a)に示す。横軸は時間、縦軸は加圧状態又は送り状態のON、OFFを表す。また、この対応関係によって形成される電解質膜1上での触媒層3の位置関係及び転写後の転写フィルム2の状態を表したものを図3(b)及び(c)に示す。これらの図から明らかなように、熱ロール7の加圧状態がONのときには転写フィルム送り部36の送り状態もONであり、また、電解質膜送り部35の送り状態は常にONであるので、このときは、転写フィルム2の触媒層3が電解質膜1上に転写され、膜・触媒層接合体9が製造される(図2(a)参照)。また、熱ロール7の加圧状態がOFFのときには転写フィルム送り部36の送り状態もOFFであり、電解質膜送り部35の送り状態のみがONであるので、各触媒層3間の間隔Sが形成される(図2(b)参照)。   Next, a method for producing a membrane / catalyst layer assembly and a method for producing a polymer electrolyte fuel cell using the production apparatus will be described with reference to FIGS. First, as shown in FIGS. 1 and 2, the long electrolyte membrane 1 and the transfer film 2 set on the electrolyte membrane supply roll 31 and the transfer film supply roll 33 are sent in the same length direction, and the membrane / catalyst layer It is wound around the joined body winding roll 32 and the base film winding roll 34. The pair of heat rolls 7 intermittently pressurize at a predetermined pressure from the back surfaces (base film 5 side) of both transfer films 2, whereby the catalyst layer 3 of the transfer film 2 is intermittently formed on both surfaces of the electrolyte membrane 1. Transcribed. At this time, the electrolyte membrane feed unit 35 is a continuous feed drive, and always feeds the electrolyte membrane 1 continuously at a constant speed, while the transfer film feed unit 36 is an intermittent feed drive, The film 2 is intermittently fed, and the pair of heat rolls 7 sandwich the electrolyte membrane 1 and the transfer film 2 in conjunction with the feed of the transfer film 2 of the transfer film feed unit 36 and pressurize them with a predetermined pressure. FIG. 3A shows a correspondence relationship between the pressurized state of the heat roll 7, the feeding state of the electrolyte membrane feeding unit 35, and the transfer film feeding unit 36. The horizontal axis represents time, and the vertical axis represents ON / OFF of the pressurized state or the feeding state. FIGS. 3B and 3C show the positional relationship of the catalyst layer 3 on the electrolyte membrane 1 formed by this correspondence and the state of the transfer film 2 after transfer. As is clear from these figures, when the heating roller 7 is in the ON state, the transfer film feeding unit 36 is also in the ON state, and the electrolyte membrane feeding unit 35 is always in the ON state. At this time, the catalyst layer 3 of the transfer film 2 is transferred onto the electrolyte membrane 1, and the membrane / catalyst layer assembly 9 is manufactured (see FIG. 2A). In addition, when the pressurization state of the heat roll 7 is OFF, the transfer state of the transfer film feed unit 36 is also OFF, and only the feed state of the electrolyte membrane feed unit 35 is ON. It is formed (see FIG. 2B).

このように電解質膜1の両面に触媒層3が断続的に転写されて各触媒層3間の間隔Sが形成されることにより、膜・触媒層接合体9が複数製造される。このように製造された膜・触媒層接合体9は、膜・触媒層接合体巻き取りロール32に巻き取られる。また、基材フィルム5は、転写後に触媒層3より剥離されて基材フィルム巻き取りロール34にて巻き取られ、回収される。なお、熱ロール7の温度は80〜200℃が好ましく、100〜150℃がさらに好ましく、圧力は0.5〜20MPaが好ましく、1〜10MPaがさらには好ましい。また、電解質膜1及び転写フィルム2の送り速度は0.001〜10m/minが好ましく、0.01〜1m/minがさらには好ましい。   As described above, the catalyst layers 3 are intermittently transferred to both surfaces of the electrolyte membrane 1 to form the spaces S between the catalyst layers 3, whereby a plurality of membrane / catalyst layer assemblies 9 are manufactured. The membrane / catalyst layer assembly 9 manufactured in this way is wound around the membrane / catalyst layer assembly winding roll 32. Moreover, the base film 5 is peeled off from the catalyst layer 3 after the transfer, wound up by the base film winding roll 34, and collected. The temperature of the hot roll 7 is preferably 80 to 200 ° C, more preferably 100 to 150 ° C, and the pressure is preferably 0.5 to 20 MPa, more preferably 1 to 10 MPa. Further, the feeding speed of the electrolyte membrane 1 and the transfer film 2 is preferably 0.001 to 10 m / min, and more preferably 0.01 to 1 m / min.

そして、このようにして製造された複数の膜・触媒層接合体9を、図7に示すように、各膜・触媒層接合体9毎に切り出し、各膜・触媒層接合体9の触媒層3上に電極基材15を積層形成し、膜・電極接合体17を形成する。そして、ガスケット19が間隔Sに嵌合するようにガスケット19を介してセパレータ21で膜・電極接合体19を挟持し、燃料電池23を製造する。なお、上記例では、各膜・触媒層接合体9毎に切り出して膜・電極接合体17を形成し、ガスケット19を介してセパレータ21で膜・電極接合体17を挟持させて燃料電池23を製造しているが、膜・触媒層接合体9を所望の単位毎に切り出して燃料電池23を形成した後に、各燃料電池23を切り出して一つの燃料電池23としても良い。   Then, the plurality of membrane / catalyst layer assemblies 9 manufactured in this way are cut out for each membrane / catalyst layer assembly 9 as shown in FIG. 3, the electrode base material 15 is laminated and formed, and the membrane / electrode assembly 17 is formed. Then, the membrane / electrode assembly 19 is sandwiched by the separator 21 via the gasket 19 so that the gasket 19 fits in the gap S, and the fuel cell 23 is manufactured. In the above example, each membrane / catalyst layer assembly 9 is cut out for each membrane / electrode assembly 17 to form the membrane / electrode assembly 17, and the membrane / electrode assembly 17 is sandwiched by the separator 21 via the gasket 19. Although the fuel cell 23 is formed by cutting out the membrane / catalyst layer assembly 9 for each desired unit, the fuel cells 23 may be cut out to form one fuel cell 23.

以上のように、長尺の電解質膜1を一定の速度で連続的に送り、熱ロール7の加圧を転写フィルム2の背面から断続的に行うので、触媒層3は電解質膜1上に間隔Sを空けて断続的に転写され、複数の膜・触媒層接合体9が製造される。この間隔Sを、ガスケットなどに嵌合する部位等の電池反応に寄与しない部位とすることができる。また、転写フィルム2を熱ロール7の加圧状態がONのときのみに送り、熱ロール7の加圧状態がOFFのときは転写フィルム2の送り状態はOFFとするために、図3(c)に示すように、転写フィルム2上の触媒層3をすべて電解質膜1に転写させ、非転写部位11を各転写部位間13に形成することがないので、比較的高価な材料が使用される触媒層3の使用量を減らすことができ、低コスト化を図ることができる。   As described above, the long electrolyte membrane 1 is continuously fed at a constant speed, and the press of the heat roll 7 is intermittently performed from the back surface of the transfer film 2, so that the catalyst layer 3 is spaced on the electrolyte membrane 1. A plurality of membrane / catalyst layer assemblies 9 are manufactured by intermittently transferring the material with S removed. This space | interval S can be made into the site | parts which do not contribute to battery reaction, such as the site | part fitted to a gasket. Further, since the transfer film 2 is fed only when the pressurization state of the heat roll 7 is ON, and when the pressurization state of the heat roll 7 is OFF, the transfer state of the transfer film 2 is turned OFF, FIG. ), The catalyst layer 3 on the transfer film 2 is entirely transferred to the electrolyte membrane 1, and the non-transfer site 11 is not formed between the transfer sites 13, so that a relatively expensive material is used. The amount of catalyst layer 3 used can be reduced, and the cost can be reduced.

以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、熱プレスを一対の熱ロール7ではなく、ヒートシールなどのシール加工に用いられる一対のシールバーで行うこともできる。また、上記実施形態では、転写フィルム2を電解質膜1の上下に各1つずつ配置しているが、これを図4に示すように、電解質膜1の上下に各2つずつ使用する等転写フィルム2の数を変更することも可能である。こうすることにより、より効率的に膜・触媒層接合体9を製造することができる。また、転写フィルム2が二列の例について説明したが、三列以上の転写フィルム2を並列使用して転写することももちろん可能である。さらには、一列の転写フィルム2を用い、熱ロール7を幅方向に複数設置する等して、一定間隔を設けて複数列の触媒層3を転写し、複数列の膜・触媒層接合体9を形成することも可能である。また、上記実施形態では、電解質膜1の両面に触媒層3を転写させているが、電解質膜1の片方の面にのみ触媒層3を転写してもよい。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change is possible unless it deviates from the meaning. For example, the hot pressing can be performed not by the pair of heat rolls 7 but by a pair of seal bars used for sealing processing such as heat sealing. Moreover, in the said embodiment, although the transfer film 2 is arrange | positioned 1 each on the upper and lower sides of the electrolyte membrane 1, respectively, as shown in FIG. It is also possible to change the number of films 2. By doing so, the membrane / catalyst layer assembly 9 can be more efficiently manufactured. In addition, although an example in which the transfer film 2 has two rows has been described, it is of course possible to transfer using three or more rows of transfer films 2 in parallel. Furthermore, a plurality of rows of catalyst layers 3 are transferred at a constant interval by using a single row of transfer film 2 and a plurality of heat rolls 7 installed in the width direction, etc., and a plurality of rows of membrane / catalyst layer assemblies 9 are transferred. It is also possible to form In the above embodiment, the catalyst layer 3 is transferred to both surfaces of the electrolyte membrane 1, but the catalyst layer 3 may be transferred only to one surface of the electrolyte membrane 1.

また、図5に示すように、熱プレスを一対の熱ロール7ではなく、一対の熱スタンパー71で行うこともできる。この方法では、電解質膜1上に触媒層3を転写させるときは、電解質膜送り部35及び転写フィルム送り部36の送り状態はOFF、つまり停止状態とし、熱スタンパー71の加圧状態をONとする(図5(a))。そして、間隔Sを形成するときは、熱スタンパー71の加圧状態がOFFとなり、電解質膜送り部35は電解質膜1を所望の間隔S分だけ長さ方向に送る。このとき、転写フィルム送り部36の送り状態はOFF即ち停止状態となっている(図5(b))。電解質膜1が間隔S分だけ送られた後に、電解質膜送り部35及び転写フィルム送り部36は電解質膜1及び転写フィルム2を触媒層3の分だけ送った後に送り状態はOFFとなり、その状態で、熱スタンパー7の加圧状態がONとなり、再び電解質膜1に触媒層3が転写される。また、別の方法としては、電解質膜送り部35及び転写フィルム送り部36の送り状態をOFFとし、熱スタンパー71の加圧状態をONとすることにより、電解質膜1上に触媒層3を転写させ、その後、間隔Sを形成するために、熱スタンパー71の加圧状態をOFFとし、電解質膜送り部35の送り速度を転写フィルム送り部36の送り速度より速くし、電解質膜送り部35は、電解質膜1を間隔S及び触媒層3の分だけ長さ方向に送り、転写フィルム送り部36は転写フィルム2を触媒層3の分だけ送る。その後、再び電解質膜送り部35及び転写フィルム送り部36の送り状態をOFFにして静止させた状態で、熱スタンパー71の加圧状態をONにし、電解質膜1上に転写フィルム2の触媒層3を転写させることで、触媒層3を電解質膜1に間隔Sをおいて断続的に転写することができる。   Further, as shown in FIG. 5, the hot pressing can be performed not by the pair of heat rolls 7 but by the pair of heat stampers 71. In this method, when the catalyst layer 3 is transferred onto the electrolyte membrane 1, the feeding state of the electrolyte membrane feeding unit 35 and the transfer film feeding unit 36 is OFF, that is, the stopped state, and the pressurizing state of the thermal stamper 71 is set to ON. (FIG. 5A). And when forming the space | interval S, the pressurization state of the heat stamper 71 becomes OFF, and the electrolyte membrane sending part 35 sends the electrolyte membrane 1 in the length direction by the desired space S. At this time, the feeding state of the transfer film feeding portion 36 is OFF, that is, stopped (FIG. 5B). After the electrolyte membrane 1 has been sent by the interval S, the electrolyte membrane feed unit 35 and the transfer film feed unit 36 are turned off after the electrolyte membrane 1 and the transfer film 2 have been fed by the amount of the catalyst layer 3, Thus, the pressurization state of the thermal stamper 7 is turned ON, and the catalyst layer 3 is transferred to the electrolyte membrane 1 again. As another method, the catalyst layer 3 is transferred onto the electrolyte membrane 1 by turning off the feeding state of the electrolyte membrane feeding unit 35 and the transfer film feeding unit 36 and turning on the pressing state of the thermal stamper 71. Thereafter, in order to form the interval S, the pressurization state of the thermal stamper 71 is turned OFF, the feeding speed of the electrolyte membrane feeding section 35 is made faster than the feeding speed of the transfer film feeding section 36, and the electrolyte membrane feeding section 35 is The electrolyte membrane 1 is fed in the length direction by the distance S and the catalyst layer 3, and the transfer film feed unit 36 feeds the transfer film 2 by the amount of the catalyst layer 3. After that, with the feeding state of the electrolyte membrane feeding unit 35 and the transfer film feeding unit 36 turned off and stationary again, the pressure state of the thermal stamper 71 is turned on, and the catalyst layer 3 of the transfer film 2 is placed on the electrolyte membrane 1. The catalyst layer 3 can be intermittently transferred to the electrolyte membrane 1 with an interval S.

このように熱ロール7の代わりに熱スタンパー71により転写を行うと、熱スタンパー71の形状を所望の形状とするだけで、触媒層3の形状も所望の形状とすることができる。   When the transfer is performed by the heat stamper 71 instead of the heat roll 7 in this way, the shape of the catalyst layer 3 can also be changed to a desired shape only by changing the shape of the heat stamper 71 to a desired shape.

さらには、図6に示すように、熱プレスを熱ロール7の代わりにサーマルヘッド72により行うこともできる。サーマルヘッド72の電解質膜1又は転写フィルム2に接触する先端側に、急速な温度の昇降が可能な複数の発熱体が1次元配列した構造を有している。このサーマルヘッド72を用いた転写方法は、まず、両転写フィルム2の背面から一対のサーマルヘッド72で挟み付け上記所定の圧力で加圧する。そして、サーマルヘッド72の各発熱体の温度を上記所定の温度に上昇させ、電解質膜送り部35及び転写フィルム送り部36が電解質膜1及び転写フィルム2を長さ方向に送り、電解質膜1に転写フィルム2の触媒層3を転写させる。そして、サーマルヘッド72の各発熱体の温度を降下させ、転写フィルム送り部36の送り状態をOFFにし、電解質膜送り部35の送り状態をONにして所望の間隔Sだけ送らせる。この工程を繰り返し、複数の膜・触媒層接合体9を製造する。この転写する際に、複数の発熱体のうち選択された発熱体の温度のみを上昇させることで、温度が上昇している発熱体に対応する部分のみ触媒層3を転写させることが可能となる。こうすることで、熱プレス機や転写フィルムの交換を行うことなく、同一の製造工程において形状の異なる膜・触媒層接合体を容易に製造することができる。当然、複数の発熱体全ての温度を上昇させてもよい。   Furthermore, as shown in FIG. 6, hot pressing can be performed by a thermal head 72 instead of the hot roll 7. The thermal head 72 has a structure in which a plurality of heating elements capable of rapidly raising and lowering the temperature are arranged one-dimensionally on the tip side of the thermal head 72 that contacts the electrolyte membrane 1 or the transfer film 2. In the transfer method using the thermal head 72, first, the pair of thermal heads 72 are sandwiched from the back surfaces of the two transfer films 2 and pressed with the predetermined pressure. Then, the temperature of each heating element of the thermal head 72 is raised to the above predetermined temperature, and the electrolyte membrane feeding unit 35 and the transfer film feeding unit 36 send the electrolyte membrane 1 and the transfer film 2 in the length direction. The catalyst layer 3 of the transfer film 2 is transferred. Then, the temperature of each heating element of the thermal head 72 is lowered, the feeding state of the transfer film feeding unit 36 is turned off, the feeding state of the electrolyte membrane feeding unit 35 is turned on, and the desired interval S is fed. This process is repeated to produce a plurality of membrane / catalyst layer assemblies 9. At the time of this transfer, by raising only the temperature of the selected heating element among the plurality of heating elements, it becomes possible to transfer the catalyst layer 3 only at the portion corresponding to the heating element whose temperature is rising. . By doing so, it is possible to easily manufacture membrane / catalyst layer assemblies having different shapes in the same manufacturing process without exchanging a hot press or a transfer film. Of course, you may raise the temperature of all the some heat generating bodies.

さらに、サーマルヘッド72を用いる別の転写方法として、電解質膜1に転写フィルム2の触媒層3を転写させる際に、上記では電解質膜送り部35及び転写フィルム送り部36が電解質膜1及び転写フィルム2を長さ方向に送りサーマルヘッド72を固定して転写を行っていたが、電解質膜送り部35及び転写フィルム送り部36の送り状態をOFFにし、サーマルヘッド72の発熱体を加圧加熱しつつサーマルヘッド72を移動させることで転写を行うこともできる。   Furthermore, as another transfer method using the thermal head 72, when the catalyst layer 3 of the transfer film 2 is transferred to the electrolyte membrane 1, the electrolyte membrane feed portion 35 and the transfer film feed portion 36 are the electrolyte membrane 1 and the transfer film as described above. 2 is transferred in the length direction, and the thermal head 72 is fixed to perform transfer. However, the feeding state of the electrolyte membrane feeding unit 35 and the transfer film feeding unit 36 is turned off, and the heating element of the thermal head 72 is pressurized and heated. The transfer can also be performed by moving the thermal head 72.

本発明に係る固体高分子形燃料電池用膜・触媒層接合体の製造装置の実施形態を示す斜視図である。1 is a perspective view showing an embodiment of an apparatus for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell according to the present invention. 図1の転写状態での正面図(a)及び非転写状態での正面図(b)である。It is the front view (a) in the transfer state of FIG. 1, and the front view (b) in a non-transfer state. 本実施形態での熱ロールの加圧状態、電解質膜、及び転写フィルムの送り状態の対応関係を表した図(a)、該対応関係によって形成される電解質膜上での触媒層の位置関係を表した平面図(b)、及び転写後の転写フィルムの状態を表した平面図(c)である。The figure (a) showing the correspondence of the pressurization state of the hot roll in this embodiment, the electrolyte membrane, and the transfer state of the transfer film, and the positional relationship of the catalyst layer on the electrolyte membrane formed by the correspondence It is the top view (b) represented, and the top view (c) showing the state of the transfer film after transcription | transfer. 他の実施形態での転写後の転写フィルムの状態を表した平面図(a)及び電解質膜上での触媒層の位置関係を表した平面図(b)である。It is the top view (a) showing the state of the transfer film after transfer in other embodiments, and the top view (b) showing the positional relationship of the catalyst layer on an electrolyte membrane. 本発明に係る固体高分子形燃料電池用膜・触媒層接合体の製造装置の他の実施形態を示す転写状態での正面図(a)及び非転写状態での正面図(b)である。It is the front view (a) in the transfer state which shows other embodiment of the manufacturing apparatus of the membrane / catalyst layer assembly for solid polymer fuel cells concerning the present invention, and the front view (b) in the non-transfer state. 本発明に係る固体高分子形燃料電池用膜・触媒層接合体の製造装置の他の実施形態を示す正面図である。It is a front view which shows other embodiment of the manufacturing apparatus of the membrane / catalyst layer assembly for solid polymer fuel cells concerning the present invention. 本発明に係る固体高分子形燃料電池用膜・触媒層接合体の製造方法の実施形態によって製造される固体高分子形燃料電池を示す正面断面図である。1 is a front cross-sectional view showing a polymer electrolyte fuel cell produced by an embodiment of a method for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell according to the present invention.

符号の説明Explanation of symbols

1 電解質膜
2 転写フィルム
3 触媒層
5 基材フィルム
7 熱ロール
9 膜・触媒層接合体
15 電極基材
17 膜・電極接合体
21 セパレータ
23 固体高分子形燃料電池
35 電解質膜送り部
36 転写フィルム送り部
71 熱スタンパ
72 サーマルヘッド
S 間隔
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Transfer film 3 Catalyst layer 5 Base film 7 Heat roll 9 Membrane / catalyst layer assembly 15 Electrode base material 17 Membrane / electrode assembly 21 Separator 23 Polymer electrolyte fuel cell 35 Electrolyte membrane feed part 36 Transfer film Feeder 71 Thermal stamper 72 Thermal head S Spacing

Claims (11)

電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造方法において、
長尺の前記電解質膜を準備する第1の工程と、
長尺の基材フィルム上に前記触媒層が形成された転写フィルムを準備する第2の工程と、
前記転写フィルムの触媒層が前記電解質膜に面するように、前記電解質膜の少なくとも一方面に前記転写フィルムを配置する第3の工程と、
前記転写フィルムの触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写する第4の工程とを有することを特徴とする膜・触媒層接合体の製造方法。
In the method for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell in which catalyst layers are formed on both sides of the electrolyte membrane,
A first step of preparing a long electrolyte membrane;
A second step of preparing a transfer film in which the catalyst layer is formed on a long base film;
A third step of disposing the transfer film on at least one surface of the electrolyte membrane such that the catalyst layer of the transfer film faces the electrolyte membrane;
And a fourth step of intermittently transferring the catalyst layer of the transfer film to at least one surface of the electrolyte membrane at a desired interval.
前記第4の工程において、長尺の前記電解質膜を連続的に長さ方向に送り、長尺の前記転写フィルムを間欠的に前記電解質膜と同方向に送り、熱ロールが前記転写フィルムの送りに連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写することを特徴とする請求項1に記載の膜・触媒層接合体の製造方法。   In the fourth step, the long electrolyte membrane is continuously fed in the length direction, the long transfer film is intermittently fed in the same direction as the electrolyte membrane, and a hot roll feeds the transfer film. 2. The membrane according to claim 1, wherein the catalyst layer is intermittently transferred at a desired interval to at least one surface of the electrolyte membrane by sandwiching the electrolyte membrane and the transfer film in conjunction with each other. -Manufacturing method of catalyst layer assembly. 前記第4の工程において、長尺の前記電解質膜を連続的に長さ方向に送り、長尺の前記転写フィルムを間欠的に前記電解質膜と同方向に送り、シールバーが前記転写フィルムの送りに連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写することを特徴とする請求項1に記載の膜・触媒層接合体の製造方法。   In the fourth step, the long electrolyte membrane is continuously fed in the length direction, the long transfer film is intermittently fed in the same direction as the electrolyte membrane, and a seal bar feeds the transfer film. 2. The membrane according to claim 1, wherein the catalyst layer is intermittently transferred at a desired interval to at least one surface of the electrolyte membrane by sandwiching the electrolyte membrane and the transfer film in conjunction with each other. -Manufacturing method of catalyst layer assembly. 前記第4の工程において、長尺の前記電解質膜及び転写フィルムを間欠的に長さ方向に送り、熱スタンパーが前記電解質膜及び転写フィルムの間欠停止に連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写することを特徴とする請求項1に記載の膜・触媒層接合体の製造方法。   In the fourth step, the long electrolyte membrane and transfer film are intermittently sent in the length direction, and a thermal stamper sandwiches the electrolyte membrane and transfer film in conjunction with intermittent stop of the electrolyte membrane and transfer film. 2. The method for producing a membrane / catalyst layer assembly according to claim 1, wherein the catalyst layer is intermittently transferred to at least one surface of the electrolyte membrane at a desired interval. 前記第4の工程において、サーマルヘッドが前記電解質膜及び転写フィルムを一定の圧力で挟み付けた状態で、長尺の前記電解質膜を連続的に長さ方向に送るとともに、長尺の前記転写フィルムを間欠的に前記電解質膜と同方向に送り、前記サーマルヘッドの温度を前記転写フィルムの送りに連動して上昇させることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写することを特徴とする請求項1に記載の膜・触媒層接合体の製造方法。   In the fourth step, while the thermal head sandwiches the electrolyte membrane and the transfer film with a constant pressure, the long electrolyte membrane is continuously sent in the length direction, and the long transfer film Are intermittently fed in the same direction as the electrolyte membrane, and the temperature of the thermal head is raised in conjunction with the feed of the transfer film, so that the catalyst layer is spaced at least on one surface of the electrolyte membrane. The method for producing a membrane / catalyst layer assembly according to claim 1, wherein the transfer is performed intermittently. 電解質膜の両面にそれぞれ触媒層及び電極基材からなる膜・電極接合体と、該膜・電極接合体を挟持する一対のセパレータとを備えた固体高分子形燃料電池の製造方法において、
長尺の前記電解質膜を準備する第1の工程と、
長尺の基材フィルム上に前記触媒層が形成された転写フィルムを準備する第2の工程と、
前記転写フィルムの触媒層が前記電解質膜に面するように、前記電解質膜の少なくとも一方面に前記転写フィルムを配置する第3の工程と、
前記転写フィルムの触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写する第4の工程と、
前記触媒層上に前記電極基材を積層形成する第5の工程と、
前記セパレータにより前記膜・電極接合体を挟持させる第6の工程とを有することを特徴とする固体高分子形燃料電池の製造方法。
In a method for producing a polymer electrolyte fuel cell comprising a membrane / electrode assembly comprising a catalyst layer and an electrode substrate on each side of an electrolyte membrane, and a pair of separators sandwiching the membrane / electrode assembly,
A first step of preparing a long electrolyte membrane;
A second step of preparing a transfer film in which the catalyst layer is formed on a long base film;
A third step of disposing the transfer film on at least one surface of the electrolyte membrane such that the catalyst layer of the transfer film faces the electrolyte membrane;
A fourth step of intermittently transferring the catalyst layer of the transfer film to at least one surface of the electrolyte membrane at a desired interval;
A fifth step of laminating and forming the electrode base material on the catalyst layer;
And a sixth step of sandwiching the membrane-electrode assembly by the separator. A method for producing a polymer electrolyte fuel cell, comprising:
電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、
長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、
前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、
前記電解質膜及び転写フィルムを挟み付け可能に設置された一対の熱ロールとを備え、
前記電解質膜送り部が連続送り駆動であって、前記転写フィルム送り部が間欠送り駆動であり、前記一対の熱ロールが前記転写フィルム送り部の送りに連動して前記電解質膜及び転写フィルムを挟み付ける構成とされていることを特徴とする膜・触媒層接合体の製造装置。
In an apparatus for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell in which catalyst layers are formed on both surfaces of an electrolyte membrane,
An electrolyte membrane feed section for feeding the long electrolyte membrane in the length direction;
A transfer film feeding section for feeding a transfer film in which the catalyst layer is formed on a long base film in the same direction as the electrolyte membrane on at least one surface side of the electrolyte membrane;
A pair of heat rolls installed so as to be able to sandwich the electrolyte membrane and the transfer film,
The electrolyte membrane feed unit is a continuous feed drive, the transfer film feed unit is an intermittent feed drive, and the pair of heat rolls sandwich the electrolyte membrane and the transfer film in conjunction with the feed of the transfer film feed unit. An apparatus for producing a membrane / catalyst layer assembly, characterized in that it is configured to be attached.
電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、
長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、
前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、
前記電解質膜及び転写フィルムを挟み付け可能に設置された一対のシールバーとを備え、
前記電解質膜送り部が連続送り駆動であって、前記転写フィルム送り部が間欠送り駆動であり、前記一対のシールバーが前記転写フィルム送り部の送りに連動して前記電解質膜及び転写フィルムを挟み付ける構成とされていることを特徴とする膜・触媒層接合体の製造装置。
In an apparatus for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell in which catalyst layers are formed on both surfaces of an electrolyte membrane,
An electrolyte membrane feed section for feeding the long electrolyte membrane in the length direction;
A transfer film feeding section for feeding a transfer film in which the catalyst layer is formed on a long base film in the same direction as the electrolyte membrane on at least one surface side of the electrolyte membrane;
A pair of seal bars installed so as to be able to sandwich the electrolyte membrane and the transfer film,
The electrolyte membrane feed unit is a continuous feed drive, the transfer film feed unit is an intermittent feed drive, and the pair of seal bars sandwich the electrolyte membrane and the transfer film in conjunction with the feed of the transfer film feed unit. An apparatus for producing a membrane / catalyst layer assembly, characterized in that it is configured to be attached.
電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、
長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、
前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、
前記電解質膜及び転写フィルムを挟み付け可能に設置された一対の熱スタンパーとを備え、
前記電解質膜送り部及び転写フィルム送り部が間欠送り駆動であり、前記一対の熱スタンパーが前記電解質膜及び転写フィルムの間欠停止に連動して前記電解質膜及び転写フィルムを挟み付けることで、前記触媒層を前記電解質膜の少なくとも一方面に所望間隔をおいて断続的に転写するように構成されていることを特徴とする膜・触媒層接合体の製造装置。
In an apparatus for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell in which catalyst layers are formed on both surfaces of an electrolyte membrane,
An electrolyte membrane feed section for feeding the long electrolyte membrane in the length direction;
A transfer film feeding section for feeding a transfer film in which the catalyst layer is formed on a long base film in the same direction as the electrolyte membrane on at least one surface side of the electrolyte membrane;
A pair of thermal stampers installed so as to be able to sandwich the electrolyte membrane and the transfer film,
The electrolyte membrane feeding unit and the transfer film feeding unit are intermittently fed, and the pair of thermal stampers sandwich the electrolyte membrane and the transfer film in conjunction with the intermittent stop of the electrolyte membrane and the transfer film, whereby the catalyst An apparatus for producing a membrane / catalyst layer assembly, wherein the layer is intermittently transferred to at least one surface of the electrolyte membrane at a desired interval.
電解質膜の両面にそれぞれ触媒層を形成した固体高分子形燃料電池用膜・触媒層接合体の製造装置において、
長尺の前記電解質膜を長さ方向に送る電解質膜送り部と、
前記電解質膜の少なくとも一方面側に、長尺の基材フィルム上に前記触媒層が形成された転写フィルムを前記電解質膜と同方向に送る転写フィルム送り部と、
前記電解質膜及び転写フィルムを一定の圧力で挟み付けている一対のサーマルヘッドとを備え、
前記電解質膜送り部が連続送り駆動であって、前記転写フィルム送り部が間欠送り駆動であり、前記一対のサーマルヘッドの温度が転写フィルム送り部の送りに連動して上昇する構成としていることを特徴とする膜・触媒層接合体の製造装置。
In an apparatus for producing a membrane / catalyst layer assembly for a polymer electrolyte fuel cell in which a catalyst layer is formed on each side of an electrolyte membrane,
An electrolyte membrane feed section for feeding the long electrolyte membrane in the length direction;
A transfer film feeding section for feeding a transfer film in which the catalyst layer is formed on a long base film in the same direction as the electrolyte membrane on at least one surface side of the electrolyte membrane;
A pair of thermal heads sandwiching the electrolyte membrane and the transfer film at a constant pressure,
The electrolyte membrane feed unit is a continuous feed drive, the transfer film feed unit is an intermittent feed drive, and the temperature of the pair of thermal heads rises in conjunction with the feed of the transfer film feed unit. An apparatus for producing a membrane / catalyst layer assembly.
前記一対のサーマルヘッドは、電解質膜又は転写フィルムに接触している先端部に複数の発熱体を有しており、該複数の発熱体から選択された発熱体の温度を上昇させることを特徴とする請求項5に記載の膜・触媒層接合体の製造装置。   The pair of thermal heads includes a plurality of heating elements at a tip portion in contact with the electrolyte membrane or the transfer film, and raises the temperature of the heating element selected from the plurality of heating elements. The apparatus for producing a membrane / catalyst layer assembly according to claim 5.
JP2004378481A 2004-12-28 2004-12-28 Method for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell, method for producing polymer electrolyte fuel cell, and apparatus for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell Expired - Fee Related JP5017776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378481A JP5017776B2 (en) 2004-12-28 2004-12-28 Method for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell, method for producing polymer electrolyte fuel cell, and apparatus for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378481A JP5017776B2 (en) 2004-12-28 2004-12-28 Method for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell, method for producing polymer electrolyte fuel cell, and apparatus for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2006185762A true JP2006185762A (en) 2006-07-13
JP5017776B2 JP5017776B2 (en) 2012-09-05

Family

ID=36738720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378481A Expired - Fee Related JP5017776B2 (en) 2004-12-28 2004-12-28 Method for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell, method for producing polymer electrolyte fuel cell, and apparatus for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5017776B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250477A (en) * 2006-03-17 2007-09-27 Dainippon Printing Co Ltd Transcription device and transcription method
JP2009016172A (en) * 2007-07-04 2009-01-22 Nissan Motor Co Ltd Membrane electrode conjugant and its manufacturing method
JP2009037916A (en) * 2007-08-02 2009-02-19 Toyota Motor Corp A pair of heating and pressing roll, catalyst layer continuous transcription roll press device for fuel cell, and fuel cell membrane-electrode assembly (mea) manufactured by catalyst layer continuous transcription roll press device for fuel cell, and the mea manufacturing method using the roll press
JP2009043549A (en) * 2007-08-08 2009-02-26 Nissan Motor Co Ltd Device and method for manufacturing membrane electrode assembly, and manufacturing method of membrane electrode assembly
JP2009064634A (en) * 2007-09-05 2009-03-26 Nissan Motor Co Ltd Manufacturing device of membrane electrode conjugant, and manufacturing method of membrane electrode conjugant
JP2010514099A (en) * 2006-12-15 2010-04-30 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for fabricating a roll product type fuel cell subassembly
JP2010182563A (en) * 2009-02-06 2010-08-19 Dainippon Printing Co Ltd Device and method for manufacturing membrane catalyst layer assembly, as well as device and method for manufacturing membrane electrode assembly
JP2010205676A (en) * 2009-03-05 2010-09-16 Toppan Printing Co Ltd Membrane-electrode assembly and method for manufacturing the same, and polymer electrolyte fuel cell
JP2010225421A (en) * 2009-03-24 2010-10-07 Toppan Printing Co Ltd Method of manufacturing junction structure of catalyst layer and electrolyte membrane for fuel cell member
WO2011118244A1 (en) 2010-03-26 2011-09-29 凸版印刷株式会社 Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
CN102529303A (en) * 2011-12-31 2012-07-04 武汉理工大学 Two-sided automatic-alignment intermittent thin film coating method
WO2012124518A1 (en) 2011-03-15 2012-09-20 凸版印刷株式会社 Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2014060167A (en) * 2013-11-11 2014-04-03 Dainippon Printing Co Ltd Device and method for manufacturing membrane catalyst layer assembly, and device and method for manufacturing membrane electrode assembly
GB2507841A (en) * 2012-11-07 2014-05-14 Intelligent Energy Ltd Fuel cell assembly
CN105633335A (en) * 2015-12-25 2016-06-01 广东基泰智能设备有限公司 Film-coating apparatus
CN105845896A (en) * 2016-05-16 2016-08-10 广东基泰智能设备有限公司 Split rolling one-time lamination lithium supplement device
CN105845897A (en) * 2016-05-16 2016-08-10 广东基泰智能设备有限公司 Split-rolling and split-combining lithium supplement device
US9640823B2 (en) 2008-09-22 2017-05-02 Toppan Printing Co., Ltd. Manufacturing method of membrane electrode assembly
CN113517459A (en) * 2021-09-14 2021-10-19 山东华滋自动化技术股份有限公司 Process for producing membrane electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458564B1 (en) 2020-10-13 2022-10-25 한국기계연구원 Apparatus and method for manufacturing membrane-electrode assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064574A (en) * 1996-08-26 1998-03-06 Fuji Electric Co Ltd Manufacture of solid high polymer electrolyte type fuel cell
JP2001196070A (en) * 2000-01-12 2001-07-19 Toyota Motor Corp Device and method for manufacturing bonded structure
JP2001236971A (en) * 2000-02-24 2001-08-31 Fuji Electric Co Ltd Method of producing solid high polymer fuel cell
JP2003132899A (en) * 2001-10-30 2003-05-09 Matsushita Electric Ind Co Ltd Method and device for forming fuel cell electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064574A (en) * 1996-08-26 1998-03-06 Fuji Electric Co Ltd Manufacture of solid high polymer electrolyte type fuel cell
JP2001196070A (en) * 2000-01-12 2001-07-19 Toyota Motor Corp Device and method for manufacturing bonded structure
JP2001236971A (en) * 2000-02-24 2001-08-31 Fuji Electric Co Ltd Method of producing solid high polymer fuel cell
JP2003132899A (en) * 2001-10-30 2003-05-09 Matsushita Electric Ind Co Ltd Method and device for forming fuel cell electrode

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250477A (en) * 2006-03-17 2007-09-27 Dainippon Printing Co Ltd Transcription device and transcription method
JP2010514099A (en) * 2006-12-15 2010-04-30 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for fabricating a roll product type fuel cell subassembly
JP2009016172A (en) * 2007-07-04 2009-01-22 Nissan Motor Co Ltd Membrane electrode conjugant and its manufacturing method
JP2009037916A (en) * 2007-08-02 2009-02-19 Toyota Motor Corp A pair of heating and pressing roll, catalyst layer continuous transcription roll press device for fuel cell, and fuel cell membrane-electrode assembly (mea) manufactured by catalyst layer continuous transcription roll press device for fuel cell, and the mea manufacturing method using the roll press
JP2009043549A (en) * 2007-08-08 2009-02-26 Nissan Motor Co Ltd Device and method for manufacturing membrane electrode assembly, and manufacturing method of membrane electrode assembly
JP2009064634A (en) * 2007-09-05 2009-03-26 Nissan Motor Co Ltd Manufacturing device of membrane electrode conjugant, and manufacturing method of membrane electrode conjugant
US9640823B2 (en) 2008-09-22 2017-05-02 Toppan Printing Co., Ltd. Manufacturing method of membrane electrode assembly
JP2010182563A (en) * 2009-02-06 2010-08-19 Dainippon Printing Co Ltd Device and method for manufacturing membrane catalyst layer assembly, as well as device and method for manufacturing membrane electrode assembly
JP2010205676A (en) * 2009-03-05 2010-09-16 Toppan Printing Co Ltd Membrane-electrode assembly and method for manufacturing the same, and polymer electrolyte fuel cell
JP2010225421A (en) * 2009-03-24 2010-10-07 Toppan Printing Co Ltd Method of manufacturing junction structure of catalyst layer and electrolyte membrane for fuel cell member
WO2011118244A1 (en) 2010-03-26 2011-09-29 凸版印刷株式会社 Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
CN103460470A (en) * 2011-03-15 2013-12-18 凸版印刷株式会社 Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP5942982B2 (en) * 2011-03-15 2016-06-29 凸版印刷株式会社 Method and apparatus for producing membrane / electrode assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell
WO2012124518A1 (en) 2011-03-15 2012-09-20 凸版印刷株式会社 Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
CN102529303A (en) * 2011-12-31 2012-07-04 武汉理工大学 Two-sided automatic-alignment intermittent thin film coating method
US9768464B2 (en) 2012-11-07 2017-09-19 Intelligent Energy Limited Fuel cell components
GB2507841A (en) * 2012-11-07 2014-05-14 Intelligent Energy Ltd Fuel cell assembly
JP2014060167A (en) * 2013-11-11 2014-04-03 Dainippon Printing Co Ltd Device and method for manufacturing membrane catalyst layer assembly, and device and method for manufacturing membrane electrode assembly
CN105633335A (en) * 2015-12-25 2016-06-01 广东基泰智能设备有限公司 Film-coating apparatus
CN105633335B (en) * 2015-12-25 2019-01-08 宁德时代新能源科技股份有限公司 Film covering device
CN105845897A (en) * 2016-05-16 2016-08-10 广东基泰智能设备有限公司 Split-rolling and split-combining lithium supplement device
CN105845896B (en) * 2016-05-16 2018-07-13 宁德时代新能源科技股份有限公司 Split calendering disposable film covering lithium supplementing device
CN105845897B (en) * 2016-05-16 2018-07-13 宁德时代新能源科技股份有限公司 Split calendering split composite lithium supplementing device
CN105845896A (en) * 2016-05-16 2016-08-10 广东基泰智能设备有限公司 Split rolling one-time lamination lithium supplement device
CN113517459A (en) * 2021-09-14 2021-10-19 山东华滋自动化技术股份有限公司 Process for producing membrane electrode

Also Published As

Publication number Publication date
JP5017776B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5017776B2 (en) Method for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell, method for producing polymer electrolyte fuel cell, and apparatus for producing membrane / catalyst layer assembly for polymer electrolyte fuel cell
KR101479627B1 (en) Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
US20140011116A1 (en) Manufacturing method and apparatus for membrane electrode assembly, and polymer electrolyte fuel cell
JP5552766B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate production method, and edge-sealed catalyst layer-electrolyte membrane laminate production method
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
CN100444436C (en) Process for manufacturing a catalyst-coated polymer electrolyte membrane
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP2006024556A (en) Fuel cell, junction of electrode and electrolyte membrane, electrode substrate with catalyst layer, process of manufacturing same, and transfer sheet
JP2013543222A (en) Hot pressed direct deposition catalyst layer
JP5082239B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP4824946B2 (en) Electrolyte membrane with protective film and production method thereof.
JP4538683B2 (en) Catalyst layer forming sheet for fuel cell, method for producing the sheet, and method for producing catalyst layer-electrolyte membrane laminate
JP2006244930A (en) Manufacturing method and manufacturing device of electrolyte membrane -catalyst layer junction for solid polymer fuel cell
JP5375898B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
JP2005317492A (en) Fuel cell, electrode-electrolyte film assembly, electrode substrate with catalyst layer, those process of manufacturing, and transcription sheet
JP5304132B2 (en) Manufacturing method of membrane electrode assembly
JP4538684B2 (en) Catalyst layer forming sheet for fuel cell, catalyst layer-electrolyte membrane laminate, and production method thereof
JP5957930B2 (en) Membrane / electrode assembly manufacturing method for polymer electrolyte fuel cell, membrane / electrode assembly manufacturing apparatus for polymer electrolyte fuel cell
JP4538692B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
JP2012074315A (en) Membrane electrode assembly of solid polymer fuel cell, and manufacturing method of the same
JP2007265733A (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, and manufacturing method of them
KR20170052039A (en) Fuelcell Membrane-Electrode Assembly and Method of Manufacturing The Same
JP2008077986A (en) Transfer method of catalyst layer for solid polymer fuel cell and electrolyte membrane-catalyst layer assembly
JP2013109950A (en) Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP2009187872A (en) Method of manufacturing membrane-electrode assembly for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees