JP2006185637A - Electrostatic deflector and electron beam device using it - Google Patents

Electrostatic deflector and electron beam device using it Download PDF

Info

Publication number
JP2006185637A
JP2006185637A JP2004375041A JP2004375041A JP2006185637A JP 2006185637 A JP2006185637 A JP 2006185637A JP 2004375041 A JP2004375041 A JP 2004375041A JP 2004375041 A JP2004375041 A JP 2004375041A JP 2006185637 A JP2006185637 A JP 2006185637A
Authority
JP
Japan
Prior art keywords
electrostatic deflector
electron beam
electrode
electrode piece
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375041A
Other languages
Japanese (ja)
Other versions
JP4614760B2 (en
Inventor
Yutaka Kudo
裕 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004375041A priority Critical patent/JP4614760B2/en
Publication of JP2006185637A publication Critical patent/JP2006185637A/en
Application granted granted Critical
Publication of JP4614760B2 publication Critical patent/JP4614760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic deflector and an electron beam device in which adjustment is not needed in assembling and disassembling, and in which repeated and highly precise positioning precision is enabled. <P>SOLUTION: In the electrostatic deflector 1 which is composed of a non-magnetic conductor and a cylindrical supporting body 5 wherein a plurality of recessed grooves 4 opened at the center axis side along the longitudinal direction are formed with an equal spacing, and which is composed a plurality of electrode pieces 6 that are arranged in the recessed grooves 4 and where a conductive film is formed on the center axis side surface, side walls 4a of the recessed grooves 4 are slanted, and the electrode pieces 6 have slanted parts 6a matching with the side walls 4a of the recessed grooves 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子線装置に用いられる電子光学系におけるレンズ、アパーチャなどの静電偏向器に関し、特に、電子線装置に配置されている電子光学系の光学要素を高い位置決め精度で保持できる静電偏向器、およびそれを用いた電子線装置に関する。   The present invention relates to an electrostatic deflector such as a lens or an aperture in an electron optical system used in an electron beam apparatus, and more particularly to an electrostatic deflector that can hold an optical element of the electron optical system arranged in the electron beam apparatus with high positioning accuracy. The present invention relates to a deflector and an electron beam apparatus using the deflector.

一般的に、電子線装置は、電子線を放出する電子銃、電子銃からの電子線を集束して試料に照射するための静電偏向器からなる一次電子光学系、試料からの二次電子を検出器に入射させる二次電子光学系、及び二次電子を検出する装置などを備えている。   In general, an electron beam apparatus includes an electron gun that emits an electron beam, a primary electron optical system that includes an electrostatic deflector that focuses the electron beam from the electron gun and irradiates the sample, and secondary electrons from the sample. Are provided with a secondary electron optical system that makes the light incident on the detector, a device for detecting secondary electrons, and the like.

従来、上記静電偏向器は、内周には長手方向に沿って、複数の電極部を形成し、該電極部の表面は高精度の真円度及び同軸度で加工されていた。そして、上記電極を精度よく加工する為に、静電偏向器は、高精度のはめあい公差加工された筒状の部品に、高精度に仕上げた複数の光学要素を個々に挿入して、光学要素自体を一段ずつ積み重ねて、段毎の調整を行いながら積み重ねることにより、それぞれの光学要素を相互に高精度に位置決めを行うことで、長尺な静電偏向器を構成するものであった。   Conventionally, the electrostatic deflector is formed with a plurality of electrode portions along the longitudinal direction on the inner periphery, and the surface of the electrode portions is processed with high accuracy roundness and coaxiality. In order to process the electrode with high accuracy, the electrostatic deflector inserts a plurality of high-precision finished optical elements individually into a cylindrical part that has been processed with high-precision fitting tolerance. By stacking themselves one by one and stacking them while adjusting each stage, the respective optical elements are positioned with high accuracy to form a long electrostatic deflector.

しかしながら、上述のような加工精度に頼る方法では要求される精度を現状の機械加工精度で達成することが困難であるという問題、及びはめあい公差を厳しくすると僅かな加工誤差でも筒状の部材から光学要素を組み付けることや、筒状体の部材から光学要素を取り外すことが困難であった。上記方法とは別に、筒状の部材と光学要素とのはめあい公差を緩くして、組立時に半径方向からの位置決め調整を可能とするような方法も考えられるが、そのような調整は手間がかかり非効率的で、個々の光学要素に対して行うことは大きな労力と時間とを要することになる。また、精度を維持できても、メンテナンスを行う必要が生じた際に、分解した後に再組立を行った場合に分解前の精度を再現することは大変困難であった。   However, it is difficult to achieve the required accuracy with the current machining accuracy by the method that relies on the machining accuracy as described above, and if the fitting tolerance is tightened, even if a slight machining error is required, it is possible to optically It was difficult to assemble the elements and remove the optical elements from the cylindrical member. In addition to the above method, a method is also conceivable in which the fitting tolerance between the cylindrical member and the optical element is loosened so that positioning adjustment from the radial direction can be performed at the time of assembly. However, such adjustment takes time and effort. It is inefficient and takes a lot of effort and time to do with each individual optical element. Even if the accuracy can be maintained, it is very difficult to reproduce the accuracy before disassembly when reassembly is performed after disassembly when maintenance is required.

一方、近年において、例えば、シリコンウエハに電子線を照射して回路を形成する場合、シリコンウエハ上に描画する線などが、ますます微細化するに従い、描画精度を高精度に制御する電子線装置が要求されるようになっている。   On the other hand, in recent years, for example, when forming a circuit by irradiating a silicon wafer with an electron beam, an electron beam apparatus that controls the drawing accuracy with high precision as the lines drawn on the silicon wafer become increasingly finer. Is now required.

従って、電子線装置に設けられる各光学要素相互の位置決め精度についても極めて高い精度が必要となってきている。しかしながら、上述のような加工精度に頼る方法では、要求される精度を現状の機械加工精度で達成することが困難であるという問題があった。また、はめあい公差を厳しくすると、僅かな加工誤差でも筒状の部材に光学要素を組み付けることや、筒状の部材から光学要素を取り外すことは困難であった。   Therefore, extremely high accuracy is required for the positioning accuracy between the optical elements provided in the electron beam apparatus. However, the method that relies on the machining accuracy as described above has a problem that it is difficult to achieve the required accuracy with the current machining accuracy. In addition, when fitting tolerances are tightened, it is difficult to assemble an optical element to a cylindrical member or remove an optical element from the cylindrical member even with a slight processing error.

そこで、これらを解決する方法として、特許文献1には、複数の光学要素を収納する筒体が円周方向に等間隔に3分割して構成するとともに、各分割点を保持する保持器に設けられたボルトによって加工前の光学要素を3点保持した後、光学要素の光軸加工を行うとともに、光学要素をマーキングした後、筒体から光学要素を取り外して電極形成等の後処理を行い、その後、再度、筒体の保持器に光学要素を挿入して3点にて微調整を行う光学要素組立方法が提案されている。
特開2002−341216号公報
Therefore, as a method for solving these problems, Patent Document 1 discloses that a cylindrical body that stores a plurality of optical elements is divided into three parts at equal intervals in the circumferential direction, and is provided in a cage that holds each division point. After holding the optical element before processing by three bolts, the optical axis of the optical element is processed, and after marking the optical element, the optical element is removed from the cylinder and post-processing such as electrode formation is performed. Thereafter, an optical element assembling method is proposed in which the optical element is inserted into the cylindrical holder again and fine adjustment is performed at three points.
JP 2002-341216 A

しかしながら、上述したように高精度の真円度、同軸度で加工するために、一般的な光学要素の位置決めは、高精度のはめあい公差にて加工された部品に挿入することにより行われ、また、作業者が一段ずつ精度を確認しながら積み上げ式に組み立てるので、各々の光学要素の位置決めに関しては、熟練者による組立技術が必要で、組立にも時間がかかるものであった。   However, as described above, in order to process with high precision roundness and coaxiality, the positioning of a general optical element is performed by inserting it into a part processed with high precision fitting tolerance, and Since the workers are assembled in a stacked manner while checking the accuracy one by one, the positioning of each optical element requires an assembling technique by an expert and takes time for assembly.

これに対して、位置決め精度を高くしようとすると、高精度のはめあい公差を、より一層厳しくする必要があるが、はめあい公差を厳しくすると、組立や分解の作業時に噛み込みが生じるといった課題があった。また、金属製や樹脂の筒体や光学要素であれば、組立時の変形が懸念されていた。   On the other hand, when trying to increase the positioning accuracy, it is necessary to further tighten the tolerance of high precision, but if the tolerance of tightness is tightened, there is a problem that biting occurs during assembly or disassembly work. . Moreover, if it is a metal or resin cylinder or an optical element, there has been a concern about deformation during assembly.

さらに、近年において、評価されるべき対象物が高度に微細化されることにより、ますます高度な検出精度を有する装置が要求され、単純に熟練者の精度に負うのではなく、誰でもが簡易に組み立てる方法が望まれていた。   Furthermore, in recent years, an object to be evaluated is highly miniaturized, and thus an apparatus having an increasingly higher detection accuracy is required. The method of assembling was desired.

上記特許文献1のような光学要素の組立方法によれば、光学要素を保持、光軸加工を経て再度光学要素を筒体に組み込むようにしているために、作業が繁雑となるばかりか、3点で微調整を行うので精度が出ないといった課題があった。また、光学要素の内周面に金属膜などで独立した電極部を形成することは非常に困難であるという課題もあった。   According to the assembling method of the optical element as described in Patent Document 1, since the optical element is held, and after the optical axis processing, the optical element is incorporated into the cylinder again, the work becomes complicated. There is a problem that accuracy is not obtained because fine adjustment is performed in terms of points. In addition, there is a problem that it is very difficult to form an independent electrode portion with a metal film or the like on the inner peripheral surface of the optical element.

本発明は上述の課題に鑑みて案出されたものであり、電子光学系における複数の光学要素相互の高度な位置決め精度を簡易な構成で実現することができる電子線装置用の光学要素組立体及びその組立方法を提供することにある。   The present invention has been devised in view of the above-described problems, and an optical element assembly for an electron beam apparatus capable of realizing high positioning accuracy among a plurality of optical elements in an electron optical system with a simple configuration. And an assembly method thereof.

また、本発明の他の目的は、上記のような光学要素組立体を備えた良好な描画精度や検出精度を有する電子線装置を提供することにある。   Another object of the present invention is to provide an electron beam apparatus having good drawing accuracy and detection accuracy provided with the optical element assembly as described above.

そこで、本発明者は上記課題を鑑み、本発明の静電偏向器は内周面の長手方向に沿って中心軸側に開口する複数の凹溝が等間隔に形成された非磁性の導体からなる筒状の支持体と、表面に導電膜が形成され、該電極膜が中心軸に向うように上記複数の凹溝内にそれぞれ配置される電極片とからなる静電偏向器において、上記凹溝の側壁が傾斜状に形成されるとともに、上記電極片の側壁に上記凹溝の側壁に合致する傾斜部が形成されていることを特徴とするものである。   Therefore, in view of the above problems, the inventor of the present invention is an electrostatic deflector according to the present invention, which is made of a nonmagnetic conductor in which a plurality of concave grooves that open toward the central axis along the longitudinal direction of the inner peripheral surface are formed at equal intervals. An electrostatic deflector comprising: a cylindrical support comprising: a conductive film formed on a surface thereof; and an electrode piece disposed in each of the plurality of concave grooves so that the electrode film faces the central axis. The groove side wall is formed in an inclined shape, and an inclined portion that matches the side wall of the concave groove is formed on the side wall of the electrode piece.

また、本発明の静電偏向器は、上記凹溝の開口面積が、底部の面積よりも大きいことを特徴とするものである。   The electrostatic deflector according to the present invention is characterized in that an opening area of the concave groove is larger than an area of the bottom portion.

さらに、本発明の静電偏向器は、上記凹溝の底部と上記電極片との間に微小隙間を有することを特徴とするものである。   Furthermore, the electrostatic deflector of the present invention is characterized in that a minute gap is provided between the bottom of the concave groove and the electrode piece.

またさらに、本発明の静電偏向器は、上記電極片が、アルミナ質焼結体からなる基体と、該基体の表面に導電膜を形成してなることを特徴とするものである。   Furthermore, the electrostatic deflector of the present invention is characterized in that the electrode piece is formed by forming a base made of an alumina sintered body and a conductive film on the surface of the base.

そして、本発明の電子線装置は上記静電偏向器を用いたことを特徴とするものである。   The electron beam apparatus of the present invention is characterized by using the electrostatic deflector.

本発明の構成によれば、上記凹溝の側壁が傾斜状に形成されるとともに、上記電極片の側壁に上記凹溝の側壁に合致する傾斜部が形成されていることから、組立時間が非常に短縮でき、且つ、分解、組立を繰り返しても精度良く組立ができる。特に複数の電極の位置決め精度を高精度に維持でき、簡易な構成で実現可能な静電偏向器を提供することができる。   According to the configuration of the present invention, the side wall of the concave groove is formed in an inclined shape, and the inclined portion that matches the side wall of the concave groove is formed on the side wall of the electrode piece. And can be assembled with high accuracy even after repeated disassembly and assembly. In particular, it is possible to provide an electrostatic deflector that can maintain the positioning accuracy of a plurality of electrodes with high accuracy and can be realized with a simple configuration.

また、前記複数の電極の位置決めを容易にすることで、メンテナンスを行う必要が生じる等の理由で、分解した後に再組立を行った場合でも、安定した繰り返し組立と分解を実現でき、熟練者でなくとも作業が容易とすることができる。   In addition, by positioning the plurality of electrodes easily, stable reassembly and disassembly can be realized even when reassembly is performed after disassembly for reasons such as the need for maintenance. Even if not, the operation can be facilitated.

また、電極片がアルミナ質焼結体からなる基体を有することから、組立や分解時においても変形することがなく、摩耗による精度劣化が少なく、さらに熱がかかっても変形量を小さく抑えることが可能な静電偏向器を提供することができる。   In addition, since the electrode piece has a substrate made of an alumina sintered body, it is not deformed even during assembly or disassembly, there is little deterioration in accuracy due to wear, and even when heat is applied, the amount of deformation can be kept small. A possible electrostatic deflector can be provided.

また、上記凹部の開口面積が、上記凹溝の底部よりも大きく、また、上記電極片が上記外周側に向かう方向に押圧されていることで、内周加工の際に外周方向に負荷をかけることが可能となり、加工精度の向上が得られる。   Moreover, the opening area of the said recessed part is larger than the bottom part of the said recessed groove, and the said electrode piece is pressed in the direction which goes to the said outer peripheral side, Therefore A load is applied to an outer peripheral direction in the case of an inner peripheral process Therefore, the processing accuracy can be improved.

さらに、上記凹溝の底部と上記電極片との間に微小隙間を有することで、確実に支持体の凹溝側壁と電極片の傾斜部が当接することが可能となる。   Furthermore, by providing a minute gap between the bottom of the concave groove and the electrode piece, the concave groove side wall of the support and the inclined portion of the electrode piece can surely come into contact with each other.

また、そのような静電偏向器を備えた電子線装置を提供することによって、良好な描画精度や検出精度を有し、高精度で安価な電子線装置を提供することができる。   Further, by providing an electron beam apparatus provided with such an electrostatic deflector, it is possible to provide an electron beam apparatus that has good drawing accuracy and detection accuracy, and is highly accurate and inexpensive.

以下、本発明の実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1、図2は本発明に係る静電偏向器一実施例を示す図であり、図1(a)は斜視図を、図1(b)は分解斜視図をそれぞれ示し、図2(a)は上面図を、図2(b)は同図(a)のX−X線における断面の断面図をそれぞれ示している。   1 and 2 are diagrams showing an embodiment of an electrostatic deflector according to the present invention, in which FIG. 1 (a) shows a perspective view, FIG. 1 (b) shows an exploded perspective view, and FIG. ) Is a top view, and FIG. 2B is a cross-sectional view taken along line XX in FIG.

図1、2に示すように、本発明の静電偏向器1は、非磁性の導体からなり、その長手方向に沿って中心軸A側に開口する複数の凹溝4が等間隔に形成された筒状の支持体5と、上記凹溝4内に配置された複数の電極片6とから構成される。   As shown in FIGS. 1 and 2, the electrostatic deflector 1 of the present invention is made of a nonmagnetic conductor, and a plurality of concave grooves 4 that are open toward the central axis A along the longitudinal direction are formed at equal intervals. A cylindrical support 5 and a plurality of electrode pieces 6 arranged in the groove 4.

上記支持体5は、その外形が円形、多角形等からなる筒状体であって、加工性から考えると図1に示すような円形が好ましく、円筒研削加工やホーニング加工で精度良く加工することが可能となる。   The support 5 is a cylindrical body having a circular shape, a polygonal shape, etc., and considering the workability, a circular shape as shown in FIG. 1 is preferable, and the support 5 is processed with high accuracy by cylindrical grinding or honing. Is possible.

また、上記支持体5は非磁の導体であればよく、複雑な形状を加工することから放電加工のできる超硬やチタン合金等が好ましい。さらには、組立や分解時においても変形することがなく、摩耗による精度劣化が少ない超硬がより好ましい。   Further, the support 5 may be a non-magnetic conductor, and is preferably made of carbide or titanium alloy that can be subjected to electric discharge machining since a complicated shape is machined. Furthermore, it is more preferable to use a cemented carbide that does not deform during assembly or disassembly and that has little deterioration in accuracy due to wear.

上記電極片6は、アルミナ質焼結体やジルコニア質焼結体、炭化珪素質焼結体、窒化珪素質焼結体などのいずれか1種からなる非磁性なセラミックスの基体9と、該基体9の中心軸A側の面にCu、Ni、Au、Pt、Ag、TiN、TiC等の金属の1種または複数の金属からなる非磁性の金属膜からなる導電膜7を形成してなる。   The electrode piece 6 includes a nonmagnetic ceramic substrate 9 made of any one of an alumina sintered body, a zirconia sintered body, a silicon carbide sintered body, a silicon nitride sintered body, and the like, and the substrate A conductive film 7 made of a nonmagnetic metal film made of one or more metals such as Cu, Ni, Au, Pt, Ag, TiN, TiC, or the like is formed on the surface 9 on the central axis A side.

基体9は、非磁性、絶縁性であるアルミナ質焼結体、ジルコニア質焼結体、炭化珪素質焼結体、窒化珪素質焼結体、窒化アルミニウム質焼結体等のセラミックスからなることが好ましく、組立や分解時においても変形することがなく、摩耗による精度劣化が少なく、さらに熱がかかっても変形量を小さく抑えることが可能となる。   The substrate 9 may be made of ceramic such as non-magnetic, insulating alumina sintered body, zirconia sintered body, silicon carbide sintered body, silicon nitride sintered body, and aluminum nitride sintered body. Preferably, there is no deformation during assembly or disassembly, there is little deterioration in accuracy due to wear, and even when heat is applied, the amount of deformation can be kept small.

また、電極片6は、静電偏向器1の電極として作用するため、中心軸Aと同軸上に且つ同一円周上に2個以上の偶数個が形成され、その面積はほぼ等しいことが望ましい。   Moreover, since the electrode piece 6 acts as an electrode of the electrostatic deflector 1, it is desirable that two or more even numbers are formed coaxially with the central axis A and on the same circumference, and their areas are substantially equal. .

ここで、本発明では、上記凹溝4の側壁4aが傾斜状に形成されるとともに、上記電極片6の側壁に上記凹溝4の側壁4aに合致する傾斜部6aを有することが重要である。   Here, in the present invention, it is important that the side wall 4 a of the concave groove 4 is formed in an inclined shape and that the side wall of the electrode piece 6 has an inclined portion 6 a that matches the side wall 4 a of the concave groove 4. .

これにより、上記凹溝4の側壁4aと上記電極片6の傾斜部6aの間で隙間のない状態で摺り合わせができ、面で受けることが可能となる。その為、繰り返し組立てや分解作業を行っても毎回同じ位置で位置決めを行うことが可能となる。   Thereby, it can slide in a state without a gap between the side wall 4a of the concave groove 4 and the inclined portion 6a of the electrode piece 6, and can be received by the surface. For this reason, it is possible to perform positioning at the same position every time even if repeated assembly or disassembly work is performed.

また、図1、2に示すように、上記凹溝4の開口面積Kが、底部の面積Sよりも大きくなるように傾斜していることが好ましい。   As shown in FIGS. 1 and 2, it is preferable that the opening area K of the groove 4 is inclined so as to be larger than the area S of the bottom.

これにより、電極片6が外周側に向かって押圧されて固定しやすくなり、電極片6が支持体5の凹溝4の側壁4aに押圧された状態で位置決めがなされるため、組立や分解を繰り返しても毎回同じ精度を維持した静電偏向器1を提供することが可能となる。   As a result, the electrode piece 6 is pressed toward the outer peripheral side and is easily fixed, and positioning is performed in a state where the electrode piece 6 is pressed against the side wall 4a of the concave groove 4 of the support 5, so that assembly and disassembly can be performed. Even if it repeats, it becomes possible to provide the electrostatic deflector 1 which maintained the same precision each time.

電極片6を押圧して固定する方法としては、図1(b)に示すように、雌ネジ部を電極片6に形成し、また、支持体5に上記雌ネジ部と現合する位置に貫通孔を形成して、支持体5の外周方向からボルト等の雄ネジ10によって、外周側に引っ張り、電極片6の側面が凹溝4の側壁4aに押圧するように固定すればよい。   As a method of pressing and fixing the electrode piece 6, as shown in FIG. 1 (b), a female screw portion is formed on the electrode piece 6, and the support member 5 is located at a position where it is mated with the female screw portion. A through hole may be formed, and pulled from the outer peripheral direction of the support 5 by a male screw 10 such as a bolt to the outer peripheral side and fixed so that the side surface of the electrode piece 6 is pressed against the side wall 4 a of the concave groove 4.

さらに、凹溝4の開口面積Kは、底部の面積Sに対して、大きくすることが好ましく、好ましい凹溝4の側壁4aや電極片6の傾斜部6aの角度としては3〜45度で形成されれば良い。そして、これらの角度は電極片6の配置によって、肉厚などを考慮して決めれば良く、支持体5の外径と斜面の角度によって面積は決定される。ところで、角度が3度より小さい場合は、組立てや分解時に傾斜部6aと側壁4aの間で隙間を得ることが難しくなってしまう。また、45度よりも角度が大きくなると、電極片6が極端に外径側で先細りとなって強度を損ねてしまう。また、6個以上で電極片6を構成する場合に、隣り合う電極片6と干渉してしまう為、好ましい角度としては3〜45度の範囲が良い。開口面積として大きくすることが好ましいが、大きくする場合に、隣り合う電極片6が干渉して、凹溝4の側壁4aの肉厚があまり薄くならないような面積で形成すればよく、その際の目安としては側壁4aの肉厚が0.5mm以上となるように形成さればよく、好ましくは1mm以上の肉厚で形成することが好ましい。側壁4aの肉厚を確保して面積を大きくなるようにすれば良い。   Furthermore, it is preferable that the opening area K of the groove 4 is larger than the area S of the bottom, and the angle of the side wall 4a of the groove 4 and the inclined portion 6a of the electrode piece 6 is preferably 3 to 45 degrees. It should be done. These angles may be determined in consideration of the wall thickness depending on the arrangement of the electrode pieces 6, and the area is determined by the outer diameter of the support 5 and the angle of the inclined surface. By the way, when the angle is smaller than 3 degrees, it is difficult to obtain a gap between the inclined portion 6a and the side wall 4a during assembly or disassembly. On the other hand, when the angle is larger than 45 degrees, the electrode piece 6 is extremely tapered on the outer diameter side and the strength is deteriorated. Further, when the electrode pieces 6 are composed of 6 or more, they interfere with the adjacent electrode pieces 6, and therefore a preferable angle is in the range of 3 to 45 degrees. Although it is preferable to increase the opening area, in the case of increasing the opening area, the adjacent electrode pieces 6 may be formed to have an area where the thickness of the side wall 4a of the concave groove 4 does not become too thin due to interference. As a guide, the side wall 4a may be formed to have a thickness of 0.5 mm or more, preferably 1 mm or more. What is necessary is just to ensure the thickness of the side wall 4a and to enlarge an area.

また、図1のように途中までストレートで形成し、奥の方のみが傾斜となる形状であっても構わない。   Further, as shown in FIG. 1, it may be formed in a straight shape halfway, and only the back side is inclined.

また、凹溝4の底部4bと電極片6との間には、微小隙間8を有することが好ましい。   Further, it is preferable that a minute gap 8 is provided between the bottom 4 b of the groove 4 and the electrode piece 6.

これらの微小隙間8は組み付け時に必要であり、これらの微小隙間が全く無い状態で組付けを行った場合、電極片6が途中で噛み込むなどの不具合を生じやすい。しかしながら、この微小隙間8を設けることで、組み付けや分解時にはこの微小隙間8を極力無くすようにしながら電極片6を支持体5に挿入し、奥まで挿入後に電極片6を押圧すれば、テーパー部でギャップが生じて噛み込みを防止することができる。 These minute gaps 8 are necessary at the time of assembling, and when assembling is performed without these minute gaps, problems such as the electrode piece 6 biting in the middle are likely to occur. However, if the minute gap 8 is provided, the electrode piece 6 is inserted into the support 5 while minimizing the minute gap 8 during assembly or disassembly, and if the electrode piece 6 is pressed after insertion to the back, the taper portion Thus, a gap is generated and biting can be prevented.

また、電極片6は、支持体5へ取り付けられた後、電極片6の略内径は、高精度な円筒度で加工さることが重要で、静電偏向器1の大きさに係わらず、略内径の円筒度は2μm以下で仕上げることが好ましい。また、電極片6の傾斜部6aと凹溝4の側壁4aの角度は、ほぼ隙間のない同程度の角度で仕上げられることが必要である。   Further, after the electrode piece 6 is attached to the support 5, it is important that the substantially inner diameter of the electrode piece 6 is processed with a highly accurate cylindricity, regardless of the size of the electrostatic deflector 1. The cylindricity of the inner diameter is preferably finished at 2 μm or less. Further, the angle between the inclined portion 6a of the electrode piece 6 and the side wall 4a of the groove 4 needs to be finished at the same level with almost no gap.

また、図3及び図4は、本発明に係る静電偏向器の他の実施例を示す図であり、図3(a)は斜視図を、図3(b)は分解斜視図をそれぞれ示し、図4(a)は上面図を、図4(b)は同図(a)のX−X線における断面の断面図をそれぞれ示している。   3 and 4 are diagrams showing another embodiment of the electrostatic deflector according to the present invention, in which FIG. 3 (a) shows a perspective view and FIG. 3 (b) shows an exploded perspective view. 4A is a top view, and FIG. 4B is a sectional view taken along line XX of FIG. 4A.

図3、図4の実施例では、上記凹溝4の開口面積Kが、底部の面積Sよりも小さくなるように傾斜しており、この場合、電極片6が上記の中心軸A方向に押圧すればよく、押圧する方法としては、雌ネジ部を支持体5の外周部に貫通させて形成し、支持体5の外周方向からボルトなどによって電極片6を押圧して固定すればよい。また、電極片6が、支持体5の側壁4aに押圧された状態で位置決めがなされるので、組立や分解を繰り返しても毎回同じ精度を維持した静電偏向器1を提供することが可能となる。この時、押圧する方向が一方向になるので、調整を必要としない。しかしながら、静電偏向器の内周を仕上げる際に外周側に研削抵抗をかける為、押圧時に固定側に働く、図1及び図2に示すように、凹溝4の開口面積Kが、底部の面積Sよりも大きくなるように傾斜していることが好ましい。   3 and FIG. 4, the opening area K of the groove 4 is inclined so as to be smaller than the area S of the bottom. In this case, the electrode piece 6 is pressed in the direction of the central axis A. What is necessary is just to press and fix the electrode piece 6 with a volt | bolt etc. from the outer peripheral direction of the support body 5 so that a female screw part may be penetrated and formed in the outer peripheral part of the support body 5. Further, since the electrode piece 6 is positioned in a state where it is pressed against the side wall 4a of the support body 5, it is possible to provide the electrostatic deflector 1 that maintains the same accuracy every time even if assembly and disassembly are repeated. Become. At this time, since the pressing direction is one direction, no adjustment is required. However, in order to apply grinding resistance to the outer peripheral side when finishing the inner periphery of the electrostatic deflector, as shown in FIGS. It is preferable to incline so that it may become larger than the area S.

次に、上述した電極片6の基体9を形成するセラミックスの製造方法に関して説明する。 例えば、アルミナ質焼結体としては、アルミナ(Al)99〜99.9質量%に対し、焼結助剤としてシリカ(SiO)、マグネシア(MgO)、カルシア(CaO)を合計で0.1〜1質量%添加して、所望の形状に成形した後、大気雰囲気中や真空雰囲気中にて1500〜1800℃の温度で焼成したものや、アルミナ(Al)92〜99質量%に対し、イットリア(Y)、マグネシア(MgO)、カルシア(CaO)、セリア(CeO)等の安定化剤で安定化あるいは部分安定化されたジルコニアを1〜7質量%添加し、所望の形状に成形した後、大気雰囲気中あるいは水素雰囲気中や窒素雰囲気中にて1500〜1700℃の温度で焼成したものが良い。 Next, a ceramic manufacturing method for forming the base 9 of the electrode piece 6 will be described. For example, as an alumina sintered body, alumina (Al 2 O 3 ) 99 to 99.9% by mass, silica (SiO 2 ), magnesia (MgO), and calcia (CaO) as a sintering aid in total After adding 0.1 to 1% by mass and forming into a desired shape, it is fired at a temperature of 1500 to 1800 ° C. in an air atmosphere or a vacuum atmosphere, or alumina (Al 2 O 3 ) 92 to 99. 1-7% by mass of zirconia stabilized or partially stabilized by a stabilizer such as yttria (Y 2 O 3 ), magnesia (MgO), calcia (CaO), ceria (CeO 2 ) is added to mass%. And after shape | molding in a desired shape, what was baked at the temperature of 1500-1700 degreeC in air | atmosphere atmosphere, hydrogen atmosphere, or nitrogen atmosphere is good.

また、ジルコニア質焼結体としては、3〜9mol%のイットリア(Y)で部分安定化したジルコニア(ZrO)や、16〜26mol%のマグネシア(MgO)で部分安定化したジルコニア(ZrO)、あるいは8〜12mol%のカルシア(CaO)で部分安定化したジルコニア(ZrO)や8〜16mol%のセリア(CeO)で部分安定化したジルコニア(ZrO)を所望の形状に成形した後、大気雰囲気中あるいは真空雰囲気中にて1400〜1700℃の温度で焼成したものを用いれば良い。 As the zirconia sintered body, zirconia (ZrO 2 ) partially stabilized with 3 to 9 mol% yttria (Y 2 O 3 ), or zirconia partially stabilized with 16 to 26 mol% magnesia (MgO) ( ZrO 2), or 8~12Mol% of calcia (CaO) in partially stabilized zirconia (ZrO 2) and 8~16Mol% of ceria (zirconia partially stabilized with CeO 2) a (ZrO 2) into a desired shape What is necessary is just to use what was baked at the temperature of 1400-1700 degreeC in air | atmosphere atmosphere or a vacuum atmosphere after shaping | molding.

また、炭化珪素質焼結体を用いる場合、SiC90質量%〜99質量%に対し、焼結助剤としてBとC、あるいはAlとYを合計で10質量%〜1質量%添加したものを所望の形状に成形した後、不活性ガス雰囲気中あるいは真空雰囲気中にて1900℃〜2100℃の温度で焼成したものを用いることができる。また、BとCの焼結助剤としては、炭素成分として、カーボンブラック、グラファイト等の他に熱分解により炭素を生成しうるフェノール樹脂やコールタールピッチ等を用いることができる。また、ホウ素成分としては、B4 Cや金属ホウ素等が挙げられる。これら焼結助剤の添加量は、原料粉末中の酸素量に依存し、炭化珪素原料中の酸素量1モルに対して1乃至5モルの炭素および0.15乃至3モルのホウ素を必要とするが、およそ炭素分が1〜3質量%、ホウ素が0.20〜1.5質量%となる量を添加することが望ましい
また、窒化珪素質焼結体としては、Si96質量%〜98質量%に対し、焼結助剤としてAlとYを合計で2質量%〜4質量%添加したものを、所望の形状に成形した後、窒素雰囲気中あるいは真空雰囲気中や不活性雰囲気中にて1800℃〜2000℃の温度で焼成したものを用いれば良い。
Moreover, when using a silicon carbide based sintered body, a total of 10% by mass to 1% by mass of B and C, or Al 2 O 3 and Y 2 O 3 as sintering aids with respect to 90% by mass to 99% by mass of SiC. After being added into a desired shape, it may be fired at a temperature of 1900 ° C. to 2100 ° C. in an inert gas atmosphere or a vacuum atmosphere. Further, as the sintering aid for B and C, as a carbon component, in addition to carbon black, graphite, etc., a phenol resin that can generate carbon by thermal decomposition, coal tar pitch, or the like can be used. Further, examples of the boron component include B 4 C and metallic boron. The addition amount of these sintering aids depends on the amount of oxygen in the raw material powder, and requires 1 to 5 moles of carbon and 0.15 to 3 moles of boron for each mole of oxygen in the silicon carbide raw material. However, it is desirable to add an amount of about 1 to 3% by mass of carbon and 0.20 to 1.5% by mass of boron. As the silicon nitride sintered body, Si 3 N 4 96 mass After adding 2 to 4% by mass in total of Al 2 O 3 and Y 2 O 3 as sintering aids to a% to 98% by mass, the desired shape is formed, and then in a nitrogen atmosphere or vacuum What is necessary is just to use what was baked at the temperature of 1800 degreeC-2000 degreeC in atmosphere or an inert atmosphere.

次に支持体5の製造方法について説明する。   Next, the manufacturing method of the support body 5 is demonstrated.

支持体5は、例えばチタン合金であれば、Ti以外の含有物としてFe0.5質量%以下、N0.07質量%以下、O0.40質量%以下、H0.015質量%以下の合金を用い、超硬であれば非磁性超硬であればよく、放電加工にて製作される。   If the support 5 is, for example, a titanium alloy, an alloy containing 0.5 mass% or less of Fe, N0.07 mass% or less, O0.40 mass% or less, or H0.015 mass% or less is used as a content other than Ti. If it is cemented carbide, it may be non-magnetic cemented carbide and is manufactured by electric discharge machining.

このように作製された静電偏光器1は、図5に概要を示すような電子線装置20として有効に用いられる。   The electrostatic polarizer 1 manufactured in this way is effectively used as an electron beam apparatus 20 as outlined in FIG.

電子線装置20は、上述した静電偏向器1上に電子銃100を配置するとともに、下側に被加工体用台板101を配置してなる。そして、上述のような高精度に複数の静電偏向器1を用いることで、電子ビームが電子銃100より照射されて、静電偏向器1の内部を通過する際に、光学軸の調整を行い、電子ビームの照射される位置を微調整できるので、被加工体用台板101上の被加工体については良好な描画精度を有するものである。   The electron beam apparatus 20 includes an electron gun 100 disposed on the electrostatic deflector 1 described above, and a workpiece base plate 101 disposed on the lower side. By using the plurality of electrostatic deflectors 1 with high accuracy as described above, the optical axis is adjusted when the electron beam is irradiated from the electron gun 100 and passes through the inside of the electrostatic deflector 1. Since the position irradiated with the electron beam can be finely adjusted, the workpiece on the workpiece base plate 101 has good drawing accuracy.

なお、図5に示すような配置で使用すれば、より高い検出精度を有し、且つメンテナンス等のために分解や組立を繰り返し行ってもその精度を維持することができる電子線装置20が得られる。   When used in the arrangement shown in FIG. 5, an electron beam apparatus 20 having higher detection accuracy and capable of maintaining the accuracy even when repeated disassembly or assembly for maintenance or the like is obtained. It is done.

このような電子線装置は、良好な描画精度や検出精度を有し、高精度で安価な電子線装置を提供することができる。   Such an electron beam apparatus has good drawing accuracy and detection accuracy, and can provide a highly accurate and inexpensive electron beam apparatus.

次に本発明の実施例について説明する。   Next, examples of the present invention will be described.

図1及び図2に示すような形状で、外径φ40mm、全長130mm、内径に4箇所のテーパーを有した凹溝を形成した非磁性超硬合金製の筒体と、断面形状の寸法がほぼ5mm、13mmの長方形の一部に筒体のテーパー部と同形状の凸テーパーを形成した全長130mmで且つ、前記断面においてテーパー部の反対側に金メッキを施し電極としたアルミナ製の電極片を4個準備し、静電偏向器1の組立を行った。   A cylindrical body made of a nonmagnetic cemented carbide having a shape as shown in FIG. 1 and FIG. 2 and having an outer diameter of 40 mm, an overall length of 130 mm, and four inner diameter tapered grooves, and a cross-sectional shape of almost Four electrode pieces made of alumina having a total length of 130 mm, in which a convex taper having the same shape as the tapered portion of the cylindrical body is formed on a part of a 5 mm and 13 mm rectangle, and plated with gold on the opposite side of the tapered portion in the cross section. One piece was prepared and the electrostatic deflector 1 was assembled.

支持体5の中に電極片6を同形状のテーパー部が当接するように挿入し、雄ネジ10を用いてテーパー部が隙間無く押圧されるように固定した。   The electrode piece 6 was inserted into the support 5 so that the tapered portion of the same shape was in contact with the support member 5 and fixed using the male screw 10 so that the tapered portion was pressed without a gap.

静電偏向器1は精度良く同じく加工されているため、組立と分解を繰り返しても毎回同じ値の円筒度の静電偏向器1を得ることができた。   Since the electrostatic deflector 1 is similarly machined with high accuracy, the electrostatic deflector 1 having the same cylindricity can be obtained every time even when assembly and disassembly are repeated.

本発明は、電子線装置の電子光学系におけるレンズ等を保持する静電偏向器、及びそれを用いた電子線装置に利用できる。   The present invention can be used for an electrostatic deflector that holds a lens or the like in an electron optical system of an electron beam apparatus, and an electron beam apparatus using the electrostatic deflector.

本発明に係る静電偏向器の一実施例を示す図であり、(a)は斜視図を、(b)は分解斜視図をそれぞれ示している。It is a figure which shows one Example of the electrostatic deflector which concerns on this invention, (a) is a perspective view, (b) has each shown the disassembled perspective view. 本発明に係る静電偏向器の一実施例を示す図であり、(a)は上面図を、(b)は同図(a)のX−X線における断面の断面図をそれぞれ示している。It is a figure which shows one Example of the electrostatic deflector which concerns on this invention, (a) is a top view, (b) has shown sectional drawing of the cross section in the XX line of the same figure (a), respectively. . 本発明に係る静電偏向器の一実施例を示す図であり、(a)は斜視図を、(b)は分解斜視図をそれぞれ示している。It is a figure which shows one Example of the electrostatic deflector which concerns on this invention, (a) is a perspective view, (b) has each shown the disassembled perspective view. 本発明に係る静電偏向器の一実施例を示す図であり、(a)は上面図を、(b)は同図(a)のX−X線における断面の断面図をそれぞれ示している。It is a figure which shows one Example of the electrostatic deflector which concerns on this invention, (a) is a top view, (b) has shown sectional drawing of the cross section in the XX line of the same figure (a), respectively. . 本発明に係る電子線装置を示す概略図である。It is the schematic which shows the electron beam apparatus which concerns on this invention.

符号の説明Explanation of symbols

1・・・静電偏向器
4・・・凹溝
4a・・・側壁
5・・・支持体
6・・・電極片
6a・・傾斜部
7・・・導電膜
8・・・微小隙間
9・・・基体
10・・・雄ネジ
20・・・電子線装置
100・・・電子銃
101・・・被加工体用台板
DESCRIPTION OF SYMBOLS 1 ... Electrostatic deflector 4 ... Concave groove 4a ... Side wall 5 ... Support body 6 ... Electrode piece 6a .... Inclined part 7 ... Conductive film 8 ... Minute clearance 9 ... .... Base 10 ... Male screw 20 ... Electron beam device 100 ... Electron gun 101 ... Base plate for workpiece

Claims (5)

内周面の長手方向に沿って中心軸側に開口する複数の凹溝が等間隔に形成された非磁性の導体からなる筒状の支持体と、表面に導電膜が形成され、該電極膜が中心軸に向うように上記複数の凹溝内にそれぞれ配置される電極片とからなる静電偏向器において、上記凹溝の側壁が傾斜状に形成されるとともに、上記電極片の側壁に上記凹溝の側壁に合致する傾斜部が形成されていることを特徴とする静電偏向器。 A cylindrical support made of a non-magnetic conductor in which a plurality of concave grooves opened toward the central axis along the longitudinal direction of the inner peripheral surface are formed at equal intervals; and a conductive film formed on the surface, the electrode film In the electrostatic deflector comprising the electrode pieces respectively disposed in the plurality of grooves so as to face the central axis, the side walls of the grooves are formed in an inclined shape, and the side walls of the electrode pieces are An electrostatic deflector characterized in that an inclined portion that matches the side wall of the groove is formed. 上記凹溝の開口面積が、底部の面積よりも大きいことを特徴とする請求項1に記載の静電偏向器。 2. The electrostatic deflector according to claim 1, wherein the opening area of the concave groove is larger than the area of the bottom. 上記凹溝の底部と上記電極片との間に微小隙間を有することを特徴とする請求項1または2に記載の静電偏向器。 The electrostatic deflector according to claim 1, wherein a minute gap is provided between the bottom of the concave groove and the electrode piece. 上記電極片が、アルミナ質焼結体からなる基体と、該基体の表面に導電膜を形成してなることを特徴とする請求項1〜3の何れかに記載の静電偏向器。 The electrostatic deflector according to claim 1, wherein the electrode piece is formed by forming a base made of an alumina sintered body and a conductive film on a surface of the base. 上記請求項1〜4の何れかの静電偏向器を用いたことを特徴とする電子線装置。 An electron beam apparatus using the electrostatic deflector according to claim 1.
JP2004375041A 2004-12-24 2004-12-24 Electrostatic deflector and electron beam apparatus using the same Expired - Fee Related JP4614760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375041A JP4614760B2 (en) 2004-12-24 2004-12-24 Electrostatic deflector and electron beam apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375041A JP4614760B2 (en) 2004-12-24 2004-12-24 Electrostatic deflector and electron beam apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006185637A true JP2006185637A (en) 2006-07-13
JP4614760B2 JP4614760B2 (en) 2011-01-19

Family

ID=36738606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375041A Expired - Fee Related JP4614760B2 (en) 2004-12-24 2004-12-24 Electrostatic deflector and electron beam apparatus using the same

Country Status (1)

Country Link
JP (1) JP4614760B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502420A (en) * 2008-09-05 2012-01-26 ザ ユニバーシティ オブ リバプール Method
CN105979694A (en) * 2016-04-26 2016-09-28 东莞中子科学中心 Pre-cut beam splitter used for beam pulse control
US12009174B2 (en) 2019-08-20 2024-06-11 Nuflare Technology, Inc. Drawing apparatus and deflector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116519B1 (en) 2022-05-11 2022-08-10 株式会社三稲ガーデン greening tray

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894745A (en) * 1981-11-30 1983-06-06 Agency Of Ind Science & Technol Multipole lens
JPS58204464A (en) * 1982-05-21 1983-11-29 Shimadzu Corp Tetrode mass spectrograph
JPS60257055A (en) * 1984-06-01 1985-12-18 Anelva Corp Mass spectrometer
JPH0935682A (en) * 1995-07-14 1997-02-07 Ulvac Japan Ltd Quadrupole mass spectrometer
JP2000138036A (en) * 1998-11-02 2000-05-16 Advantest Corp Electrostatic deflecting system for electron beam irradiating device
JP2002341216A (en) * 2001-05-14 2002-11-27 Ebara Corp Optical element assembly for electron-beam device, treating method for the same optical element assembly, and device manufacturing method using electron-beam device equipped with the same optical element assembly
JP2003004572A (en) * 2001-06-18 2003-01-08 Horizon:Kk Assembling method of quadrupole section of partial pressure vacuum gauge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894745A (en) * 1981-11-30 1983-06-06 Agency Of Ind Science & Technol Multipole lens
JPS58204464A (en) * 1982-05-21 1983-11-29 Shimadzu Corp Tetrode mass spectrograph
JPS60257055A (en) * 1984-06-01 1985-12-18 Anelva Corp Mass spectrometer
JPH0935682A (en) * 1995-07-14 1997-02-07 Ulvac Japan Ltd Quadrupole mass spectrometer
JP2000138036A (en) * 1998-11-02 2000-05-16 Advantest Corp Electrostatic deflecting system for electron beam irradiating device
JP2002341216A (en) * 2001-05-14 2002-11-27 Ebara Corp Optical element assembly for electron-beam device, treating method for the same optical element assembly, and device manufacturing method using electron-beam device equipped with the same optical element assembly
JP2003004572A (en) * 2001-06-18 2003-01-08 Horizon:Kk Assembling method of quadrupole section of partial pressure vacuum gauge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502420A (en) * 2008-09-05 2012-01-26 ザ ユニバーシティ オブ リバプール Method
CN105979694A (en) * 2016-04-26 2016-09-28 东莞中子科学中心 Pre-cut beam splitter used for beam pulse control
US12009174B2 (en) 2019-08-20 2024-06-11 Nuflare Technology, Inc. Drawing apparatus and deflector

Also Published As

Publication number Publication date
JP4614760B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US6110285A (en) Vertical wafer boat
JP4531004B2 (en) Heating device
JP4614760B2 (en) Electrostatic deflector and electron beam apparatus using the same
KR20120123489A (en) Welding feed contact chip and welding torch using same
EP3267464B1 (en) Spherical aberration correction device for charged particle beam electromagnetic lens
JP2017076024A (en) Pellicle frame and manufacturing method of pellicle frame
US20190115244A1 (en) Suction member
CN111357096A (en) Heating element
TW202021035A (en) Lift pin holder assemblies and bodies including lift pin holder assemblies
SE509717C2 (en) Ceramic guide for a rolling line
US5202544A (en) Method of machining plate materials with a plasma cutter and plasma torch
JP2010034075A (en) Method of assembling optical element assembly
JP2005191204A (en) Optical element assembling body, assembling method, and electron beam apparatus using the same
US11211856B2 (en) Resolver
JP4313186B2 (en) Electrostatic deflector
JP2017161749A (en) Pellicle frame and manufacturing method of pellicle frame
JP2005026026A (en) Field emission type electron gun
CN107408480B (en) Ion implantation apparatus
US20220338339A1 (en) Electromagnetic field control member
JP2008023668A (en) Wire positioning device
JP7203234B2 (en) Electromagnetic field control parts
JP7001446B2 (en) Structure
US20190327790A1 (en) Heat generating component
EP3852199B1 (en) Hermetic terminal
KR102627694B1 (en) Aperture assembly structure of scanning electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4614760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees