JP2006183171A - Preliminarily compressed three dimensional structural material, method for producing the same and cushion for vehicle - Google Patents

Preliminarily compressed three dimensional structural material, method for producing the same and cushion for vehicle Download PDF

Info

Publication number
JP2006183171A
JP2006183171A JP2004376685A JP2004376685A JP2006183171A JP 2006183171 A JP2006183171 A JP 2006183171A JP 2004376685 A JP2004376685 A JP 2004376685A JP 2004376685 A JP2004376685 A JP 2004376685A JP 2006183171 A JP2006183171 A JP 2006183171A
Authority
JP
Japan
Prior art keywords
dimensional structure
compressed
thickness
hardness
thickness portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376685A
Other languages
Japanese (ja)
Inventor
Hiroaki Morita
宏明 森田
Kimio Kitano
公男 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2004376685A priority Critical patent/JP2006183171A/en
Publication of JP2006183171A publication Critical patent/JP2006183171A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preliminarily compressed three dimensional structural material improved so that the reduction in hardness hardly occurs even on receiving compression repeatedly. <P>SOLUTION: This three dimensional structural material obtained by bonding the crossing points of a fiber with another fiber by a binder resin is prepared. The hardening is performed against the three dimensional structural material 1 so that the hardness of the thickness part 1a is averaged over the whole of the thickness part. The thickness part of the three dimensional structural material 1 is compressed in the thickness direction. In a state of compressing the thickness part 1a of the three dimensional structural material 1, the thickness part 1a of the three dimensional structural material 1 is covered with a covering member 2 to obtain the preliminary compressed three dimensional structural material. Since the preliminarily compressed three dimensional structural material is compressed in the thickness direction in advance, and since the relatively easily detachable bonded points are detached in advance, the reduction of the hardness hardly occurs even on receiving repeated compression in the thickness direction further afterwards. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は一般に繊維の三次元構造体に関するものであり、より特定的には、繰り返し圧縮を受けても、硬さの低下が起こりにくくなるように改良された、予備圧縮された三次元構造体に関する。この発明はまた、そのような予備圧縮された三次元構造体の製造方法に関する。この発明はさらに、そのような予備圧縮された三次元構造体を用いた乗り物用クッションに関する。   The present invention relates generally to a three-dimensional structure of fibers, and more particularly, a pre-compressed three-dimensional structure that has been improved to be less susceptible to reduced hardness even after repeated compression. About. The invention also relates to a method for producing such a pre-compressed three-dimensional structure. The invention further relates to a vehicle cushion using such a pre-compressed three-dimensional structure.

繊維の三次元構造体は、腰掛けのクッション部材等に使用される。従来より存在する、綿、羊毛、羽毛等の天然素材やアクリル、ポリエステル、ガラス繊維、炭素繊維等の人造繊維で形成した単なる繊維弾性体は、圧縮反発性に乏しく、また、着席・尻ずれの繰り返し使用により繊維が移動して偏在化する現象が起き、へたりやすいという問題があった。特許文献1には、この問題点を解決させた繊維弾性体が開示されている。   The three-dimensional structure of fibers is used as a cushion member for a seat. The conventional elastic fiber made of natural materials such as cotton, wool, feathers, and artificial fibers such as acrylic, polyester, glass fiber, and carbon fiber is poor in compression resilience, There has been a problem in that the fibers move and become unevenly distributed due to repeated use, and are easy to sag. Patent Document 1 discloses a fiber elastic body that solves this problem.

図7を参照して、特許文献1に開示された繊維弾性体51は、繊維集合体52と、繊維集合体52を包む保護シートとしての表生地53と、表生地53を繊維集合体52の着座面に接着する接着剤54とから構成され、繊維集合体52と表生地53とがまとめてキルティング糸55でキルティング加工(刺し縫い)されている。この構成によれば、繊維集合体52が接着剤で表生地53に固定されるとともにキルティング糸55で区分されるため、繊維集合体52の繊維が移動して偏在化する現象を緩和し、へたりを減少させることができる。また、キルティング糸55が繊維弾性体51の圧縮反発力を高めて座り心地を良くし、表生地53が、着座・離座時における繊維集合体52の空気の給排速度を規制する効果もある。   With reference to FIG. 7, the fiber elastic body 51 disclosed in Patent Document 1 includes a fiber assembly 52, a front fabric 53 as a protective sheet that wraps the fiber assembly 52, and the front fabric 53 of the fiber assembly 52. It is composed of an adhesive 54 that adheres to the seating surface, and the fiber assembly 52 and the front fabric 53 are collectively quilted (stitched) with a quilting thread 55. According to this configuration, since the fiber assembly 52 is fixed to the front fabric 53 with the adhesive and is divided by the quilting yarn 55, the phenomenon that the fibers of the fiber assembly 52 move and become unevenly distributed is alleviated. Can be reduced. Further, the quilting yarn 55 increases the compression repulsion force of the fiber elastic body 51 to improve the sitting comfort, and the front fabric 53 has an effect of regulating the air supply / discharge speed of the fiber assembly 52 at the time of sitting / separating. .

特開平10−155602号公報JP-A-10-155602

前述の如く構成すると、繊維集合体52の繊維が移動して偏在化する現象を緩和することはできる。しかしながら、特に炭素繊維にバインダー樹脂を付与した繊維弾性体において、繰り返し圧縮することによる硬さ低下を防止することはできなかった。このような繰り返し圧縮による硬さ低下は、繊維弾性体を腰掛けのクッション等に使用した場合、クッション使用中、底付き感を感じさせ、座り心地を悪くするものであった。   When configured as described above, the phenomenon in which the fibers of the fiber assembly 52 move and become unevenly distributed can be alleviated. However, particularly in a fiber elastic body obtained by adding a binder resin to carbon fibers, it was not possible to prevent a decrease in hardness due to repeated compression. Such a decrease in hardness due to repeated compression causes a feeling of bottoming during use of the cushion when the fiber elastic body is used for a seat cushion or the like, and makes sitting comfort worse.

このような繰り返し圧縮による繊維弾性体の特性の変化は、繊維同士を結着している結着点(バインド)が外れるために起こると考えられる。繊維弾性体は結着点が外れることによって繊維原料(ウエブ)に近づこうとする。その際、硬さが低下するのである。   Such a change in the properties of the fiber elastic body due to repeated compression is considered to occur because the binding point (binding) where the fibers are bound to each other is released. The fiber elastic body tends to approach the fiber raw material (web) when the binding point is removed. At that time, the hardness decreases.

それゆえにこの発明の目的は、繰り返し圧縮を受けても硬さの低下が起こりにくくなるように改良された、予備圧縮された三次元構造体を提供することにある。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a pre-compressed three-dimensional structure which is improved so that the hardness is not easily lowered even after repeated compression.

この発明の他の目的は、そのような予備圧縮された三次元構造体の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing such a pre-compressed three-dimensional structure.

この発明のさらに他の目的は、そのような予備圧縮された三次元構造体を用いた乗り物用のクッションを提供することにある。   Yet another object of the present invention is to provide a vehicle cushion using such a pre-compressed three-dimensional structure.

本発明にかかる予備圧縮された三次元構造体は、繊維と繊維の交点がバインダー樹脂(熱融着性繊維を含む)で結着された結着点を有する三次元構造体を備える。上記三次元構造体の厚み部分は、厚み方向に圧縮されており、かつ該厚み部分の硬さは、厚み部分の全体にわたって平均化されている。さらに上記厚み部分の厚み方向の膨張が拘束されている。   The pre-compressed three-dimensional structure according to the present invention includes a three-dimensional structure having a binding point in which the intersections of fibers are bound with a binder resin (including heat-fusible fibers). The thickness portion of the three-dimensional structure is compressed in the thickness direction, and the hardness of the thickness portion is averaged over the entire thickness portion. Furthermore, the expansion in the thickness direction of the thick portion is restricted.

この発明によれば、上記三次元構造体の厚み部分は、厚み方向に前もって圧縮されており、かつ、該厚み部分の硬さを、厚み部分の全体にわたって平均化することにより、比較的外れ易い結着点が予め外されている。そのため、その後さらに、厚み方向に繰り返し圧縮を受けても、硬さの低下は起こりにくくなる。   According to the present invention, the thickness portion of the three-dimensional structure is compressed in the thickness direction in advance, and the hardness of the thickness portion is averaged over the entire thickness portion, so that it is relatively easy to come off. The landing points have been removed beforehand. Therefore, even if it receives compression repeatedly further in the thickness direction after that, a fall of hardness becomes difficult to occur.

三次元構造体を組成する繊維としては、天然繊維や人造繊維(半合成繊維を含む)、あるいはこれらの混合物、通常の天然繊維や人造繊維に物理的、化学的処理を加えたものなど広範な繊維が使用できる。具体的には、天然繊維としては例えば綿、麻、羊毛などが使用でき、人造繊維としては例えばアクリル繊維、アラミド繊維、ポリエステル繊維、ガラス繊維、炭素繊維等が使用できる。なお、三次元構造体は、1種類の繊維で組成されたものであってもよく、2種類以上の混合物で組成されていてもよい。   The fibers that make up the three-dimensional structure include a wide range of natural fibers and man-made fibers (including semi-synthetic fibers), mixtures of these, and ordinary natural fibers and man-made fibers with physical and chemical treatments added. Fiber can be used. Specifically, cotton, hemp, wool, etc. can be used as natural fibers, and acrylic fibers, aramid fibers, polyester fibers, glass fibers, carbon fibers, etc. can be used as artificial fibers. The three-dimensional structure may be composed of one type of fiber or may be composed of a mixture of two or more types.

但し、三次元構造体を組成する繊維としては、弾性反発力の強いものがよく、好ましくは防災性に優れた難燃性または不燃性の繊維がよい。このような繊維としては、例えばアラミド繊維、ポリエステル繊維、ガラス繊維、炭素繊維等が例示できる。また、圧縮反発性(クッション性)、繰り返し使用性(耐へたり性)及び防災性が要求される場合には、三次元構造体として、ポリエステル繊維または炭素繊維を用い、繊維相互の交点をバインダー樹脂(結着剤)等で結着して三次元的なネットワーク構造を形成させてなるものがよく、このうち、特に炭素繊維を主繊維とする(繊維素材のうち50重量%以上が炭素繊維である)とする三次元構造体(以下炭素繊維三次元構造体)が好適に使用できる。なお、炭素繊維三次元構造体のみを用いて三次元構造体を構成してもよいが、炭素繊維三次元構造体と他の素材からなる三次元構造体および/または他の線状繊維集合物とを組み合わせて三次元構造体を構成してもよい。また、種類の異なる三次元構造体を重ね合わせたものであってもよい。   However, the fiber constituting the three-dimensional structure is preferably a fiber having a strong elastic repulsion, and preferably a flame-retardant or non-flammable fiber excellent in disaster prevention. Examples of such fibers include aramid fibers, polyester fibers, glass fibers, and carbon fibers. When compression resilience (cushioning), repeated use (sagging resistance), and disaster prevention are required, polyester fiber or carbon fiber is used as the three-dimensional structure, and the intersection of the fibers is a binder. It is preferable to form a three-dimensional network structure by binding with a resin (binder), etc. Among these, carbon fiber is the main fiber (50% by weight or more of the fiber material is carbon fiber) 3D structure (hereinafter referred to as a carbon fiber three-dimensional structure) can be suitably used. Although a three-dimensional structure may be formed using only a carbon fiber three-dimensional structure, a three-dimensional structure and / or other linear fiber aggregate composed of the carbon fiber three-dimensional structure and other materials. May be combined to form a three-dimensional structure. Moreover, what laminated | stacked the three-dimensional structure from which a kind differs may be sufficient.

上記三次元構造体は、嵩密度を20〜40Kg/m3、最大荷重を100gf/cm2(9.8kPa)としたときの圧縮硬さLCを0.7〜0.8、圧縮回復率RCを65%以上、25%圧縮時応力に対する65%圧縮時応力の比を10以上、1回圧縮残留歪率を10%以下、8万回圧縮後残留歪率を10%以下としたときに、一層人間にとって好適な圧縮反発性とすることができ、また充分な軽量性と優れた繰り返し使用性を確保できる。   The three-dimensional structure has a compression hardness LC of 0.7 to 0.8 and a compression recovery rate RC of 65 when the bulk density is 20 to 40 Kg / m3 and the maximum load is 100 gf / cm2 (9.8 kPa). More than 10%, when the ratio of 65% compression stress to 25% compression stress is 10 or more, the residual strain ratio after compression of 10% is 10% or less, and the residual strain ratio after compression of 80,000 times is 10% or less. Therefore, it is possible to obtain a compression repulsion suitable for the resin, and it is possible to secure sufficient lightness and excellent repeated use.

これらの各物性値は、次のように定義されるものである。すなわち、圧縮硬さLCは、無荷重時の厚みを初期厚みとし、最大荷重100gf/cm2(9.8kPa)まで圧縮するのに要する仕事エネルギーを、荷重−歪曲線が線形(一直線)に変化した場合に要する仕事エネルギーで割った値をいう。圧縮回復率RCは、最大荷重を100gf/cm2(9.8kPa)まで圧縮するのに要したエネルギーで、圧縮状態から無荷重の状態に戻るまでの回復過程におけるエネルギー量を割り、これに100を掛けた値をいう。圧縮時応力比は、25%圧縮した時の応力で、65%圧縮した時の応力を割った値をいう。1回圧縮残留歪率は、室温にて初期厚みM0の50%まで圧縮し、この状態を40時間保持した後徐荷し、30分後の厚みM1を測定し、(1−M1/M0)×100から算出した値をいう。8万回圧縮後残留歪率は、室温にて初期厚みM0の50%まで圧縮した後、復元させるというサイクルを8万回繰り返し、8万回後の変位量(M∞)を求め、(1−M∞/M0)×100から算出した値である。但し、以上の各物性値のうちLC,RCは10cm2の円形の試料を用い、また圧縮応力比、1回圧縮残留歪率、8万回圧縮後残留歪率は50mm×50mm角形試料を用いて測定したものである。   These physical property values are defined as follows. That is, in the compression hardness LC, the load-strain curve is changed linearly (straight line) to the work energy required for compression to a maximum load of 100 gf / cm 2 (9.8 kPa), with the thickness at no load being the initial thickness. The value divided by the work energy required for the case. The compression recovery rate RC is the energy required to compress the maximum load to 100 gf / cm 2 (9.8 kPa), and divides the amount of energy in the recovery process from the compression state to return to the no-load state. The multiplied value. The compressive stress ratio is a value obtained by dividing the stress when compressed by 65% by the stress when compressed by 25%. The single-time compression residual strain was compressed to 50% of the initial thickness M0 at room temperature, held in this state for 40 hours and then unloaded, and the thickness M1 after 30 minutes was measured. (1-M1 / M0) A value calculated from x100. The residual strain ratio after compression 80,000 times is obtained by calculating a displacement amount (M∞) after 80,000 times by repeating a cycle of restoring to 50% of the initial thickness M0 at room temperature and then restoring 80%. -M∞ / M0) × 100. However, among the above physical property values, LC and RC use 10 cm 2 circular samples, and the compression stress ratio, single compression residual strain ratio, and residual strain ratio after 80,000 compression use a 50 mm × 50 mm square sample. It is measured.

炭素繊維の種類は限定されない。例えばポリアクリロニトリル、フェノール樹脂、レーヨンなどの高分子、石油ピッチ、石炭ピッチなどのピッチを原料とし、炭化または黒鉛化された炭素繊維を使用できる。特に、ピッチ系炭素繊維は、強制加熱下での発生ガスの毒性が低い。また、炭素繊維が巻縮繊維(好ましくは繊維全体の50〜100重量%が巻縮繊維)であると、炭素繊維自体の弾性を利用し、小さな嵩密度(軽量)で強い反発圧縮力が得られやすい。巻縮繊維の繊維長は、0.1cm〜10cmが好ましい。   The kind of carbon fiber is not limited. For example, carbon fiber carbonized or graphitized using a raw material such as polyacrylonitrile, a polymer such as phenol resin, rayon, or a pitch such as petroleum pitch or coal pitch can be used. In particular, pitch-based carbon fibers have low toxicity of generated gas under forced heating. Further, when the carbon fiber is a crimped fiber (preferably 50 to 100% by weight of the whole fiber is a crimped fiber), the elasticity of the carbon fiber itself is used to obtain a strong rebound compression force with a small bulk density (light weight). It is easy to be done. The fiber length of the crimped fiber is preferably 0.1 cm to 10 cm.

バインダー樹脂としては、硬質な熱可塑性樹脂(スチレン系樹脂など)や、硬質な熱硬化性樹脂(アミノ系樹脂、フェノール系樹脂、エポキシ系樹脂、不飽和ポリエステル系樹脂等)等を用いてもよいが、軟質な熱可塑性樹脂(例えば、ビニル系樹脂、アクリル系樹脂、ポリエステル系樹脂、熱可塑性ポリウレタン系樹脂、ポリアミド系樹脂等)や、軟質な熱硬化性樹脂(ポリウレタン系樹脂、熱硬化性アクリル系樹脂、ポリイミド系樹脂等)等が好ましく使用できる。これらのバインダー樹脂のうち、軟質な熱硬化性樹脂、特にポリウレタン系樹脂が好ましい。ポリウレタン系樹脂としては、溶液型、エマルジョン型、二液硬化型、湿気(水蒸気)硬化型ポリウレタン系樹脂等が使用できる。   As the binder resin, a hard thermoplastic resin (such as a styrene resin) or a hard thermosetting resin (such as an amino resin, a phenol resin, an epoxy resin, or an unsaturated polyester resin) may be used. However, soft thermoplastic resins (eg, vinyl resins, acrylic resins, polyester resins, thermoplastic polyurethane resins, polyamide resins, etc.) and soft thermosetting resins (polyurethane resins, thermosetting acrylics, etc.) Resin, polyimide resin, etc.) can be preferably used. Of these binder resins, soft thermosetting resins, particularly polyurethane resins are preferred. As the polyurethane resin, a solution type, an emulsion type, a two-component curable type, a moisture (water vapor) curable type polyurethane resin, or the like can be used.

軟質ポリウレタン系樹脂には、ポリオール成分として、ポリエーテルポリオール(ポリエチレングリコール、ポリプロピレングリコール、エチレン−プロピレンブロックコポリマー、ポリテトラメチレンエーテルグリコール等のポリC2-4アルキレングリコール)や、C4-12多塩基酸(アジピン酸などのC6-12アルカンジカルボン酸)とポリオール成分(エチレングリコール、ブタンジオール、ヘキサンジオール等のC2-10アルキレングリコールなど)とから得られるポリエステルポリオール等を用いたポリウレタン系樹脂などが含まれる。イソシアネート成分としては、汎用の芳香族ジイソシアネート(ジフェニルメタンジイソシアネートやトリレンジイソシアネート等)、芳香脂肪族ジイソシアネート(キシリレンジイソシアネートなど)、脂環族ジイソシアネート(イソホロンジイソシアネートなど)、脂肪族ジイソシアネート(ヘキサメチレンジイソシアネートなど)等が例示できる。また、ポリウレタン系樹脂は、末端にイソシアネート基を有するポリウレタンプレポリマーと硬化剤(短鎖オールや多価アルコール、ヘキサメチレンジアミンなどのアルキレンジアミン、アルカノールアミンなどのポリアミン類等)との組成物であってもよい。   For flexible polyurethane resins, polyether polyol (poly C2-4 alkylene glycol such as polyethylene glycol, polypropylene glycol, ethylene-propylene block copolymer, polytetramethylene ether glycol) or C4-12 polybasic acid (polyol) is used as a polyol component. Examples include polyurethane resins using polyester polyols obtained from C6-12 alkanedicarboxylic acids such as adipic acid) and polyol components (C2-10 alkylene glycols such as ethylene glycol, butanediol, hexanediol, etc.). Isocyanate components include general-purpose aromatic diisocyanates (such as diphenylmethane diisocyanate and tolylene diisocyanate), araliphatic diisocyanates (such as xylylene diisocyanate), alicyclic diisocyanates (such as isophorone diisocyanate), and aliphatic diisocyanates (such as hexamethylene diisocyanate). Etc. can be exemplified. The polyurethane resin is a composition of a polyurethane prepolymer having an isocyanate group at the terminal and a curing agent (short chain ol, polyhydric alcohol, alkylene diamine such as hexamethylene diamine, polyamines such as alkanolamine, etc.). May be.

軟質ポリウレタン系樹脂の伸び率(JIS−K−6301)は、50%以上、好ましくは100%以上(例えば、100〜500%)、さらに好ましくは150%以上(例えば、150〜400%)程度である。   The elongation percentage (JIS-K-6301) of the flexible polyurethane resin is about 50% or more, preferably about 100% or more (for example, 100 to 500%), more preferably about 150% or more (for example, 150 to 400%). is there.

この発明の好ましい実施態様によれば、上記厚み方向の膨張の拘束は、上記三次元構造体の少なくとも前記厚み部分を被覆部材で被覆することによって行なわれている。   According to a preferred embodiment of the present invention, the expansion in the thickness direction is restricted by covering at least the thickness portion of the three-dimensional structure with a covering member.

上記被覆部材は、寸法の変化し難いものが好ましい。特定の原料に限定されず、布、皮、合成樹脂シート、これらの複合材シート等を例示でき、網状シート、メッシュ、細かい間隔で紐でしばることも含む。布としては、天然繊維や人造繊維(半合成繊維を含む)、或いはこれらの混合物、通常の天然繊維や人造繊維に物理的、化学的処理を加えたものなど広範な繊維からなる織布又は不織布を使用できる。被覆部材は、座り心地を強ばらせ過ぎない柔軟性を備えたものが好ましく、具体的には、ノボロイド繊維(フェノール樹脂を繊維化した後、架橋処理し、分子構造を三次元化したもの)よりなるフェルト状の織布又は不織布、金巾等の綿織布、ウール織布、炭素繊維よりなるフェルト状の不織布等を例示できる。被覆部材の厚さは、予備圧縮された三次元構造体の用途に応じ、耐久性、被覆部材の材料等を考慮して適宜選定できるが、例えば、フェルト状不織布の場合、0.2〜6mm程度がよい。10mmを超えると強ばった感触を与える。   The covering member is preferably one whose dimensions do not easily change. The material is not limited to a specific raw material, and examples thereof include cloth, leather, synthetic resin sheets, composite material sheets thereof, and the like, including a net-like sheet, a mesh, and stringing at fine intervals. As the fabric, natural fibers and man-made fibers (including semi-synthetic fibers), or a mixture thereof, woven or non-woven fabrics composed of a wide range of fibers such as ordinary natural fibers and man-made fibers with physical and chemical treatments added. Can be used. The covering member is preferably provided with a flexibility that does not make the seating comfort too strong. Specifically, a novoloid fiber (phenolic resin is made into a fiber and then cross-linked to make the molecular structure three-dimensional) Examples thereof include felt-like woven fabrics or nonwoven fabrics, cotton woven fabrics such as gold widths, wool woven fabrics, felt-like nonwoven fabrics made of carbon fibers, and the like. The thickness of the covering member can be appropriately selected in consideration of the durability, the material of the covering member, etc., depending on the use of the pre-compressed three-dimensional structure. The degree is good. If it exceeds 10 mm, it gives a strong feel.

上記三次元構造体は、25%歪条件下で比較した場合、以下の式に示す硬さ低下の改善の割合が10〜100%になるように圧縮されているのが好ましい。

Figure 2006183171
When the three-dimensional structure is compared under a 25% strain condition, the three-dimensional structure is preferably compressed so that the improvement in hardness reduction represented by the following formula is 10 to 100%.
Figure 2006183171

これにより、耐久性のよい三次元構造体が得られる。なお、圧縮の程度は、耐用年数に応じて適宜変えるのが好ましい。より具体的には、上記圧縮前の三次元構造体の厚みをTとし、圧縮後の三次元構造体の厚みをtとした場合、t/Tの比は、0.85〜0.95にされるのが好ましい。   Thereby, a durable three-dimensional structure is obtained. The degree of compression is preferably changed as appropriate according to the service life. More specifically, when the thickness of the three-dimensional structure before compression is T and the thickness of the three-dimensional structure after compression is t, the ratio of t / T is 0.85 to 0.95. It is preferred that

この発明の他の局面に従う予備圧縮された三次元構造体の製造方法においては、まず、繊維と繊維の交点がバインダー樹脂で結着された結着点を有する三次元構造体を準備する。上記三次元構造体に対して、厚み部分の全体にわたって、厚み部分の硬さが平均化されるように、硬さ取りを施す。上記三次元構造体の厚み部分を、厚み方向に圧縮する。上記三次元構造体の厚み部分を圧縮した状態で厚み方向の膨張を拘束する。硬さ取りは、比較的外れ易い結着点を外すことによって行なわれる。   In the method for producing a pre-compressed three-dimensional structure according to another aspect of the present invention, first, a three-dimensional structure having a binding point in which the intersections of fibers are bound with a binder resin is prepared. The three-dimensional structure is hardened so that the thickness of the thickness portion is averaged over the entire thickness portion. The thickness portion of the three-dimensional structure is compressed in the thickness direction. Expansion in the thickness direction is constrained in a state where the thickness portion of the three-dimensional structure is compressed. Hardness removal is performed by removing a binding point that is relatively easy to come off.

これにより、厚み部分の全体にわたって、厚み部分の硬さが平均化され、かつその後さらに、繰り返し圧縮を受けても、厚みの低下および硬さの低下が起こりにくい、硬さ取りされた三次元構造体が得られる。その後、上記三次元構造体の厚み部分を圧縮した状態で厚み方向の膨張を拘束する。   Thereby, the hardness of the thickness portion is averaged over the entire thickness portion, and even after repeated compression, the thickness is reduced and the hardness is not easily reduced. The body is obtained. Thereafter, expansion in the thickness direction is constrained in a state where the thickness portion of the three-dimensional structure is compressed.

この発明のさらに他の局面に従う予備圧縮された三次元構造体の製造方法においては、繊維と繊維の交点がバインダー樹脂で結着された結着点を有する三次元構造体を準備する。上記三次元構造体の厚み部分を、厚み方向に圧縮する。上記三次元構造体の厚み部分を圧縮した状態で厚み方向の膨張を拘束する。上記厚み方向の膨張を拘束した状態で、上記三次元構造体に対して、厚み部分の全体にわたって、厚み部分の硬さが平均化されるように硬さ取りを施す。   In the method for producing a pre-compressed three-dimensional structure according to still another aspect of the present invention, a three-dimensional structure having a binding point in which the intersections of fibers are bound with a binder resin is prepared. The thickness portion of the three-dimensional structure is compressed in the thickness direction. Expansion in the thickness direction is constrained in a state where the thickness portion of the three-dimensional structure is compressed. In a state where the expansion in the thickness direction is constrained, the three-dimensional structure is hardened so that the thickness of the thickness portion is averaged over the entire thickness portion.

このように、硬さ取り工程と予備圧縮工程の順序を入れ替えても、厚み部分の全体にわたって、厚み部分の硬さが平均化され、かつその後さらに、繰り返し圧縮を受けても、硬さの低下が起こりにくい、予備圧縮された三次元構造体が得られる。   Thus, even if the order of the hardness removing step and the pre-compression step is changed, the hardness of the thickness portion is averaged over the entire thickness portion, and the hardness is reduced even if it is repeatedly subjected to repeated compression thereafter. A pre-compressed three-dimensional structure is obtained that is less likely to occur.

この発明の好ましい実施態様によれば、上記三次元構造体を圧縮した状態で厚み方向の膨張を拘束する工程は、少なくとも上記三次元構造体の厚み部分を圧縮させた状態で、厚み部分を被覆部材で被覆する工程を含む。ここでいう被覆部材で被覆する工程は、細かい間隔で紐で縛ることも含む。   According to a preferred embodiment of the present invention, the step of constraining expansion in the thickness direction in a state where the three-dimensional structure is compressed covers at least the thickness portion of the three-dimensional structure in a compressed state. A step of covering with a member. The process of covering with the covering member here includes binding with a string at a fine interval.

このようにして得られた予備圧縮された三次元構造体の用途としては、特に限定されないが、航空機、高速鉄道車両、地下鉄車両、バス、水上船、宇宙船等の各種乗物用の座席や、劇場、映画館、オフィス、家庭等の椅子をはじめとする各種腰掛の座部に配置されるクッション部材や、座部に腰掛けたときに臀部に感じるバネの存在を隠すためのバネ覆い部材を例示できる。特に、炭素繊維三次元構造体を用い、航空機などの乗り物用クッションに応用すると、従来のポリウレタンで形成されたクッションに比べ、重量減となり、航空機などの乗り物の運行燃費を著しく軽減できる。また、炭素繊維は、燃えない、クリーン(環境性がよい)という特性を有する。   The use of the pre-compressed three-dimensional structure obtained in this way is not particularly limited, but seats for various vehicles such as aircraft, high-speed rail vehicles, subway vehicles, buses, surface ships, spacecrafts, Examples of cushion members placed on seats of various seats such as theaters, movie theaters, offices, home chairs, etc., and spring cover members for hiding the presence of springs felt on the buttocks when sitting on the seats it can. In particular, when a carbon fiber three-dimensional structure is used and applied to a cushion for a vehicle such as an aircraft, the weight is reduced as compared with a cushion formed of a conventional polyurethane, and the operating fuel consumption of a vehicle such as an aircraft can be remarkably reduced. Carbon fiber has the property of not burning and clean (good environmental properties).

この発明によれば、繰り返し圧縮を受けても、硬さの低下が起こりにくい、予備圧縮された三次元構造体が得られ、ひいては底付き感が生じるのが防止された、長期座り心地の良い状態を保持できるクッション等が得られる。   According to the present invention, even when subjected to repeated compression, a pre-compressed three-dimensional structure is obtained in which the hardness is unlikely to decrease, and as a result, a feeling of bottoming is prevented, and long-term sitting comfort is good. A cushion or the like that can maintain the state is obtained.

繰り返し圧縮を受けても硬さの低下が起こりにくくなるように改良された、予備圧縮された三次元構造体を得るという目的を、比較的外れ易い結着点が予め外された三次元構造体を厚み方向に圧縮し、圧縮した状態で該三次元構造体の厚み方向の膨張を拘束するということによって実現した。以下、本発明の実施例を添付図面を参照して説明する。   The purpose of obtaining a pre-compressed three-dimensional structure that has been improved so that the decrease in hardness is less likely to occur even when subjected to repeated compression. This was realized by compressing in the thickness direction and restraining the expansion in the thickness direction of the three-dimensional structure in the compressed state. Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1を参照して、まず、予備圧縮前の三次元構造体の製造方法について説明する。金型の下(受)型6の上に、バインダー樹脂を含む繊維原料(ウエブ)5を積層する。そして、金型の上型7で押圧しながら、水蒸気などの加熱手段により、例えばバインダー樹脂を熱硬化して繊維を接合し、脱型し、三次元構造体1を得る。得られた三次元構造体1は、繊維と繊維の交点がバインダー樹脂で結着された結着点を有する、三次元的なネットワーク構造となっている。   With reference to FIG. 1, the manufacturing method of the three-dimensional structure before preliminary compression is demonstrated first. A fiber material (web) 5 containing a binder resin is laminated on the lower (receiving) mold 6 of the mold. Then, while pressing with the upper mold 7 of the mold, for example, the binder resin is thermoset by heating means such as water vapor to join the fibers and demold to obtain the three-dimensional structure 1. The obtained three-dimensional structure 1 has a three-dimensional network structure having binding points in which the intersections of fibers are bound with a binder resin.

次に本発明にかかる予備圧縮された三次元構造体の製造方法について説明する。図2は、実施例1にかかる予備圧縮された三次元構造体の製造方法の工程図である。図2(B)〜図2(E)は、図2(A)におけるX−X線に沿う断面図である。   Next, a method for producing a pre-compressed three-dimensional structure according to the present invention will be described. FIG. 2 is a process diagram of the method for manufacturing the pre-compressed three-dimensional structure according to the first embodiment. 2B to 2E are cross-sectional views taken along line XX in FIG.

図2(A)と(B)を参照して、図1に示す方法によって得られた、繊維と繊維の交点がバインダー樹脂で結着された結着点を有する、脱型後の厚さt1の三次元構造体1を準備する。図2(C)を参照して、三次元構造体1に対して、厚み部分1aの全体にわたって、厚み部分1aの硬さが平均化されるように、繰り返し圧縮試験(後述)の適用荷重(例えば座席クッション用途では100kgf)と同等あるいは高い荷重で数回ないし数十回程度の圧縮処理をし、硬さを落とす(硬さ取り)。これにより厚さt2の三次元構造体となる。   Referring to FIGS. 2A and 2B, the thickness t1 after demolding obtained by the method shown in FIG. 1 has a binding point where the intersection of the fibers is bound with a binder resin. The three-dimensional structure 1 is prepared. With reference to FIG. 2 (C), an applied load of a repeated compression test (described later) is applied to the three-dimensional structure 1 so that the hardness of the thickness portion 1a is averaged over the entire thickness portion 1a. For example, in the case of a seat cushion, the compression treatment is performed several times to several tens of times with a load equal to or higher than 100 kgf) to reduce the hardness (hardness removal). As a result, a three-dimensional structure having a thickness t2 is obtained.

硬さ取りの概念は、図3に示される。図3において、紙面に対して垂直な方向が厚み方向である。図3(A)を参照して、硬さ取りの処理前には、繊維CFと繊維CFを結ぶ結着点4のうち、比較的外れ易い結着点(不完全な結着点、図中、白丸で示した部分)が存在し、硬さが全体として不均一になっている。硬さ取りを施すことによって、図3(B)を参照して、比較的外れ易い結着点が外れ、硬さが均一化する。これにより、図2(C)に戻って、厚み部分1aの全体にわたって、厚み部分1aの硬さが平均化される。すなわち、水平方向のいずれの箇所の厚み部分1aもほぼ同じ硬さにされる。なお、この硬さ取り操作で、残った結着点4は、外れにくい丈夫な結着点であり、後に繰り返し圧縮を受けても、この結着点4は容易に外れない。   The concept of hardness removal is shown in FIG. In FIG. 3, the direction perpendicular to the paper surface is the thickness direction. With reference to FIG. 3 (A), before the process of removing the hardness, out of the binding points 4 that connect the fibers CF and the fibers CF, the binding points that are relatively easy to disconnect (incomplete binding points, There is a portion indicated by a white circle), and the hardness is not uniform as a whole. By applying hardness removal, referring to FIG. 3B, a binding point that is relatively easy to come off is removed, and the hardness becomes uniform. Thereby, it returns to FIG.2 (C) and the hardness of the thickness part 1a is averaged over the whole thickness part 1a. That is, the thickness portion 1a at any location in the horizontal direction is set to substantially the same hardness. In addition, the remaining binding point 4 is a strong binding point that is hard to come off in this hardness removing operation, and even if it is repeatedly compressed later, this binding point 4 is not easily removed.

なお、この硬さ取りの操作では、結着点が一部外されるので、硬さは低下し、厚みはウエブに戻ろう(嵩高くなろう)とするが、通常は外れる繊維本数が三次元構造体を構成する繊維の総本数に対し圧倒的に少ないため、外れた繊維は圧縮の繰り返しの際の摩擦によって三次元構造体の中の空隙部分へと移動し、厚みの変化は見かけ上ほとんど伴わないか、若干減少する傾向になる(このことは、炭素繊維のフェルトが繰り返し圧縮によって厚みが減少することからも明らかである)。   In this operation of removing the hardness, the binding point is partially removed, so that the hardness decreases and the thickness tries to return to the web (will increase in bulk), but usually the number of fibers that come off is tertiary. Since the total number of fibers constituting the original structure is overwhelmingly small, the detached fibers move to the voids in the three-dimensional structure due to friction during repeated compression, and the change in thickness is apparent. There is little or no tendency to decrease (this is also evident from the fact that the carbon fiber felt is reduced in thickness by repeated compression).

図2(D)を参照して、三次元構造体1の厚み部分1aを厚み方向に圧縮する(以下予備圧縮と呼ぶ)。これにより、厚みt3の三次元構造体1となる(t3<t1)。予備圧縮の程度については、後述する。   Referring to FIG. 2D, the thickness portion 1a of the three-dimensional structure 1 is compressed in the thickness direction (hereinafter referred to as pre-compression). As a result, the three-dimensional structure 1 having a thickness t3 is obtained (t3 <t1). The degree of preliminary compression will be described later.

図2(E)を参照して、三次元構造体1の厚み部分1aを予備圧縮させた状態で、寸法の変化しがたい被覆部材(金巾)2で被覆し、厚み部分1aの厚み方向の膨張を拘束する。この際、硬さ取りの段階で一旦落ちた硬さは、その時回復する。これによって、予備圧縮された三次元構造体3が得られる。   Referring to FIG. 2 (E), in a state in which the thickness portion 1a of the three-dimensional structure 1 is pre-compressed, it is covered with a covering member (gold width) 2 whose dimension is difficult to change, and the thickness portion 1a in the thickness direction is covered. Restrain the expansion. At this time, the hardness once dropped at the stage of removing the hardness is recovered at that time. Thereby, the pre-compressed three-dimensional structure 3 is obtained.

さて、上記予備圧縮は、25%歪条件下で比較した場合、以下の式に示す硬さ低下の改善の割合が10〜100%になるように行なわれる。

Figure 2006183171
The pre-compression is performed so that the ratio of improvement in hardness reduction represented by the following formula becomes 10 to 100% when compared under a 25% strain condition.
Figure 2006183171

すなわち、硬さ低下の改善の割合(%)は、おのおの別個の試験体での評価結果から求める。例えば、三次元構造体のブロックを先に作っておき、それを2分割(M・N)する。Mをまず適当な被覆部材で被覆し、初期硬度を測って、その後10万回の圧縮繰り返しを行なった後、再度硬度を測り、後述する式を用いて、硬さの低下の割合(%)を求める。一方、Nをまず初めに予備圧縮した状態で同じ被覆部材を用いて被覆し、その状態で初期硬度を測る。そして、その後10万回の圧縮繰り返しを行なった後、再度硬度を測り、硬さの低下の割合(%)を求める。これらの値から、上記式を用いて改善の割合(%)を求める。   That is, the rate of improvement in hardness reduction (%) is obtained from the evaluation results of each separate specimen. For example, a block of a three-dimensional structure is made first, and is divided into two (MN). First, M is coated with a suitable covering member, the initial hardness is measured, and then the compression is repeated 100,000 times, then the hardness is measured again, and the rate of decrease in hardness (%) using the formula described below. Ask for. On the other hand, N is first covered with the same covering member in a pre-compressed state, and the initial hardness is measured in that state. Then, after repeating 100,000 compressions, the hardness is measured again to determine the rate of reduction in hardness (%). From these values, the improvement ratio (%) is obtained using the above formula.

繰り返し圧縮試験は、それぞれの三次元構造体(MとN)に上述のように被覆部材を付けて行なわれた。三次元構造体の平面に対して垂直な方向から、面積616cm2の楕円板を用いて、楕円の長径方向が三次元構造体の幅方向に平行となるようにして荷重を加え、100kgf10万回の繰り返し(サイクル)試験を行なった。またその時の繰り返し(サイクル)速度は、毎秒0.1〜10回、好ましくは0.5〜2回の間で適宜選択する。 The repeated compression test was performed by attaching the covering member to each three-dimensional structure (M and N) as described above. A load is applied from a direction perpendicular to the plane of the three-dimensional structure so that the major axis direction of the ellipse is parallel to the width direction of the three-dimensional structure using an elliptical plate having an area of 616 cm 2 and 100 kgf 100,000 times Was repeated (cycle) test. The repetition (cycle) speed at that time is appropriately selected from 0.1 to 10 times per second, preferably 0.5 to 2 times.

また硬度の測定は、三次元構造体の厚み部分の厚みが元の厚みの3/4(25%圧縮)になったときの状態で20秒放置し、20秒経過後の三次元構造体の応力を測定し、その値を硬度とした。なお、予備圧縮された3次元構造体の、10万回繰り返し圧縮試験直前の歪みと硬さの関係(初期)と10万回繰り返し圧縮試験後の歪みと硬さの関係は、図4に示す通りであった。   In addition, the hardness is measured by leaving the three-dimensional structure at a thickness of 3/4 (25% compression) of the original thickness for 20 seconds. The stress was measured and the value was taken as the hardness. FIG. 4 shows the relationship (initial) between the strain and hardness immediately before the 100,000 times compression test and the relationship between the strain and hardness after the 100,000 times compression test of the pre-compressed three-dimensional structure. It was street.

25%歪条件下で比較した場合の、硬さ低下の割合(%)は、以下の式を用いて計算された。

Figure 2006183171
The ratio (%) of reduction in hardness when compared under 25% strain condition was calculated using the following formula.
Figure 2006183171

ここで、初期硬度(A)とは、10万回繰り返し圧縮試験直前の状態で測った25%歪条件下での応力値(硬さ値)である。25%歪条件下で比較するのは、例えばクッションの上に人が座った場合を想定したものである。   Here, the initial hardness (A) is a stress value (hardness value) under a 25% strain condition measured in the state immediately before the 100,000 times repeated compression test. The comparison under the 25% strain condition assumes that a person is sitting on the cushion, for example.

予備圧縮は、期待される硬さ低下の改善に見合うように行なうものであり、より具体的には、図2を再び参照して、圧縮前の三次元構造体の厚みをt1とし、圧縮後の三次元構造体の厚みをt3とした場合、t3/t1の比は、0.85〜0.95にされる。この比が0.95より大きいと、顕著な効果は現れず、この比が0.85より小さいと、座り心地が従来のものと大きく異なるようになり、従来の座り心地を維持したままで、繰り返し圧縮を受けても硬さの低下が起こりにくい三次元構造体を得るという本発明の目的を満たさなくなる。   The pre-compression is performed in order to meet the expected improvement in hardness reduction. More specifically, referring to FIG. 2 again, the thickness of the three-dimensional structure before compression is t1, and after compression, When the thickness of the three-dimensional structure is t3, the ratio of t3 / t1 is set to 0.85 to 0.95. If this ratio is greater than 0.95, no significant effect will appear, and if this ratio is less than 0.85, the sitting comfort will be greatly different from the conventional one, while maintaining the conventional sitting comfort, The object of the present invention, which is to obtain a three-dimensional structure in which the hardness is hardly reduced even when repeatedly compressed, is not satisfied.

なお、予備圧縮の強さによっては初期の硬さより硬い弾性体とすることも可能である。   Depending on the strength of the precompression, it is possible to make the elastic body harder than the initial hardness.

また、上記図2(E)工程の後、必要なら、畳み縫いなどの縫製を行なってもよい。この縫製は、面ファスナー(例えばマジックテープ(登録商標)、ベルクロテープ(登録商標))を使用する場合に、それが予備圧縮された三次元構造体3から外れにくくするために行なわれる。   Further, after the step of FIG. 2 (E), sewing such as fold stitching may be performed if necessary. This sewing is performed in order to make it difficult to come off from the pre-compressed three-dimensional structure 3 when using a hook-and-loop fastener (for example, Velcro tape (registered trademark), Velcro tape (registered trademark)).

図5を参照して、上述のようにして得られた、予備圧縮された三次元構造体は、比較的外れ易い結着点は既に外され、かつ厚み方向に予備圧縮が施されているので、腰掛け11のクッション30に組み込まれた場合、その後さらに、厚み方向に繰り返し圧縮を受けても、硬さの低下は起こりにくい。したがって、繰り返し圧縮を受けても底付き感は生じず、座り心地の良いクッション30となる。図4中、12は座部の基台、13は面ファスナー、14は背当、15は上張りである。   With reference to FIG. 5, since the precompressed three-dimensional structure obtained as described above has already been removed from the binding point that is relatively easy to come off, and precompression is applied in the thickness direction, When it is incorporated in the cushion 30 of the stool 11, even if it is further subjected to repeated compression in the thickness direction, the hardness is unlikely to decrease. Therefore, even when subjected to repeated compression, a feeling of bottoming does not occur and the cushion 30 is comfortable to sit on. In FIG. 4, 12 is a base of the seat, 13 is a hook-and-loop fastener, 14 is a backrest, and 15 is an upholstery.

なお、面ファスナー13は、上張り15に配置された面ファスナーと係止する目的、および予備圧縮された三次元構造体を座部の基台上にクッション剤として取り付ける際、座席部の基台12上に配置された面ファスナーと係止する目的で、それぞれの位置に対応するように、クッション30に取り付けられる。   The hook-and-loop fastener 13 is used for locking with the hook-and-loop fastener disposed on the upper cover 15, and when the pre-compressed three-dimensional structure is attached as a cushioning agent on the base of the seat, 12 is attached to the cushion 30 so as to correspond to each position for the purpose of locking with the hook-and-loop fastener arranged on the top.

図6は、実施例2にかかる予備圧縮された三次元構造体の製造方法の工程図である。   FIG. 6 is a process diagram of the method for manufacturing the pre-compressed three-dimensional structure according to the second embodiment.

実施例1では、脱型→硬さ取り→予備圧縮状態での被覆・縫製→予備圧縮された三次元構造体の順で製造した場合を例示したが、下記に示すように脱型→予備圧縮状態での被覆・縫製→硬さ取り→予備圧縮された三次元構造体の順で製造してもよい。   In Example 1, the case of manufacturing in the order of demolding → hardening → coating / sewing in a pre-compressed state → pre-compressed three-dimensional structure was illustrated, but demolding → pre-compression as shown below It may be manufactured in the order of covering and sewing in the state → hardness removal → pre-compressed three-dimensional structure.

すなわち、図6(A)を参照して、繊維と繊維の交点がバインダー樹脂で結着された結着点を有する、厚みt4の三次元構造体1を準備する。   That is, referring to FIG. 6A, a three-dimensional structure 1 having a thickness t4 is prepared, which has a binding point in which the intersection of the fibers is bound with a binder resin.

図6(B)を参照して、三次元構造体1の厚み部分1aを厚み方向に予備圧縮する。予備圧縮は、25%歪条件下で比較した場合、以下の式に示す、硬さ低下の改善の割合が10〜100%になるように行なわれる。

Figure 2006183171
With reference to FIG. 6B, the thickness portion 1a of the three-dimensional structure 1 is preliminarily compressed in the thickness direction. The pre-compression is performed so that the ratio of improvement in hardness reduction represented by the following formula is 10 to 100% when compared under a 25% strain condition.
Figure 2006183171

この詳細については、上述した通りである。ここで厚みt5の三次元構造体1となる(t4>t5)。   The details are as described above. Here, the three-dimensional structure 1 having a thickness t5 is obtained (t4> t5).

図6(C)を参照して、三次元構造体1の厚み部分1aを予備圧縮させた状態で、被覆部材(金巾)2で被覆し、三次元構造体の厚み部分1aの厚み方向の膨張を拘束する。ここで厚みはt6となる(t5=t6)。   Referring to FIG. 6C, the thickness portion 1a of the three-dimensional structure 1 is covered with a covering member (gold width) 2 in a pre-compressed state, and the thickness portion 1a of the three-dimensional structure is expanded in the thickness direction. Is restrained. Here, the thickness is t6 (t5 = t6).

図6(D)を参照して、三次元構造体1を金巾で被覆した状態で、厚み部分1aの全体にわたって、厚み部分1aの硬さが平均化されるように、繰り返し圧縮試験の適用荷重(例えば座席クッション用途では100kgf)と同等あるいは高い荷重で数回ないし数十回程度の圧縮処理をし、硬さを落とす。この硬さ取りにより、比較的外れ易い結着点が予め外される。これにより、三次元構造体1の厚みt6が、t6<t4となる、予備圧縮された三次元構造体3が得られる。   With reference to FIG. 6 (D), in a state where the three-dimensional structure 1 is covered with a gold width, the applied load of the repeated compression test is averaged over the entire thickness portion 1a so that the hardness of the thickness portion 1a is averaged. (For example, 100 kgf in the case of a seat cushion application) A compression treatment is performed several times to several tens of times with a load equal to or higher than that to reduce the hardness. By this hardness removal, a binding point that is relatively easy to come off is removed in advance. As a result, the pre-compressed three-dimensional structure 3 in which the thickness t6 of the three-dimensional structure 1 is t6 <t4 is obtained.

また必要なら、畳み縫いなどの縫製を行なう。このような順序で予備圧縮された三次元構造体を形成しても、得られた予備圧縮された三次元構造体3は、比較的外れ易い結着点が予め外され、かつ予備圧縮が施されているので、腰掛けのクッションに使用した場合、その後さらに繰り返し圧縮を受けても、硬さの低下が起こりにくくなる。したがって、繰り返し圧縮を受けても底付き感は生じず、座り心地の良いクッションとなる。   If necessary, perform sewing such as folding. Even if the pre-compressed three-dimensional structure is formed in this order, the obtained pre-compressed three-dimensional structure 3 is removed in advance from the binding points that are relatively easy to come off, and pre-compressed. Therefore, when it is used as a cushion for a stool, even if it is repeatedly subjected to subsequent compression, the hardness is unlikely to decrease. Therefore, even when subjected to repeated compression, a feeling of bottoming does not occur, and the cushion is comfortable to sit on.

なお、上記実施例では、三次元構造体の厚み部分1aを厚み方向に圧縮した状態で拘束する方法として、三次元構造体1の全体を被覆部材2で被覆する場合を例示したが、全体を被覆せずに、厚み部分1aのみを被覆し、厚み部分1aの厚み方向の膨張を拘束するようにしてもよい。   In the above embodiment, as a method for restraining the thickness portion 1a of the three-dimensional structure in a compressed state in the thickness direction, the case where the entire three-dimensional structure 1 is covered with the covering member 2 is exemplified. Instead of coating, only the thickness portion 1a may be covered to restrain the expansion of the thickness portion 1a in the thickness direction.

今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかる予備圧縮された三次元構造体は、航空機、高速鉄道車両、地下鉄車両、バス、水上船、宇宙船等の各種乗物用の座席や、劇場、映画館、オフィス、家庭等の椅子をはじめとする各種腰掛の座部に配置されるクッション部材や、座部に腰掛けたときに臀部に感じるバネの存在を隠すためのバネ覆い部材に利用される。   The pre-compressed three-dimensional structure according to the present invention is used for seats for various vehicles such as aircraft, high-speed rail vehicles, subway vehicles, buses, surface ships, spacecrafts, chairs for theaters, movie theaters, offices, homes, etc. It is used as a cushion member disposed on the seats of various seats such as, and a spring cover member for concealing the presence of a spring felt on the buttocks when sitting on the seat.

三次元構造体の製造方法を説明するための概略図である。It is the schematic for demonstrating the manufacturing method of a three-dimensional structure. 実施例1にかかる予備圧縮された三次元構造体の製造方法の工程図である。6 is a process diagram of a method for producing a pre-compressed three-dimensional structure according to Example 1. FIG. 硬さ取りの概念を示す図である。It is a figure which shows the concept of hardness removal. 10万回繰り返し圧縮試験前後の、予備圧縮された三次元構造体の歪みと硬さの関係を示す図である。It is a figure which shows the relationship between the distortion and hardness of the pre-compressed three-dimensional structure before and after the 100,000 times compression test. 実施例1にかかる予備圧縮された三次元構造体をクッションに用いた腰掛の側面図である。It is a side view of the seat which used the precompressed three-dimensional structure concerning Example 1 for the cushion. 実施例2にかかる予備圧縮された三次元構造体の製造方法の工程図である。6 is a process diagram of a method for producing a pre-compressed three-dimensional structure according to Example 2. FIG. 従来の繊維弾性体の概念図である。It is a conceptual diagram of the conventional fiber elastic body.

符号の説明Explanation of symbols

1 三次元構造体
1a 厚み部分
2 金巾
3 予備圧縮された三次元構造体
4 結着点

DESCRIPTION OF SYMBOLS 1 Three-dimensional structure 1a Thickness part 2 Gold width 3 Pre-compressed three-dimensional structure 4 Binding point

Claims (11)

繊維と繊維の交点がバインダー樹脂で結着された結着点を有する三次元構造体を備え、
前記三次元構造体の厚み部分は、厚み方向に圧縮されており、かつ該厚み部分の硬さは、厚み部分の全体にわたって平均化されており、さらに
前記厚み部分の厚み方向の膨張が拘束されている予備圧縮された三次元構造体。
A three-dimensional structure having a binding point in which the intersections of fibers are bound with a binder resin,
The thickness portion of the three-dimensional structure is compressed in the thickness direction, and the hardness of the thickness portion is averaged over the entire thickness portion, and further, the expansion of the thickness portion in the thickness direction is restricted. Is a pre-compressed three-dimensional structure.
前記厚み方向の膨張の拘束は、前記三次元構造体の少なくとも前記厚み部分を被覆部材で被覆することによって行なわれている請求項1に記載の予備圧縮された三次元構造体。   The precompressed three-dimensional structure according to claim 1, wherein the constraint of expansion in the thickness direction is performed by covering at least the thickness portion of the three-dimensional structure with a covering member. 前記三次元構造体は炭素繊維を主繊維とする(繊維素材のうち50重量%以上が炭素繊維である)請求項1または2に記載の予備圧縮された三次元構造体。   The pre-compressed three-dimensional structure according to claim 1 or 2, wherein the three-dimensional structure includes carbon fiber as a main fiber (50% by weight or more of the fiber material is carbon fiber). 前記三次元構造体は、25%歪条件下で比較した場合、以下の式に示す硬さ低下の改善の割合が10〜100%になるように圧縮されている請求項1から3のいずれか1項に記載の予備圧縮された三次元構造体。
Figure 2006183171
The said three-dimensional structure is compressed so that the improvement rate of the hardness reduction | decrease shown to the following formula | equation may become 10 to 100% when compared on 25% strain conditions. A pre-compressed three-dimensional structure according to claim 1.
Figure 2006183171
前記圧縮前の三次元構造体の厚みをTとし、圧縮後の三次元構造体の厚みをtとした場合、t/Tの比は、0.85〜0.95にされる請求項1から3のいずれか1項に記載の予備圧縮された三次元構造体。   The ratio of t / T is 0.85 to 0.95, where T is the thickness of the three-dimensional structure before compression and t is the thickness of the three-dimensional structure after compression. 4. The precompressed three-dimensional structure according to any one of items 3 to 3. 繊維と繊維の交点がバインダー樹脂で結着された結着点を有する三次元構造体を準備する工程と、
前記三次元構造体に対して、厚み部分の全体にわたって、厚み部分の硬さが平均化されるように、硬さ取りを施す工程と、
前記三次元構造体の厚み部分を厚み方向に圧縮する工程と、
前記三次元構造体の厚み部分を圧縮した状態で、該厚み部分の厚み方向の膨張を拘束する工程とを備えた予備圧縮された三次元構造体の製造方法。
A step of preparing a three-dimensional structure having a binding point in which intersections of fibers are bound with a binder resin;
For the three-dimensional structure, a process of removing hardness so that the hardness of the thickness portion is averaged over the entire thickness portion;
Compressing the thickness portion of the three-dimensional structure in the thickness direction;
A method for producing a pre-compressed three-dimensional structure, comprising a step of constraining expansion of the thickness portion in the thickness direction in a state where the thickness portion of the three-dimensional structure is compressed.
繊維と繊維の交点がバインダー樹脂で結着された結着点を有する三次元構造体を準備する工程と、
前記三次元構造体の厚み部分を厚み方向に圧縮する工程と、
前記三次元構造体の厚み部分を圧縮した状態で、該厚み部分の厚み方向の膨張を拘束する工程と、
前記厚み方向の膨張を拘束した状態で、前記三次元構造体に対して、前記厚み部分の全体にわたって、該厚み部分の硬さが平均化されるように硬さ取りを施す工程とを備えた予備圧縮された三次元構造体の製造方法。
A step of preparing a three-dimensional structure having a binding point in which intersections of fibers are bound with a binder resin;
Compressing the thickness portion of the three-dimensional structure in the thickness direction;
In a state where the thickness portion of the three-dimensional structure is compressed, restraining expansion in the thickness direction of the thickness portion;
And a step of removing the hardness of the three-dimensional structure so that the hardness of the thickness portion is averaged over the entire thickness portion in a state where the expansion in the thickness direction is constrained. A method for producing a pre-compressed three-dimensional structure.
前記三次元構造体を圧縮した状態で厚み方向の膨張を拘束する工程は、少なくとも前記三次元構造体の厚み部分を厚み方向に圧縮させた状態で、該厚み部分を被覆部材で被覆する工程を含む請求項6または7に記載の予備圧縮された三次元構造体の製造方法。   The step of restraining expansion in the thickness direction in a state where the three-dimensional structure is compressed includes the step of covering the thickness portion with a covering member in a state where at least the thickness portion of the three-dimensional structure is compressed in the thickness direction. A method for producing a pre-compressed three-dimensional structure according to claim 6 or 7. 前記繊維は炭素繊維を含む請求項6から8のいずれか1項に記載の予備圧縮された三次元構造体の製造方法。   The method for producing a pre-compressed three-dimensional structure according to any one of claims 6 to 8, wherein the fibers include carbon fibers. 前記圧縮前の三次元構造体の厚みをTとし、圧縮後の三次元構造体の厚みをtとした場合、t/Tの比が、0.85〜0.95になるように前記圧縮を行う請求項6から9のいずれか1項に記載の予備圧縮された三次元構造体の製造方法。   When the thickness of the three-dimensional structure before compression is T and the thickness of the three-dimensional structure after compression is t, the compression is performed so that the ratio of t / T is 0.85 to 0.95. The method for producing a pre-compressed three-dimensional structure according to any one of claims 6 to 9. 航空機および鉄道を含む乗り物の座席部に配置される乗り物用のクッションであって、
繊維と繊維の交点がバインダー樹脂で結着された結着点を有する三次元構造体を備え、
前記三次元構造体の厚み部分は、厚み方向に圧縮されており、かつ該厚み部分の硬さは、厚み部分の全体にわたって平均化されており、さらに
前記厚み部分の厚み方向の膨張が拘束されている乗り物用のクッション。

A cushion for a vehicle disposed in a seat portion of a vehicle including an aircraft and a railway,
A three-dimensional structure having a binding point in which the intersections of fibers are bound with a binder resin,
The thickness portion of the three-dimensional structure is compressed in the thickness direction, and the hardness of the thickness portion is averaged over the entire thickness portion, and further, the expansion of the thickness portion in the thickness direction is restricted. The cushion for the vehicle that is.

JP2004376685A 2004-12-27 2004-12-27 Preliminarily compressed three dimensional structural material, method for producing the same and cushion for vehicle Pending JP2006183171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376685A JP2006183171A (en) 2004-12-27 2004-12-27 Preliminarily compressed three dimensional structural material, method for producing the same and cushion for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376685A JP2006183171A (en) 2004-12-27 2004-12-27 Preliminarily compressed three dimensional structural material, method for producing the same and cushion for vehicle

Publications (1)

Publication Number Publication Date
JP2006183171A true JP2006183171A (en) 2006-07-13

Family

ID=36736490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376685A Pending JP2006183171A (en) 2004-12-27 2004-12-27 Preliminarily compressed three dimensional structural material, method for producing the same and cushion for vehicle

Country Status (1)

Country Link
JP (1) JP2006183171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164833A (en) * 2014-02-05 2015-09-17 株式会社マルイ Bicycle saddle and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164833A (en) * 2014-02-05 2015-09-17 株式会社マルイ Bicycle saddle and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6632756B1 (en) Automotive fabric composite
TWI476306B (en) Ultra-resilient pad
US7996970B2 (en) Seat, method of manufacturing the same, and method of treatment for recovery from permanent set in fatigue of the seat
WO1994003393A1 (en) Heat and flame resisting cushion material and seat for vehicle
JP2002336076A (en) Cushion structure
US20220363018A1 (en) Self-rising board molding
JPH0793990B2 (en) Cushion body
US20150020316A1 (en) Cushion structure and construction
EP0286446A1 (en) Composite cushion
JP2006183171A (en) Preliminarily compressed three dimensional structural material, method for producing the same and cushion for vehicle
KR20000076551A (en) Cushion structure having a three-dimensional net
US2649900A (en) Cushion and method of manufacturing the same
JP2006225771A (en) Fiber elastomer, cushion upholstery and cushion
JP2011031456A (en) Laminated cushion structure
JPH10155602A (en) Quilted fiber elastic body and seat using same
WO2021177226A1 (en) Cushion material
JP4500506B2 (en) Fiber elastic body and stool
EP4324970A2 (en) Self rising board molding
JP4783111B2 (en) Vehicle seat structure
WO2019111658A1 (en) Seat pad and manufacturing method therefor
JP2003125902A (en) Cushioning material and method for manufacturing the same
JP2003342859A (en) Three-dimensional knitted fabric and sheet structure
JP2002129456A (en) Cushioning member and method of producing the same
US4076886A (en) Structural laminate for seating
JP2003191362A (en) Laminated structure best-suited for cushioning material