JP2006183082A - WELD JOINT OF HIGH-Cr STEEL AND WELDING MATERIAL THEREFOR - Google Patents

WELD JOINT OF HIGH-Cr STEEL AND WELDING MATERIAL THEREFOR Download PDF

Info

Publication number
JP2006183082A
JP2006183082A JP2004376644A JP2004376644A JP2006183082A JP 2006183082 A JP2006183082 A JP 2006183082A JP 2004376644 A JP2004376644 A JP 2004376644A JP 2004376644 A JP2004376644 A JP 2004376644A JP 2006183082 A JP2006183082 A JP 2006183082A
Authority
JP
Japan
Prior art keywords
less
weld metal
impurities
weld
welding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004376644A
Other languages
Japanese (ja)
Other versions
JP4273339B2 (en
Inventor
Kazuhiro Ogawa
和博 小川
Kiyoko Takeda
貴代子 竹田
Takahiro Kousu
孝裕 小薄
Hiroyuki Anada
博之 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004376644A priority Critical patent/JP4273339B2/en
Publication of JP2006183082A publication Critical patent/JP2006183082A/en
Application granted granted Critical
Publication of JP4273339B2 publication Critical patent/JP4273339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a weld joint of which the weld metal has superior stress-corrosion cracking resistance, and to provide a welding material suitable for use in producing it. <P>SOLUTION: The weld joint is made from an austenitic weld metal which comprises, by mass%, 0.03% or less C, 1.0% or less Si, 0.1-2.0% Mn, 22-28% Cr, more than 12% but 22% or less Ni, 0-3% Mo, 0.001-0.15% N and the balance Fe with impurities in which P is 0.04% or less and S is 0.03%, while further controlling a value FP shown by the following expression (1): FP=Ni+30C+20N+0.5 Mn-1.1Cr-1.32Mo-1.65Si+9, (wherein symbols of elements show contents (mass%) of each element), into a range of -3 to 0. The weld joint is suitable for use in a high-temperature pure-water environment of a nuclear power plant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、たとえば原子力発電用の軽水炉等の高温純水環境下で用いられる配管等の溶接継手であって、その溶接金属が耐応力腐食割れ性に優れている溶接継手、およびその溶接継手を作製するのに好適な溶接材料に関する。   The present invention relates to a welded joint such as a pipe used in a high-temperature pure water environment such as a light water reactor for nuclear power generation, and a welded joint whose weld metal is excellent in resistance to stress corrosion cracking, and the welded joint. The present invention relates to a welding material suitable for manufacturing.

オーステナイト系ステンレス鋼における溶接時の高温割れを防止するため、溶接金属中に生成するδフェライトの比率を高くすることが知られている。しかし、δフェライトが生成すると、δフェライトそのものによる低温靭性の低下、成分元素の分配、偏析による耐食性の劣化などが懸念される。   In order to prevent hot cracking during welding in austenitic stainless steel, it is known to increase the ratio of δ ferrite formed in the weld metal. However, when δ ferrite is generated, there is a concern that the low temperature toughness due to the δ ferrite itself, the distribution of component elements, the deterioration of corrosion resistance due to segregation, and the like.

これに対して、特許文献1(特開平7−314178号公報)には、溶接金属中にδフェライトを生成させることなく高温割れが抑制され、低温靭性および高温脆化が改善された溶接金属が得られるオーステナイト系ステンレス鋼用の溶接材料が開示されている。この溶接材料は、溶接金属のNi等量とCr等量の和を制限し、かつMnを適正量含有せしめることによって上記の効果を得るものである。   On the other hand, Patent Document 1 (Japanese Patent Laid-Open No. 7-314178) discloses a weld metal in which high temperature cracking is suppressed without generating δ ferrite in the weld metal, and low temperature toughness and high temperature embrittlement are improved. The resulting welding material for austenitic stainless steel is disclosed. This welding material obtains the above effect by limiting the sum of the Ni equivalent and Cr equivalent of the weld metal and containing an appropriate amount of Mn.

オーステナイト系ステンレス鋼の溶接金属の応力腐食割れ(Stress corrosion cracking、以下SCCと記す)に対する抵抗性の改善に関する発明は、特許文献2(特開平05-65530号公報)に開示されている。この特許文献2の発明では、軽水炉プラントにおける溶接熱影響部の耐応力腐食割れ性の向上、特に改質処理後の低温鋭敏化による腐食に耐え、稼動期間中の応力腐食割れを防止できる表面改質処理技術を提供することを目的にしている。そして、Fe基またはNi基合金材料の表面に照射エネルギー密度が1.0〜100J/mmのレーザ光を照射して、103〜107℃/sの冷却速度で冷却させて、平均セル間隔が0.1〜3.0μmの範囲にあるセル組織をもつ溶融凝固層を形成することで、耐SCC性改善の効果を得ている。 An invention relating to improvement in resistance to stress corrosion cracking (hereinafter referred to as SCC) of weld metal of austenitic stainless steel is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 05-65530). In the invention of this patent document 2, the surface modification that can improve the stress corrosion cracking resistance of the weld heat affected zone in the light water reactor plant, in particular, withstand the corrosion due to low temperature sensitization after the reforming treatment and prevent the stress corrosion cracking during the operation period. It aims to provide quality processing technology. Then, the surface of the Fe-based or Ni-based alloy material is irradiated with a laser beam having an irradiation energy density of 1.0 to 100 J / mm, and cooled at a cooling rate of 10 3 to 10 7 ° C / s. The effect of improving the SCC resistance is obtained by forming a melt-solidified layer having a cell structure in the range of ˜3.0 μm.

しかしながら、特許文献2の発明は、特許文献2自体の中にも開示されているように、Cr炭化物の析出にともなう粒界鋭敏化に起因するSCCを対象としている。従って、例えば、原子力発電用配管等の高温純水環境下で生じうる非鋭敏化起因のSCCに対しては特許文献2の技術は、耐SCC改善の対策にはならない。SCC発生の機構が異なるからである。   However, the invention of Patent Document 2 is directed to SCC caused by grain boundary sensitization accompanying Cr carbide precipitation, as disclosed in Patent Document 2 itself. Therefore, for example, the technique of Patent Document 2 is not a measure for improving SCC resistance against SCC caused by non-sensitization that may occur in a high-temperature pure water environment such as a pipe for nuclear power generation. This is because the mechanism of SCC generation is different.

さらに、特許文献3(特開平9-137255号公報)には、化学工業用装置や核燃料再処理設備の配管等の溶接施工性に優れた高耐食オーステナイト系ステンレス溶接用材料が開示されている。しかし、その溶接材料は、溶接ビードの均一性と裏ビードの形成能を高めるためのものであり、高温純水環境での溶接部の耐SCC性改善のためのものではない。   Furthermore, Patent Document 3 (Japanese Patent Laid-Open No. 9-137255) discloses a highly corrosion-resistant austenitic stainless steel welding material excellent in welding workability such as piping for chemical industry equipment and nuclear fuel reprocessing equipment. However, the welding material is intended to increase the uniformity of the weld bead and the ability to form the back bead, and is not intended to improve the SCC resistance of the weld in a high-temperature pure water environment.

特開平7−314178号公報JP 7-314178 A 特開平5−65530号公報JP-A-5-65530 特開平9−137255号公報Japanese Patent Laid-Open No. 9-137255

本発明の課題は、オーステナイト系溶接金属において、原子力発電用の軽水炉等の高温純水環境下で用いられる配管等の溶接構造物に要求される特性である耐応力腐食割れ性を改善し、割れを防止することにある。具体的には、溶接金属が耐応力腐食割れ性に優れている溶接継手、およびその継手を作製する際に使用するのに好適な溶接材料を提供することが本発明の目的である。   The object of the present invention is to improve stress corrosion cracking resistance, which is a characteristic required for welded structures such as pipes used in high-temperature pure water environments such as light water reactors for nuclear power generation, in austenitic weld metals. Is to prevent. Specifically, it is an object of the present invention to provide a welded joint in which the weld metal is excellent in resistance to stress corrosion cracking, and a welding material suitable for use in producing the joint.

まず、本発明の基礎となった知見について述べる。以下、合金成分の含有量に関する%は、質量%を意味する。   First, knowledge that is the basis of the present invention will be described. Hereinafter, “%” regarding the content of the alloy component means “% by mass”.

いわゆる18−8系ステンレス鋼を代表とするオーステナイト系鋼の溶接金属においては、溶接時の熱サイクルにより粒界に炭化物が析出するために、粒界近傍にCr濃度の低い、いわゆるCr欠乏域が生じて、SCC感受性が増大する。そこで、従来、炭化物の原因となる炭素を0.03%以下に低減する対策が採られているが、Cr炭化物が形成しない、即ち、Cr欠乏域が生じない溶接金属でもSCCが生じることがある。   In the austenitic steel weld metal typified by so-called 18-8 series stainless steel, carbide precipitates at the grain boundary due to the thermal cycle during welding, so a so-called Cr-deficient region with a low Cr concentration is present near the grain boundary. This results in increased SCC sensitivity. Therefore, conventionally, measures have been taken to reduce carbon that causes carbides to 0.03% or less, but SCC may occur even in weld metals in which Cr carbides are not formed, that is, no Cr-deficient region is generated.

本発明者らは、研究の結果、溶接金属では凝固時の不純物元素、特にPとSの偏析によってもSCCが生じること、および以下に述べる凝固プロセスの精緻な制御により、SCC発生の原因となる凝固偏析が緩和できて、その結果、耐SCC性が大きく向上することを知見した。   As a result of research, the present inventors have found that SCC also occurs in the weld metal due to segregation of impurity elements, particularly P and S, during solidification, and causes the occurrence of SCC by precise control of the solidification process described below. It was found that solidification segregation can be mitigated, and as a result, SCC resistance is greatly improved.

(1)溶接金属の凝固過程では、通常、PおよびSは、固相に比べて液相に濃化しやすく、凝固の進行にともなって濃化が重畳され、凝固過程末期の液相では溶接金属中の平均濃度の100倍から1000倍のオーダーの濃度となる。凝固完了後、圧延等の加工や熱処理を加えずに使用される溶接金属では、凝固粒界に高濃度の不純物が存在する状態で使用されることになる。   (1) In the solidification process of the weld metal, P and S are usually more easily concentrated in the liquid phase than in the solid phase, and the concentration is superimposed as the solidification progresses. In the liquid phase at the end of the solidification process, the weld metal The density is on the order of 100 to 1000 times the average density. After completion of solidification, a weld metal that is used without applying processing such as rolling or heat treatment is used in a state where high-concentration impurities exist in the solidified grain boundary.

(2)不純物濃度の高い粒界は、腐食環境では溶解しやすく、結果として応力腐食割れ感受性が高くなる。   (2) Grain boundaries having a high impurity concentration are easily dissolved in a corrosive environment, resulting in an increased stress corrosion cracking sensitivity.

(3)液相への不純物の濃化は、固相がオーステナイト相である場合に比べて、フェライト相である場合の方が相対的には低減されるが、それでも濃化は生じる。   (3) Concentration of impurities in the liquid phase is relatively reduced when the solid phase is an austenite phase, but is still concentrated, even when the solid phase is a ferrite phase.

(4)しかしながら、最初にフェライト相で凝固させて液相への不純物の濃化を抑え、それでも生じる濃化は、凝固終了温度よりも10℃以上高温の状態で、液相中からオーステナイトを晶出させて、固液界面を移動させることにより不純物の濃化位置を物理的に変えていくことで、凝固粒界での不純物濃化を大幅に抑制することができる。たとえ凝固過程の途中からオーステナイト相が晶出しても、そのときの温度と凝固完了温度との差が10℃未満であれば、言い換えれば、凝固完了直前であれば、固液界面の移動が不十分であり、不純物の濃化の抑制効果が小さいため、凝固過程の途中からのオーステナイト相晶出時期の制御が重要となる。   (4) However, by first solidifying the ferrite phase to suppress the concentration of impurities in the liquid phase, the resulting concentration is still austenite crystallized from the liquid phase at a temperature higher by 10 ° C. than the solidification end temperature. The concentration of impurities at the solidified grain boundary can be significantly suppressed by physically changing the concentration position of impurities by moving the solid-liquid interface. Even if the austenite phase crystallizes in the middle of the solidification process, if the difference between the temperature at that time and the solidification completion temperature is less than 10 ° C, in other words, just before completion of solidification, the solid-liquid interface does not move. Since it is sufficient and the effect of suppressing the concentration of impurities is small, it is important to control the austenite phase crystallization timing during the solidification process.

上述の技術知見を実現する具体的手段としては、合金元素の調整が最も有効である。本発明者らは、実験研究を重ねた結果、後述の(1)式で表されるFPの値を適正範囲とすればよいことを確認して、本発明を完成させた。   As a concrete means for realizing the above technical knowledge, adjustment of alloy elements is most effective. As a result of repeated experimental studies, the present inventors have confirmed that the value of FP represented by the following formula (1) may be within an appropriate range, and completed the present invention.

本発明は、下記1の溶接継手および下記2の溶接材料を要旨とする。   The gist of the present invention is the following weld joint 1 and the following weld material 2.

1.溶接金属が、質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.1〜2.0%、Cr:22〜28%、Ni:12%を超えて22%まで、Mo:0〜3%およびN:0.001〜0.15%を含有し、残部はFeおよび不純物からなり、不純物中のPは0.04%以下、Sは0.03%であり、さらに下記(1)式で表されるFPの値が−3から0までの範囲にあるオーステナイト系溶接金属であることを特徴とする溶接継手。   1. Weld metal in mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 0.1-2.0%, Cr: 22-28%, Ni: more than 12% to 22%, Mo: 0-3 % And N: 0.001 to 0.15%, the balance is Fe and impurities, P in the impurities is 0.04% or less, S is 0.03%, and the value of FP represented by the following formula (1) is A welded joint characterized by being an austenitic weld metal in the range of -3 to 0.

FP=Ni+30C+20N+0.5Mn−1.1Cr−1.32Mo−1.65Si+9 ・・・(1)
なお、上記(1)式中の元素記号は、各元素の含有量(質量%)を示す。
FP = Ni + 30C + 20N + 0.5Mn−1.1Cr−1.32Mo−1.65Si + 9 (1)
In addition, the element symbol in said (1) Formula shows content (mass%) of each element.

この溶接継手は、原子力発電設備の高温純水環境で用いる構造物の継手として好適である。   This welded joint is suitable as a joint for a structure used in a high-temperature pure water environment of a nuclear power generation facility.

2.質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.1〜2.0%、Cr:22〜28%、Ni:12%を超えて22%まで、Mo:0〜3%およびN:0.001〜0.15%を含有し、残部はFeおよび不純物からなり、不純物中のPは0.04%以下、Sは0.03%であり、さらに下記(1)式で表されるFPの値が−3から0までの範囲にあることを特徴とするオーステナイト系溶接材料。   2. In mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 0.1-2.0%, Cr: 22-28%, Ni: more than 12% to 22%, Mo: 0-3% and N: 0.001 to 0.15% is contained, the balance is made of Fe and impurities, P in the impurities is 0.04% or less, S is 0.03%, and the value of FP represented by the following formula (1) is -3 to 0 An austenitic welding material characterized by being in a range up to.

FP=Ni+30C+20N+0.5Mn−1.1Cr−1.32Mo−1.65Si+9 ・・・(1)
なお、上記(1)式中の元素記号は、各元素の含有量(質量%)を示す。
FP = Ni + 30C + 20N + 0.5Mn−1.1Cr−1.32Mo−1.65Si + 9 (1)
In addition, the element symbol in said (1) Formula shows content (mass%) of each element.

この溶接材料は、上記1の溶接継手を作製するのに好適である。   This welding material is suitable for producing the weld joint described in 1 above.

まず、前記の(1)式で表されるFP値について説明する。   First, the FP value represented by the above equation (1) will be described.

FPの値が0を超える場合には、溶接金属の凝固がオーステナイト相で開始する。一方、(1)式の値が−3未満の場合には、凝固はフェライト相で開始するものの、凝固終了温度よりも10℃以上高い状態でのオーステナイト相の晶出は、生じなくなる。従って、本発明者らの新たな知見である「フェライト相で凝固を開始させ、かつ凝固終了温度よりも10℃以上で高い状態でオーステナイト相を晶出させて、凝固粒界での不純物の偏析を回避させ、耐SCC性を改善する」という技術を実現するには、FPの値を−3以上で0以下とすることが必須となる。さらに好ましいFPの値は、−2.5以上で−0.5以下の範囲の値である。   When the value of FP exceeds 0, solidification of the weld metal starts in the austenite phase. On the other hand, when the value of the formula (1) is less than −3, solidification starts in the ferrite phase, but crystallization of the austenite phase in a state higher by 10 ° C. or more than the end temperature of solidification does not occur. Therefore, the present inventors are a new finding, "segregation of impurities at the solidified grain boundary by starting solidification in the ferrite phase and crystallizing the austenite phase at a temperature higher than the solidification end temperature by 10 ° C or higher. In order to realize a technique of “to avoid SCC and improve SCC resistance”, it is essential that the value of FP is −3 or more and 0 or less. A more preferred FP value is a value in the range of not less than −2.5 and not more than −0.5.

次に溶接金属およびそれを作製するための溶接材料を構成する成分の作用効果と含有量の限定理由を説明する。   Next, the effect of the component which comprises a weld metal and the welding material for producing it, and the reason for limitation of content are demonstrated.

C:0.03%以下
Cは、オーステナイト形成元素としてオーステナイト相の安定化に寄与する。しかし、その含有が過剰になると、炭化物を形成し、耐食性の劣化を招く。特に、溶接金属ではCr炭化物の析出に起因して粒界腐食感受性が高くなり、即ち、鋭敏化されて、耐食性の劣化が頼著になる。従って、C含有量は0.03%以下とする。鋭敏化を防止するにはC含有量はできる限り低くするのが有効であり、より望ましいC含有量は0.02%未満である。
C: 0.03% or less C contributes to stabilization of the austenite phase as an austenite forming element. However, when the content is excessive, carbides are formed and the corrosion resistance is deteriorated. In particular, the weld metal is highly susceptible to intergranular corrosion due to the precipitation of Cr carbides, that is, it is sensitized and the corrosion resistance is greatly deteriorated. Therefore, the C content is 0.03% or less. In order to prevent sensitization, it is effective to make the C content as low as possible, and the more desirable C content is less than 0.02%.

Si:1.0%以下
Siは脱酸剤として利用されるが、Siが過剰に含まれると溶接時の高温割れ感受性が増大するので、その含有量の上限は1.0%とする。より望ましいのは、0.60%以下である。なお、脱酸剤としての作用効果を得るためには、下限を0.1%とするのが望ましい。
Si: 1.0% or less
Si is used as a deoxidizer, but if Si is excessively contained, the hot cracking susceptibility during welding increases, so the upper limit of its content is 1.0%. More desirable is 0.60% or less. In order to obtain the effect as a deoxidizer, the lower limit is preferably 0.1%.

Mn:0.1〜2.0%
Mnは脱酸剤として添加され、オーステナイト相の安定にも寄与する。また、溶接材料を線材に加工する際の熱間加工性の向上にも寄与する。さらに、溶接時にSを固定化して高温割れ防止に主要な役割を果たす元素でもある。これらの諸効果を得るため、下限は0.1%とする。しかし、過剰に含有させると、溶接金属の表面に硫化物が優先的に濃化し、鋼材の耐食性を低下させるとともに、溶接作業性の低下、ヒユームの発生などの問題が生じる。従って、Mn含有量の上限は2.0%とする。より望ましい上限は1.5%である。
Mn: 0.1-2.0%
Mn is added as a deoxidizer and contributes to the stability of the austenite phase. Moreover, it contributes also to the improvement of hot workability at the time of processing a welding material into a wire. Furthermore, it is an element that plays a major role in preventing hot cracking by fixing S during welding. In order to obtain these effects, the lower limit is made 0.1%. However, if it is excessively contained, sulfides preferentially concentrate on the surface of the weld metal, thereby lowering the corrosion resistance of the steel material and causing problems such as deterioration in welding workability and generation of fumes. Therefore, the upper limit of the Mn content is 2.0%. A more desirable upper limit is 1.5%.

Cr:22〜28%
Crは、溶接部の耐食性の確保に不可欠な元素である。Cr含有量が22%未満の場合は、厳しい腐食環境ではこの効果が十分に得られない。一方、Cr含有量が28%を超えると、溶接金属を得るための溶接材料を製造する際の熱間加工が困難となる。従って、Cr含有量の適正範囲は22〜28%である。より望ましいのは23〜28%、最も望ましいのは24〜27%である。
Cr: 22-28%
Cr is an essential element for ensuring the corrosion resistance of the weld. When the Cr content is less than 22%, this effect cannot be sufficiently obtained in a severe corrosive environment. On the other hand, if the Cr content exceeds 28%, hot working when producing a welding material for obtaining a weld metal becomes difficult. Therefore, the appropriate range of Cr content is 22-28%. More preferred is 23 to 28%, and most preferred is 24 to 27%.

Ni:12%を超えて22%まで
Niはオーステナイト相形成元素として溶接金属が凝固する際の形態に大きな影響を与える重要な元素である。上記のようにCrを22%以上含有する鋼においては、オーステナイト相を安定させるために、12%を超えるNiの含有が必要である。より好ましいのは14%以上である。Ni含有量の上限は、Cr含有量等との相関を主な要因とする前記(1)式で表されるFP値を−3から0の範囲に収めることから決まるが、δフェライトを適度に晶出させる観点から22%を上限とする。
Ni: Over 12% to 22%
Ni is an important element that has a great influence on the morphology of the weld metal when it solidifies as an austenite phase forming element. As described above, steel containing 22% or more of Cr needs to contain more than 12% of Ni in order to stabilize the austenite phase. More preferred is 14% or more. The upper limit of the Ni content is determined by keeping the FP value expressed by the above formula (1) within the range of −3 to 0, which is mainly caused by the correlation with the Cr content, etc. From the viewpoint of crystallization, the upper limit is 22%.

Mo:0〜3%
Moは含有させなくともよい。Moは、主として耐孔食性の向上に有効であり、SCCの起点となりうる孔食を抑えることにより、耐SCC性の向上に寄与する。このような効果を得るために含有させる場合は0.2%以上とするのが望ましい。しかし、過剰に含有させると靭性低下の要因となる金属間化合物が析出するため、上限は3%とした。好ましい範囲は0.5〜2.4%である。
Mo: 0-3%
Mo may not be contained. Mo is mainly effective for improving the pitting corrosion resistance, and contributes to the improvement of the SCC resistance by suppressing the pitting corrosion that can be the starting point of SCC. In order to obtain such an effect, the content is preferably 0.2% or more. However, since an intermetallic compound that causes a decrease in toughness precipitates when excessively contained, the upper limit was made 3%. A preferred range is 0.5-2.4%.

N:0.001〜0.15%
Nは溶接金属のオーステナイト相を安定化させ、同時にその強度を高めるのに有効な元素であるが、過剰に含有させると裏ビード形成能を劣化させる。さらに、鋼中のCrと結合してCr窒化物を形成し、粒界耐食性を低下させる。従って、N含有量は0.001〜0.15%とする。より望ましいのは0.005〜0.10%である。
本発明の溶接継手を構成する溶接金属は、前記の成分以外、残部はFeと不純物からなるものである。不純物の中では特にPおよびSの上限を抑えることが必要である。
N: 0.001 to 0.15%
N is an element effective for stabilizing the austenite phase of the weld metal and at the same time increasing its strength. However, when it is excessively contained, the back bead forming ability is deteriorated. Furthermore, it combines with Cr in the steel to form Cr nitride, reducing the grain boundary corrosion resistance. Therefore, the N content is 0.001 to 0.15%. More desirable is 0.005 to 0.10%.
The weld metal constituting the welded joint of the present invention is composed of Fe and impurities in the balance other than the above components. Among impurities, it is necessary to suppress the upper limit of P and S in particular.

P:0.04%以下
Pは多量に存在すると溶接割れ感受性の増大を招くとともに凝固粒界偏析してSCC感受性を助長するので、できるだけ少ないことが望ましい。従って、その含有量は0.04%以下とする。
P: 0.04% or less
When P is present in a large amount, it causes an increase in weld cracking susceptibility and segregation at the solidified grain boundaries promotes SCC susceptibility. Therefore, the content is 0.04% or less.

S:0.03%以下
Sは溶融池の溶け込み深さを深くし、裏ビード形成能を向上させるのに有用な元素である。しかし、その含有量が過剰になると、形成された硫化物が耐食性を劣化させ、また、溶接材料の線材加工時のキズ発生の原因となる。さらに、溶接時の高温割れ感受性が高くなる。従って、その含有量は0.03%以下とする。望ましいのは、0.01%以下である。
S: 0.03% or less
S is an element useful for increasing the penetration depth of the molten pool and improving the back bead forming ability. However, when the content is excessive, the formed sulfide deteriorates the corrosion resistance, and causes a scratch when the welding material is processed into a wire. Furthermore, the hot cracking sensitivity at the time of welding becomes high. Therefore, the content is 0.03% or less. Desirable is 0.01% or less.

以上が本発明の溶接継手を構成する溶接金属および溶接材料の化学組成である。ただし、上記の各合金成分の範囲内で、前記の(1)式で定義されるFP値が−3から0までの範囲に収まるように調整することが重要である。それによって溶接金属の優れた耐SCC性が確保されるからである。   The above is the chemical composition of the weld metal and the weld material constituting the weld joint of the present invention. However, it is important to adjust so that the FP value defined by the above formula (1) falls within the range from -3 to 0 within the range of each alloy component. This is because the excellent SCC resistance of the weld metal is ensured.

本発明の溶接継手を構成する鋼材(母材)は、例えば、JISのSUS 304、SUS 304L、SUS 309、SUS 310、SUS 316およびSUS 316L等のオーステナイト系ステンレス鋼、ならびにこれらの相当鋼種である。   The steel material (base material) constituting the welded joint of the present invention is, for example, austenitic stainless steel such as JIS SUS 304, SUS 304L, SUS 309, SUS 310, SUS 316 and SUS 316L, and their equivalent steel types. .

本発明の溶接金属を形成するための溶接方法としては、アーク溶接(被覆アーク溶接、TIG、MIG、サブマージアーク溶接等)が好ましい。   As a welding method for forming the weld metal of the present invention, arc welding (covered arc welding, TIG, MIG, submerged arc welding, etc.) is preferable.

種々の化学組成のステンレス鋼を真空高周波炉で溶解後、鍛造、圧延により2mm径の線材とし、その線材を用いてSUS 310の板材の上にバタリング溶接して母材希釈の影響を無視できるようにした後、その上にTIG溶接を行った。TIG溶接では入熱量15kJ/cmで積層溶接して溶接金属を作製した。全溶接金属部の厚さは25層盛で約20mmとした。この全溶接金属部の化学組成を表1に示す。なお、表1には前記(1)式で定義されるFP値も併記した。   After melting stainless steels of various chemical compositions in a vacuum high-frequency furnace, they are forged and rolled into 2 mm diameter wire rods, which are then used for buttering welding on the SUS 310 plate so that the influence of dilution of the base metal can be ignored. Then, TIG welding was performed thereon. In TIG welding, a weld metal was produced by laminating and welding with a heat input of 15 kJ / cm. The thickness of all weld metal parts was 25 layers and about 20 mm. The chemical composition of all the weld metal parts is shown in Table 1. In Table 1, the FP value defined by the equation (1) is also shown.

得られた溶接金属の上層部分から機械加工により厚さ2mm、幅10mm、長さが50mmのSCC試験片を採取して、図1に示すように、試験片1の10×50mmの評価面と治具2との間には、SCCの加速因子としての隙間を形成させるために、グラファイトファイバーウール3を介在させ、曲率半径100mmの鋼製の型材治具に挟み込んで加圧プレスで押さえながらボルト4で締めて固定し、隙間および定歪みを付与して、オートクレーブ中に浸漬してSCC試験に供した。オートクレーブの腐食環境は、300℃で30ppbの硫酸イオンを添加した純水とし、試験時間は2000時間とした。   An SCC test piece having a thickness of 2 mm, a width of 10 mm, and a length of 50 mm was sampled from the upper layer portion of the obtained weld metal by machining, and as shown in FIG. In order to form a gap as an SCC acceleration factor between the jig 2 and the graphite fiber wool 3, the bolt is sandwiched between steel mold jigs with a radius of curvature of 100 mm and pressed with a pressure press. The sample was clamped with 4 and fixed, given a gap and constant strain, immersed in an autoclave and subjected to the SCC test. The corrosive environment of the autoclave was pure water to which 30 ppb sulfate ions were added at 300 ° C., and the test time was 2000 hours.

試験後の試験片の表面を10倍の実体顕微鏡で観察し、割れの有無を観察した。結果を表1にまとめて示す。○印はSCCの発生がないことを示し、×印はSCCが発生したことを示す。   The surface of the test piece after the test was observed with a 10-fold stereo microscope to observe the presence or absence of cracks. The results are summarized in Table 1. A circle indicates that no SCC has occurred, and a cross indicates that an SCC has occurred.

Figure 2006183082
Figure 2006183082

表1に示すとおり、溶接金属が本発明で定める要件を満たしている符号A1からA5までにはSCCは認められなかった。一方、FPの値が−3未満の符号A6、およびFPの値が0を超える符号A7とA8にはSCCが生じた。   As shown in Table 1, no SCC was recognized from the signs A1 to A5, in which the weld metal satisfies the requirements defined in the present invention. On the other hand, SCC occurred in the code A6 having an FP value of less than −3 and the codes A7 and A8 having an FP value exceeding 0.

本発明によれば、溶接金属が高温純水中における耐SCCに優れた溶接継手が得られる。この溶接継手は、本発明の溶接材料を用いて作製することができる。本発明は、特に原子力発電設備の建設に有効である。   According to the present invention, a weld joint in which the weld metal is excellent in SCC resistance in high-temperature pure water can be obtained. This weld joint can be produced using the welding material of the present invention. The present invention is particularly effective for the construction of nuclear power generation facilities.

応力腐食割れ試験における試験片のセッティングを示す図で、(a)は正面図、(b)は側面図である。It is a figure which shows the setting of the test piece in a stress corrosion cracking test, (a) is a front view, (b) is a side view.

符号の説明Explanation of symbols

1:試験片、2:治具、3:グラファイトファイバーウール、4:ボルト
1: Test piece, 2: Jig, 3: Graphite fiber wool, 4: Bolt

Claims (4)

溶接金属が、質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.1〜2.0%、Cr:22〜28%、Ni:12%を超えて22%まで、Mo:0〜3%およびN:0.001〜0.15%を含有し、残部はFeおよび不純物からなり、不純物中のPは0.04%以下、Sは0.03%であり、さらに下記(1)式で表されるFPの値が−3から0までの範囲にあるオーステナイト系溶接金属であることを特徴とする溶接継手。
FP=Ni+30C+20N+0.5Mn−1.1Cr−1.32Mo−1.65Si+9 ・・・(1)
上記(1)式中の元素記号は、各元素の含有量(質量%)を示す。
Weld metal in mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 0.1-2.0%, Cr: 22-28%, Ni: more than 12% to 22%, Mo: 0-3 % And N: 0.001 to 0.15%, the balance is Fe and impurities, P in the impurities is 0.04% or less, S is 0.03%, and the value of FP represented by the following formula (1) is A welded joint characterized by being an austenitic weld metal in the range of -3 to 0.
FP = Ni + 30C + 20N + 0.5Mn−1.1Cr−1.32Mo−1.65Si + 9 (1)
The element symbol in the above formula (1) indicates the content (% by mass) of each element.
原子力発電設備の高温純水環境で用いられる溶接構造物用である請求項1に記載の溶接継手。   The welded joint according to claim 1, which is for a welded structure used in a high-temperature pure water environment of a nuclear power generation facility. 質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.1〜2.0%、Cr:22〜28%、Ni:12%を超えて22%まで、Mo:0〜3%およびN:0.001〜0.15%を含有し、残部はFeおよび不純物からなり、不純物中のPは0.04%以下、Sは0.03%であり、さらに下記(1)式で表されるFPの値が−3から0までの範囲にあることを特徴とするオーステナイト系溶接材料。
FP=Ni+30C+20N+0.5Mn−1.1Cr−1.32Mo−1.65Si+9 ・・・(1)
上記(1)式中の元素記号は、各元素の含有量(質量%)を示す。
In mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 0.1-2.0%, Cr: 22-28%, Ni: more than 12% to 22%, Mo: 0-3% and N: 0.001 to 0.15% is contained, the balance is Fe and impurities, P in the impurities is 0.04% or less, S is 0.03%, and the FP value represented by the following formula (1) is -3 to 0 An austenitic welding material characterized by being in the range up to.
FP = Ni + 30C + 20N + 0.5Mn−1.1Cr−1.32Mo−1.65Si + 9 (1)
The element symbol in the above formula (1) indicates the content (% by mass) of each element.
請求項1または請求項2に記載の溶接継手を作製するのに用いる請求項3の溶接材料。
The welding material of Claim 3 used for producing the welded joint of Claim 1 or Claim 2.
JP2004376644A 2004-12-27 2004-12-27 High Cr steel welded joints and welding materials Expired - Fee Related JP4273339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376644A JP4273339B2 (en) 2004-12-27 2004-12-27 High Cr steel welded joints and welding materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376644A JP4273339B2 (en) 2004-12-27 2004-12-27 High Cr steel welded joints and welding materials

Publications (2)

Publication Number Publication Date
JP2006183082A true JP2006183082A (en) 2006-07-13
JP4273339B2 JP4273339B2 (en) 2009-06-03

Family

ID=36736413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376644A Expired - Fee Related JP4273339B2 (en) 2004-12-27 2004-12-27 High Cr steel welded joints and welding materials

Country Status (1)

Country Link
JP (1) JP4273339B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071146A1 (en) * 2008-12-18 2010-06-24 独立行政法人日本原子力研究開発機構 Austenite-based weld material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for grain boundary corrosion using same
JP2012200778A (en) * 2011-03-28 2012-10-22 Sumitomo Metal Ind Ltd Welded joint of austenitic stainless steel
WO2012157542A1 (en) 2011-05-13 2012-11-22 住友金属工業株式会社 Welding material and welded joint
JP2012250255A (en) * 2011-06-02 2012-12-20 Nippon Yakin Kogyo Co Ltd Stainless steel for welding
JP2015155116A (en) * 2015-03-20 2015-08-27 日本冶金工業株式会社 Thickness increasing method for weld stainless steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305778B1 (en) 2008-12-18 2013-09-06 가부시키가이샤 고베 세이코쇼 Austenite-based weld material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for grain boundary corrosion using same
JP2010142843A (en) * 2008-12-18 2010-07-01 Japan Atomic Energy Agency Welding material consisting of austenitic stainless steel, and method for preventive maintenance of stress corrosion cracking and intergranular corrosion using the same
WO2010071146A1 (en) * 2008-12-18 2010-06-24 独立行政法人日本原子力研究開発機構 Austenite-based weld material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for grain boundary corrosion using same
US8322592B2 (en) 2008-12-18 2012-12-04 Japan Atomic Energy Agency Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
JP2012200778A (en) * 2011-03-28 2012-10-22 Sumitomo Metal Ind Ltd Welded joint of austenitic stainless steel
KR20130137248A (en) 2011-05-13 2013-12-16 신닛테츠스미킨 카부시키카이샤 Welding material and welded joint
JP5088457B1 (en) * 2011-05-13 2012-12-05 住友金属工業株式会社 Welding materials and welded joints
WO2012157542A1 (en) 2011-05-13 2012-11-22 住友金属工業株式会社 Welding material and welded joint
CN103547409A (en) * 2011-05-13 2014-01-29 新日铁住金株式会社 Welding material and welded joint
EP2708310A1 (en) * 2011-05-13 2014-03-19 Nippon Steel & Sumitomo Metal Corporation Welding material and welded joint
US20140286698A1 (en) * 2011-05-13 2014-09-25 Nippon Steel & Sumitomo Metal Corporation Welding material and welding joint
EP2708310A4 (en) * 2011-05-13 2015-04-01 Nippon Steel & Sumitomo Metal Corp Welding material and welded joint
KR101597010B1 (en) 2011-05-13 2016-02-23 신닛테츠스미킨 카부시키카이샤 Welding material and welded joint
US10201880B2 (en) 2011-05-13 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Welding material and welding joint
JP2012250255A (en) * 2011-06-02 2012-12-20 Nippon Yakin Kogyo Co Ltd Stainless steel for welding
JP2015155116A (en) * 2015-03-20 2015-08-27 日本冶金工業株式会社 Thickness increasing method for weld stainless steel

Also Published As

Publication number Publication date
JP4273339B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5756935B2 (en) Austenitic stainless steel excellent in intergranular corrosion resistance and stress corrosion cracking resistance and method for producing the same
CN106061671B (en) Welded joint
KR101632520B1 (en) Seamless austenite heat-resistant alloy tube
EP2422919B1 (en) Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
JP7173348B2 (en) Austenitic stainless steel materials and welded joints
KR102445683B1 (en) Austenitic Stainless Steel Weld Metals and Weld Structures
WO2012111535A1 (en) Welded duplex stainless joint
JP5107172B2 (en) Ni-base alloy welding material
JP6627343B2 (en) Austenitic stainless steel and equipment for high-pressure hydrogen gas or liquid hydrogen
KR20180125524A (en) Weld structure member
JP5861599B2 (en) Austenitic stainless steel for nuclear reactors
JP6642282B2 (en) Manufacturing method of austenitic stainless steel welded joint
JP2020105572A (en) Austenitic heat resistant steel
WO2015129561A1 (en) Welded joint and method for producing welded joint
KR20210069097A (en) Welded structure and its manufacturing method
KR20130137248A (en) Welding material and welded joint
JP4273339B2 (en) High Cr steel welded joints and welding materials
JP2017205800A (en) Ni-BASED ALLOY FOR WELDING, AND FILLER MATERIAL FOR BOILING WATER REACTOR
WO2019070002A1 (en) Welding material for austenitic heat-resistant steel, weld metal and weld structure, and method for manufacturing weld metal and weld structure
JP2006159262A (en) Welded joint and welding material
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP2016000412A (en) Padding metal, and mechanical structure
KR20190062488A (en) Austenitic heat-resistant alloys and welding seams using them
JP2016084522A (en) Two-phase stainless steel material and two-phase stainless steel tube
JP2016079474A (en) Weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees