JP2006183069A - Method for producing metal oxide film - Google Patents

Method for producing metal oxide film Download PDF

Info

Publication number
JP2006183069A
JP2006183069A JP2004375582A JP2004375582A JP2006183069A JP 2006183069 A JP2006183069 A JP 2006183069A JP 2004375582 A JP2004375582 A JP 2004375582A JP 2004375582 A JP2004375582 A JP 2004375582A JP 2006183069 A JP2006183069 A JP 2006183069A
Authority
JP
Japan
Prior art keywords
oxide film
group
metal
metal oxide
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004375582A
Other languages
Japanese (ja)
Inventor
Takumi Tsunoda
巧 角田
Chihiro Hasegawa
千尋 長谷川
Hiroki Kaneto
広樹 金戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004375582A priority Critical patent/JP2006183069A/en
Publication of JP2006183069A publication Critical patent/JP2006183069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal oxide film having excellent film deposition properties in a method of producing a metal oxide film on an object for film deposition using metal complex gas and water vapor by a chemical vapor deposition process. <P>SOLUTION: In the method of producing a metal oxide film on an object for film deposition using metal complex gas and water vapor by a chemical vapor deposition process, as the metal complex, the one with β-diketonate having silyl ether groups as a ligand is used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属錯体ガスと水蒸気とを用いて、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する)により、成膜対象物上に金属酸化膜を製造する方法に関する。   The present invention relates to a method for producing a metal oxide film on a film formation target by a chemical vapor deposition method (hereinafter referred to as a CVD method) using a metal complex gas and water vapor.

近年、半導体、電子部品、光学部品等の分野の材料として、金属錯体化合物に関しては、多くの研究、開発がなされている。例えば、周期律表第IVA族の金属化合物(例えば、チタン、ジルコニウムやハフニウム等)は、強誘電体(PZT)や半導体メモリーゲート絶縁膜として使用されている。   In recent years, many studies and developments have been made on metal complex compounds as materials in the fields of semiconductors, electronic components, optical components, and the like. For example, Group IVA metal compounds of the periodic table (for example, titanium, zirconium, hafnium, etc.) are used as ferroelectrics (PZT) and semiconductor memory gate insulating films.

ところで、金属含有ガスと水蒸気とを用いて、CVD法により成膜対象物上に金属酸化膜を製造する方法としては、例えば、ハフニウムやジルコニウムのアルコキシドのガスと水蒸気とを用いて金属酸化膜を製造する方法が知られているが、この方法では、金属酸化膜形成での反応制御が困難であるという問題があった(例えば、非特許文献1参照)。
「電子材料」2002年7月号29頁
By the way, as a method for producing a metal oxide film on a film formation target by a CVD method using a metal-containing gas and water vapor, for example, a metal oxide film using a gas of alkoxide of hafnium or zirconium and water vapor is used. A manufacturing method is known, but this method has a problem that it is difficult to control a reaction in forming a metal oxide film (see, for example, Non-Patent Document 1).
“Electronic Materials” July 2002, p. 29

又、テトラキス(1-メトキシ-2-メチル-2-プロポキシド)ハフニウムを原料としたガスと水蒸気とを同時に供給して金属酸化膜を製造する方法が知られているが、この方法では、該ハフニウム錯体が高い融点を有することから、CVD法による成膜の際、CVD装置内の原料供給系における配管閉塞の恐れがあり、工業的なCVD法による金属酸化膜製造原料としては不適であった(例えば、特許文献1参照)。
特開2004-71757号公報
Also known is a method for producing a metal oxide film by simultaneously supplying gas and water vapor using tetrakis (1-methoxy-2-methyl-2-propoxide) hafnium as raw materials. Since the hafnium complex has a high melting point, there is a risk of piping clogging in the raw material supply system in the CVD apparatus during film formation by the CVD method, which is unsuitable as a metal oxide film manufacturing raw material by the industrial CVD method. (For example, refer to Patent Document 1).
JP 2004-71757 A

本発明の課題は、即ち、金属錯体ガスと水蒸気を用いて、化学気相蒸着法により、成膜
対象物上に金属酸化膜を製造する方法において、上記問題点を解決し、優れた成膜性を有する金属酸化膜の製造方法を提供するものでもある。
An object of the present invention is to solve the above-mentioned problems in a method for producing a metal oxide film on a film formation object by chemical vapor deposition using a metal complex gas and water vapor, and excellent film formation. The present invention also provides a method for producing a metal oxide film having a property.

本発明の課題は、金属錯体ガスと水蒸気とを用いて、化学気相蒸着法により、成膜対象物上に金属酸化膜を製造する方法において、金属錯体として、シリルエーテル基を有するβ-ジケトナトを配位子とする金属錯体を使用することを特徴とする、金属酸化膜の製造方法によって解決される。   An object of the present invention is to provide a β-diketonato having a silyl ether group as a metal complex in a method for producing a metal oxide film on a film formation object by chemical vapor deposition using a metal complex gas and water vapor. It solves by the manufacturing method of a metal oxide film characterized by using the metal complex which uses as a ligand.

本発明により、金属錯体ガスと水蒸気を用いて、化学気相蒸着法により、成膜対象物上に金属酸化膜を製造する方法において、優れた成膜性を有する金属酸化膜の製造方法を提供することが出来る。   According to the present invention, there is provided a method for producing a metal oxide film having excellent film formability in a method for producing a metal oxide film on an object to be formed by chemical vapor deposition using a metal complex gas and water vapor. I can do it.

本発明のβ-ジケトナト基を配位子として有する金属錯体は、前記の一般式(I)   The metal complex having the β-diketonato group of the present invention as a ligand is represented by the above general formula (I)

Figure 2006183069
Figure 2006183069

で示される。その一般式(I)において、Mは、金属原子であるが、好ましくは周期律表第IVA族の金属原子、更に好ましくはハフニウム原子、ジルコニウム原子又はチタン原子を示す。又、Xは、一般式(II) Indicated by In the general formula (I), M is a metal atom, preferably a metal atom of Group IVA of the periodic table, more preferably a hafnium atom, a zirconium atom or a titanium atom. X represents the general formula (II)

Figure 2006183069
Figure 2006183069

で示される基(Rは、メチレン基、エチレン基、トリメチレン基、プロピレン基、ジメチルメチレン基、テトラメチレン基、エチルエチレン基、ペンタメチレン基等の炭素原子数1〜5の直鎖又は分枝状のアルキレン基、R、R及びRは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基等の炭素原子数1〜5の直鎖又は分枝状のアルキル基を示す。)、Yは、該一般式(II)で示される基、又はメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の炭素原子数1〜8の直鎖又は分枝状のアルキル基、Zは、水素原子、又はメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素原子数1〜4の直鎖又は分枝状のアルキル基を示す。nは、2〜4の整数を示す。 R a is a straight chain or branched chain having 1 to 5 carbon atoms such as methylene group, ethylene group, trimethylene group, propylene group, dimethylmethylene group, tetramethylene group, ethylethylene group, pentamethylene group, etc. -Like alkylene group, R b , R c and R d have 1 carbon atom such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, etc. And Y represents a group represented by the general formula (II), or a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. , An isobutyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, etc., a linear or branched alkyl group having 1 to 8 carbon atoms, Z is a hydrogen atom or a methyl group, ethyl Group, n-propyl group, isopropyl group , N- butyl group, an isobutyl group, a straight-chain or branched alkyl group having 1 to 4 carbon atoms a t- butyl group and the like. n shows the integer of 2-4.

本発明の該金属錯体が有するβ-ジケトナト基(配位子)の元となるβ-ジケトンは、公知の方法により容易に合成が可能な化合物である(例えば、特許文献2参照)。
国際特許第03/064437号パンフレット
The β-diketone that is the basis of the β-diketonato group (ligand) of the metal complex of the present invention is a compound that can be easily synthesized by a known method (for example, see Patent Document 2).
International Patent No. 03/064437 Pamphlet

本発明のβ-ジケトナト基を配位子として有する金属錯体の具体例としては、例えば、式(III)から式(XI)で示される。   Specific examples of the metal complex having a β-diketonato group as a ligand of the present invention are represented by, for example, formulas (III) to (XI).

Figure 2006183069
Figure 2006183069

なお、CVD法においては、薄膜形成のために金属錯体を気化させる必要があるが、本発明のβ-ジケトナト基を配位子として有する金属錯体を気化させる方法としては、例えば、金属錯体自体を気化室に充填又は搬送して気化させる方法だけでなく、金属錯体を適当な溶媒(例えば、ヘキサン、オクタン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素類;トルエン等の芳香族炭化水素類;テトラヒドロピラン、ジブチルエーテル等のエーテル類等が挙げられる。)に希釈した溶液を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)も使用出来る。   In the CVD method, it is necessary to vaporize a metal complex for forming a thin film. As a method for vaporizing a metal complex having a β-diketonato group as a ligand of the present invention, for example, the metal complex itself is used. In addition to the method of vaporizing by filling or transporting into the vaporization chamber, the metal complex is converted into an appropriate solvent (for example, aliphatic hydrocarbons such as hexane, octane, methylcyclohexane, and ethylcyclohexane; aromatic hydrocarbons such as toluene; Examples include tetrahydropyran, ethers such as dibutyl ether, etc.). A method (solution method) in which a solution diluted with a liquid transport pump is introduced into a vaporization chamber and vaporized.

成膜対象物上への金属酸化物の蒸着方法としては、公知のCVD法で行うことが出来、例えば、常圧又は減圧下にて、金属錯体ガスを水蒸気とともに加熱した成膜対象物上に送り込んで金属酸化膜を蒸着させる方法が使用出来る。   As a vapor deposition method of the metal oxide on the film formation target, it can be performed by a known CVD method, for example, on a film formation target heated with a metal complex gas together with water vapor under normal pressure or reduced pressure. It is possible to use a method of feeding and depositing a metal oxide film.

本発明のシリルエーテル基を有するβ-ジケトナトを配位子とする金属錯体(例えば、周期律表第IVA族の金属原子を中心金属とする金属錯体)を用いて金属酸化膜を蒸着させる場合、その蒸着条件としては、例えば、反応系内圧力は、好ましくは1〜200kPa、更に好ましくは10〜110kPa、成膜対象物温度は、好ましくは50〜700℃、更に好ましくは100〜500℃、金属錯体を気化させる温度は、好ましくは50〜250℃、更に好ましくは90〜200℃である。   In the case of depositing a metal oxide film using a metal complex having a β-diketonate having a silyl ether group of the present invention as a ligand (for example, a metal complex having a metal atom of Group IVA of the periodic table as a central metal), As the deposition conditions, for example, the reaction system internal pressure is preferably 1 to 200 kPa, more preferably 10 to 110 kPa, and the film formation target temperature is preferably 50 to 700 ° C., more preferably 100 to 500 ° C., metal The temperature for vaporizing the complex is preferably 50 to 250 ° C, more preferably 90 to 200 ° C.

なお、金属酸化膜を蒸着させる際の全ガス量に対する水蒸気の含有割合としては、好ましくは5〜90容量%、更に好ましくは10〜70容量%である。   In addition, as a content rate of water vapor | steam with respect to the total gas amount at the time of vapor-depositing a metal oxide film, Preferably it is 5-90 volume%, More preferably, it is 10-70 volume%.

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.

参考例1(2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン(以下、sopdと称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積500mlのフラスコに、ナトリウムアミド13.7g(0.351mol)及びヘキサン200mlを加え、攪拌させながら2-トリメチルシリルオキシ-2-メチルプロピオン酸メチル26.7g(0.140mol)を滴下した。次いで、攪拌させながら3-メチル-2-ブタノン12.1g(0.141mol)を滴下し、15℃で1時間反応させた。反応終了後、酢酸を加えて弱酸性にした後、有機層を水で洗浄後、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を減圧蒸留(101℃、1067Pa)し、2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン18.8gを得た(単離収率:55%)。
2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオンの物性値は以下の通りであった。
Reference Example 1 (Synthesis of 2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione (hereinafter referred to as sopd))
Sodium amide 13.7 g (0.351 mol) and hexane 200 ml were added to a 500 ml flask equipped with a stirrer, thermometer and dropping funnel, and 26.7 g (0.140) of methyl 2-trimethylsilyloxy-2-methylpropionate while stirring. mol) was added dropwise. Next, 12.1 g (0.141 mol) of 3-methyl-2-butanone was added dropwise with stirring, and the mixture was reacted at 15 ° C. for 1 hour. After completion of the reaction, acetic acid was added to make it weakly acidic, and the organic layer was washed with water and dried over anhydrous sodium sulfate. After filtration, the filtrate was distilled under reduced pressure (101 ° C., 1067 Pa) to obtain 18.8 g of 2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione (isolation yield: 55%).
The physical properties of 2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione were as follows.

1H-NMR(CDCl3,δ(ppm));1.14(6H,d)、1.39(6H,s)、2.44〜2.50(0.85H,m)、2.64〜2.69(0.15H,m)、3.77(0.3H,s)、5.97(0.85H,s)、15.51(0.85H,s)
IR(neat(cm-1));2971、1606(br)、1253、1199、1045、842
(なお、1606cm-1のピークは、β-ジケトン特有のピークである。)
MS(m/e);244
1 H-NMR (CDCl 3 , δ (ppm)); 1.14 (6H, d), 1.39 (6H, s), 2.44 to 2.50 (0.85H, m), 2.64 to 2.69 (0.15H, m), 3.77 ( 0.3H, s), 5.97 (0.85H, s), 15.51 (0.85H, s)
IR (neat (cm -1 )); 2971, 1606 (br), 1253, 1199, 1045, 842
(The peak at 1606 cm -1 is a peak peculiar to β-diketone.)
MS (m / e); 244

参考例2(テトラキス(2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)ハフニウム(IV)(以下、Hf(sopd)4と称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、ハフニウムテトラエトキシド1.60g(4.46mmol)及び2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン23.1g(5.50mmol)を加え、220℃で2時間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物にヘキサン80mlを加えた。濾過後、濾液を水洗・乾燥した後に濃縮して、濃縮物を減圧蒸留(240℃、67Pa)し、淡黄色固体として、テトラキス(2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)ハフニウム(IV)3.00gを得た(単離収率:58%)。
テトラキス(2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)ハフニウム(IV)の物性値は以下の通りであった。
Reference Example 2 (Synthesis of tetrakis (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedionato) hafnium (IV) (hereinafter referred to as Hf (sopd) 4 ))
Into a 50 ml flask equipped with a stirrer, thermometer and dropping funnel was added 1.60 g (4.46 mmol) hafnium tetraethoxide and 23.1 g (5.50) 2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione. mmol) was added and reacted at 220 ° C. for 2 hours. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and 80 ml of hexane was added to the concentrate. After filtration, the filtrate was washed with water, dried and concentrated, and the concentrate was distilled under reduced pressure (240 ° C., 67 Pa) to give tetrakis (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedionate as a pale yellow solid. ) 3.00 g of hafnium (IV) was obtained (isolation yield: 58%).
The physical properties of tetrakis (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedionato) hafnium (IV) were as follows.

IR(neat(cm-1));2967、1586、1540、1509、1440、1252、1199、1047、892、841
(β-ジケトン特有のピーク(1606cm-1)が消失し、β-ジケトナト特有のピーク(1586cm-1)が観察された)
元素分析(C48H92O12Si4Hf);炭素:50.3%、水素:8.10%、ハフニウム:15.5%
(理論値;炭素:50.0%、水素:8.05%、ハフニウム:15.5%)
MS(m/e);998、909、131、73
IR (neat (cm -1 )); 2967, 1586, 1540, 1509, 1440, 1252, 1199, 1047, 892, 841
(The peak peculiar to β-diketone (1606cm -1 ) disappeared and the peak peculiar to β-diketonato (1586cm -1 ) was observed.)
Elemental analysis (C 48 H 92 O 12 Si 4 Hf); carbon: 50.3%, hydrogen: 8.10%, hafnium: 15.5%
(Theoretical value: Carbon: 50.0%, Hydrogen: 8.05%, Hafnium: 15.5%)
MS (m / e); 998, 909, 131, 73

実施例1〜2(蒸着実験;金属酸化膜の製造)
参考例2で得られた金属錯体(ハフニウム錯体(Hf(sopd)4))を用いて、CVD法による蒸着実験を行い、成膜特性を評価した。
評価試験には、図1に示す装置を使用した。気化器3(ガラス製アンプル)にある金属錯体20は、ヒーター10Bで加熱されて気化し、マスフローコントローラー1Aを経て予熱器10Aで予熱後導入されたヘリウムガスに同伴し気化器3を出る。気化器3を出たガスは、マスフローコントローラー1B、冷却された水(2℃)8を経て導入された水蒸気とともに反応器4に導入される。又、マスフコントローラー1Cを経て水素ガス又はヘリウムガスを反応系内に導入しても良い。反応系内圧力は真空ポンプ手前のバルブ6の開閉により、所定圧力にコントロールされ、圧力計5によってモニターされる。ガラス製反応器の中央部はヒーター10Cで加熱可能な構造となっている。反応器に導入された金属錯体は、反応器内中央部にセットされ、ヒータ10Cで所定の温度に加熱された被蒸着基板21の表面上で酸化熱分解し、基板21上に金属酸化膜が析出する。反応器4を出たガスは、トラップ7、真空ポンプを経て、大気中に排気される構造となっている。
Examples 1-2 (deposition experiment; production of metal oxide film)
Using the metal complex obtained in Reference Example 2 (hafnium complex (Hf (sopd) 4 )), a vapor deposition experiment by a CVD method was performed to evaluate the film formation characteristics.
The apparatus shown in FIG. 1 was used for the evaluation test. The metal complex 20 in the vaporizer 3 (glass ampoule) is heated and vaporized by the heater 10B, exits the vaporizer 3 along with the helium gas introduced after preheating by the preheater 10A via the mass flow controller 1A. The gas exiting the vaporizer 3 is introduced into the reactor 4 together with water vapor introduced through the mass flow controller 1B and cooled water (2 ° C.) 8. Further, hydrogen gas or helium gas may be introduced into the reaction system via the mass controller 1C. The pressure in the reaction system is controlled to a predetermined pressure by opening and closing the valve 6 in front of the vacuum pump, and is monitored by the pressure gauge 5. The central part of the glass reactor has a structure that can be heated by the heater 10C. The metal complex introduced into the reactor is set at the center of the reactor and is oxidized and pyrolyzed on the surface of the deposition substrate 21 heated to a predetermined temperature by the heater 10C. A metal oxide film is formed on the substrate 21. Precipitate. The gas exiting the reactor 4 is exhausted to the atmosphere via a trap 7 and a vacuum pump.

蒸着条件及び蒸着結果(膜特性)を表1に示す。なお、被蒸着基盤としては、7mm×40mmサイズの矩形のものを使用した。   The deposition conditions and deposition results (film characteristics) are shown in Table 1. Note that a 7 mm × 40 mm rectangular substrate was used as the deposition base.

Figure 2006183069
Figure 2006183069

該結果より、金属錯体(ハフニウム錯体(Hf(sopd)4)のガスと水蒸気を用いて、優れた成膜性を有する金属酸化膜を製造することが可能である。 From the results, it is possible to produce a metal oxide film having excellent film formability using a metal complex (hafnium complex (Hf (sopd) 4 ) gas and water vapor.

本発明は、金属錯体ガスと水蒸気とを用いて、CVD法により、成膜対象物上に金属酸化膜を製造する方法に関する。   The present invention relates to a method for producing a metal oxide film on a film formation target by a CVD method using a metal complex gas and water vapor.

蒸着装置の構成を示す図である。It is a figure which shows the structure of a vapor deposition apparatus.

符号の説明Explanation of symbols

3 気化器
4 反応器
9 冷却器
10B 気化器ヒータ
10C 反応器ヒータ
20 原料金属錯体融液
21 基板
3 Vaporizer 4 Reactor 9 Cooler 10 B Vaporizer heater 10 C Reactor heater 20 Raw material metal complex melt 21 Substrate

Claims (5)

金属錯体ガスと水蒸気とを用いて、化学気相蒸着法により、成膜対象物上に金属酸化膜を製造する方法において、金属錯体として、シリルエーテル基を有するβ-ジケトナトを配位子とする金属錯体を使用することを特徴とする、金属酸化膜の製造方法。   In a method for producing a metal oxide film on an object to be deposited by chemical vapor deposition using a metal complex gas and water vapor, a β-diketonate having a silyl ether group is used as a ligand as a metal complex. A method for producing a metal oxide film, comprising using a metal complex. シリルエーテル基を有するβ-ジケトナトを配位子とする金属錯体が、一般式(I)
Figure 2006183069
(式中、Mは、金属原子を示す。Xは、一般式(II)
Figure 2006183069
で示される基(式中、Rは、炭素原子数1〜5の直鎖又は分枝状のアルキレン基、R、R及びRは、炭素原子数1〜5の直鎖又は分枝状のアルキル基を示す。)、Yは、一般式(II)で示される基又は炭素原子数1〜8の直鎖又は分枝状のアルキル基、Zは、水素原子又は炭素原子数1〜4のアルキル基を示す。nは、1〜4の整数を示す。)
で示される金属錯体である、請求項1記載の金属酸化膜の製造方法。
A metal complex having a β-diketonate having a silyl ether group as a ligand is represented by the general formula (I)
Figure 2006183069
(In the formula, M represents a metal atom. X represents the general formula (II).
Figure 2006183069
Wherein R a is a linear or branched alkylene group having 1 to 5 carbon atoms, and R b , R c and R d are linear or branched groups having 1 to 5 carbon atoms. And Y represents a group represented by the general formula (II) or a linear or branched alkyl group having 1 to 8 carbon atoms, and Z represents a hydrogen atom or 1 carbon atom. -4 alkyl groups are shown. n shows the integer of 1-4. )
The manufacturing method of the metal oxide film of Claim 1 which is a metal complex shown by these.
金属原子が、周期律表第IVA族の金属原子である、請求項2記載の金属酸化膜の製造方法。   The method for producing a metal oxide film according to claim 2, wherein the metal atom is a metal atom of Group IVA of the periodic table. 請求項2記載の金属錯体の溶媒溶液を金属供給源として用いる、請求項2記載の金属酸化膜の製造方法。   The method for producing a metal oxide film according to claim 2, wherein the solvent solution of the metal complex according to claim 2 is used as a metal supply source. 溶媒が、脂肪族炭化水素類、芳香族炭化水素類及びエーテル類からなる群より選ばれる少なくともひとつの溶媒である、請求項4記載の金属酸化膜の製法。   The method for producing a metal oxide film according to claim 4, wherein the solvent is at least one solvent selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons, and ethers.
JP2004375582A 2004-12-27 2004-12-27 Method for producing metal oxide film Pending JP2006183069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375582A JP2006183069A (en) 2004-12-27 2004-12-27 Method for producing metal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375582A JP2006183069A (en) 2004-12-27 2004-12-27 Method for producing metal oxide film

Publications (1)

Publication Number Publication Date
JP2006183069A true JP2006183069A (en) 2006-07-13

Family

ID=36736401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375582A Pending JP2006183069A (en) 2004-12-27 2004-12-27 Method for producing metal oxide film

Country Status (1)

Country Link
JP (1) JP2006183069A (en)

Similar Documents

Publication Publication Date Title
TWI397532B (en) Method for producing film and film for film formation
KR101260858B1 (en) Metal-containing compound process for producing the same metal-containing thin film and method of forming the same
KR101538982B1 (en) High molecular weight alkyl-allyl cobalttricarbonyl complexes and use thereof for preparing dielectric thin films
JP5375093B2 (en) Organic ruthenium complex and method for producing ruthenium thin film using the ruthenium complex
JP4610487B2 (en) Metal compound, thin film forming raw material, and thin film manufacturing method
KR20120093165A (en) Hafnium- and zirconium-containing precursors and methods of using the same
TWI776009B (en) Lanthanoid compound, lanthanoid-containing thin film and formation of lanthanoid-containing thin film using the lanthanoid compound
JP5260148B2 (en) Method for forming strontium-containing thin film
KR102375179B1 (en) Alkoxide compound, raw material for forming thin film, method for producing thin film, and alcohol compound
JP2007051124A (en) New copper complex and method for producing copper-containing thin film using the same copper complex
KR101476016B1 (en) Metal alkoxide compound and process for production of metal-containing thin film using the compound
JPWO2005035823A1 (en) Metal complex having β-diketonato ligand and method for producing metal-containing thin film
JP2006183069A (en) Method for producing metal oxide film
JP2007290993A (en) STRONTIUM COMPLEX WITH ISOPROPYL OR ISOBUTYL GROUP-BEARING beta- DIKETONATO AS LIGAND, AND METHOD FOR PRODUCING METAL-CONTAINING THIN FILM USING THE STRONTIUM COMPLEX
JP2017081857A (en) Bis(silylamideaminoalkane)metal compound and manufacturing method of metal-containing film using the metal compound
WO2017030150A1 (en) Method for producing aluminum oxide film, material for producing aluminum oxide film and aluminum compound
KR20140074162A (en) A precursor compound containing group iv transition metal, and depositing method of thin film using the same
JP4553642B2 (en) Organic iridium compound, process for producing the same, and process for producing film
JP5454141B2 (en) Organic platinum complex and method for producing platinum-containing thin film by chemical vapor deposition using the platinum complex
JP5699485B2 (en) Metal complex having β-diketonato having dialkylalkoxymethyl group as ligand, and method for producing metal-containing thin film using the metal complex
JP4797474B2 (en) Metal complex having β-diketonato having alkoxyalkylmethyl group and alkoxy as ligand, and method for producing metal-containing thin film using the metal complex
JP2009137862A (en) Mixture of organic ruthenium complexes, and method for producing thin film comprising metallic ruthenium using the same
JP2016108247A (en) Bis(silylamideaminoalkane) manganese compound and method for producing manganese-containing film using the manganese compound
JP2016222568A (en) Bis(silylamideaminoalkane)iron compound and manufacturing method of iron-containing film using the iron compound
KR20230117368A (en) Indium compound, raw material for thin film formation, thin film and manufacturing method thereof