JP2007051124A - New copper complex and method for producing copper-containing thin film using the same copper complex - Google Patents

New copper complex and method for producing copper-containing thin film using the same copper complex Download PDF

Info

Publication number
JP2007051124A
JP2007051124A JP2006039129A JP2006039129A JP2007051124A JP 2007051124 A JP2007051124 A JP 2007051124A JP 2006039129 A JP2006039129 A JP 2006039129A JP 2006039129 A JP2006039129 A JP 2006039129A JP 2007051124 A JP2007051124 A JP 2007051124A
Authority
JP
Japan
Prior art keywords
copper
thin film
copper complex
complex
containing thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039129A
Other languages
Japanese (ja)
Inventor
Takumi Tsunoda
巧 角田
Chihiro Hasegawa
千尋 長谷川
Hiroki Kaneto
広樹 金戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006039129A priority Critical patent/JP2007051124A/en
Publication of JP2007051124A publication Critical patent/JP2007051124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new copper complex and to provide a method for producing a copper-containing thin film at a lower base temperature. <P>SOLUTION: The copper complex is represented by formula (1) äwherein, R<SP>1</SP>and R<SP>2</SP>are each as follows. (1) R<SP>1</SP>is an ethyl group; and R<SP>2</SP>is a methyl group; (2) R<SP>1</SP>is an ethyl group; and R<SP>2</SP>is a hydrogen atom; or (3) R<SP>1</SP>is a t-butyl group; and R<SP>2</SP>is a hydrogen atom}. The method for producing the copper-containing thin film is carried out by a chemical vapor deposition method using the copper complex as a copper supply source. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する)により銅原子を含有する銅薄膜を形成させるのに優れた新規な銅錯体に関する。本発明は、又、当該銅錯体を用いて銅含有薄膜を製造する方法に関する。   The present invention relates to a novel copper complex excellent in forming a copper thin film containing copper atoms by a chemical vapor deposition method (hereinafter referred to as a CVD method). The present invention also relates to a method for producing a copper-containing thin film using the copper complex.

近年、半導体、電子部品、光学部品等の分野の材料として、金属錯体化合物に関しては、多くの研究、開発がなされている。例えば、銅錯体化合物を使用して得られる銅薄膜は、電気抵抗が小さいことから、電気配線の材料、シリコン半導体の配線に利用され得ることから、多くの研究開発がなされている。又、酸化銅を構成成分とする銅酸化物薄膜は、高温超伝導体の材料として注目されている。これらの金属原子を含有する銅薄膜又は銅酸化物薄膜の製法としては、均一な薄膜を製造し易いCVD法による成膜が最も盛んに採用されており、それに適した原料化合物が求められている。   In recent years, many researches and developments have been made on metal complex compounds as materials in the fields of semiconductors, electronic components, optical components and the like. For example, since a copper thin film obtained by using a copper complex compound has a small electric resistance, it can be used as a material for electric wiring and wiring for a silicon semiconductor, and therefore, many researches and developments have been made. A copper oxide thin film containing copper oxide as a constituent component has attracted attention as a material for a high-temperature superconductor. As a method for producing a copper thin film or copper oxide thin film containing these metal atoms, film formation by a CVD method, which is easy to produce a uniform thin film, has been most actively employed, and a raw material compound suitable for it has been demanded. .

ところで、CVD法による銅原子を含有する銅薄膜製造用原料としては、例えば、β-ジケトナトを配位子とする銅錯体が幅広く使用されつつある。このβ-ジケトナトを配位子とする銅錯体は、安定性や昇華性に優れており、CVD法における銅源としては有用である。なお、β-ジケトナト配位子の具体例としては、例えば、アセチルアセトナト(acac)や2,2,6,6-テトラメチル-3,5-ヘプタンジオナト(dpm)が一般的に知られている。   By the way, as a raw material for producing a copper thin film containing copper atoms by the CVD method, for example, a copper complex having β-diketonate as a ligand is being widely used. This copper complex having β-diketonato as a ligand is excellent in stability and sublimation, and is useful as a copper source in the CVD method. As specific examples of the β-diketonato ligand, for example, acetylacetonate (acac) and 2,2,6,6-tetramethyl-3,5-heptanedionate (dpm) are generally known. .

しかしながら、前記のβ-ジケトナトを配位子とする銅錯体のほとんどが、常温では固体であり、高い融点を有することから、CVD法による成膜の際、CVD装置内の原料供給系における配管閉塞の恐れがあり、工業的なCVD法による薄膜製造原料としては不適であった。   However, since most of the copper complexes having β-diketonato as a ligand are solid at room temperature and have a high melting point, the piping in the material supply system in the CVD apparatus is blocked during film formation by the CVD method. Therefore, it is not suitable as a raw material for producing a thin film by an industrial CVD method.

そこで、銅錯体の安定化や低融点化、銅薄膜の生産性の向上をはかる試みが盛んに行われている。その中でも、β-ジケトナトを配位子に、種々の置換基を導入することによって、銅錯体の安定化や低融点化、銅薄膜の生産性の向上をはかる検討がなされている。   Therefore, attempts have been actively made to stabilize the copper complex, lower the melting point, and improve the productivity of the copper thin film. Among these, studies have been made to stabilize copper complexes, lower melting points, and improve productivity of copper thin films by introducing various substituents with β-diketonato as a ligand.

例えば、銅原子を中心金属とする銅錯体に関しては、式(2)   For example, for a copper complex having a copper atom as a central metal, the formula (2)

Figure 2007051124
Figure 2007051124

で示される銅錯体(ビス(2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II))を使用した銅含有薄膜の製造結果が開示されている(例えば、特許文献1参照)。しかしながら、式(2)の銅錯体を使用した銅含有薄膜の製造においては、未だ高い基板温度でなければ、銅含有薄膜が形成されないという問題があった(例えば、実施例1と参考例1との比較)。なお、本発明のビス(2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)については、何ら記載されていなかった。 The manufacturing result of the copper containing thin film using the copper complex (bis (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedionato) copper (II)) shown by these is disclosed (for example, patent document 1) reference). However, in the production of the copper-containing thin film using the copper complex of the formula (2), there is a problem that the copper-containing thin film is not formed unless the substrate temperature is still high (for example, Example 1 and Reference Example 1) comparison). Note that bis (2-methyl-2-trimethylsilyloxy-3,5-heptanedionato) copper (II) of the present invention was not described at all.

特開2003-292495号公報JP 2003-292495 A

本発明の課題は、即ち、上記問題点を解決し、より低い基盤温度にて、銅錯体又は銅錯体の溶媒溶液を使用した銅含有薄膜の製造方法を提供することにある。   An object of the present invention is to solve the above problems and provide a method for producing a copper-containing thin film using a copper complex or a solvent solution of a copper complex at a lower base temperature.

本発明の課題は、一般式(1)   The subject of this invention is general formula (1).

Figure 2007051124
(式中、R及びRは、(1)R=エチル基、R=メチル基、(2)R=エチル基、R=水素原子、(3)R=t-ブチル基、R=水素原子、のいずれかを示す。)
で示される新規な銅錯体(II)によって解決される。
Figure 2007051124
(In the formula, R 1 and R 2 are (1) R 1 = ethyl group, R 2 = methyl group, (2) R 1 = ethyl group, R 2 = hydrogen atom, (3) R 1 = t-butyl. Group, R 2 = hydrogen atom.)
It is solved by a novel copper complex (II) represented by

本発明の課題は、又、当該銅錯体を使用することを特徴とする、銅含有薄膜の製造方法によっても解決される。   The object of the present invention is also solved by a method for producing a copper-containing thin film, characterized by using the copper complex.

本発明により、化学気相蒸着法(CVD法)による、新規な銅錯体又は銅錯体の溶媒溶液を用いた銅含有薄膜の製造方法を提供することが出来る。   According to the present invention, a method for producing a copper-containing thin film using a novel copper complex or a solvent solution of a copper complex by chemical vapor deposition (CVD) can be provided.

本発明の銅錯体の配位子であるβ-ジケトナトの元となるβ-ジケトンは、公知の方法により容易に合成が可能な化合物である(後述の参考例に記載)。   The β-diketone which is the base of β-diketonato which is a ligand of the copper complex of the present invention is a compound which can be easily synthesized by a known method (described in Reference Examples described later).

なお、CVD法においては、銅薄膜形成のために銅錯体を気化させる必要があるが、本発明の銅錯体を気化させる方法としては、例えば、銅錯体自体を気化室に充填又は搬送して気化させる方法だけでなく、銅錯体を適当な溶媒(例えば、ヘキサン、オクタン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素類;トルエン等の芳香族炭化水素類;テトラヒドロフラン、ジブチルエーテル等のエーテル類等が挙げられる。)に希釈した溶液(銅錯体の溶媒溶液)を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)も使用出来る。   In the CVD method, it is necessary to vaporize the copper complex in order to form a copper thin film. As a method for vaporizing the copper complex of the present invention, for example, the vaporization is performed by filling or transporting the copper complex itself into the vaporization chamber. In addition to the method of making the copper complex, an appropriate solvent (for example, aliphatic hydrocarbons such as hexane, octane, methylcyclohexane and ethylcyclohexane; aromatic hydrocarbons such as toluene; ethers such as tetrahydrofuran and dibutyl ether) A method (solution method) in which a solution diluted in (a solvent solution of a copper complex) is introduced into a vaporization chamber with a liquid transfer pump and vaporized can be used.

基板上への銅の蒸着方法としては、公知のCVD法で行うことが出来、例えば、常圧又は減圧下にて、銅錯体を酸素等の酸化性ガスとともに加熱した基板上に送り込んで銅酸化膜を蒸着させる方法、銅錯体をアンモニアガス等の含窒素塩基性ガスとともに加熱した基板上に送り込んで銅窒化膜を蒸着させる方法、銅錯体を水素等の還元性ガスとともに加熱した基板上に銅錯体を送り込んで銅膜を蒸着させる方法が使用出来る。又、プラズマCVD法で銅含有薄膜を蒸着させる方法も使用出来る。   As a method for depositing copper on a substrate, it can be performed by a known CVD method. For example, copper oxidation is performed on a substrate heated with an oxidizing gas such as oxygen under normal pressure or reduced pressure to oxidize copper. A method for depositing a film, a method for depositing a copper nitride film by feeding a copper complex onto a substrate heated with a nitrogen-containing basic gas such as ammonia gas, a copper complex on a substrate heated with a reducing gas such as hydrogen A method of sending a complex and depositing a copper film can be used. Moreover, the method of vapor-depositing a copper containing thin film by plasma CVD method can also be used.

本発明の銅錯体を用いて銅含有薄膜を蒸着させる場合、その蒸着条件としては、例えば、反応系内圧力は、好ましくは1Pa〜200kPa、更に好ましくは10Pa〜110kPa、基板温度は、好ましくは50〜300℃、更に好ましくは100〜270℃、銅錯体を気化させる温度は、好ましくは50〜270℃、更に好ましくは90〜250℃である。   When depositing a copper-containing thin film using the copper complex of the present invention, as the deposition conditions, for example, the pressure in the reaction system is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa, and the substrate temperature is preferably 50. -300 degreeC, More preferably, it is 100-270 degreeC, The temperature which vaporizes a copper complex becomes like this. Preferably it is 50-270 degreeC, More preferably, it is 90-250 degreeC.

なお、酸素等の酸化性ガスによる銅酸化膜を蒸着させる際の全ガス量に対する酸化性ガスの含有割合としては、好ましくは10〜90容量%、更に好ましくは20〜70容量%である。一方、水素等の還元性ガスによる銅薄膜を蒸着させる際の全ガス量に対する還元性ガスの含有割合としては、好ましくは10〜95容量%、更に好ましくは30〜90容量%である。又、アンモニアガス等の含窒素塩基性ガスによる銅薄膜を蒸着させる際の全ガス量に対する含窒素塩基性ガスの含有割合としては、好ましくは10〜95容量%、更に好ましくは20〜90容量%である。   The content ratio of the oxidizing gas with respect to the total gas amount when the copper oxide film is deposited by an oxidizing gas such as oxygen is preferably 10 to 90% by volume, more preferably 20 to 70% by volume. On the other hand, the content ratio of the reducing gas with respect to the total gas amount when the copper thin film is deposited by a reducing gas such as hydrogen is preferably 10 to 95% by volume, more preferably 30 to 90% by volume. Further, the content ratio of the nitrogen-containing basic gas to the total gas amount when the copper thin film is deposited by the nitrogen-containing basic gas such as ammonia gas is preferably 10 to 95% by volume, more preferably 20 to 90% by volume. It is.

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.

参考例1(2-トリメチルシリルオキシイソ酪酸メチルの合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積1Lのフラスコに、反応系内をアルゴンで置換した後、2-ヒドロキシイソ酪酸メチル54.0g(457mmol)、トリn-ブチルアミン86.0g(464mmol)及びメチルシクロヘキサン300mlを加えた。次いで、液温を15℃に保ちながら、クロロトリメチルシラン49.5g(456mmol)をゆるやかに滴下した後、攪拌しながら同温度で1時間反応させた。反応終了後、氷冷下、反応液に水120mlを加えた。有機層を分液し、水で洗浄した後、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧蒸留(74℃、5.32kPa)し、無色液体として、2-トリメチルシリルオキシイソ酪酸メチル61.0gを得た(単離収率:70%)。
2-トリメチルシリルオキシイソ酪酸メチルの物性値は以下の通りであった。
Reference Example 1 (Synthesis of methyl 2-trimethylsilyloxyisobutyrate)
After replacing the inside of the reaction system with argon in a 1 L flask equipped with a stirrer, thermometer and dropping funnel, methyl 2-hydroxyisobutyrate 54.0 g (457 mmol), tri n-butylamine 86.0 g (464 mmol) and 300 ml of methylcyclohexane was added. Next, 49.5 g (456 mmol) of chlorotrimethylsilane was slowly added dropwise while maintaining the liquid temperature at 15 ° C., and the mixture was reacted at the same temperature for 1 hour with stirring. After completion of the reaction, 120 ml of water was added to the reaction solution under ice cooling. The organic layer was separated, washed with water, and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was distilled under reduced pressure (74 ° C., 5.32 kPa) to obtain 61.0 g of methyl 2-trimethylsilyloxyisobutyrate as a colorless liquid (isolated yield: 70%).
The physical properties of methyl 2-trimethylsilyloxyisobutyrate were as follows.

1H-NMR(CDCl3,δ(ppm));0.08(9H,s)、1.40(6H,s)、3.67(3H,s)
MS(m/e);175、131、99、73
1 H-NMR (CDCl 3 , δ (ppm)); 0.08 (9H, s), 1.40 (6H, s), 3.67 (3H, s)
MS (m / e); 175, 131, 99, 73

参考例2(2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン(以下、H-SOEDと称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積200mlのフラスコに、反応系内をアルゴンで置換した後、カリウムt-ブトキシド11.2g(99.8mmol)及びテトラヒドロフラン40mlを加えた。次いで、水冷下、2-ブタノン7.20g(99.8mmol)をゆるやかに滴下して10分間攪拌した後、参考例1と同様な方法で合成した2-トリメチルシリルオキシイソ酪酸メチル9.70g(51.0mmol)を滴下して、攪拌しながら5℃で1時間反応させた。反応終了後、氷冷下、酢酸8g(133mmol)及び水16mlを加えた。有機層を分液し、水で洗浄した後、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧蒸留(118℃、2.66kPa)し、無色液体として、2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン4.46gを得た(単離収率:38%)。
2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオンの物性値は以下の通りであった。
Reference Example 2 (Synthesis of 2-methyl-2-trimethylsilyloxy-3,5-heptanedione (hereinafter referred to as H-SOED))
After replacing the inside of the reaction system with argon in a flask having an internal volume of 200 ml equipped with a stirrer, a thermometer and a dropping funnel, 11.2 g (99.8 mmol) of potassium t-butoxide and 40 ml of tetrahydrofuran were added. Next, under water cooling, 7.20 g (99.8 mmol) of 2-butanone was slowly added dropwise and stirred for 10 minutes, and then 9.70 g (51.0 mmol) of methyl 2-trimethylsilyloxyisobutyrate synthesized in the same manner as in Reference Example 1 was added. The solution was added dropwise and reacted at 5 ° C. for 1 hour with stirring. After completion of the reaction, 8 g (133 mmol) of acetic acid and 16 ml of water were added under ice cooling. The organic layer was separated, washed with water, and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was distilled under reduced pressure (118 ° C., 2.66 kPa) to obtain 4.46 g of 2-methyl-2-trimethylsilyloxy-3,5-heptanedione as a colorless liquid (isolation) Yield: 38%).
The physical properties of 2-methyl-2-trimethylsilyloxy-3,5-heptanedione were as follows.

1H-NMR(CDCl3,δ(ppm));0.12(2.61H,s)、0.13(6.39H,s)、1.03(0.87,t)、1.12(2.13H,t)、1.32(1.74H,s)、1.37(4.26H,s)、2.32(0.58H,q)、2.49(1.42H,q)、3.68(0.58H,s)、5.94(0.71H,s)、15.4(0.71H,s)
IR(neat(cm-1));2980、1607(br)、1460、1377、1359、1253、1197、1114、1045、915、842、755
(なお、1607cm-1のピークは、β-ジケトン特有のピークである。)
MS(m/e);215、131、73、29
1 H-NMR (CDCl 3 , δ (ppm)); 0.12 (2.61 H, s), 0.13 (6.39 H, s), 1.03 (0.87, t), 1.12 (2.13 H, t), 1.32 (1.74 H, s), 1.37 (4.26H, s), 2.32 (0.58H, q), 2.49 (1.42H, q), 3.68 (0.58H, s), 5.94 (0.71H, s), 15.4 (0.71H, s)
IR (neat (cm -1 )); 2980, 1607 (br), 1460, 1377, 1359, 1253, 1197, 1114, 1045, 915, 842, 755
(The peak at 1607 cm -1 is a peak peculiar to β-diketone.)
MS (m / e); 215, 131, 73, 29

実施例1(銅錯体(1);ビス(2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)(以下、Cu(soed)2と称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積500mlのフラスコに、参考例2と同様な方法で合成した2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン35.63g(154.7mmol)及びメチルシクロヘキサン100mlを加え、次いで、酢酸銅一水和物16.1g(80.8mmol)を水240mlに溶解させた溶液をゆるやかに滴下し、室温にて攪拌しながら1時間反応させた。反応終了後、反応液から有機層を分液し、該有機層を濃縮した後、濃縮物を減圧蒸留(165℃、27Pa)し、暗緑色固体として、ビス(2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)34.2gを得た(単離収率:81%)。
ビス(2-メチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)、以下の物性値で示される新規な化合物である。
Example 1 (copper complex (1); synthesis of bis (2-methyl-2-trimethylsilyloxy-3,5-heptanedionato) copper (II) (hereinafter referred to as Cu (soed) 2 ))
To a 500-ml flask equipped with a stirrer, thermometer and dropping funnel, 35.63 g (154.7 mmol) of 2-methyl-2-trimethylsilyloxy-3,5-heptanedione synthesized in the same manner as in Reference Example 2 and 100 ml of methylcyclohexane was added, and then a solution of 16.1 g (80.8 mmol) of copper acetate monohydrate dissolved in 240 ml of water was slowly added dropwise and reacted at room temperature for 1 hour with stirring. After completion of the reaction, the organic layer was separated from the reaction solution, the organic layer was concentrated, and the concentrate was distilled under reduced pressure (165 ° C., 27 Pa) to give bis (2-methyl-2-trimethylsilyloxy as a dark green solid. -3,5-Heptanedionato) copper (II) 34.2 g was obtained (isolation yield: 81%).
Bis (2-methyl-2-trimethylsilyloxy-3,5-heptanedionato) copper (II), a novel compound represented by the following physical properties.

融点;53℃
IR(neat(cm-1));3500(br)、1567、1522、1507、1431、1414、1375、1249、1203、1187、1147、1051、920、861、838、751、633、534
(β-ジケトン特有のピーク(1607cm-1)が消失し、β-ジケトナト特有のピーク(1567cm-1)が観察された)
元素分析(C22H42O6Si2Cu);炭素:50.9%、水素:8.13%、銅:12.2%
(理論値;炭素:50.6%、水素:8.11%、銅:12.2%)
MS(m/e);514、423、391、375、259、215、131、73
Melting point: 53 ° C
IR (neat (cm -1 )); 3500 (br), 1567, 1522, 1507, 1431, 1414, 1375, 1249, 1203, 1187, 1147, 1051, 920, 861, 838, 751, 633, 534
(The peak peculiar to β-diketone (1607cm -1 ) disappeared and the peak peculiar to β-diketonato (1567cm -1 ) was observed.)
Elemental analysis (C 22 H 42 O 6 Si 2 Cu); Carbon: 50.9%, hydrogen: 8.13%, copper: 12.2%
(Theoretical value: Carbon: 50.6%, Hydrogen: 8.11%, Copper: 12.2%)
MS (m / e); 514, 423, 391, 375, 259, 215, 131, 73

参考例3(2-トリメチルシリルオキシ乳酸メチルの合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積3Lのフラスコに、反応系内をアルゴンで置換した後、2-ヒドロキシ乳酸メチル156.3g(1.50mol)、トリn-ブチルアミン291.5g(1.57mmol)及びメチルシクロヘキサン1000mlを加えた。次いで、液温を15℃に保ちながら、クロロトリメチルシラン163.5g(1.51mol)をゆるやかに滴下した後、攪拌しながら同温度で1時間反応させた。反応終了後、氷冷下、反応液に水400mlを加えた。有機層を分液し、水で洗浄した後、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧蒸留(96℃、11.4kPa)し、無色液体として、2-トリメチルシリルオキシ乳酸メチル185.7gを得た(単離収率:70%)。
2-トリメチルシリルオキシ乳酸メチルの物性値は以下の通りであった。
Reference Example 3 (Synthesis of methyl 2-trimethylsilyloxy lactate)
After replacing the inside of the reaction system with argon in a flask having an internal volume of 3 L equipped with a stirrer, a thermometer and a dropping funnel, 156.3 g (1.50 mol) of 2-hydroxymethyl lactate, 291.5 g (1.57 mmol) of tri-n-butylamine And 1000 ml of methylcyclohexane were added. Next, 163.5 g (1.51 mol) of chlorotrimethylsilane was slowly dropped while maintaining the liquid temperature at 15 ° C., and the mixture was reacted at the same temperature for 1 hour with stirring. After completion of the reaction, 400 ml of water was added to the reaction solution under ice cooling. The organic layer was separated, washed with water, and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was distilled under reduced pressure (96 ° C., 11.4 kPa) to obtain 185.7 g of methyl 2-trimethylsilyloxylactate as a colorless liquid (isolated yield: 70%).
The physical properties of methyl 2-trimethylsilyloxylactate were as follows.

1H-NMR(CDCl3,δ(ppm));0.11(3H,s)、1.32(3H,d)、3.80(3H、s)、4.18(1H,q)
MS(m/e);176
1 H-NMR (CDCl 3 , δ (ppm)); 0.11 (3H, s), 1.32 (3H, d), 3.80 (3H, s), 4.18 (1H, q)
MS (m / e); 176

参考例4(2-トリメチルシリルオキシ-3,5-ヘプタンジオン(以下、H-DSOEDと称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積300mlのフラスコに、アルゴン雰囲気下、カリウムt-ブトキシド9.50g(84.6mmol)及びメチルシクロヘキサン65ml、テトラヒドロフラン20mlを加えた。次いで、液温を10℃に保ちながら、2-ブタノン6.41g(89mmol)を滴下した。10℃で1時間攪拌した後、-10℃に冷却し、参考例1と同様な方法で合成した2-トリメチルシリルオキシ乳酸メチル14.5g(82mmol)をゆるやかに滴下し、攪拌しながら-10℃で15分間反応させた。反応終了後、氷冷下、酢酸5.6g(93mmol)及び水20gを加えた。次いで、有機層を分液した後に水で洗浄し、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧下で蒸留(100℃、1.51kPa)し、無色液体として、2-トリメチルシリルオキシ-3,5-ヘプタンジオン4.80gを得た(単離収率:27%)。
2-トリメチルシリルオキシ-3,5-ヘプタンジオンンの物性値は以下の通りであった。
Reference Example 4 (Synthesis of 2-trimethylsilyloxy-3,5-heptanedione (hereinafter referred to as H-DSOED))
Under an argon atmosphere, 9.50 g (84.6 mmol) of potassium t-butoxide, 65 ml of methylcyclohexane, and 20 ml of tetrahydrofuran were added to a flask having an internal volume of 300 ml equipped with a stirrer, a thermometer, and a dropping funnel. Subsequently, 6.41 g (89 mmol) of 2-butanone was added dropwise while maintaining the liquid temperature at 10 ° C. After stirring at 10 ° C. for 1 hour, the mixture was cooled to −10 ° C., and 14.5 g (82 mmol) of methyl 2-trimethylsilyloxylactate synthesized in the same manner as in Reference Example 1 was slowly added dropwise at −10 ° C. with stirring. The reaction was allowed for 15 minutes. After completion of the reaction, 5.6 g (93 mmol) of acetic acid and 20 g of water were added under ice cooling. Next, the organic layer was separated, washed with water, and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was distilled under reduced pressure (100 ° C., 1.51 kPa) to obtain 4.80 g of 2-trimethylsilyloxy-3,5-heptanedione as a colorless liquid (isolated yield) : 27%).
The physical properties of 2-trimethylsilyloxy-3,5-heptanedione were as follows.

1H-NMR(CDCl3,δ(ppm));0.11(9H,s)、1.13(3H,t)、1.32(3H,d)、2.48(2H,q)、4.18(1H,q)、5.84(1H,s)、15.4(1H,s)
IR(neat(cm-1));2971、2876、1607、1253、1125、967、899、844、750
(なお、1607cm-1のピークは、β-ジケトン特有のピークである。)
MS(m/e);216
1 H-NMR (CDCl 3 , δ (ppm)); 0.11 (9H, s), 1.13 (3H, t), 1.32 (3H, d), 2.48 (2H, q), 4.18 (1H, q), 5.84 (1H, s), 15.4 (1H, s)
IR (neat (cm -1 )); 2971, 2876, 1607, 1253, 1125, 967, 899, 844, 750
(The peak at 1607 cm -1 is a peak peculiar to β-diketone.)
MS (m / e); 216

参考例5(6,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン(以下、H-DSOBDと称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積300mlのフラスコに、アルゴン雰囲気下、カリウムt-ブトキシド7.74g(69mmol)及びメチルシクロヘキサン65ml、テトラヒドロフラン20mlを加えた。次いで、液温を65℃に保ちながら、ピナコリン7.26g(72.5mmol)を滴下した。1時間攪拌した後、-10℃に冷却し、参考例1と同様な方法で合成した2-トリメチルシリルオキシ乳酸メチル11.8g(67mmol)をゆるやかに滴下し、攪拌しながら-10℃で15分間反応させた。反応終了後、氷冷下、酢酸4.56g(76mmol)及び水20gを加えた。次いで、有機層を分液した後に水で洗浄し、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮した後、濃縮物を減圧下で蒸留(80℃、266Pa)し、無色液体として、6,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン4.59gを得た(単離収率:28%)。
6,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオンの物性値は以下の通りであった。
Reference Example 5 (Synthesis of 6,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione (hereinafter referred to as H-DSOBD))
Under an argon atmosphere, 7.74 g (69 mmol) of potassium t-butoxide, 65 ml of methylcyclohexane, and 20 ml of tetrahydrofuran were added to a flask having an internal volume of 300 ml equipped with a stirrer, a thermometer and a dropping funnel. Subsequently, 7.26 g (72.5 mmol) of pinacholine was added dropwise while maintaining the liquid temperature at 65 ° C. After stirring for 1 hour, cool to -10 ° C, slowly drop 11.8 g (67 mmol) of methyl 2-trimethylsilyloxylactate synthesized in the same manner as in Reference Example 1, and react at -10 ° C for 15 minutes with stirring. I let you. After completion of the reaction, 4.56 g (76 mmol) of acetic acid and 20 g of water were added under ice cooling. Next, the organic layer was separated, washed with water, and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was distilled under reduced pressure (80 ° C., 266 Pa) to obtain 4.59 g of 6,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione as a colorless liquid. (Isolated yield: 28%).
The physical properties of 6,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione were as follows.

1H-NMR(CDCl3,δ(ppm));0.11(9H,s)、1.13(9H,s)、1.32(3H,d)、4.18(1H,q)、5.84(1H,s)、15.4(1H,s)
IR(neat(cm-1));2971、2876、1607、1253、1125、967、899、844、750
(なお、1607cm-1のピークは、β-ジケトン特有のピークである。)
MS(m/e);244
1 H-NMR (CDCl 3 , δ (ppm)); 0.11 (9H, s), 1.13 (9H, s), 1.32 (3H, d), 4.18 (1H, q), 5.84 (1H, s), 15.4 (1H, s)
IR (neat (cm -1 )); 2971, 2876, 1607, 1253, 1125, 967, 899, 844, 750
(The peak at 1607 cm -1 is a peak peculiar to β-diketone.)
MS (m / e); 244

実施例2(銅錯体(2);ビス(2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)(以下、Cu(dsoed)2と称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、2-トリメチルシリルオキシ-3,5-ヘプタンジオン5.01g(23.2mmol)及び1,2-ジメトキシエタン10mlを加え、次いで、水酸化銅1.14g(11.7mmol)を加え、室温にて攪拌しながら1時間反応させた。反応終了後、濾過して、有機層を分液し、該有機層を濃縮した後、濃縮物を減圧蒸留(160℃、29Pa)し、紫色固体として、ビス(2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)5.00gを得た(単離収率:87%)。
ビス(2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)は、以下の物性値で示される新規な化合物である。
Example 2 (copper complex (2); synthesis of bis (2-trimethylsilyloxy-3,5-heptanedionato) copper (II) (hereinafter referred to as Cu (dsoed) 2 ))
To a 50 ml flask equipped with a stirrer, thermometer and dropping funnel was added 5.01 g (23.2 mmol) 2-trimethylsilyloxy-3,5-heptanedione and 10 ml 1,2-dimethoxyethane, followed by hydroxylation 1.14 g (11.7 mmol) of copper was added and reacted at room temperature with stirring for 1 hour. After completion of the reaction, the mixture was filtered to separate the organic layer. After the organic layer was concentrated, the concentrate was distilled under reduced pressure (160 ° C., 29 Pa) to give bis (2-trimethylsilyloxy-3,5 as a purple solid. -Heptanedionato) 5.00 g of copper (II) was obtained (isolation yield: 87%).
Bis (2-trimethylsilyloxy-3,5-heptanedionato) copper (II) is a novel compound represented by the following physical property values.

融点;64℃
IR(neat(cm-1));3432(br)、2961、2879、1571、1523、1461、1443、1251、1127、1103、1049、968、870、841、804、748
元素分析(C20H38O6Si2Cu);炭素:48.3%、水素:7.79%、銅:12.8%
(理論値;炭素:48.6%、水素:7.75%、銅:12.9%)
MS(m/e);493、486、478、395、259、201、161、117、73
Melting point: 64 ° C
IR (neat (cm -1 )); 3432 (br), 2961, 2879, 1571, 1523, 1461, 1443, 1251, 1127, 1103, 1049, 968, 870, 841, 804, 748
Elemental analysis (C 20 H 38 O 6 Si 2 Cu); Carbon: 48.3%, hydrogen: 7.79%, copper: 12.8%
(Theoretical value: Carbon: 48.6%, Hydrogen: 7.75%, Copper: 12.9%)
MS (m / e); 493, 486, 478, 395, 259, 201, 161, 117, 73

実施例3(銅錯体(3);ビス(6,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)(以下、Cu(dsobd)2と称する)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、6,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオン5.00g(20.5mmol)及び1,2-ジメトキシエタン6mlを加え、次いで、水酸化銅1.12g(11.5mmol)を加え、室温にて攪拌しながら1時間反応させた。反応終了後、濾過して、有機層を分液し、該有機層を濃縮した後、濃縮物を減圧蒸留(160℃、29Pa)し、紫色固体として、ビス(6,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)3.80gを得た(単離収率:60%)。
ビス(6,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II)は、以下の物性値で示される新規な化合物である。
Example 3 (copper complex (3); synthesis of bis (6,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedionato) copper (II) (hereinafter referred to as Cu (dsobd) 2 ))
To a 50-ml flask equipped with a stirrer, thermometer and dropping funnel, add 5.00 g (20.5 mmol) of 6,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione and 6 ml of 1,2-dimethoxyethane. Then, 1.12 g (11.5 mmol) of copper hydroxide was added, and the mixture was reacted at room temperature for 1 hour with stirring. After completion of the reaction, the mixture was filtered to separate the organic layer. After the organic layer was concentrated, the concentrate was distilled under reduced pressure (160 ° C., 29 Pa) to give bis (6,6-dimethyl-2- 3.80 g of trimethylsilyloxy-3,5-heptanedionato) copper (II) was obtained (isolation yield: 60%).
Bis (6,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedionato) copper (II) is a novel compound represented by the following physical property values.

融点;72℃
IR(neat(cm-1));3429(br)、2974、2932、2904、2868、1565、1533、1506、1412、1391、1364、1343、1254、1204、1157、1132、1101、1047、970、871、842、808、747、627、549、497、424
元素分析(C24H46O6Si2Cu);炭素:52.3%、水素:8.49%、銅:11.5%
(理論値;炭素:52.4%、水素:8.42%、銅:11.6%)
MS(m/e);493、486、478、395、259、201、161、117、73
Melting point: 72 ° C
IR (neat (cm -1 )); 3429 (br), 2974, 2932, 2904, 2868, 1565, 1533, 1506, 1412, 1391, 1364, 1343, 1254, 1204, 1157, 1132, 1101, 1047, 970 , 871, 842, 808, 747, 627, 549, 497, 424
Elemental analysis (C 24 H 46 O 6 Si 2 Cu); Carbon: 52.3%, hydrogen: 8.49%, copper: 11.5%
(Theoretical value: Carbon: 52.4%, Hydrogen: 8.42%, Copper: 11.6%)
MS (m / e); 493, 486, 478, 395, 259, 201, 161, 117, 73

実施例4(蒸着実験;銅薄膜の製造)
実施例1〜3で得られた銅錯体(銅錯体(1)〜(3))及び公知の方法によって合成した銅錯体(Cu(sopd)2;ビス(2,6-ジメチル-2-トリメチルシリルオキシ-3,5-ヘプタンジオナト)銅(II))を用いて、CVD法による蒸着実験を行い、成膜特性を評価した。
評価試験には、図1に示す装置を使用した。気化器3(ガラス製アンプル)にある銅錯体20は、ヒーター10Bで加熱されて気化し、マスフローコントローラー1Aを経て予熱器10Aで予熱後導入されたヘリウムガスに同伴し気化器3を出る。気化器3を出たガスは、マスフローコントローラー1B、ストップバルブ2を経て導入された水素ガスとともに反応器4に導入される。反応系内圧力は真空ポンプ手前のバルブ6の開閉により、所定圧力にコントロールされ、圧力計5によってモニターされる。ガラス製反応器の中央部はヒーター10Cで加熱可能な構造となっている。反応器に導入された銅錯体は、反応器内中央部にセットされ、ヒータ10Cで所定の温度に加熱された被蒸着基板21の表面上で還元熱分解し、基板21上に銅薄膜が析出する。反応器4を出たガスは、トラップ7、真空ポンプを経て、大気中に排気される構造となっている。
Example 4 (Vapor deposition experiment; Production of copper thin film)
Copper complexes (copper complexes (1) to (3)) obtained in Examples 1 to 3 and copper complexes synthesized by a known method (Cu (sopd) 2 ; bis (2,6-dimethyl-2-trimethylsilyloxy) -3,5-Heptanedionato) copper (II)) was used to evaluate the film formation characteristics by conducting a vapor deposition experiment by the CVD method.
The apparatus shown in FIG. 1 was used for the evaluation test. The copper complex 20 in the vaporizer 3 (glass ampoule) is heated and vaporized by the heater 10B, exits the vaporizer 3 along with the helium gas introduced after preheating by the preheater 10A via the mass flow controller 1A. The gas exiting the vaporizer 3 is introduced into the reactor 4 together with the hydrogen gas introduced through the mass flow controller 1B and the stop valve 2. The pressure in the reaction system is controlled to a predetermined pressure by opening and closing the valve 6 in front of the vacuum pump, and is monitored by the pressure gauge 5. The central part of the glass reactor has a structure that can be heated by the heater 10C. The copper complex introduced into the reactor is set at the center of the reactor and undergoes reductive pyrolysis on the surface of the deposition target substrate 21 heated to a predetermined temperature by the heater 10C, and a copper thin film is deposited on the substrate 21. To do. The gas exiting the reactor 4 is exhausted to the atmosphere via a trap 7 and a vacuum pump.

蒸着条件及び蒸着結果(膜特性)を表1に示す。なお、被蒸着基盤としては、7mm×40mmサイズの矩形のものを使用した。   The deposition conditions and deposition results (film characteristics) are shown in Table 1. In addition, as a substrate for vapor deposition, a rectangular substrate having a size of 7 mm × 40 mm was used.

Figure 2007051124
Figure 2007051124

該結果より、本発明の銅錯体(1)〜(3)が、従来の銅錯体(Cu(sopd)2)よりも優れた成膜性を有することが分かる。 From the results, it can be seen that the copper complexes (1) to (3) of the present invention have better film formability than the conventional copper complex (Cu (sopd) 2 ).

本発明により、化学気相蒸着法(CVD法)による、新規な銅錯体又は銅錯体の溶媒溶液を用いた銅含有薄膜の製造方法を提供することができる。   According to the present invention, a method for producing a copper-containing thin film using a novel copper complex or a solvent solution of a copper complex by chemical vapor deposition (CVD) can be provided.

蒸着装置の構成を示す図である。It is a figure which shows the structure of a vapor deposition apparatus.

符号の説明Explanation of symbols

3 気化器
4 反応器
10B 気化器ヒータ
10C 反応器ヒータ
20 原料金属錯体融液
21 基板
3 Vaporizer 4 Reactor 10B Vaporizer heater 10C Reactor heater 20 Raw material metal complex melt 21 Substrate

Claims (4)

一般式(1)
Figure 2007051124
(式中、R及びRは、(1)R=エチル基、R=メチル基、(2)R=エチル基、R=水素原子、(3)R=t-ブチル基、R=水素原子、のいずれかを示す。)
で示される新規な銅錯体(II)。
General formula (1)
Figure 2007051124
(In the formula, R 1 and R 2 are (1) R 1 = ethyl group, R 2 = methyl group, (2) R 1 = ethyl group, R 2 = hydrogen atom, (3) R 1 = t-butyl. Group, R 2 = hydrogen atom.)
A novel copper complex (II) represented by
請求項1記載の銅錯体を使用することを特徴とする、請求項1記載の銅含有薄膜の製造方法。   The method for producing a copper-containing thin film according to claim 1, wherein the copper complex according to claim 1 is used. 請求項1記載の銅錯体の溶媒溶液を金属供給源として用いる、請求項2記載の銅含有薄膜の製造方法。   The manufacturing method of the copper containing thin film of Claim 2 using the solvent solution of the copper complex of Claim 1 as a metal supply source. 溶媒が、脂肪族炭化水素類、芳香族炭化水素類及びエーテル類からなる群より選ばれる少なくとも1種の溶媒である、請求項3記載の銅含有薄膜の製造方法。   The method for producing a copper-containing thin film according to claim 3, wherein the solvent is at least one solvent selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons, and ethers.
JP2006039129A 2005-07-22 2006-02-16 New copper complex and method for producing copper-containing thin film using the same copper complex Pending JP2007051124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039129A JP2007051124A (en) 2005-07-22 2006-02-16 New copper complex and method for producing copper-containing thin film using the same copper complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005212694 2005-07-22
JP2006039129A JP2007051124A (en) 2005-07-22 2006-02-16 New copper complex and method for producing copper-containing thin film using the same copper complex

Publications (1)

Publication Number Publication Date
JP2007051124A true JP2007051124A (en) 2007-03-01

Family

ID=37915816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039129A Pending JP2007051124A (en) 2005-07-22 2006-02-16 New copper complex and method for producing copper-containing thin film using the same copper complex

Country Status (1)

Country Link
JP (1) JP2007051124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081431A (en) * 2007-09-03 2009-04-16 Ulvac Japan Ltd Method of manufacturing semiconductor device
JP2009081432A (en) * 2007-09-03 2009-04-16 Ulvac Japan Ltd Method of manufacturing semiconductor device
JP2011530835A (en) * 2008-08-13 2011-12-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Conformal adhesion promoter liner for metal interconnects
CN117107323A (en) * 2023-10-23 2023-11-24 武汉大学 Method and device for improving interface stability of copper-containing part of environment-friendly gas insulation equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081431A (en) * 2007-09-03 2009-04-16 Ulvac Japan Ltd Method of manufacturing semiconductor device
JP2009081432A (en) * 2007-09-03 2009-04-16 Ulvac Japan Ltd Method of manufacturing semiconductor device
JP2011530835A (en) * 2008-08-13 2011-12-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Conformal adhesion promoter liner for metal interconnects
CN117107323A (en) * 2023-10-23 2023-11-24 武汉大学 Method and device for improving interface stability of copper-containing part of environment-friendly gas insulation equipment
CN117107323B (en) * 2023-10-23 2024-01-12 武汉大学 Method and device for improving interface stability of copper-containing part of environment-friendly gas insulation equipment

Similar Documents

Publication Publication Date Title
JP5375093B2 (en) Organic ruthenium complex and method for producing ruthenium thin film using the ruthenium complex
EP2636674A1 (en) (amide amino alkane) metal compound, method of manufacturing metal-containing thin film using said metal compound
KR102441169B1 (en) Diazadienyl compound, raw material for forming thin film, method for producing thin film, and diazadiene compound
US6099903A (en) MOCVD processes using precursors based on organometalloid ligands
EP3348667A1 (en) Chemical vapor deposition feedstock comprising organic ruthenium compound and chemical vapor deposition method using said chemical vapor deposition feedstock
JP2007051124A (en) New copper complex and method for producing copper-containing thin film using the same copper complex
JP3227891B2 (en) Novel organometallic complexes and their ligands
JP2009030164A (en) Raw material for forming strontium-containing thin film and method for preparing the same
KR20200123722A (en) Forming material, a method for forming material and novel compound
KR19990046683A (en) Organocuprous precursors for chemical deposition of copper
WO2018042871A1 (en) Diazadienyl compound, raw material for forming thin film, and method for producing thin film
JPWO2005035823A1 (en) Metal complex having β-diketonato ligand and method for producing metal-containing thin film
KR102283752B1 (en) Novel group iv transition metal compounds and preparation method thereof
JP2007290993A (en) STRONTIUM COMPLEX WITH ISOPROPYL OR ISOBUTYL GROUP-BEARING beta- DIKETONATO AS LIGAND, AND METHOD FOR PRODUCING METAL-CONTAINING THIN FILM USING THE STRONTIUM COMPLEX
JP5699485B2 (en) Metal complex having β-diketonato having dialkylalkoxymethyl group as ligand, and method for producing metal-containing thin film using the metal complex
JPWO2020129616A1 (en) Thin film forming raw material for atomic layer deposition method, thin film manufacturing method and alkoxide compound
JP5454141B2 (en) Organic platinum complex and method for producing platinum-containing thin film by chemical vapor deposition using the platinum complex
JP4797474B2 (en) Metal complex having β-diketonato having alkoxyalkylmethyl group and alkoxy as ligand, and method for producing metal-containing thin film using the metal complex
JP4059662B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
JP2011246438A (en) Organometallic complex and production method of metal-containing thin film using the metal complex
JP2007119816A (en) METHOD FOR PRODUCING ZINC OXIDE THIN FILM USING ZINC COMPLEX CONTAINING beta-DIKETONATE HAVING ALKOXYALKYLMETHYL GROUP AS LIGAND
JP2009137862A (en) Mixture of organic ruthenium complexes, and method for producing thin film comprising metallic ruthenium using the same
JP2009057618A (en) Copper-containing thin film, and method for producing the same
TWI504605B (en) Magnesium bis( dialkyl amide) compound and method of producing magnesium-containing thin film using same
JPH0853470A (en) Organosilver compound for silver thin film formation by chemical vapor deposition of high-vapor pressure organometal