JP2006182575A - Method for manufacturing titanium oxide nanowire structure and titanium oxide nanowire structure obtained by the same method - Google Patents

Method for manufacturing titanium oxide nanowire structure and titanium oxide nanowire structure obtained by the same method Download PDF

Info

Publication number
JP2006182575A
JP2006182575A JP2004375169A JP2004375169A JP2006182575A JP 2006182575 A JP2006182575 A JP 2006182575A JP 2004375169 A JP2004375169 A JP 2004375169A JP 2004375169 A JP2004375169 A JP 2004375169A JP 2006182575 A JP2006182575 A JP 2006182575A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide nanowire
titanate
nanowire structure
hydrothermal treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375169A
Other languages
Japanese (ja)
Other versions
JP4654410B2 (en
Inventor
Meito Gi
明灯 魏
Yoshiya Konishi
由也 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004375169A priority Critical patent/JP4654410B2/en
Publication of JP2006182575A publication Critical patent/JP2006182575A/en
Application granted granted Critical
Publication of JP4654410B2 publication Critical patent/JP4654410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a new nanowire-shaped titanium oxide structure can be easily manufactured without using an organic solvent, a surfactant or a high concentration alkali with a danger. <P>SOLUTION: The method for manufacturing the titanium oxide nanowire structure comprises subjecting a titanate to hydrothermal treatment under acidic condition meanwhile drying. As the titanate, a titanate having a layered structure, especially a sodium titanate, is preferably used. It is preferable to perform the hydrothermal treatment and drying in an autoclave using a dilute hydrochloric acid having a concentration of 0.01-0.5 mol/L. Wherein the hydrothermal treatment is performed meanwhile slowly drying by gradually evaporating the dilute hydrochloric acid through a small leak from the autoclave. The preferable hydrothermal treatment and drying temperature is within a range of 120-200°C, and the preferable treatment time is 120 h or longer. The obtained titanium oxide nanowire structure can be used in a wide range of fields as photoelectrodes of dye-sensitive solar cells, photocatalysts, optical/electronic materials or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チタン酸塩粉末からナノワイヤ形状の酸化チタン構造体を簡易に製造する方法に関するものである。   The present invention relates to a method for easily producing a nanowire-shaped titanium oxide structure from titanate powder.

近年、酸化チタンは、顔料、塗料、吸着剤、化粧材料または光・電子材料等として広く用いられており、最近では新たに色素増感太陽電池の多孔質電極や光触媒、触媒担体等の材料としても注目されている。そして、その材料特性をより向上させたり、新たな用途分野に利用範囲を拡大させたりするために、ナノチューブ形状(ナノメートルサイズの中空円筒形状)やナノワイヤ形状(ナノメートルサイズの太さを持つ長繊維形状)などの特異な形状に構造制御された酸化チタンの構造体が報告されるようになってきた。   In recent years, titanium oxide has been widely used as pigments, paints, adsorbents, cosmetic materials, optical / electronic materials, etc. Recently, as a material for porous electrodes, photocatalysts, catalyst carriers, etc. of dye-sensitized solar cells. Is also attracting attention. In order to further improve the material properties and expand the range of application to new application fields, nanotube shapes (nanometer-sized hollow cylindrical shapes) and nanowire shapes (long with nanometer-sized thickness) A structure of titanium oxide whose structure is controlled to a specific shape (such as fiber shape) has been reported.

なかでも、酸化チタンナノワイヤ構造体は、比表面積が大きいために色素を多量に吸着し易いこと及びワイヤに沿った一次元方向に良好な電子伝導性が期待できることから、色素増感太陽電池の光電極としての利用等に向けて精力的な研究開発が行われている(例えば、特許文献1、2、非特許文献1、2参照)。   In particular, the titanium oxide nanowire structure has a large specific surface area, so that it can easily adsorb a large amount of dye and can be expected to have good electron conductivity in a one-dimensional direction along the wire. Energetic research and development has been conducted for use as an electrode (for example, see Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).

現在、酸化チタンナノワイヤ構造体については、既に幾つかの製造方法が知られており、その一例として、金属化合物の有機溶媒溶液と界面活性剤及び水とを接触させて混合し、これを固化させてナノワイヤ形状を有する金属酸化物を製造する方法及びその製法で得られたナノワイヤ形状の酸化チタン構造体が報告されている(例えば、特許文献1、非特許文献1参照)。その他に、粉末チタニアを高濃度の水酸化カリウム水溶液で水熱処理することにより酸化チタンナノワイヤ構造体を得る方法が報告されている(例えば、非特許文献2参照)。   At present, several production methods are already known for titanium oxide nanowire structures. As an example, an organic solvent solution of a metal compound is brought into contact with a surfactant and water to be mixed and solidified. A method for producing a metal oxide having a nanowire shape and a nanowire-shaped titanium oxide structure obtained by the production method have been reported (for example, see Patent Document 1 and Non-Patent Document 1). In addition, a method for obtaining a titanium oxide nanowire structure by hydrothermally treating powdered titania with a high-concentration potassium hydroxide aqueous solution has been reported (for example, see Non-Patent Document 2).

一方、酸化チタンナノチューブ構造体の製造に関しては、酸化チタン粉末を高濃度の水酸化ナトリウム水溶液を用いて水熱処理する方法が報告されている(例えば、特許文献3、4参照)。また、本発明者らは、先にこの高濃度の水酸化ナトリウム水溶液を用いた酸化チタン粉末の水熱処理による酸化チタンナノチューブ構造体生成の反応機構について鋭意検討を重ねた結果、ナノシート形状の酸化チタン構造体が中間体として生成し、その後に巻回してナノチューブ形状の酸化チタン構造体が得られることが判明した。そしてこれを基に、本発明者らは、酸化チタン粉末ではなく層状構造を持つチタン酸塩粉末を原料とし、高濃度の塩基を用いないで水単独で水熱処理を行うと、ナノシート形状の酸化チタン構造体を経て、ナノチューブ形状を持つ酸化チタン構造体が容易に得られることを解明し、これについて既に特許出願を行った(特許文献5参照)。   On the other hand, regarding the production of the titanium oxide nanotube structure, a method of hydrothermally treating titanium oxide powder using a high concentration sodium hydroxide aqueous solution has been reported (for example, see Patent Documents 3 and 4). In addition, the present inventors have made extensive studies on the reaction mechanism of titanium oxide nanotube structure formation by hydrothermal treatment of titanium oxide powder using a high concentration sodium hydroxide aqueous solution. It was found that the structure was formed as an intermediate and was then wound to obtain a nanotube-shaped titanium oxide structure. Based on this, the present inventors use a titanate powder having a layered structure instead of a titanium oxide powder as a raw material, and performing hydrothermal treatment with water alone without using a high-concentration base, the nanosheet-shaped oxidation It has been clarified that a titanium oxide structure having a nanotube shape can be easily obtained through a titanium structure, and a patent application has already been filed for this (see Patent Document 5).

特開2003−34531号公報JP 2003-34531 A 特開2003−251194号公報JP 2003-251194 A 特開平10−152323号公報Japanese Patent Laid-Open No. 10-152323 特開2002−241129号公報JP 2002-241129 A 特願2004−228654号Japanese Patent Application No. 2004-228654 「月刊エコインダストリイー2004年6月号」、シーエムシー出版、2004年6月、p42"Monthly Eco-Industry June 2004", CM Publishing, June 2004, p42 「化学工業2004年10月号」、化学工業社、2004年10月、p60“Chemical Industry October 2004”, Chemical Industry Company, October 2004, p60

ところで、酸化チタンナノワイヤ構造体の製造に界面活性剤を用いる方法は、製造過程において有害な有機溶媒を使用する必要があり、また最終的な生成物から有機溶媒及び界面活性剤を除去することが不可欠である。そのために、プロセスが煩雑になるうえに、環境負荷も大きく処理コストを要するという問題がある。加えて、この方法では長いナノワイヤ構造体の収率が低いという欠点もある。   By the way, the method using a surfactant for the production of a titanium oxide nanowire structure requires the use of a harmful organic solvent in the production process, and the organic solvent and the surfactant can be removed from the final product. It is essential. Therefore, there are problems that the process becomes complicated and the environmental load is large and the processing cost is required. In addition, this method has the disadvantage that the yield of long nanowire structures is low.

また、水酸化カリウムを使用した水熱処理による酸化チタンナノワイヤ構造体の製法でも、高濃度の水酸化カリウム水溶液等を用いて水熱処理するため製造過程に危険が伴うこと、また使用した高濃度のアルカリ水溶液を廃液として処理しなければならないため環境負荷が大きく処理コストを要するという問題がある。さらに、この方法で得られた酸化チタンナノワイヤ構造体は、結晶性が低いため機械的強度が維持できず単独では光電極用等に成膜することは困難であるという問題もある。   In addition, the production process of titanium oxide nanowire structure by hydrothermal treatment using potassium hydroxide is also accompanied by danger in the manufacturing process because of hydrothermal treatment using high concentration potassium hydroxide aqueous solution, etc. Since the aqueous solution must be processed as waste liquid, there is a problem that the environmental load is large and processing costs are required. Furthermore, since the titanium oxide nanowire structure obtained by this method has low crystallinity, the mechanical strength cannot be maintained, and it is difficult to form a film for a photoelectrode alone.

本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、環境汚染の原因物質となる有機溶媒、界面活性剤及び取扱いに危険を伴う高濃度のアルカリを用いることなく、穏やかな条件下で、チタン酸塩から安全かつ簡易にナノワイヤ形状の新規な酸化チタン構造体を製造する方法を提供することにある。   This invention is made | formed in view of the above-mentioned actual condition in a prior art. That is, the object of the present invention is to safely and easily remove titanates from mild titanates under mild conditions without using organic solvents, surfactants, and high-concentration alkalis that are dangerous to handle. An object of the present invention is to provide a method for producing a novel titanium oxide structure having a nanowire shape.

本発明者らは、前述したチタン酸塩の水熱処理によりナノシート形状の酸化チタン構造体を経てナノチューブ形状の酸化チタン構造体を簡易に得る方法を研究する過程において、上記の課題を解決するものとしてチタン酸塩を特定の条件下で簡易な処理を行うことにより、中空のナノチューブ形状とは異なったナノワイヤ形状の酸化チタン構造体が得られることを知見し、これを基にして本発明を完成させるに至った。   In the course of studying a method for easily obtaining a nanotube-shaped titanium oxide structure via a nanosheet-shaped titanium oxide structure by hydrothermal treatment of the titanate described above, the present inventors solve the above-mentioned problems. A simple treatment of titanate under specific conditions reveals that a nanowire-shaped titanium oxide structure different from the hollow nanotube shape can be obtained, and the present invention is completed based on this. It came to.

すなわち、本発明は、チタン酸塩に酸性条件下で水熱処理及び乾燥処理を行うことを特徴とする酸化チタンナノワイヤ構造体の製造方法である。その原料のチタン酸塩には、層状構造を持つチタン酸塩を用いることが好ましく、また、なかでもチタン酸ナトリウムを用いることが好ましい。   That is, this invention is a manufacturing method of the titanium oxide nanowire structure characterized by performing a hydrothermal treatment and a drying process on acidic conditions on a titanate. As the raw material titanate, a titanate having a layered structure is preferably used, and sodium titanate is particularly preferably used.

本発明において、水熱処理はチタン酸塩を酸性水溶液中に入れてオートクレーブ(加圧容器)中で加熱することにより行うことが好ましい。その酸としては、酸性を示すものであれば使用可能であるが、特に水とともに蒸発する塩酸を用いることが好ましい。また、その塩酸濃度としては0.01〜0.5mol/Lの範囲の希塩酸を用いることが好ましい。   In the present invention, the hydrothermal treatment is preferably performed by placing titanate in an acidic aqueous solution and heating in an autoclave (pressure vessel). As the acid, any acid can be used as long as it shows acidity. In particular, hydrochloric acid that evaporates with water is preferably used. The hydrochloric acid concentration is preferably dilute hydrochloric acid in the range of 0.01 to 0.5 mol / L.

また、乾燥処理は、チタン酸塩の水熱処理中に、徐々に水を蒸発させて取り除く方法を採用することが好ましく、オートクレーブ中で加熱する場合には微量のリークによって徐々に水分を取り除くことによって行うことができる。   In addition, it is preferable to adopt a method of gradually evaporating and removing water during the hydrothermal treatment of the titanate during the drying treatment. When heating in an autoclave, the moisture is gradually removed by a slight leak. It can be carried out.

水熱・乾燥処理温度(加熱温度)は120〜200℃の範囲が好ましく、また、水熱・乾燥処理時間(加熱時間)は120時間以上であることが好ましい。
この水熱・乾燥処理によって得られた生成物を水洗して再度乾燥することにより酸化チタンナノワイヤ構造体を含む酸化チタンの粉末が得られる。
The hydrothermal / drying treatment temperature (heating temperature) is preferably in the range of 120 to 200 ° C., and the hydrothermal / drying treatment time (heating time) is preferably 120 hours or more.
The product obtained by the hydrothermal drying process is washed with water and dried again to obtain a titanium oxide powder containing a titanium oxide nanowire structure.

本発明によれば、上記のとおり、原料となるチタン酸塩の粉末を酸性条件下の水中で一定時間の水熱処理を行いながら水を徐々に蒸発させて取り除き乾燥させるという非常に簡易な操作により、危険を伴う高濃度のアルカリ水溶液を使用することもなく、ナノワイヤ形状の酸化チタン構造体を容易に作製できる。
また本発明方法では、水熱・乾燥処理後は、生成物を単に水洗して再度乾燥するのみでよく、環境汚染の原因となる有機溶媒・界面活性剤や高濃度のアルカリを使用していないため、それらを分離する工程やそれらの廃液の処理を要しないという利点がある。
According to the present invention, as described above, the titanate powder used as a raw material is subjected to a very simple operation in which water is gradually evaporated and dried while performing hydrothermal treatment for a certain time in water under acidic conditions. A nanowire-shaped titanium oxide structure can be easily produced without using a high-concentration alkaline aqueous solution that is dangerous.
In the method of the present invention, after the hydrothermal / drying treatment, the product may be simply washed with water and dried again, and does not use organic solvents / surfactants or high-concentration alkalis that cause environmental pollution. Therefore, there is an advantage that the process of separating them and the treatment of the waste liquid are not required.

本発明は、従来のナノワイヤ形状の酸化チタン構造体の製法に使用されている有機溶媒、界面活性剤及び高濃度のアルカリなどを用いることなく、ナノワイヤ形状の酸化チタン構造体を、安全にかつ簡易に製造できる方法であって、ナノシート形状と類似する層状構造をもったチタン酸塩粉末を酸性条件下、水中で一定時間加熱して水熱処理を行いながら水を徐々に蒸発させて取り除き乾燥させること(水熱・乾燥処理)のみでナノワイヤ形状の酸化チタン構造体を容易に得ることができる。   The present invention provides a nanowire-shaped titanium oxide structure that is safe and simple without using organic solvents, surfactants, high-concentration alkalis, and the like that are used in conventional nanowire-shaped titanium oxide structures. In this method, titanate powder having a layered structure similar to the nanosheet shape is heated in water for a certain period of time under acidic conditions. A nanowire-shaped titanium oxide structure can be easily obtained only by (hydrothermal / drying treatment).

出発原料としては、チタン酸塩を用いるが、通常、ナノシート形状に類似した層状構造を持つチタン酸塩の粉末が用いられる。例えば、典型的な層状構造をもつチタン酸塩としては、チタン酸ナトリウム(NaTi)であって、これは市販品であっても良いが、以下に示す方法等により合成したものであっても良い。 As the starting material, titanate is used, but titanate powder having a layered structure similar to the nanosheet shape is usually used. For example, the titanate having a typical layered structure is sodium titanate (Na 2 Ti 3 O 7 ), which may be a commercial product, but synthesized by the method shown below. It may be.

本発明によるナノワイヤ形状の酸化チタン構造体の形成過程については、チタン酸ナトリウムの場合、チタン酸層の間にナトリウムイオンを介在させた層状構造体であり、これを水中120℃以上の温度で一定の時間以上にわたり水熱処理を行うと、チタン酸層の間に次第に水分子が入り込んでチタン酸層が徐々に剥離されてナノシート形状の酸化チタンが形成され、それらナノシートの一部または全部が酸性条件下の乾燥過程において繊維状に分裂し最終的にナノワイヤ形状の酸化チタン構造体が形成されるものと推定される。また、上記の剥離するチタン酸層の一部は、ナノシートを経ることなく繊維状に分裂し、直接にナノワイヤ形状の酸化チタン構造体が形成されるものと推定される。   Regarding the formation process of the nanowire-shaped titanium oxide structure according to the present invention, in the case of sodium titanate, it is a layered structure in which sodium ions are interposed between titanate layers, and this is constant at a temperature of 120 ° C. or more in water. When hydrothermal treatment is performed for more than this time, water molecules gradually enter between the titanate layers and the titanate layers are gradually peeled off to form nanosheet-shaped titanium oxide, and some or all of these nanosheets are under acidic conditions It is presumed that the nanowire-shaped titanium oxide structure is finally formed by fission in the lower drying process. Further, it is presumed that a part of the above-mentioned peeled titanic acid layer is split into fibers without passing through a nanosheet, and a nanowire-shaped titanium oxide structure is directly formed.

以下、本発明方法について一例を挙げて説明する。
まず、原料のチタン酸ナトリウム粉末は、炭酸ナトリウム粉末とアナターゼ型の二酸化チタン粉末(例えば、石原産業株式会社のST−01)をモル比1:3の割合で配合し、乳鉢などを用いてすり潰しながらよく混合したものを、約1000℃で2時間にわたり空気中で焼成することにより得られる。
Hereinafter, an example is given and demonstrated about the method of this invention.
First, the raw material sodium titanate powder is a mixture of sodium carbonate powder and anatase-type titanium dioxide powder (for example, ST-01 of Ishihara Sangyo Co., Ltd.) in a molar ratio of 1: 3 and ground using a mortar or the like. However, it is obtained by baking in air at about 1000 ° C. for 2 hours.

次に、得られたチタン酸ナトリウム粉末を濃度0.01〜0.5mol/Lの希塩酸と混合し、オートクレーブに入れて加熱する。この場合、チタン酸ナトリウム粉末0.1gに対して希塩酸10ml程度の割合が望ましい。   Next, the obtained sodium titanate powder is mixed with dilute hydrochloric acid having a concentration of 0.01 to 0.5 mol / L, placed in an autoclave and heated. In this case, a ratio of about 10 ml of diluted hydrochloric acid with respect to 0.1 g of sodium titanate powder is desirable.

その際、オートクレーブからゆっくりと希塩酸が蒸発するように微小なリーク(漏れ)を生じさせる。水熱反応が十分に進行するためには、この蒸発が急激に生じて早期に乾燥してしまわないように十分な時間をかけることが重要であるが、最終的には完全に乾燥させることが好ましい。乾燥する速度の最適条件は、水熱・乾燥処理の温度・時間や原料チタン酸塩の形状、種類などに依存している。   At that time, a minute leak (leakage) is caused so that dilute hydrochloric acid slowly evaporates from the autoclave. In order for the hydrothermal reaction to proceed sufficiently, it is important to allow sufficient time so that this evaporation occurs rapidly and does not dry quickly. preferable. The optimum conditions for the drying speed depend on the hydrothermal / drying temperature / time and the shape and type of the raw titanate.

水熱・乾燥処理の好ましい条件は、処理温度が120〜200℃、処理時間が120時間以上であるが、より好ましくは、処理温度が140〜180℃、処理時間が120〜480時間である。最適処理条件は、原料のチタン酸塩に依存している。   Preferred conditions for the hydrothermal / drying treatment are a treatment temperature of 120 to 200 ° C. and a treatment time of 120 hours or more, more preferably a treatment temperature of 140 to 180 ° C. and a treatment time of 120 to 480 hours. The optimum processing conditions depend on the raw titanate.

水熱・乾燥処理した後、生成物を蒸留水で洗浄後、再度乾燥させることによってナノワイヤ形状の酸化チタン構造体を含む酸化チタンの白色粉末を得ることができる。洗浄後の乾燥は、空気中60℃前後の温度で約4時間程度にわたり行うことが好ましい。   After the hydrothermal drying treatment, the product is washed with distilled water and dried again to obtain a titanium oxide white powder containing a nanowire-shaped titanium oxide structure. The drying after the washing is preferably performed at a temperature of about 60 ° C. in air for about 4 hours.

本発明により得られる酸化チタンナノワイヤ構造体は、通常、ワイヤの太さは約10〜500nm、長さは約0.5〜50μm程度のものであり、また、ブルッカイト構造の結晶性を示す。   The titanium oxide nanowire structure obtained by the present invention usually has a wire thickness of about 10 to 500 nm and a length of about 0.5 to 50 μm, and exhibits a brookite structure crystallinity.

以下、本発明について実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。なお、得られた生成物は走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)を用いてその形状を確認した。さらに生成物の結晶形はXRDパターンの測定によって確認した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by this Example. In addition, the shape of the obtained product was confirmed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Furthermore, the crystal form of the product was confirmed by measuring the XRD pattern.

出発原料には、アナターゼ型の二酸化チタン粉末ST−01(石原産業株式会社)から上記の方法により合成したチタン酸ナトリウムを用いた。このチタン酸ナトリウム粉末0.15gを濃度0.05Mの希塩酸15mlに加えて、容積30mlのオートクレーブ中で168時間にわたり温度170℃に加熱して水熱処理を行いながら、微小なリークにより希塩酸を徐々に蒸発させ続けて、最終的には完全に乾燥させた。その後、蒸留水で洗浄した後、空気中60℃で約4時間にわたり再度乾燥させることにより、白色粉末状の生成物を得た。   As the starting material, sodium titanate synthesized from the anatase-type titanium dioxide powder ST-01 (Ishihara Sangyo Co., Ltd.) by the above method was used. While adding 0.15 g of this sodium titanate powder to 15 ml of dilute hydrochloric acid with a concentration of 0.05 M, and heating it at a temperature of 170 ° C. for 168 hours in an autoclave with a volume of 30 ml, the dilute hydrochloric acid is gradually removed by minute leaks. Continue to evaporate and finally dry completely. Then, after washing with distilled water, the product was dried in air at 60 ° C. for about 4 hours to obtain a white powder product.

図1には、得られた白色粉末状の生成物の走査型電子顕微鏡(SEM)写真を示す。図1に見られるように、数十から数百ナノメートルサイズの太さとマイクロメートルサイズの長さをもつ長繊維形状(ナノワイヤ形状)構造体が生成していることが確認できる。さらに、シート状物の一部が裂けて繊維状になっている部分(ブラシ形状)が確認できる。このブラシ形状の構造が観察されたことは、チタン酸層が徐々に剥離してナノシート形状の酸化チタンが形成され、それらナノシートの一部または全部が酸性条件下の乾燥過程において繊維状に分裂して最終的にナノワイヤ形状の酸化チタン構造体が形成されることを示唆しているものと思われる。
図2には、比較のため、原料物質のチタン酸ナトリウム粉末のSEM写真を示すが、ここではナノワイヤ状の構造は全く見られない。
In FIG. 1, the scanning electron microscope (SEM) photograph of the obtained white powder-like product is shown. As can be seen in FIG. 1, it can be confirmed that a long fiber shape (nanowire shape) structure having a thickness of several tens to several hundreds of nanometers and a length of micrometers is generated. Furthermore, the part (brush shape) by which a part of sheet-like thing is torn and can be confirmed can be confirmed. The observation of this brush-shaped structure is that the titanate layer gradually peels off to form nanosheet-shaped titanium oxide, and some or all of these nanosheets break into fibers during the drying process under acidic conditions. This suggests that a nanowire-shaped titanium oxide structure is finally formed.
For comparison, FIG. 2 shows an SEM photograph of the raw material sodium titanate powder, but here no nanowire-like structure is seen.

図3には、得られた白色粉末状の酸化チタンについて、低倍率の透過型電子顕微鏡(TEM)写真を示す。図3からはマイクロメートルサイズの長さをもつナノワイヤ形状が生成していることが明瞭にわかる。さらに図4に示すナノワイヤ形状先端の部分を拡大した高倍率のTEM写真からは、数十ナノメートルサイズの太さを持つ円柱形状構造体によってナノワイヤ形状が形成されていることがわかる。   FIG. 3 shows a low-power transmission electron microscope (TEM) photograph of the obtained white powdered titanium oxide. FIG. 3 clearly shows that a nanowire shape having a length of micrometer size is generated. Furthermore, it can be seen from the high-magnification TEM photograph in which the nanowire-shaped tip portion shown in FIG. 4 is enlarged that the nanowire shape is formed by a cylindrical structure having a thickness of several tens of nanometers.

また生成した酸化チタンナノワイヤ構造体の結晶性については、TEM写真の拡大によって得られる格子像における間隔及びXRDパターンの測定結果からブルッカイト構造の酸化チタンであることが確認された。   Moreover, about the crystallinity of the produced | generated titanium oxide nanowire structure, it was confirmed that it is a titanium oxide of a brookite structure from the measurement result of the space | interval and XRD pattern in a lattice image obtained by expansion of a TEM photograph.

本発明は、環境汚染物質などを用いることなく酸性条件下の水熱処理と乾燥によって新規な酸化チタンナノワイヤ構造体を非常に簡易に製造でき、また得られた酸化チタンナノワイヤ構造体は、色素増感太陽電池の光電極材料のほか、光触媒や光・電子材料等として広範囲の分野に利用可能である。
また、本発明方法により酸化チタンナノワイヤ構造体を製造すれば、有機溶媒・界面活性剤や高濃度のアルカリ水溶液を使用する必要がないため、それらの処理コストを削減できるうえ環境負荷も低減する。
さらに、本発明で提供される簡易な製法を基に、さらに酸化チタンの形状を制御する新たな方法を開発することや全く新規な形状の酸化チタン構造体を製造することが期待される。
In the present invention, a novel titanium oxide nanowire structure can be produced very easily by hydrothermal treatment and drying under acidic conditions without using environmental pollutants, and the obtained titanium oxide nanowire structure can be dye-sensitized. In addition to photoelectrode materials for solar cells, it can be used in a wide range of fields as photocatalysts and photo / electronic materials.
In addition, if the titanium oxide nanowire structure is produced by the method of the present invention, it is not necessary to use an organic solvent / surfactant or a high-concentration alkaline aqueous solution, so that the processing cost can be reduced and the environmental load is also reduced.
Furthermore, based on the simple manufacturing method provided by the present invention, it is expected to develop a new method for controlling the shape of titanium oxide and to manufacture a titanium oxide structure having a completely new shape.

本発明における酸化チタンナノワイヤ構造体の一例の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of an example of the titanium oxide nanowire structure in the present invention. 本発明において原料として用いたチタン酸ナトリウム粉末の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the sodium titanate powder used as a raw material in the present invention. 本発明における酸化チタンナノワイヤ構造体の一例の透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph of an example of the titanium oxide nanowire structure in this invention. 本発明における酸化チタンナノワイヤ構造体の他の一例の透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph of another example of the titanium oxide nanowire structure in the present invention.

Claims (11)

チタン酸塩を酸性条件下で水熱処理及び乾燥処理を行うことを特徴とする酸化チタンナノワイヤ構造体の製造方法。   A method for producing a titanium oxide nanowire structure comprising subjecting titanate to hydrothermal treatment and drying treatment under acidic conditions. チタン酸塩として、層状構造を持つチタン酸塩を用いることを特徴とする請求項1に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to claim 1, wherein a titanate having a layered structure is used as the titanate. チタン酸塩として、チタン酸ナトリウムを用いることを特徴とする請求項1または2に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to claim 1 or 2, wherein sodium titanate is used as the titanate. 水熱処理が塩酸水溶液を用いて行われることを特徴とする請求項1〜3いずれか1項に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to any one of claims 1 to 3, wherein the hydrothermal treatment is performed using an aqueous hydrochloric acid solution. 水熱処理の塩酸濃度は0.01〜0.5mol/Lである請求項1〜4のいずれか1項に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to any one of claims 1 to 4, wherein the hydrochloric acid concentration in the hydrothermal treatment is 0.01 to 0.5 mol / L. 乾燥処理が、水熱処理しながら微量のリークにより徐々に水分を蒸発除去させることを特徴とする請求項1〜5のいずれか1項に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to any one of claims 1 to 5, wherein the drying process gradually evaporates and removes moisture by a slight amount of leak while performing hydrothermal treatment. 水熱処理及び乾燥処理が、オートクレーブ中で行われることを特徴とする請求項1〜6のいずれか1項に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to any one of claims 1 to 6, wherein the hydrothermal treatment and the drying treatment are performed in an autoclave. 水熱処理及び乾燥処理の温度が、120〜200℃である請求項1〜7のいずれか1項に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to any one of claims 1 to 7, wherein the temperature of the hydrothermal treatment and the drying treatment is 120 to 200 ° C. 水熱処理及び乾燥処理の時間が、120時間以上である請求項1〜8のいずれか1項に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to any one of claims 1 to 8, wherein a time of the hydrothermal treatment and the drying treatment is 120 hours or more. 水熱処理及び乾燥処理の終了後に、水洗して再度乾燥させることを特徴とする請求項1〜9のいずれか1項に記載の酸化チタンナノワイヤ構造体の製造方法。   The method for producing a titanium oxide nanowire structure according to any one of claims 1 to 9, wherein after completion of the hydrothermal treatment and the drying treatment, it is washed with water and dried again. 請求項1〜10のいずれか1項に記載の製造方法により得られた酸化チタンナノワイヤ構造体。   The titanium oxide nanowire structure obtained by the manufacturing method of any one of Claims 1-10.
JP2004375169A 2004-12-27 2004-12-27 Method for producing titanium oxide nanowire structure and titanium oxide nanowire structure obtained by the method Expired - Fee Related JP4654410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375169A JP4654410B2 (en) 2004-12-27 2004-12-27 Method for producing titanium oxide nanowire structure and titanium oxide nanowire structure obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375169A JP4654410B2 (en) 2004-12-27 2004-12-27 Method for producing titanium oxide nanowire structure and titanium oxide nanowire structure obtained by the method

Publications (2)

Publication Number Publication Date
JP2006182575A true JP2006182575A (en) 2006-07-13
JP4654410B2 JP4654410B2 (en) 2011-03-23

Family

ID=36735966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375169A Expired - Fee Related JP4654410B2 (en) 2004-12-27 2004-12-27 Method for producing titanium oxide nanowire structure and titanium oxide nanowire structure obtained by the method

Country Status (1)

Country Link
JP (1) JP4654410B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176998A (en) * 2007-01-17 2008-07-31 Seiko Epson Corp Manufacturing method of photoelectric conversion element, photoelectric conversion element, and electronic equipment
KR100931134B1 (en) * 2007-08-31 2009-12-10 현대자동차주식회사 Dye-Sensitized Solar Cell Using Titanium Oxide Nanotubes and Its Manufacturing Method
US8268268B2 (en) * 2007-08-07 2012-09-18 Nanjing University Of Technology Rapid method for preparing titania or precursor thereof with controllable microporous-mesoporous structure
CN103643254A (en) * 2013-11-08 2014-03-19 江苏大学 Method for synthesizing titanium dioxide/bismuth oxychloride composite electrode on FTO
CN107098341A (en) * 2017-04-21 2017-08-29 山东大学 Graphene oxide new type water thermal stencil agent and its preparation method of nano composite material
CN108380194A (en) * 2017-02-03 2018-08-10 中国石油化工股份有限公司 A kind of photochemical catalyst and its preparation method and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611678B2 (en) * 1977-05-16 1981-03-16
JPH10152323A (en) * 1996-09-30 1998-06-09 Chubu Electric Power Co Inc Crystal titania and its production
JP2002241129A (en) * 1996-09-30 2002-08-28 Chubu Electric Power Co Inc Crystalline titania
JP2003034531A (en) * 2000-05-19 2003-02-07 Japan Science & Technology Corp Metallic oxide having shape of nanotube or nanowire and method for producing the same
JP2003251194A (en) * 2002-02-28 2003-09-09 Japan Science & Technology Corp Optically functional article
JP2006044992A (en) * 2004-08-04 2006-02-16 National Institute Of Advanced Industrial & Technology Simple method for manufacturing titanium oxide nanotube structure and titanium oxide nanotube structure obtained by the same method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611678B2 (en) * 1977-05-16 1981-03-16
JPH10152323A (en) * 1996-09-30 1998-06-09 Chubu Electric Power Co Inc Crystal titania and its production
JP2002241129A (en) * 1996-09-30 2002-08-28 Chubu Electric Power Co Inc Crystalline titania
JP2003034531A (en) * 2000-05-19 2003-02-07 Japan Science & Technology Corp Metallic oxide having shape of nanotube or nanowire and method for producing the same
JP2003251194A (en) * 2002-02-28 2003-09-09 Japan Science & Technology Corp Optically functional article
JP2006044992A (en) * 2004-08-04 2006-02-16 National Institute Of Advanced Industrial & Technology Simple method for manufacturing titanium oxide nanotube structure and titanium oxide nanotube structure obtained by the same method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176998A (en) * 2007-01-17 2008-07-31 Seiko Epson Corp Manufacturing method of photoelectric conversion element, photoelectric conversion element, and electronic equipment
US8268268B2 (en) * 2007-08-07 2012-09-18 Nanjing University Of Technology Rapid method for preparing titania or precursor thereof with controllable microporous-mesoporous structure
KR100931134B1 (en) * 2007-08-31 2009-12-10 현대자동차주식회사 Dye-Sensitized Solar Cell Using Titanium Oxide Nanotubes and Its Manufacturing Method
CN103643254A (en) * 2013-11-08 2014-03-19 江苏大学 Method for synthesizing titanium dioxide/bismuth oxychloride composite electrode on FTO
CN108380194A (en) * 2017-02-03 2018-08-10 中国石油化工股份有限公司 A kind of photochemical catalyst and its preparation method and application
CN108380194B (en) * 2017-02-03 2021-12-31 中国石油化工股份有限公司 Photocatalyst and preparation method and application thereof
CN107098341A (en) * 2017-04-21 2017-08-29 山东大学 Graphene oxide new type water thermal stencil agent and its preparation method of nano composite material
CN107098341B (en) * 2017-04-21 2019-04-09 山东大学 The preparation method of the agent of graphene oxide Hydrothermal Template and its nanocomposite

Also Published As

Publication number Publication date
JP4654410B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
Tran et al. Unusual synthesis of safflower-shaped TiO2/Ti3C2 heterostructures initiated from two-dimensional Ti3C2 MXene
Lei et al. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons
Nah et al. Doped TiO2 and TiO2 nanotubes: synthesis and applications
Turki et al. Effect of Na content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid
Mao et al. Size-and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures
Huang et al. Transformation of TiOF2 cube to a hollow nanobox assembly from anatase TiO2 nanosheets with exposed {001} facets via solvothermal strategy
TWI593632B (en) Molybdenum disulfide powder and method for manufacturing the same, method for degrading organics and method for sterilizing
Zakir et al. Fabrication of TiO2 nanotube by electrochemical anodization: toward photocatalytic application
Chen et al. Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets
Lai et al. Rapid formation of 1D titanate nanotubes using alkaline hydrothermal treatment and its photocatalytic performance
Chauhan et al. Bi0. 5Na0. 5TiO3-BiOCl composite photocatalyst for efficient visible light degradation of dissolved organic impurities
Wang et al. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization
JP4654410B2 (en) Method for producing titanium oxide nanowire structure and titanium oxide nanowire structure obtained by the method
CN106955695A (en) A kind of strontium titanium dioxide/strontium titanate nano heterojunction and its preparation method and application
Cao et al. Concave ultrathin BiOBr nanosheets with the exposed {001} facets: room temperature synthesis and the photocatalytic activity
JP6494548B2 (en) Titanium dioxide film for photocatalyst and method for producing the same
JP2004331490A (en) Titania nanotube and its manufacturing method
Zhang et al. Synthesis and application of highly ordered arrays of TiO2 rods grown on electrospun PVDF fibers
JP4706053B2 (en) Simple production method of titanium oxide nanotube structure and titanium oxide nanotube structure obtained by the production method
JP4728666B2 (en) Method for producing amorphous titania
US8420046B1 (en) Method of preparing high crystalline nanoporous titanium dioxide photocatalyst
JP2009221090A (en) Method for producing tubular titanium oxide
He et al. Mesoporous core–shell TiO 2 walnuts for photocatalysts and photodetectors with improved performances
Suchitra et al. Synthesis and photocatalytic properties of graphitic carbon nitride nanofibers using porous anodic alumina templates
Xie et al. Enhanced visible-light catalytic activity of Au nanoparticles loaded c-axis oriented Bi2VO5. 5 porous thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees