JP2006181736A - Injection mold and its manufacturing method - Google Patents

Injection mold and its manufacturing method Download PDF

Info

Publication number
JP2006181736A
JP2006181736A JP2004375003A JP2004375003A JP2006181736A JP 2006181736 A JP2006181736 A JP 2006181736A JP 2004375003 A JP2004375003 A JP 2004375003A JP 2004375003 A JP2004375003 A JP 2004375003A JP 2006181736 A JP2006181736 A JP 2006181736A
Authority
JP
Japan
Prior art keywords
mold
molds
shim
gap
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004375003A
Other languages
Japanese (ja)
Inventor
Taido Sakatani
泰道 酒谷
Ikuo Imaizumi
育男 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor East Japan Inc
Original Assignee
Kanto Jidosha Kogyo KK
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Kanto Auto Works Ltd filed Critical Kanto Jidosha Kogyo KK
Priority to JP2004375003A priority Critical patent/JP2006181736A/en
Publication of JP2006181736A publication Critical patent/JP2006181736A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an injection mold constituted so as to design the mold by estimating the bending quantity of a mold at the time of molding before the manufacture of the mold to reduce the bending of the mold at the time of molding by the fine adjustment of the arrangement of a shim and a gap without altering the mold itself after the completion of the mold. <P>SOLUTION: The estimate bending quantities of designed molds 13, 14 at the time of molding are analyzed at the time of designing of the molds, the arrangement of the shim 16 and the gap due to pressure receiving plates 17 between the attaching plate and the molds of an injection molding machine is temporarily determined to correct the design of the molds on the basis of the analyzing result, the estimate bending quantities of the corrected molds at the time of temporarily determined arrangement of the shim and the gap are again analyzed, second and third stages are repeated until the estimate bending quantities become a predetermined value or below to finally determine the arrangement of the shim and the gap to correct the design of the molds, the molds corresponding to the finally determined arrangement of the shim and the gap are manufactured and a molded product is actually molded by the manufactured molds to finely adjust the arrangement of the shim and the gap on reference to actually formed burr. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固定金型及び可動金型を互いに対向させて所定の圧力下で閉鎖して、これら金型の間に画成されたキャビティ内に溶融樹脂を高圧で充填することにより、成形品の射出成形を行なうようにした、射出成形用金型及びその製造方法に関するものである。   According to the present invention, a fixed mold and a movable mold are opposed to each other and closed under a predetermined pressure, and a molten resin is filled at a high pressure into a cavity defined between the molds. The present invention relates to an injection mold and a manufacturing method thereof.

従来、このような射出成形方法においては、図5に示すように、各金型、即ち固定金型1及び可動金型2は、それぞれ射出成形機の型締め部における互いに対向して配置された一対の取付板3,4に取り付けられている。そして、これらの金型を互いに対向させて油圧シリンダ5により、例えば2000乃至4000トン程度の所定の圧力下で閉鎖(型締め)して、これらの金型の間に画成されたキャビティ(図示せず)内に溶融樹脂を高圧で充填することにより、成形品の射出成形を行なうようにしている。この場合、キャビティ内に充填される溶融樹脂の圧力によって金型1,2が開かないように、溶融樹脂の圧力に対抗して、同等以上の圧力で金型1,2を締め付ける必要がある。   Conventionally, in such an injection molding method, as shown in FIG. 5, the respective molds, that is, the fixed mold 1 and the movable mold 2 are arranged to face each other in the mold clamping portion of the injection molding machine. It is attached to a pair of attachment plates 3 and 4. Then, these molds are opposed to each other and closed (clamped) by a hydraulic cylinder 5 under a predetermined pressure of, for example, about 2000 to 4000 tons, and a cavity defined between these molds (see FIG. (Not shown) is filled with a molten resin at high pressure to perform injection molding of the molded product. In this case, it is necessary to clamp the molds 1 and 2 with a pressure equal to or higher than the pressure of the molten resin so that the molds 1 and 2 are not opened by the pressure of the molten resin filled in the cavity.

しかしながら、図5に示すように、特に金型1,2の中央付近にて溶融樹脂の圧力が矢印Xのように金型1,2に作用することにより、金型1,2の中央では金型1,2のパーティションラインが互いに開く方向に、また金型1,2の四隅では金型1,2のパーティションラインが互いに閉じる方向に撓むことになり、金型1,2の間に隙間6が生ずることがある。このような金型の撓みは、例えば金型構造,型厚,型材質,型締め機構造,樹脂圧受圧面積等によるものと考えられる。   However, as shown in FIG. 5, the pressure of the molten resin acts on the molds 1 and 2 as indicated by the arrow X, particularly near the center of the molds 1 and 2. The partition lines of the molds 1 and 2 are bent in the direction in which the partition lines of the molds 1 and 2 are opened, and the partition lines of the molds 1 and 2 are bent in the directions in which the partition lines of the molds 1 and 2 are closed. 6 may occur. Such bending of the mold is considered to be caused by, for example, the mold structure, mold thickness, mold material, mold clamping machine structure, resin pressure receiving area, and the like.

また、図6に示すように、金型1,2の周縁部に設けられた受圧面1a,2aには、これらの間を密閉するように受圧プレート7が配置されているが、上述したように金型1,2が四隅で互いに閉じる方向に撓むことによって、受圧面1a,2a同士が当接する。従って、このような当接により、前述した金型1,2の中央付近の隙間6の発生を助長することになってしまう。   Further, as shown in FIG. 6, a pressure receiving plate 7 is disposed on the pressure receiving surfaces 1a and 2a provided at the peripheral portions of the molds 1 and 2 so as to seal between them. Further, the pressure receiving surfaces 1a and 2a come into contact with each other when the molds 1 and 2 are bent in the directions in which they are closed at the four corners. Therefore, such a contact promotes the generation of the gap 6 near the center of the molds 1 and 2 described above.

このような型締めの際の撓みを考慮して金型は設計されてはいないので、成形品を成形する際には、金型1,2の間に発生する隙間6に溶融樹脂が侵入することにより、バリが発生してしまうことになる。   Since the mold is not designed in consideration of the bending during the mold clamping, when the molded product is molded, the molten resin enters the gap 6 generated between the molds 1 and 2. As a result, burrs are generated.

このようなバリ発生の対策として、従来においては、金型完成後に実際に成形品を成形しながら、所謂トライ・アンド・エラーで行なわれているので、バリの発生をなかなか抑制することができず、金型を再製作する必要もあるなど、多くの工数と時間がかかってしまう。   Conventionally, as a countermeasure against the occurrence of burrs, since the so-called try-and-error is performed while the molded product is actually formed after the mold is completed, the generation of burrs cannot be easily suppressed. It takes a lot of man-hours and time.

これに対して、特許文献1には、樹脂漏れ防止のための弾性シールの面圧を調整するためのシムを配置するようにしたRTM成形方法が開示されている。また、特許文献2には、取付部材(母型)と金型との間にシムを配置し、このシムの厚さを調整することにより金型の当たり面を調整するようにしたモールド成形機が開示されている。
特開平07−060765号公報 特開平09−150421号公報
On the other hand, Patent Document 1 discloses an RTM molding method in which a shim for adjusting the surface pressure of an elastic seal for preventing resin leakage is disposed. Patent Document 2 discloses a molding machine in which a shim is disposed between an attachment member (mother mold) and a mold, and the contact surface of the mold is adjusted by adjusting the thickness of the shim. Is disclosed.
Japanese Patent Application Laid-Open No. 07-060765 JP 09-150421 A

しかしながら、特許文献1によるRTM成形方法においては、樹脂漏れ防止の弾性シールの面圧を調整するためにシムを配置するものであり、金型の撓みによるバリの発生を防止するものではない。   However, in the RTM molding method according to Patent Document 1, a shim is disposed in order to adjust the surface pressure of the elastic seal for preventing resin leakage, and does not prevent generation of burrs due to bending of the mold.

また、特許文献2によるモールド成形機においては、シムの厚さを調整することにより、金型の当たり面を調整することによって金型の間の隙間を排除して、バリの発生を防止するものであるが、シムの調整は金型製作後に実際に成形品を成形しながら、トライ・アンド・エラーで行なわれる。その際、シムの調整は、例えば配置場所,大きさ,厚さの調整により行なわれるので、最適な調整を見つけるまで時間がかかると共に、同様に金型の再製作が必要になることもあるなど、多くの工数と時間がかかってしまうことになる。   Moreover, in the molding machine by patent document 2, by adjusting the thickness of a shim, by adjusting the contact surface of a metal mold | die, the clearance gap between metal mold | dies is eliminated, and generation | occurrence | production of a burr | flash is prevented. However, shim adjustment is performed by trial-and-error while the molded product is actually formed after the mold is manufactured. At that time, the shim is adjusted by adjusting the location, size, and thickness, for example. Therefore, it takes time to find the optimum adjustment, and it may be necessary to remanufacture the mold as well. It will take a lot of man-hours and time.

本発明は、以上の点に鑑み、金型製作前に射出成形時の金型の撓み量を予測して、金型を設計することにより、金型完成後は、金型自体を変更することなく、シム及び隙間の配置を微調整することによって射出成形時の金型の撓みを低減するようにした、射出成形用金型及びその製造方法を提供することを目的としている。   In view of the above points, the present invention predicts the amount of bending of a mold during injection molding before manufacturing the mold and designs the mold to change the mold itself after completion of the mold. An object of the present invention is to provide an injection mold and a method for manufacturing the same, in which bending of the mold during injection molding is reduced by finely adjusting the arrangement of shims and gaps.

上記一目的を達成するため、本発明によれば、射出成形機の型締め部における互いに対向して配置された一対の取付板に、それぞれ固定金型及び可動金型から成る金型を取り付けて、これらの金型を互いに対向させて所定の圧力下で閉鎖して、これら金型の間に画成されたキャビティ内に溶融樹脂を高圧で充填することにより成形品の射出成形を行なうようにした、射出成形用金型の製造方法において、金型設計時に、設計した金型の成形時の予測撓み量を解析する第一の段階と、この予測撓み量の解析結果に基づいて、射出成形機の取付板と金型との間におけるシム及び金型外側の受圧面に設ける隙間の配置を仮決定して、金型の設計を修正する第二の段階と、仮決定されたシム及び隙間を配置した際の修正金型の予測撓み量を再び解析する第三の段階と、金型の予測撓み量、即ち型開き量が所定値以下になるまで第二及び第三の段階を繰り返して、シム及び隙間の配置を本決定して、金型の設計を修正する第四の段階と、本決定されたシム及び隙間の配置に対応した金型を製作する第五の段階と、製作された金型により実際に成形品を成形して、実際に生ずるバリを参照して、シム及び隙間の配置を微調整する第六の段階と、を含んでいることを特徴とするものである。   In order to achieve the above-mentioned object, according to the present invention, a mold composed of a fixed mold and a movable mold is attached to a pair of mounting plates arranged opposite to each other in a mold clamping part of an injection molding machine. These molds are opposed to each other and closed under a predetermined pressure, and a molded product is injection-molded by filling the cavity defined between the molds with molten resin at a high pressure. In the manufacturing method of the injection mold, the first stage of analyzing the predicted deflection amount at the time of molding of the designed mold, and the injection molding based on the analysis result of the predicted deflection amount The second stage of correcting the design of the mold by temporarily determining the arrangement of the shim between the mounting plate of the machine and the mold and the gap provided on the pressure receiving surface outside the mold, and the tentatively determined shim and gap Analyze the predicted deflection of the correction mold when placing The third stage and the second and third stages are repeated until the predicted amount of deflection of the mold, that is, the mold opening amount is equal to or less than a predetermined value, and the arrangement of the shim and the gap is finally determined to design the mold. A fourth stage of correcting the above, a fifth stage of manufacturing a mold corresponding to the determined arrangement of the shim and the gap, and actually forming a molded product by the manufactured mold. And a sixth stage for finely adjusting the arrangement of the shim and the gap with reference to the burr.

本発明による射出成形用金型の製造方法は、好ましくは、第六の段階にて、射出成形機と金型との間の接触領域の中央付近に配置されるシムの厚さを調整することにより、型開き方向の隙間を微調整する。   In the method of manufacturing an injection mold according to the present invention, preferably, in the sixth stage, the thickness of the shim disposed near the center of the contact area between the injection molding machine and the mold is adjusted. To finely adjust the gap in the mold opening direction.

本発明による射出成形用金型の製造方法は、好ましくは、第六の段階にて、金型間にて互いに対向する受圧面に配置された受圧プレートの厚さを調整することにより、型開き方向に垂直な方向の隙間を微調整する。   The method for manufacturing an injection mold according to the present invention preferably comprises, in the sixth stage, adjusting the thickness of the pressure receiving plates disposed on the pressure receiving surfaces facing each other between the molds, thereby opening the mold. Fine-tune the gap in the direction perpendicular to the direction.

上記の他の目的を達成するため、本発明の第二の構成によれば、射出成形機の型締め部における互いに対向して配置された一対の取付板にそれぞれ取り付けられる固定金型及び可動金型から構成されており、これらの金型が互いに対向され所定の圧力下で閉鎖された状態にて、これらの金型の間に画成されたキャビティ内に溶融樹脂を高圧で充填することにより成形品の射出成形を行うようにした射出成形用金型において、射出成形機の取付板と金型との間にシム及び金型外側の受圧面に設ける隙間が配置されており、これらのシム及び隙間が、金型設計時における金型の成形時の予測撓み量に基づいて、この予測撓み量が所定値以下になるように配置され、シムの厚さが選定されていることを特徴とするものである。   In order to achieve the other object, according to the second configuration of the present invention, a fixed mold and a movable mold respectively attached to a pair of mounting plates arranged opposite to each other in a mold clamping part of an injection molding machine. The mold is composed of molds, and in a state where these molds are opposed to each other and closed under a predetermined pressure, a cavity defined between these molds is filled with molten resin at a high pressure. In an injection mold for injection molding of a molded product, a shim and a gap provided on a pressure receiving surface outside the mold are disposed between a mounting plate of the injection molding machine and the mold. And the gap is arranged based on the predicted deflection amount at the time of molding the mold at the time of mold design so that the predicted deflection amount is not more than a predetermined value, and the thickness of the shim is selected. To do.

上記構成によれば、金型製作前に、射出成形時における型締め力と型内の樹脂圧力とによる金型の予測撓み量を解析して、この予測撓み量の解析結果を参照して、シム及び隙間の配置を仮決定して金型を設計することにより、金型の予測撓み量を所定値以下にすることができる。そして、予測撓み量の解析結果を織り込んで設計された金型を製作した後、この金型を使用して実際に成形品を成形して、実際に生ずるバリを参照して、トライ・アンド・エラーによりシム及び隙間の配置を最終的に微調整する。   According to the above configuration, before the mold production, analyze the predicted deflection amount of the mold due to the mold clamping force and the resin pressure in the mold at the time of injection molding, and refer to the analysis result of this predicted deflection amount, By designing the mold by temporarily determining the arrangement of shims and gaps, the predicted deflection of the mold can be made to be a predetermined value or less. Then, after manufacturing a mold designed by incorporating the analysis result of the predicted deflection amount, the molded product is actually molded using this mold, and the burrs that are actually generated are referred to. Final adjustment of shim and gap placement due to errors.

この場合、金型が射出成形時の予測撓み量を考慮して設計されているので、トライ・アンド・エラーでのシム及び隙間の調整が微調整で済み、従来の場合のように金型の型厚や型構造の変更、即ち金型の再製作の必要はまったくない。従って、最適な金型が容易に、そして短時間で製作されることになることから、金型製作のコストが低減され、金型の納期が短縮され、成形品のコストも低減され得る。   In this case, since the mold is designed in consideration of the predicted amount of deflection at the time of injection molding, adjustment of shims and gaps by trial and error is fine adjustment. There is no need to change the mold thickness or mold structure, that is, re-manufacture of the mold. Accordingly, since the optimum mold can be manufactured easily and in a short time, the cost of mold manufacture can be reduced, the delivery time of the mold can be shortened, and the cost of the molded product can be reduced.

上記第六の段階にて、射出成形機と金型との間の接触領域の中央付近に配置されるシムの厚さを調整することにより、型開き方向の隙間を微調整する場合には、射出成形時における型締め力と型内の樹脂圧力とによる金型中央付近の開く方向への撓みに対応してシムの厚さを調整することによって、金型の撓みによる中央付近の隙間が低減され、バリの発生が抑制され得る。   When finely adjusting the gap in the mold opening direction by adjusting the thickness of the shim disposed in the vicinity of the center of the contact area between the injection molding machine and the mold in the sixth stage, By adjusting the thickness of the shim in response to the bending in the opening direction near the center of the mold due to the mold clamping force and the resin pressure in the mold during injection molding, the gap near the center due to the bending of the mold is reduced. Thus, the generation of burrs can be suppressed.

また、上記第六の段階にて、上記金型間にて互いに対向する受圧面に配置された受圧プレートの厚さを調整することにより、型開き方向に垂直な方向の隙間を微調整する場合には、型締めの圧力による金型外縁付近の上記方向への撓みに対応して受圧プレートの厚さを調整することによって、金型の撓みによる外縁付近の隙間が低減され、バリの発生が抑制され得る。   In the sixth stage, the gap in the direction perpendicular to the mold opening direction is finely adjusted by adjusting the thickness of the pressure receiving plates disposed on the pressure receiving surfaces facing each other between the molds. In this case, by adjusting the thickness of the pressure receiving plate corresponding to the bending in the above direction near the outer edge of the mold due to the clamping pressure, the gap near the outer edge due to the bending of the mold is reduced, and burrs are generated. Can be suppressed.

このように、本発明によれば、完成した金型は、射出成形時における型締め力と型内の樹脂圧力とによる予測撓み量が考慮されているので、完成した金型を使用してトライ・アンド・エラーで成形品を成形しながら、シム及び隙間の調整を行なう際に、金型の型厚や型構造を変更する程の調整は不要であり、シムの厚さの変更あるいは受圧プレートの厚さの変更による隙間の微調整のみで、射出成形時の金型の撓みを最適に低減することが可能である。従って、金型の再製作が不要であり、金型完成までの工数が少なくて済み、金型製作時間が大幅に低減されると共に、成形品のコストも大幅に低減される。   As described above, according to the present invention, the completed mold is considered for the predicted deflection amount due to the clamping force and the resin pressure in the mold at the time of injection molding.・ When adjusting shims and gaps while molding a molded product with AND error, there is no need to adjust the mold thickness or mold structure to change the thickness of the shim or pressure receiving plate. It is possible to optimally reduce the bending of the mold during injection molding only by fine adjustment of the gap by changing the thickness of the mold. Therefore, it is not necessary to remanufacture the mold, and the man-hours until completion of the mold can be reduced, the mold manufacturing time is greatly reduced, and the cost of the molded product is also greatly reduced.

以下、図面に示した実施形態に基づいて、この発明を詳細に説明する。
図1及び図2は、本発明による射出成形用金型の一実施形態で使用される射出成形装置を示している。図1及び図2において、射出成形装置10は、射出成形機の型締め部における互いに対向して配置された一対の取付板11,12の対向面にそれぞれ取り付けられた固定金型13及び可動金型14と、これらの取付板11,12を互いに対向して押圧する油圧シリンダ15と、金型、図示の場合固定金型13とこれに対応する取付板11との間に挿入されたシム16及び金型外側の受圧面に設ける受圧プレート17と、を備えている。なお、取付板11,12,油圧シリンダ15そして射出成形機は、従来と同様の構成のものが使用される。
The present invention will be described in detail below based on the embodiments shown in the drawings.
1 and 2 show an injection molding apparatus used in an embodiment of an injection mold according to the present invention. 1 and 2, an injection molding apparatus 10 includes a fixed mold 13 and a movable mold that are respectively attached to opposing surfaces of a pair of mounting plates 11 and 12 that are arranged to face each other in a mold clamping portion of an injection molding machine. A shim 16 inserted between a mold 14, a hydraulic cylinder 15 that presses these mounting plates 11 and 12 to face each other, and a mold, in the illustrated case, a fixed mold 13 and the corresponding mounting plate 11. And a pressure receiving plate 17 provided on the pressure receiving surface outside the mold. The mounting plates 11 and 12, the hydraulic cylinder 15 and the injection molding machine are configured in the same manner as in the prior art.

金型13,14は、本発明に従って、その製作前の設計時に、射出成形時における型締め力と型内の樹脂圧力とによる撓み量を解析されて、解析された予測撓み量を低減するようなシム及び金型外側の受圧面に設ける隙間の配置を考慮しながら設計され製作される。より具体的には、金型13,14の中央付近にて成形時の開く方向への撓みを低減するように、金型13と取付板11との間に、所定厚さのシム16を配置すると共に、外縁、特に四隅における成形時の閉じる方向への撓みを低減するように、金型13及び金型14の間の受圧面に備えられる所定厚さの受圧プレート17を配置して、金型13,14の予測撓み量を低減するように、金型13,14は設計されている。   In accordance with the present invention, the molds 13 and 14 are analyzed for the amount of bending caused by the clamping force and the resin pressure in the mold at the time of injection molding at the time of designing before manufacture, so as to reduce the predicted amount of bending analyzed. It is designed and manufactured in consideration of the arrangement of the gap provided on the pressure receiving surface outside the shim and the mold. More specifically, a shim 16 having a predetermined thickness is disposed between the mold 13 and the mounting plate 11 so as to reduce bending in the opening direction at the time of molding near the center of the molds 13 and 14. In addition, a pressure receiving plate 17 having a predetermined thickness provided on the pressure receiving surface between the mold 13 and the mold 14 is disposed so as to reduce bending in the closing direction at the time of molding at the outer edge, particularly at the four corners. The molds 13 and 14 are designed so as to reduce the predicted deflection amount of the molds 13 and 14.

シム16は、金型13,14の設計の際に、その位置,大きさ,厚さが金型13,14そして射出成形機の取付板11,12、さらに必要であれば後述する受圧プレート17による隙間を仮決定して、成形時の金型13,14の予測撓み量を解析して、予測撓み量を低減するように本決定される。   When designing the molds 13 and 14, the shim 16 has the position, size and thickness of the molds 13 and 14, the mounting plates 11 and 12 of the injection molding machine, and if necessary, a pressure receiving plate 17 which will be described later. Is temporarily determined to analyze the predicted deflection amount of the molds 13 and 14 at the time of molding to reduce the predicted deflection amount.

さらに、シム16は、金型13,14の完成後に、実際に成形品の成形を行なって、所謂トライ・アンド・エラーの手法によって、金型13,14の撓み量を低減するために、その位置,大きさ,厚さが適宜に微調整されるようになっている。   Further, the shim 16 is used to reduce the amount of bending of the molds 13 and 14 by the so-called try-and-error method by actually molding the molded product after the molds 13 and 14 are completed. The position, size, and thickness are finely adjusted as appropriate.

この場合、金型13,14が設計の段階で解析された予測撓み量を参照して製作されることから、シム16の調整による金型13,14の撓み量の最適化は、微調整で済み、従来のような金型の再製作となるようなことは回避され得るようになっている。   In this case, since the molds 13 and 14 are manufactured with reference to the predicted deflection amount analyzed at the design stage, the optimization of the deflection amount of the molds 13 and 14 by adjusting the shim 16 can be made by fine adjustment. In other words, it is possible to avoid remanufacturing the mold as in the prior art.

受圧プレート17は、金型13,14の外縁付近にて、金型13,14同士が互いに当接する受圧面13a,14aの間に介挿されており、これらの受圧面13a,14aの間に画成される隙間を適宜に埋めるようになっている。ここで、受圧プレート17は、金型13,14が設計の段階で解析された予測撓み量を参照して製作されることから、これらの受圧面13a,14aの間の隙間の調整は、同様に微調整で済み、受圧プレート17の厚さを変更するだけで調整される。   The pressure receiving plate 17 is interposed between the pressure receiving surfaces 13a and 14a where the molds 13 and 14 come into contact with each other in the vicinity of the outer edges of the molds 13 and 14, and between the pressure receiving surfaces 13a and 14a. The defined gap is appropriately filled. Here, since the pressure receiving plate 17 is manufactured with reference to the predicted deflection amount analyzed in the design stage of the molds 13 and 14, the adjustment of the gap between the pressure receiving surfaces 13a and 14a is the same. Fine adjustment is required, and adjustment is made simply by changing the thickness of the pressure receiving plate 17.

本発明実施形態による射出成形用金型を使用した射出成形装置10は以上のように構成されており、射出成形用金型の製造から射出成形までの作業は、図3のフローチャートに従って、以下のように実施される。   The injection molding apparatus 10 using the injection mold according to the embodiment of the present invention is configured as described above. The operations from the production of the injection mold to the injection molding are as follows according to the flowchart of FIG. Is implemented as follows.

図3において、まずステップST1にて、射出成形用金型の製造方法の第一段階として、金型設計時に、射出成形時における型締め力と型内の樹脂圧力とによる金型13,14の予測撓み量を解析する。この予測撓み量の解析は、例えばCAE(Computer Aided Engineering)等により行なわれる。   In FIG. 3, first, in step ST1, as a first stage of the method for manufacturing an injection mold, the molds 13 and 14 are molded by mold clamping force and resin pressure in the mold at the time of mold design. Analyze the predicted deflection. The analysis of the predicted deflection amount is performed by, for example, CAE (Computer Aided Engineering).

続いて、ステップST2にて、射出成形用金型の製造方法の第二段階として、上述した予測撓み量の解析結果に基づいて上記射出成形機の取付板と金型の間におけるシム及び金型外側の受圧面に設ける隙間の配置を検討し、仮決定して金型の設計を修正する。この場合、シムの位置,大きさ,厚さを適宜に選定し、また受圧プレートの厚さ調整による隙間の位置,大きさを適宜に選定することにより、できるだけ金型13,14の予測撓み量が小さくなるように、シム及び隙間の配置を仮決定する。   Subsequently, in step ST2, as a second stage of the method of manufacturing the injection mold, the shim and the mold between the mounting plate of the injection molding machine and the mold based on the analysis result of the predicted deflection amount described above. Examine the layout of the gap provided on the outer pressure-receiving surface, and tentatively decide to correct the mold design. In this case, the predicted deflection amount of the molds 13 and 14 is selected as much as possible by appropriately selecting the position, size, and thickness of the shim and appropriately selecting the position and size of the gap by adjusting the thickness of the pressure receiving plate. The arrangement of shims and gaps is provisionally determined so as to be small.

次に、ステップST3にて、射出成形用金型の製造方法の第三段階として、仮決定されたシム及び隙間を配置した際の修正金型の予測撓み量を再び解析する。ここで、金型の予測撓み量を再解析することによって、シム及び隙間の配置による予測撓み量の変化を確認することができる。   Next, in step ST3, as the third stage of the method for manufacturing the injection mold, the predicted deflection amount of the correction mold when the temporarily determined shims and gaps are arranged is analyzed again. Here, by reanalyzing the predicted deflection amount of the mold, a change in the predicted deflection amount due to the arrangement of the shim and the gap can be confirmed.

そして、ステップST4にて、金型の予測撓み量(型開き量)が所定値以下であるか否かを判定し、所定値を越えている場合には、ステップST2に戻る。   Then, in step ST4, it is determined whether or not the predicted deflection amount (die opening amount) of the mold is equal to or less than a predetermined value. If it exceeds the predetermined value, the process returns to step ST2.

これに対して、ステップST4にて所定値以下である場合には、ステップST5にて、射出成形用金型の製造方法の第四段階として、シム及び隙間の配置を本決定して金型の設計を修正する。以上で、金型の設計が完了する。   On the other hand, if it is equal to or less than the predetermined value in step ST4, in step ST5, as the fourth stage of the manufacturing method of the injection mold, the arrangement of shims and gaps is determined and the mold Modify the design. This completes the mold design.

ここで、図4は金型13,14の設計時(ステップST1からST5)までの工程、即ち予測撓み量に対応する金型の設計検討作業をより詳細に示すフローチャートであり、以下に金型13,14の設計検討作業例について詳述する。   Here, FIG. 4 is a flowchart showing in more detail the process from the time of designing the molds 13 and 14 (steps ST1 to ST5), that is, the mold design study work corresponding to the predicted deflection amount. The design study work examples 13 and 14 will be described in detail.

図4において、まずステップST11にて、金型の初期設計において、成形時の金型13,14の予測撓み量、即ち射出成形時における型締め力と型内の樹脂圧力とによる金型13,14の予測撓み量をCAEで予測し、続いてステップST12にて、予測撓み量(型開き量)を確認する。ここで、型開き量が所定値以下、即ちOKであれば、ステップST13にて、予測撓み量に対応する金型の設計検討が終了する。   In FIG. 4, first, in step ST11, in the initial design of the mold, the predicted deflection amount of the molds 13 and 14 at the time of molding, that is, the mold 13 by the mold clamping force and the resin pressure in the mold at the time of injection molding. The predicted deflection amount of 14 is predicted by CAE, and then the predicted deflection amount (die opening amount) is confirmed in step ST12. Here, if the mold opening amount is equal to or smaller than the predetermined value, that is, it is OK, the design study of the mold corresponding to the predicted deflection amount is finished in step ST13.

これに対して、型開き量が所定値を越えている、即ちNGであれば、ステップST14にて、上述した予測撓み量の解析結果に基づいて、金型13,14の撓み即ち変形形状を確認,検討して、上記射出成形機の取付板と金型の間におけるシムの配置を仮決定し、金型の設計を修正する。   On the other hand, if the mold opening amount exceeds a predetermined value, that is, NG, in step ST14, the bending or deformation shape of the molds 13 and 14 is determined based on the analysis result of the predicted bending amount described above. After confirming and examining, the layout of the shim between the mounting plate of the injection molding machine and the mold is provisionally determined, and the mold design is corrected.

次に、ステップST15にて、仮決定されたシムを配置した条件で、修正金型の予測撓み量を再び計算する。この際、必要に応じて、シムの位置や厚さをいくつか設定して、各組合せで計算を行なう。そして、ステップST16にて、金型の予測撓み量(型開き量)を型締め方向(図1参照)に関して確認する。ここで、NGの場合には、ステップST14に戻る。   Next, in step ST15, the predicted deflection amount of the correction mold is calculated again under the condition where the temporarily determined shim is arranged. At this time, if necessary, several positions and thicknesses of shims are set, and calculation is performed for each combination. In step ST16, the predicted bending amount (die opening amount) of the mold is confirmed with respect to the clamping direction (see FIG. 1). Here, in the case of NG, the process returns to step ST14.

また、OKの場合には、ステップST17にて、金型の予測撓み量(型開き量)を型締め方向に直角な方向(図1参照)に関して確認する。そして、ステップST17にてOKの場合には、ステップST18にて予測撓み量に対応する金型の設計検討が終了する。   In the case of OK, in step ST17, the predicted bending amount (die opening amount) of the mold is confirmed with respect to a direction perpendicular to the clamping direction (see FIG. 1). If the result is OK in step ST17, the design study of the mold corresponding to the predicted deflection amount is completed in step ST18.

これに対して、ステップST17にてNGの場合には、ステップST19にて、上述した予測撓み量の解析結果に基づいて、金型13,14の撓み即ち変形形状を確認,検討して、金型の外縁付近における受圧プレートそしてその間の隙間の配置を仮決定し、金型の設計を修正する。   On the other hand, in the case of NG in step ST17, in step ST19, based on the above-described analysis result of the predicted deflection amount, the bending, that is, the deformed shape of the molds 13, 14 is confirmed and examined, Temporarily determine the position of the pressure-receiving plate and the gap between the outer edges of the mold, and modify the mold design.

次に、ステップST20にて、仮決定された受圧プレートそして隙間を配置した条件で、修正金型の予測撓み量を再び計算する。この際、必要に応じて、受圧プレートの厚さそして隙間量をいくつか設定して、各組合せで計算を行なう。そして、ステップST21にて、金型の予測撓み量(型開き量)を型締め方向に直角な方向に関して確認する。ここで、NGの場合にはステップST19に戻る。   Next, in step ST20, the predicted deflection amount of the correction mold is calculated again under the condition that the pressure receiving plate and the gap that are provisionally determined are arranged. At this time, if necessary, several thicknesses and gaps of the pressure receiving plate are set, and calculation is performed for each combination. In step ST21, the predicted bending amount (die opening amount) of the mold is confirmed with respect to the direction perpendicular to the clamping direction. Here, in the case of NG, the process returns to step ST19.

また、OKの場合には、ステップST22にて、上述したシム及び受圧プレートそしてその隙間を配置した条件で、修正金型の予測撓み量を再び計算する。この場合も、同様にして、必要に応じて、シムの大きさ,厚さ等、受圧プレートの厚さそして隙間量をいくつか設定して、各組合せで計算を行なう。   In the case of OK, in step ST22, the predicted deflection amount of the correction mold is calculated again under the condition in which the shim, the pressure receiving plate, and the gap between them are arranged. In this case as well, calculation is performed for each combination by setting several pressure receiving plate thicknesses, such as shim size and thickness, and gaps as necessary.

最後に、ステップST23にて、上記金型の予測撓み量(型開き量)を型締め方向に直角な方向に関して確認する。ここで、NGの場合には、ステップST22に戻る。また、OKの場合には、ステップST24にて、予測撓み量に対応する金型の設計検討が終了する。
以上で、金型の設計が完了することになる。
Finally, in step ST23, the predicted deflection amount (die opening amount) of the mold is confirmed in a direction perpendicular to the mold clamping direction. Here, in the case of NG, the process returns to step ST22. In the case of OK, in step ST24, the mold design study corresponding to the predicted deflection amount is completed.
This completes the mold design.

以上の金型設計の検討作業を終えてから、図3に示すステップST6にて、射出成形用金型の製造方法の第五段階として、本決定されたシム及び隙間の配置に対応した金型を製作する。   After completion of the above-described mold design review work, in step ST6 shown in FIG. 3, as a fifth stage of the injection mold manufacturing method, the mold corresponding to the determined arrangement of the shim and the gap is determined. Is produced.

次いで、図3のステップST7にて、このようにして製作された金型13,14を使用し、本決定されたシム及び隙間を配置して金型13,14を射出成形機に装着することにより、実際に成形品を成形する。   Next, in step ST7 of FIG. 3, the molds 13 and 14 manufactured in this way are used, the determined shims and gaps are arranged, and the molds 13 and 14 are mounted on the injection molding machine. According to this, the molded product is actually molded.

そして、ステップST8にて、成形した成形品に実際に生ずるバリを参照して、所謂トライ・アンド・エラーにより、シム及び隙間の配置を微調整する(第六の段階)。   In step ST8, the burr actually generated in the molded product is referred to, and the arrangement of shims and gaps is finely adjusted by so-called try-and-error (sixth stage).

この場合、前述したように、金型13,14が設計の際に成形時の型締め力と型内の樹脂圧力とによる金型13,14の予測撓み量を解析して、この解析結果を織り込んで、金型を修正するようにしているので、実際の成形品の成形時での金型13,14の撓み量は僅かであり、シム及び隙間の微調整によって十分に調整可能な範囲に収まっている。   In this case, as described above, when the molds 13 and 14 are designed, the predicted bending amount of the molds 13 and 14 due to the clamping force at the time of molding and the resin pressure in the mold is analyzed, and the analysis result is obtained. Since the mold is modified by weaving, the amount of bending of the molds 13 and 14 at the time of actual molding is very small, and it can be adjusted sufficiently by fine adjustment of shims and gaps. It is settled.

従って、実際の成形品の試験成形を行なった後に、成形時の型締め力と型内の樹脂圧力とによる金型の撓み量を低減するために、金型の型厚や型構造の変更、即ち金型の再製作は不要である。   Therefore, after performing the test molding of the actual molded product, in order to reduce the amount of bending of the mold due to the mold clamping force and the resin pressure in the mold, the mold thickness and mold structure change, That is, it is not necessary to remanufacture the mold.

このようにして、所謂トライ・アンド・エラーで調整された射出成形用金型を用いることにより、射出成形機により成形品の成形を行うことができる。この場合、金型完成後の最初の成形から、射出成形時の金型の撓み量を低減して、バリの発生のない成形を行なうことができる。従って、成形コストが低減されると共に、成形品の生産性が向上する。   In this way, by using an injection mold adjusted by so-called try-and-error, a molded product can be molded by an injection molding machine. In this case, from the first molding after completion of the mold, it is possible to reduce the amount of bending of the mold at the time of injection molding and perform molding without generation of burrs. Therefore, the molding cost is reduced and the productivity of the molded product is improved.

このように、本発明の実施形態に係る射出成形用金型の製造方法によれば、金型製作前に成形時の金型の撓み量を予測して金型を設計することにより、金型完成後は、金型自体を変更することなく、シム及び隙間の配置を微調整することによって成形時の金型の撓みを低減するようにした、極めて優れた射出成形用金型を製造することができる。   As described above, according to the method for manufacturing an injection mold according to the embodiment of the present invention, the mold is designed by predicting the bending amount of the mold at the time of molding before the mold is manufactured. After completion, to produce a very good injection mold that reduces the bending of the mold during molding by finely adjusting the arrangement of shims and gaps without changing the mold itself Can do.

以上本発明について詳述したが、本発明は、発明の趣旨を逸脱しない範囲において様々な形態で実施できる。例えば、上述した実施形態においては、固定金型13と取付板11との間にシム16を配置する場合について説明したが、これに限らず、可動金型14と取付板12との間にシムを配置する場合にも同様に、本発明を適用することができる。   Although the present invention has been described in detail above, the present invention can be implemented in various forms without departing from the spirit of the invention. For example, in the above-described embodiment, the case where the shim 16 is disposed between the fixed mold 13 and the mounting plate 11 has been described. However, the present invention is not limited thereto, and the shim is interposed between the movable mold 14 and the mounting plate 12. Similarly, the present invention can also be applied to the case of arranging.

また、上述した実施形態においては、シム16を配置すると共に、受圧プレート17の厚さを調整することにより、その間に画成される隙間の厚さを調整するようになっているが、何れか一方の調整のみであってもよい。   Further, in the above-described embodiment, the shim 16 is disposed and the thickness of the pressure receiving plate 17 is adjusted to adjust the thickness of the gap defined therebetween. Only one adjustment may be sufficient.

本発明の射出成形用金型を使用する射出成形装置の概略断面図である。It is a schematic sectional drawing of the injection molding apparatus which uses the metal mold | die for injection molding of this invention. 図1の射出成形装置におけるA−A線断面図である。It is an AA line sectional view in the injection molding device of FIG. 図1の射出成形装置による射出成形用金型の製造方法を順次に示すフローチャートである。It is a flowchart which shows in order the manufacturing method of the injection mold by the injection molding apparatus of FIG. 図3の射出成形用金型の製造方法における金型の設計検討作業を示すフローチャートである。It is a flowchart which shows the design examination work of the metal mold | die in the manufacturing method of the injection mold of FIG. 従来の射出成形方法で使用する射出成形装置の概略断面図である。It is a schematic sectional drawing of the injection molding apparatus used with the conventional injection molding method. 図5の射出成形装置におけるA−A線断面図である。It is the sectional view on the AA line in the injection molding apparatus of FIG.

符号の説明Explanation of symbols

10 射出成形装置
11,12 型締め部の取付板
13 固定金型
14 可動金型
15 油圧シリンダ
16 シム
17 受圧プレート
DESCRIPTION OF SYMBOLS 10 Injection molding apparatus 11, 12 Mounting plate of mold clamping part 13 Fixed mold 14 Movable mold 15 Hydraulic cylinder 16 Shim 17 Pressure receiving plate

Claims (4)

射出成形機の型締め部における互いに対向して配置された一対の取付板にそれぞれ固定金型及び可動金型から成る金型を取り付けて、これらの金型を互いに対向させて所定の圧力下で閉鎖して、これら金型の間に画成されたキャビティ内に溶融樹脂を高圧で充填することにより成形品の射出成形を行なうようにした射出成形用金型の製造方法において、
上記金型設計時に、設計した金型の成形時の予測撓み量を解析する第一の段階と、
この予測撓み量の解析結果に基づいて、上記射出成形機の取付板と金型との間におけるシム及び金型外側の受圧面に設ける隙間の配置を仮決定して、金型の設計を修正する第二の段階と、
仮決定されたシム及び隙間を配置した際の上記修正金型の予測撓み量を再び解析する第三の段階と、
上記金型の予測撓み量が所定値以下になるまで上記第二及び第三の段階を繰り返して、上記シム及び隙間の配置を本決定して、金型の設計を修正する第四の段階と、
本決定されたシム及び隙間の配置に対応した金型を製作する第五の段階と、
製作された金型により実際に成形品を成形して、実際に生ずるバリを参照して、上記シム及び隙間の配置を微調整する第六の段階と、
を含んでいることを特徴とする、射出成形用金型の製造方法。
A mold composed of a fixed mold and a movable mold is attached to a pair of mounting plates arranged opposite to each other in a mold clamping portion of an injection molding machine, and these molds are opposed to each other under a predetermined pressure. In a method for manufacturing an injection mold, the mold is closed and filled with molten resin at a high pressure in a cavity defined between the molds.
At the time of the mold design, a first stage of analyzing the predicted deflection amount at the time of molding the designed mold,
Based on the analysis result of the predicted amount of deflection, the layout of the shim between the mounting plate of the injection molding machine and the mold and the arrangement of the gap provided on the pressure receiving surface outside the mold are provisionally determined, and the mold design is corrected. The second stage to do,
A third stage for analyzing again the predicted deflection amount of the correction mold when the temporarily determined shims and gaps are disposed;
Repeating the second and third steps until the predicted amount of deflection of the mold is less than or equal to a predetermined value, and finally determining the arrangement of the shims and gaps and correcting the mold design; ,
A fifth stage for producing a mold corresponding to the determined shim and gap arrangement;
A sixth stage in which the molded product is actually molded by the manufactured mold, and the arrangement of the shim and the gap is finely adjusted with reference to the burr actually generated;
The manufacturing method of the metal mold | die for injection molding characterized by including.
前記第六の段階にて、前記射出成形機と金型との間の接触領域の中央付近に配置されるシムの厚さを調整することにより、型開き方向の隙間を微調整することを特徴とする、請求項1に記載の射出成形用金型の製造方法。   In the sixth stage, the gap in the mold opening direction is finely adjusted by adjusting the thickness of the shim disposed near the center of the contact area between the injection molding machine and the mold. The method for producing an injection mold according to claim 1. 前記第六の段階にて、前記金型間にて互いに対向する受圧面に配置された受圧プレートの厚さを調整することにより、型開き方向に垂直な方向の隙間を微調整することを特徴とする、請求項1又は2に記載の射出成形用金型の製造方法。   In the sixth step, the gap in the direction perpendicular to the mold opening direction is finely adjusted by adjusting the thickness of the pressure receiving plates disposed on the pressure receiving surfaces facing each other between the molds. The method for producing an injection mold according to claim 1 or 2. 射出成形機の型締め部における互いに対向して配置された一対の取付板にそれぞれ取り付けられる固定金型及び可動金型から構成されており、これらの金型が互いに対向され所定の圧力下で閉鎖された状態にて、これらの金型の間に画成されたキャビティ内に溶融樹脂を高圧で充填することにより成形品の射出成形を行うようにした射出成形用金型において、
上記射出成形機の取付板と金型との間にシム及び金型外側の受圧面に設ける隙間が配置されており、
これらのシム及び隙間が、金型設計時における金型の成形時の予測撓み量に基づいて、この予測撓み量が所定値以下になるように配置され、上記シムの厚さが選定されていることを特徴とする、射出成形用金型。
It consists of a fixed mold and a movable mold that are respectively attached to a pair of mounting plates arranged opposite to each other in the mold clamping part of the injection molding machine, and these molds are opposed to each other and closed under a predetermined pressure. In an injection mold in which a molded product is injection-molded by filling a molten resin at a high pressure in a cavity defined between these molds in a state where
Between the mounting plate of the injection molding machine and the mold, a gap provided on the pressure receiving surface of the shim and the mold is disposed,
These shims and gaps are arranged so that the predicted deflection amount is equal to or less than a predetermined value based on the predicted deflection amount at the time of molding the mold at the time of mold design, and the thickness of the shim is selected. An injection mold characterized by the above.
JP2004375003A 2004-12-24 2004-12-24 Injection mold and its manufacturing method Pending JP2006181736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375003A JP2006181736A (en) 2004-12-24 2004-12-24 Injection mold and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375003A JP2006181736A (en) 2004-12-24 2004-12-24 Injection mold and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006181736A true JP2006181736A (en) 2006-07-13

Family

ID=36735199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375003A Pending JP2006181736A (en) 2004-12-24 2004-12-24 Injection mold and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006181736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456566B (en) * 2008-01-18 2012-03-07 Gkn Aerospace Services Ltd A method of manufacturing a polymer matrix composite forming tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456566B (en) * 2008-01-18 2012-03-07 Gkn Aerospace Services Ltd A method of manufacturing a polymer matrix composite forming tool
US8353696B2 (en) 2008-01-18 2013-01-15 Gkn Aerospace Services Limited Semi-rigid tool having sections that vary from one another in rigidity

Similar Documents

Publication Publication Date Title
KR101544464B1 (en) Method for press forming analysis
JP6075333B2 (en) Press forming method and apparatus
CN107729661B (en) Method for controlling resilience of curved surface stretching flanging of automobile covering part
JP3856094B2 (en) Compressive force applying device and compressive force applying method
JP2006181736A (en) Injection mold and its manufacturing method
Adzima et al. Springback prediction for a mechanical micro connector using CPFEM based numerical simulations
JP4198675B2 (en) Composite molded article and manufacturing method thereof
JP6696937B2 (en) Method for manufacturing press-formed products
JP6618069B2 (en) Composite molded product design support device, composite molded product manufacturing method, computer software, storage medium
JP2012086379A (en) Method for adjusting die for injection molding and die device
CN112658115A (en) Forming method of upper cover of battery box
KR100870534B1 (en) Cross sectional profile design method of shape drawing die for spline from round bar and spline manufactured thereby
JP2012153045A (en) System and method for designing mold
Elie-dit-Cosaque et al. Analysis and design of hydroformed thin-walled tubes using enhanced one-step method
JP7034891B2 (en) Resin molding equipment and manufacturing method of resin molded products
JP2007307805A (en) Semiconductor package manufacturing device, method therefor, and the same
CN115027024B (en) Mold locking force correction method, control device and injection molding machine
US20220305705A1 (en) Injection molding die
JP4645202B2 (en) Plate work and frame shape processing method
JP7184671B2 (en) How to set the shape of the press mold
JP2006198801A (en) Molding machine
JP5010552B2 (en) Product design support device
JP2007130670A (en) Twist correcting program in pressing, and its method
JP2005219304A (en) Method for estimating occurrence of burr
JP2812381B2 (en) Injection mold manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Effective date: 20081205

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519